

1 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS -TSTS - Diff]:

Terminal Services Terminal Server Runtime Interface
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis

documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communi ty Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map .
Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notic e does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events th at are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft progr amming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use i n conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please co ntact dochelp@microsoft.com .

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 0.2 Minor
Made changes to technical and editorial content based on
feedback.

10/23/2007 0.3 Minor Made technical and editorial changes based on feedback.

11/30/2007 0.4 Minor Made technical and editorial changes based on feedback.

1/25/2008 1.0 Major Updated and revised the technical content.

3/14/2008 2.0 Major IDL files and da ta typing revised.

5/16/2008 2.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 4.0 Major Updated and revised the technical content.

8/29/2008 5.0 Major Updated and revised the technical content.

10/24/2008 6.0 Major Updated and revised the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 7.1 Minor Clarified the meaning of the technical content.

2/27/2009 8.0 Major Updated and revised the technical content.

4/10/2009 8.1 Minor Clarified the meaning of the technical content.

5/22/2009 8.1.1 Editorial Changed language and formatting in the technical content.

7/2/2009 9.0 Major Updated and revised the technical content.

8/14/2009 9.1 Minor Clarified the meaning of the technical content.

9/25/2009 9.2 Minor Clarified the meaning of the technical content.

11/6/2009 9.3 Minor Clarified the meaning of the technical content.

12/18/2009 9.4 Minor Clarified the meaning of the technical content.

1/29/2010 9.4.1 Editorial Changed language and formatting in the technical content.

3/12/2010 9.5 Minor Clarified the meaning of the technical content.

4/23/2010 10.0 Major Updated and revised the te chnical content.

6/4/2010 11.0 Major Updated and revised the technical content.

7/16/2010 12.0 Major Updated and revised the technical content.

8/27/2010 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 12.1 Minor Clarified the meaning of the technical content.

11/19/2010 13.0 Major Updated and revised the technical content.

3 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Date
Revision
History

Revision
Class Comments

1/7/2011 14.0 Major Updated and revised the technical content.

2/11/2011 15.0 Major Updated and revised the technical content.

3/25/2011 16.0 Major Updated and revised the technical content.

5/6/2011 16.1 Minor Clarified the meaning of the technical content.

6/17/2011 16.2 Minor Clarified the meaning of the technical content.

9/23/2011 17.0 Major Updated and revised the technical content.

12/16/2011 18.0 Major Updated and revised the technical content.

3/30/2012 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 18.0 None
No changes to the meaning, l anguage, or formatting of the

technical content.

10/25/2012 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 19.0 Major Updated and revised the technical content.

11/14/2013 20.0 Major Updated and revised the technical content.

2/13/2014 21.0 Major Updated and revised the technical content.

5/15/2014 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 22.0 Major Significantly changed the technical content.

10/16/2015 23.0 Major Significantly changed the technical content.

7/14/2016 24.0 Major Significantly changed the technical content.

6/1/2017 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 25.0 Major Significantly changed the technical content.

12/1/2017 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 26.0 Major Significantly changed the technical content.

4 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 Introduction 10
1.1 Glossary 10
1.2 References 12

1.2.1 (Updated Section) Normative References 12
1.2.2 (Updated Section) Informative References 14

1.3 Overview 14
1.4 Relationship to Other Protocols 15
1.5 Prerequisites/Preconditions 15
1.6 Applicability Statement 16
1.7 Versioning and Capability Negotiation 16
1.8 Vendor -Extensible Fields 16
1.9 Standards Assignments 16

2 Messages 17
2.1 Transport 17
2.2 Common Dat a Types 17

2.2.1 Data Types 18
2.2.1.1 SESSION_HANDLE 18
2.2.1. 2 ENUM_HANDLE 18
2.2.1.3 HLISTENER 18
2.2.1.4 SERVER_HANDLE 18
2.2.1.5 WINSTATIONNAME 18
2.2.1. 6 DLLNAME 19
2.2.1.7 DEVICENAME 19
2.2.1.8 WINSTATIONINFOCLASS 19
2.2.1.9 WINSTATIONSTATECLASS 21
2.2.1.10 SDCLASS 22
2.2.1.11 SHADOWCLA SS 22
2.2.1.12 RECONNECT_TYPE 23
2.2.1.13 CLIENTDATANAME 23
2.2. 1.14 TNotificationId 23
2.2.1.15 NOTIFY_HANDLE 24
2.2.1.16 BOUNDED_ULONG 25
2.2.1.17 UINT_PTR 25
2.2.1.18 SESSIONTYPE 25
2.2.1.19 SHADOW_CONTROL_REQUEST 25
2.2.1.20 SHADOW_PERMISSION_REQUEST 26
2.2.1.21 SHADOW_REQUEST_RESPONSE 26

2.2.2 Structures 27
2.2.2.1 SESSION_FILTER 27
2.2.2.2 PROTOCOLSTATUS_INFO_TYPE 27
2.2.2.3 QUERY_SESSION_DATA_TYPE 27
2.2.2.4 PSESSIONENUM 28

2.2.2.4.1 SessionInfo 28
2.2.2.4.1.1 SESSIONENUM_LEVEL1 28
2.2.2.4.1.2 SESSIONENUM_LEVEL2 29
2.2.2.4.1.3 SESSIONENUM_LEVEL3 29

2.2.2.5 PSESSIONENUM_EX 30
2.2.2.5.1 SessionInfo_Ex 30

2.2.2.6 PEXECENVDATA 31
2.2.2.6. 1 ExecEnvData 31

2.2.2.6.1.1 EXECENVDATA_LEVEL1 32
2.2.2.6.1.2 EXECENVDATA_LEVEL2 32

2.2.2.7 PEXECENVDATAEX 33
2.2.2. 7.1 ExecEnvDataEx 33

5 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.7.1.1 EXECENVDATAEX_LEVEL1 33
2.2.2.8 PLSMSESSIONINFORMATION 34
2.2.2.9 PLSMSESSIONINFORMATION_EX 35
2.2.2.10 LSM_SESSIONINFO_EX 35
2.2.2.11 LSM_SESSIONINFO_EX_LEVEL1 35
2.2.2.12 PLISTENERENUM 36

2.2.2.12.1 ListenerInfo 36
2.2. 2.12.1.1 LISTENERENUM_LEVEL1 37

2.2.2.13 LOGONID 37
2.2.2.14 TS_PROCESS_INFORMATION_NT4 38
2.2.2.15 TS_ALL_PROCESSES_INFO 38

2.2.2.15.1 TS_SYS_PROCESS_INFORMATION 38
2.2.2.15.1.1 TS_UNICODE_STRING 40

2.2.2.16 TS_ALL_PROCESSES_INFO_NT6 40
2.2.2.16.1 TS_SYS_PROCESS_INFORMATION_NT6 40

2.2.2.16.1.1 NT6_TS_UNICODE_STRING 42
2.2.2.16.2 SYSTEM_THREAD_INFORMATION 42

2.2.2.16.2.1 CLIENT_ID 43
2.2.2.17 TS_COUNTER 43

2.2.2.17 .1 TS_COUNTER_HEADER 43
2.2.2.18 USERCONFIG 45

2.2.2.18.1 CALLBACKCLASS 48
2.2.2.18.2 APPLICATIONNAME 48

2. 2.2.19 WINSTATIONCLIENT 49
2.2.2.19.1 TS_TIME_ZONE_INFORMATION 52

2.2.2.19.1.1 TS_SYSTEMTIME 53
2.2.2.20 WINSTATIONINFORMATION 54

2.2.2.20.1 PROTOCOLSTATUS 55
2.2.2.20.1.1 PROTOCOLSTATUSEX 55
2.2.2.20.1.2 PROTOCOLCOUNTERS 56

2.2.2.20.1.2.1 TSHARE_COUNTERS 57
2.2.2.20.1.3 CACHE_STATISTICS 57

2.2.2.20.1.3.1 RESERVED_CACHE 57
2.2.2.20.1.3.1.1 THINWIRECACHE 58

2.2.2.20.1.3.2 TSHARE_CACHE 58
2.2.2.21 PDPARAMS 58
2.2.2.22 NETWORKCONFIG 58
2.2.2.23 ASYNCCONFIG 59

2.2.2.23.1 MODEMNAME 59
2.2.2.23 .2 FLOWCONTROLCONFIG 59

2.2.2.23.2.1 FLOWCONTROLCLASS 60
2.2.2.23.2.2 RECEIVEFLOWCONTROLCLASS 60
2.2.2.23.2.3 TRANSMITFLOWCONTROLCLASS 61

2.2.2.23.3 CONNECTCONFIG 61
2.2.2.23.3.1 ASYNCCONNECTCLASS 61

2.2.2.24 NASICONFIG 61
2.2.2.24.1 NASIUSERNAME 62
2.2. 2.24.2 NASIPASSWORD 62
2.2.2.24.3 NASISESIONNAME 62
2.2.2.24.4 NASISPECIFICNAME 62
2.2.2.24.5 NASIFILESERVER 62

2. 2.2.25 OEMTDCONFIG 63
2.2.2.26 PDCONFIG 63

2.2.2.26.1 PDCONFIG2 63
2.2.2.26.2 PDNAME 64

2.2.2.27 WDCONFIG 64
2.2.2.27.1 WDNAME 65
2.2.2.27.2 WDPREFIX 66

6 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.28 CDCONFIG 66
2.2.2.28.1 CDCLASS 66
2.2.2.28.2 CDNAME 66

2.2.2.29 WINSTATIONCREATE 67
2.2.2.30 WINSTATIONCONFIG2 67

2. 2.2.30.1 WINSTATIONCONFIG 67
2.2.2.31 POLICY_TS_MACHINE 68
2.2.2.32 WINSTATIONUSERTOKEN 74
2.2.2.33 WINSTATIONVIDEODATA 74
2.2.2.34 WINSTATIONLOADINDICATORDATA 74

2.2.2.34.1 LOADFACTORTYPE 75
2.2.2.35 WINSTATIONSHADOW 75

2.2.2.35.1 SHADOWSTATECLASS 76
2.2.2.36 WINSTATIONPRODID 76
2.2.2.37 WINSTATIONREMOTEADDRESS 77
2.2.2.38 ExtendedClientCredentials 77
2.2.2.39 TS_TRACE 78
2.2.2.40 BEEPINPUT................................ 80
2.2.2.41 WINSTATIONCLIENTDATA 80
2.2.2.42 SESSION_CHANGE 81
2.2.2.43 RCM_REMOTEADDRESS 81
2. 2.2.44 CLIENT_STACK_ADDRESS 82
2.2.2.45 VARDATA_WIRE 82
2.2.2.46 PDPARAMSWIRE 82
2.2.2.47 WINSTACONFIGWIRE 82
2. 2.2.48 TSVIP_SOCKADDR 83
2.2.2.49 TSVIPAddress 84
2.2.2.50 TSVIPSession 85
2.2.2.51 WINSTATIONVALIDATIONINFORMATION 85
2.2.2.52 WINSTATIONPRODUCTINFO 85

2.3 Directory Service Schema Elements 86
2.3.1 userParameters 87
2.3.2 TSProperty 87
2.3.3 Encodi ng PropValue Field in TSProperty Structure 92
2.3.4 msTSProperty01 92

3 Protocol Details 94
3.1 Determining a Caller's Permissions and Access Rights 94

3.1.1 Determining a Caller's Permissions 94
3.1.2 Determining Whether a Caller Is SYSTEM 94
3.1.3 Determining Whether a Caller Is an Administrator 94
3.1.4 Determining Whether a Caller Is the Same User Who Logged onto the Session ... 95

3.2 Local Session Manager Client Details 95
3.2.1 Abstract Data Model 95
3.2.2 Timers 95
3.2.3 Initialization 95
3.2.4 Processing Events and Sequencing Rules 95
3.2.5 Timer Events 95
3.2.6 Other Local Events 95

3.3 Local Session Manager Server Details 95
3.3.1 Abstract Data Model 95

3.3.1.1 Abstract Data Types 96
3.3.2 Timers 98
3.3.3 Initializa tion 98
3.3.4 Processing Events and Sequencing Rules 98

3.3.4.1 TermSrvSession Methods 98
3.3.4.1.1 RpcOpenSession (Opnum 0) 99
3.3.4.1.2 RpcCloseSession (Opnum 1) 100

7 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.3.4.1.3 RpcConnect (Opnum 2) 100
3.3.4.1.4 RpcDisconnect (Opnum 3) 101
3.3.4.1.5 RpcLogoff (Opnum 4) 102
3.3.4.1.6 RpcGetUserName (Opnum 5) 102
3.3.4.1.7 RpcGetTerminalName (Opnum 6) 102
3.3.4.1.8 RpcGetState (Opnum 7) 103
3.3.4.1.9 RpcIsSessionDesktopLocked (Opnum 8) 103
3.3.4.1.10 RpcShowMessageBox (Opnum 9) 104
3.3.4.1.11 RpcGetTimes (Opnum 10) 105
3.3.4.1.12 RpcGetSessionCounters (Opnum 11) 106
3.3.4.1.13 RpcGetSessionInformation (Opnum 12) 106
3.3.4.1.14 RpcGetLoggedOnCount (Opnum 15) 107
3.3.4.1.15 RpcGetSessionType (Op num 16) 107
3.3.4.1.16 RpcGetSessionInformationEx (Opnum 17) 108

3.3.4.2 TermSrvNotification 108
3.3.4.2.1 RpcWaitForSessionState (Opnum 0) 109
3.3.4.2.2 RpcRegisterAsyncNotification (Opnum 1) 110
3.3.4.2.3 RpcWaitAsyncNotification (Opnum 2) 110
3.3.4.2.4 RpcUnRegisterAsyncNotification (Opnum 3) 111

3.3.4.3 TermSrvEnumeration 111
3.3.4.3.1 RpcOpenEnum (Opnum 0) 112
3.3.4.3.2 RpcCloseEnum (Opnum 1) 113
3.3.4.3.3 RpcFilterByState (Opnum 2) 113
3.3.4.3.4 RpcFilterByCallersName (Opnum 3) 114
3.3.4.3.5 RpcEnumAddFilter (Opnum 4) 114
3.3.4.3.6 RpcGetEnumResult (Opnum 5) 114
3.3.4.3.7 RpcFilterBySessionType (Opnum 6) 115
3.3.4.3.8 RpcGetSessionIds (Opnum 8) 116
3.3.4.3.9 RpcGetEnumResultEx (Opnum 9) 116
3.3.4.3.10 RpcGetAllSessions (Opnum 10) 117
3.3.4.3.11 RpcGetAllSessionsEx (Opnum 11) 118

3.3.5 Timer Events 119
3.3.6 Other Local Events 119

3.4 TermSrv Client Details 119
3.4.1 Abstract Data Model 119
3.4.2 Timers 119
3.4.3 Initiali zation 119
3.4.4 Processing Events and Sequencing Rules 119
3.4.5 Timer Events 119
3.4.6 Other Local Events 119

3.5 TermSrv Server Details 119
3.5.1 Abstract Data Model 119

3.5.1.1 Abstract Data Types 120
3.5.2 Timers 121
3.5.3 Initialization 121
3.5.4 Message Processing Events and Sequencing Rules 121

3.5.4.1 RCMPublic 121
3.5.4.1.1 RpcGetClientData (Opnum 0) 122
3.5.4.1.2 RpcGetConfigData (Opnum 1) 123
3.5.4.1.3 RpcGetProtocolStatus (Opnum 2) 123
3.5.4.1.4 RpcGetLastInputTime (Opnum 3) 124
3.5.4.1.5 RpcGetRemoteAddress (Opnum 4) 124
3.5.4.1.6 RpcGetAllListeners (Opnum 8) 125
3.5.4.1.7 RpcGetSessionProtocolLastInputTime (Opnum 9) 125
3.5.4.1.8 RpcGetUserCertificates (Opnum 10) 126
3.5.4.1.9 RpcQuerySessionData (Opnum 11) 127

3.5.4.2 RCMListener 128
3.5.4.2.1 RpcOpenListener (Opnum 0) 128

8 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.5.4.2.2 RpcCloseListener (Opnum 1) 129
3.5.4.2.3 RpcStopListener (Opnum 2) 129
3.5.4.2.4 RpcStartListener (Opnum 3) 130
3.5.4.2.5 RpcIsListening (Opnum 4) 130

3.5.5 Timer Events 130
3.5.6 Other Local Events 131

3. 6 Legacy Client Details 131
3.6.1 Abstract Data Model 131
3.6.2 Timers 131
3.6.3 Initiali zation 131
3.6.4 Message Processing Events and Sequencing Rules 131
3.6.5 Timer Events 131
3.6.6 Other Local Events 131

3. 7 Legacy Server Details 131
3.7.1 Abstract Data Model 131

3.7.1.1 Abstract Data Types 131
3.7.2 Timers 134
3.7.3 Initiali zation 134
3.7.4 Message Processing Events and Sequencing Rules 134

3.7.4.1 LegacyApi 134
3.7.4.1.1 RpcWinStationOpenServer (Opnum 0) 139
3.7.4.1.2 RpcWinStationCloseServer (Opnum 1) 140
3.7.4.1.3 RpcIcaServerPing (Opnum 2) 140
3.7.4.1.4 RpcWinStationEnumerate (Opnum 3) 141
3.7.4.1.5 RpcWinStationRename (Opnum 4) 142
3.7.4.1.6 RpcWinStationQueryInformation (Opnum 5) 143
3.7.4.1.7 RpcWinStationSetInformation (Opnum 6) 147
3.7.4.1.8 RpcWinStationSendMessage (Opnum 7) 149
3.7.4.1.9 RpcLogonIdFromWinStationName (Opnum 8) 151
3.7.4.1.10 RpcWinStationNameFromLogonId (Opnum 9) 152
3.7.4.1.11 RpcWinStationConnect (Opnum 10) 152
3.7.4.1.12 RpcWinStationDisconnect (Opnum 13) 153
3.7.4.1.13 RpcWinStationReset (Opnum 14) 154
3.7.4.1.14 RpcWinStationShutdownSystem (Opnum 15) 155
3.7.4.1.15 RpcWinStationWaitSystemEvent (Opnum 16) 156
3.7.4.1.16 RpcWinStationShadow (Opnum 17) 158
3.7.4.1.17 RpcWinStationBreakPoint (Opnum 29) 159
3.7.4.1.18 RpcWinStationReadRegistry (Opnum 30) 160
3.7.4.1.19 OldRpcWinStationE numerateProcesses (Opnum 34) 160
3.7.4.1.20 RpcWinStationEnumerateProcesses (Opnum 36) 161
3.7.4.1.21 RpcWinStationTerminateProcess (Opnum 37) 162
3.7.4.1.22 RpcWinStationGetAllProcesses (Opnum 43) 163
3.7.4.1.23 RpcWinS tationGetProcessSid (Opnum 44) 164
3.7.4.1.24 RpcWinStationGetTermSrvCountersValue (Opnum 45) 165
3.7.4.1.25 RpcWinStationReInitializeSecurity (Opnum 46) 166
3.7.4.1.26 RpcWinStationGetLanAdapterName (Opnum 53) 166
3.7.4.1.27 RpcWinStationUpdateSettings (Opnum 58) 16 7
3.7.4.1.28 RpcWinStationShadowStop (Opnum 59) 168
3.7.4.1.29 RpcWinStationCloseServerEx (Opnum 60) 169
3.7.4.1.30 RpcWinStationIsHelpAssistantSession (Opnum 61) 170
3.7.4.1.31 RpcWinStationGetMachinePolicy (Opnum 62) 171
3.7.4.1.32 RpcWinStationCheckLoopBack (Opnum 65) 171
3.7.4.1.33 RpcConnectCallback (Opnum 66) 172
3.7.4.1.34 RpcWinStationGetAllProcesses_NT6 (Opnum 70) 173
3.7.4.1.35 RpcWinStation OpenSessionDirectory (Opnum 75) 174

3.7.5 Timer Events 175
3.7.6 Other Local Events 175

3. 8 Virtual IP Client Detail 175

9 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.8.1 Abstract Data Model 175
3.8.2 Timers 175
3.8.3 Initialization 175
3.8.4 Message Processing Events and Sequencing Rules 175
3.8.5 Timer Events 176
3.8.6 Other Local Events 176

3.9 Virtual IP Server Detail 176
3.9.1 Abstract Data Model 176

3.9.1.1 Abstract Data Types 176
3.9.2 Timers 176
3.9.3 Initialization 176
3.9.4 Message Processing Events and Sequencing Rules 176

3.9.4.1 TSVIPPublic 176
3.9.4.1.1 RpcGetSessionIP (Opnum 0) 177

3.9.5 Timer Events 177
3.9.6 Other Local Events 177

3.10 SessEnv Details 177
3.10.1 Abstract Data Model 177
3.10.2 Timers 177
3.10.3 Initial ization 177
3.10.4 Message Processing Events and Sequencing Rules 178

3.10.4.1 SessEnvPublicRpc 178
3.10.4.1.1 RpcShadow2 (Opnum 0) 178

3.10.5 Timer Events 179
3.10.6 Other Local Events 179

4 Protocol Examples 180
4.1 LSM Enumeration Example 180
4.2 TermService Listener Example 182
4.3 TermSrvBindSecure Example 184
4.4 Legacy Example 187
4.5 Encoding/Decoding Example 189

5 Security 191
5.1 Security Considerations for Implementers 191
5.2 Index of Security Parameters 191

6 Appendix A: Full IDL 192
6.1 Appendix A.1: tspubrpc.idl 192
6.2 Appendix A.2: rcmpublic.idl 198
6.3 Appendix A.3: legacy.idl 201
6.4 Appendix A.4: TSVIPRpc.idl 207
6.5 Appendix A.5: winsta.h 207
6.6 Appendix A.6: tsdef.h 222
6.7 Appendix A.7: allproc.h 224
6.8 Appendix A.8: SessEnvRpc.idl 227

7 (Updated Section) Appendix B: Product Behavior 229

8 Change Tracking 242

9 Index 243

10 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 Introduction

This document specifies the Terminal Services Terminal Server Runtime Interface Protocol. The
Terminal Services Terminal Server Runtime Interface Protocol is an RPC -based protocol used for
remotely querying and configuring various aspects of a termina l server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

administrator : A user who has complete and unrestricted access to the computer or domain.

application server mode : A mode in which Terminal Services require a client access license
(CAL) to allow remote access to sessions on a terminal server.

ASCII : The American Standard Code for Information Interchange (ASCII) is an 8 -bit character -
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8 -bit
ASCII character or an array of 8 -bit ASCII characters with the high bit of each character set to
zero.

client access license (CAL) : A license required by a client user or device for accessing a terminal
server configured in Application Server mode.

directory service (DS) : A service that stores and organizes information about a computer
network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

domain : A set of users and computers sharing a comm on namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domai n controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS -AUTHSOD] section 1.1.1.5 and [MS -ADTS].

endpoint : A network -specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncac n_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

GINA : The Graphical Identification and Authentication binary . The binary loaded by logon Service,
used by the Winlogon, to show the authentication user interface and to validate the user. The
default GINA (MSGINA) can be replaced by a custom GINA if an administrator wants to use its

own authentication UI/methods su ch as fingerprint, voice recognition, and so on. For more

information, see [MSDN -GINA].

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GU ID. See also universally unique

identifier (UUID).

11 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

handle : Any token that can be used to identify and access an object such as a device, file, or a
window.

input method editor (IME) : A process that maps keyboard input to phonetic components (or
other langu age elements) that are specific to a selected language. IMEs are typically used with

languages for which conventional keyboard representation is difficult or impossible. For
example, East Asian languages are made up of thousands of distinct characters, whi ch makes it
impossible to show all of the characters on a single keyboard. To facilitate composition, the IME
converts keystrokes into the characters of the target language (such as Japanese Katakana or
Simplified Chinese).

Interface Definition Language (I DL) : The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

listener : A session running on a terminal server that listens for incoming connection requests.

Microsoft Interface Definition Language (MIDL) : The Microsoft implementation and extension

of the OSF -DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more in formation, see [MS -RPCE].

named pipe : A named, one -way, or duplex pipe for communication between a pipe server and one

or more pipe clients.

opnum : An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) me thod or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS -RPCE].

Remote Desktop Protocol (RDP) : A multi -channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the

connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

remote procedure call (RPC) : A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request -and - response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

RPC protocol sequence : A character string that represents a valid combination of a remote
pro cedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS -RPCE].

RPC transport : The underlying network services used by the remote procedure call (RPC) runtime
for communications between network no des. For more information, see [C706] section 2.

security identifier (SID) : An identifier for security principals that is used to identify an account

or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a s maller integer representing an identity relative to the account authority, termed

the relative identifier (RID). The SID format is specified in [MS -DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD] s ection 1.1.1.2.

session : A collection of applications simultaneously running under the same Win32 subsystem.

shell : Part of the Windows user interface (UI) that organizes and controls user access to a wide
variety of objects necessary for running applicati ons and managing the operating system. The

most numerous are the folders and files that reside on computer storage media. There are also
a number of virtual objects such as network printers and other computers. The shell organizes
these objects into a hier archical namespace and provides an API to access them.

12 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SYSTEM : An account that is used by the operating system. For more information about system
account access rights, see [MSDN -LocSysAcct].

terminal server : A computer on which terminal services is runnin g.

terminal services (TS) : A service on a server computer that allows delivery of applications, or

the desktop itself, to various computing devices. When a user runs an application on a terminal
server, the application execution takes place on the server c omputer and only keyboard, mouse,
and display information is transmitted over the network. Each user sees only his or her
individual session, which is managed transparently by the server operating system and is
independent of any other client session.

Unic ode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent obj ects in cross -process communication such as client and server interfaces, manager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeab ly in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithm s described in [RFC4122] or [C706] must
be used for generating the UUID.

well - known endpoint : A preassigned, network -specific, stable address for a particular
client/server instance. For more information, see [C706].

Windows Station (WinStation) : Sessions running on the computer.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in th e Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the docume nts may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[MS -ADA1] Microsoft Corporation, "Active Directory Schema Attributes A -L".

[MS -ADA2] Microsoft Corporation, "Active Directory Schema Attribut es M".

[MS -ADA3] Microsoft Corporation, "Active Directory Schema Attributes N -Z".

[MS -ADSC] Microsoft Corporation, "Active Directory Schema Classes".

13 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS -DTYP] Microsoft Corporation, "Windows Data Types".

[MS -ERREF] Microsoft Corporation, "Windows Error Co des".

[MS -RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS -RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS -RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS -RPCH] Microsoft Corporation, "Remote Procedure Call over HTTP Protocol".

[MSDN -ExitWindowsEx] Microsoft Corporation, "ExitWindowsEx function",
http://msdn.microsoft.com/en -us/library/aa376868(VS.85).aspx

[MSDN -MSGBOX] Microsoft Corporation, "Message Box Function ", http://msdn.microsoft.com/en -

us/library/ms645505.aspx

[MSDN -PROCRIGHTS] Microsoft Corporation, "Process Security and Access Rights",

http://msdn.microsoft.com/en -us/library/ms684880(VS.85).aspx

[MSDN -PRVLGECNSTS] Microsoft Corporation, "Privilege Constants", http://msdn.microsoft.com/en -
us/library/bb530716(v=VS.85).aspx

[MSDN -RCMWin32_TSRCS] Microsoft Corporation, "RemoteControl Method of the
Win32_TSRemoteControlSetting Class", http://msdn.microsoft.com/en -
us/library/aa383818(v=VS.85).aspx

[MSDN -RPCBIND] Microsoft Corporation, "Creating a Binding Handle", http://msdn.microsoft.com/en -
us/library/aa373609.aspx

[MSDN -TDIADDRESS] Microsoft Corporation, "TDI_ADDRESS_IP structure",

http://msdn docs .microsoft.com/e n-us/ library previous -
versions/windows/hardware/network /ff565072 .aspx (v=vs.85)"

[MSDN -TOKENRIGHTS] Microsoft Corporation, "Access Rights for Access -Token Objects",
http://msdn.microsoft.com/en -us/library/aa374905(VS.85).aspx

[MSFT -SDLBTS] Microsoft Corporat ion, "Session Directory and Load Balancing Using Terminal Server",
September 2002, http://download.microsoft.com/download/8/6/2/8624174c -8587 -4a37 -8722 -
00139613a5bc/TS_Session_Directory.doc

[MSFT -WINMCE] Microsoft Corporation, " Getting started with Windows Media Center",
http://www https://support .microsoft.com/ windows en-us/help/14197 /windows -media -center /get -

getting -started /default.aspx

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[WININTERNALS] Russinovich, M., and Solomon, D., "Microsoft Windows Internals, Fourth Edition",
Microsoft Press, 2005, ISBN: 0735619174.

[X509] ITU -T, "Information Technology - Open Systems Interconnection - The Di rectory: Public -Key

and Attribute Certificate Frameworks", Recommendation X.509, August 2005,
http://www.itu.int/rec/T -REC-X.509/en

14 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.2.2 (Updated Section) Informative References

[MSDN -DWM] Microsoft Corporation, "Desktop Window Manager", http://msdn.microsoft.com/en -
us/library/aa969540.aspx

[MSDN -MSGBeep] Microsoft Corporation, "MessageBeep function", http://msdn.microsoft.com/en -
us/library/ms680356(VS.85).aspx

[MSDN -ProductID] Microsoft Corporation, "ProductID property", http://msdn.microsoft.com/en -
us/library/aa370855(VS.85).aspx

[MSDN -SERIAL] Microsoft Corporation, "Serial Communications in Win32",
http://msdn.microsoft.com/en -us/library/ms810467.aspx

[MSDN -SOCKADDR_IN6] Microsoft Corporation, "SOCKADDR_IN6 structure",
http://msdn.microsoft.com/en -us/library/ff570824(VS.85).aspx

[MSDN -SOCKET] Microsoft Corporation, "socket function", http://msdn.micro soft.com/en -

us/library/ms740506.aspx

[MSDN -SYSTIME] Microsoft Corporation, "SYSTEMTIME structure", http://msdn.microsoft.com/en -
us/library/ms189104.aspx

[MSDN -Win32_TSAcct] Microsoft Corporation, "Win32_TSAccount class",
http://msdn.microsoft.com/en -us/lib rary/aa383773(VS.85).aspx

[MSFT - IME] Microsoft Corporation, "Input method editors (IMEs)", http://windows.microsoft.com/en -
us/windows -8/input -method -editors

[MSFT -VS] Microsoft Corporation, " Microsoft Virtual Server",
http://www https://msdn .microsoft.com/ windowsserversystem/virtualserver/default. en-
us/library/windows/desktop/cc997745(v=vs.85). aspx

[MSFT -W2KDDK] Microsoft Press, "Microsoft Windows 2000 Driver Development Reference Kit,

volumes 1 -3", March 2000, ISBN: 0735609292.

Note The Windows 2000 DDK pub lication is cited as it was the last DDK (Driver Development Kit) that

was physically in print. All driver development documentation since then has been delivered in soft
format, and is available for download here: http://www.m...

[MSFT -WINSYSINTERNALS] Mi crosoft Corporation, "Windows Sysinternals",
http://technet.microsoft.com/en -us/sysinternals

[MSFT -WSTSL] Microsoft Corporation, "Overview of Remote Desktop Licensing",

http://technet.microsoft.com/en -us/library/cc725933.aspx

1.3 Overview

The Terminal Services Terminal Server Runtime Interface Protocol is a simple request - response RPC -

based protocol used for remotely querying and configuring various aspects of a terminal server. For
example, this protocol c an be used to query the number of active sessions running on a terminal
server. For every method that the server receives, it executes the method and returns a completion.
The client simply returns the completion status to the caller.

The protocol consists of four major subcomponents:

Á Local Session Manager (LSM): A system component that creates, destroys, and manages
sessions.

15 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á TermService: A service running on the system that manages remote connection requests.

Á VM Host Agent: A service running on the system that monitors the states of the sessions within

virtual machines hosted on the server [MSFT -VS]. <1>

Á Virtual IP: A service running on the system that assigns IP addresses to sessions that are created

by using remote connection requests.

The protocol can be further divided into the following functional categories: <2>

Functional categories associated with the Local Session Manager (LSM) subcomponent:

Á Local Session Manager (LSM) Session: These calls collect information, and control and
configure sessions running on the terminal server.

Á Local Session Manager (LSM) Notification: These RPC calls are asynchronous and can be used
to receive event notifications from the LSM.

Á Local Session Manager (LSM) Enumeration: These calls are used to enumerate inf ormation

related to sessions running on a terminal server.

Functional categories associated with the VM Host Agent subcomponent:

Á VM Host Agent Session: These calls collect information as well as control and configure sessions
running on the virtual machine s hosted on the server.

Á VM Host Agent Notification: These RPC calls are asynchronous and can be used to receive

event notifications from VM Host Agent .

Á VM Host Agent Enumeration: These calls are used to enumerate information related to sessions
running on the virtual machines hosted on the server.

Functional categories associated with the TermService subcomponent:

Á TermService: These calls can be used to query and configure various aspects of the

TermServices running on the terminal server.

Á TermService Listener: These calls are specific to the listener session running on the terminal

server and listening for incoming connection requests.

Á Legacy: The legacy calls used by Terminal Ser vices clients.

1.4 Relationship to Other Protocols

The Terminal Services Terminal Server Runtime Interface Protocol is dependent upon RPC for its
transport. This protocol uses RPC o ver named pipes as specified in section 2.1.

1.5 Prerequisites/Preconditions

The Terminal Services Terminal Server Runtime Interface Protocol is an RPC interface and as a res ult

has the prerequisites specified in [MS -RPCE] as being common to RPC interfaces.

It is assumed that a Terminal Services Terminal Server Runtime Interface Protocol client has obtained
the name of a terminal server that supports the Terminal Services Term inal Server Runtime Interface
Protocol before this protocol is invoked. The manner in which a client obtains the terminal server
name is implementation -specific.

16 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.6 Applicability Statement

The Terminal Services Termi nal Server Runtime Interface Protocol is appropriate only for querying and
configuring a terminal server.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor -Extensible Fields

The Terminal Services Terminal Server Runtime Interface Protocol uses Win32 error codes defined in
[MS -ERREF]. Vendors SHOULD reuse those values with their indicated meaning. <3> Choosing any
other value might cause a collision in the future.

1.9 Standards Assignments

In the following table, interfac es are based on binding and named pipes are based on the RPC
Programming Model Overview as specified in [C706] section 2.

Description Interface UUID Named pipe

LSM Session (tspubrpc.idl) <4> { 484809d6 -4239 -471b -b5bc -
61df8c23ac48 }

 \ PIPE\ LSM_API_service

\ PIPE\ UNIFIED_API_service <5>

LSM Notification
(tspubrpc.idl) <6>

{ 11899a43 -2b68 -4a76 -92e3 -
a3d6ad8c26ce }

\ PIPE\ LSM_API_service

\ PIPE\ UNIFIED_API_service <7>

LSM Enumeration
(tspubrpc.idl) <8>

{ 88143fd0 -c28d -4b2b -8fef -
8d882f6a9390 }

\ PIPE\ LSM_API_service

\ PIPE\ UNIFIED_API_service <9>

TermSrv (RCMPublic.idl) <10> { bde95fdf -eee0 -45de -9e12 -
e5a61cd0d4fe }

\ PIPE\ TermSrv_API_service

TermSrv Listener
(RCMPublic.idl) <11>

{ 497d95a6 -2d27 -4bf5 -9bbd -
a60469 57133c }

\ PIPE\ TermSrv_API_service

Legacy (Legacy.idl) { 5ca4a760 -ebb1 -11cf -8611 -
00a0245420ed }

\ PIPE\ Ctx_WinStation_API_service

TSVIPPublic (TSVIPRpc.idl) {53b46b02 -c73b -4a3e -8dee -
b16b80672fc0}

\ PIPE\ TSVIP_Service

SessEnvPublicRpc
(SessEnvRpc.idl)

{1257B580 -CE2F-4109 -82D6 -
A9459D0BF6BC}

\ PIPE\ SessEnvPublicRpc

17 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

2.1 Transport

The Terminal Services Terminal Server Runtime Interface Protocol use s the RPC protocol sequences as

specified in [MS -RPCE] section 2.1.1 and [MS -RPCH] section 1.4.

 The Terminal Services Terminal Server Runtime Interface Protocol uses the following static endpoints
in addition to well -known endpoints. These endpoints are ports for [MS -RPCH] section 1.5 and [MS -
RPCE] section 2.1 on the terminal server.

Port 3389: This endpoint is used by the terminal server to listen for incoming RPC method calls. The
authenticated RPC interface allows RPC to negotiate the use of authentication and the authentication

level on behalf of the Terminal Services client and target server.

Both types of endpoints (Static endpoints and well -known endpoints) MUST be supported. The
Terminal Services Terminal Server Runtime Interface Protocol MUST use the universally unique

identifier (UUID) as specified in section 1.9.

2.2 Common Data Types

In addition to RPC base types specified in [C706] and in [MS -RPCE], this document uses the following
definitions, as specified in [MS -DTYP]:

Á BOOL

Á BOOLEAN

Á BYTE

Á CHAR

Á DWORD

Á HANDLE

Á HRESULT

Á hyper

Á LONG

Á UCHAR

Á UINT

Á ULONG

Á USHORT

Á VOID

Á WCHAR

The document also uses the following definitions:

Á Some data structures described in this document, for example USERCONFIG and

WINSTATIONCLIENT, use ULONG members to store sets of BOOLEAN flags defined using C bit -
field syntax.

18 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á The variation in the use of data types is a result of the as -built interface.

The data types in the following sections are defined in the Microsoft Interface Definition Language

(MIDL) specification for this RPC interface, as specified in section 6.

2.2.1 Data Types

2.2.1.1 SESSION_HANDLE

This type is declared as follows:

 typedef [context_handle] void* SESSION_HANDLE;

A handle to a ses sion on the terminal server. It is returned by RpcOpenSession.

2.2.1.2 ENUM_HANDLE

This type is declared as follows:

 typedef [context_handle] void* ENUM_HANDLE;

A handle representing the session enumeration object on the terminal server. It is returned by
RpcOpenE num.

2.2.1.3 HLISTENER

This type is declared as follows:

 typedef [context_handle] void* HLISTENER;

A handle representing a listener running on the terminal server.

2.2.1.4 SERVER_HANDLE

This type is declared as follows:

 typedef [context_handle] void* SERVER_HANDLE;

A handle returned by RpcWinStationOpenServer on the terminal server.

2.2.1.5 WINSTATIONNAME

An array of WCHAR (WINSTATIONNAME) characters that represent the name of a session.

This type is declared as follows:

 typedef WCHAR WINSTATIONNAME[WINSTATIONNAME_LENGTH + 1];

19 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1.6 DLLNAME

The DLLNAME type contains the name of a DLL.

 typedef WCHAR DLLNAME[DLLNAME_LENGTH + 1];

 typedef WCHAR* PDLLNAME;

2.2.1.7 DEVICENAME

The DEVICENAME type contains the name of a device.

 typedef WCHAR DEVICENAME[DEVICENAME_LENGTH + 1];

 typedef WCHAR* PDEVICENAME;

2.2.1.8 WINSTATIONINFOCLASS

The WINSTATIONINFOCLASS enumeration is used by RpcWinStationQueryInformation and
RpcWinStationSetInformation to indicate the class of da ta for which to either query or set on the
server. A brief description of each info class is appended to each enum value. See
RpcWinStationQueryInformation for information about classes of data that can be queried and
RpcWinStationSetInformation for classe s of data that can be set.

The enum value WinStationUnused1 MAY be used. <12>

 typedef enum _WINSTATIONINFOCLASS

 {

 WinStationCreateData,

 WinStationConfiguration,

 WinStationPdParams,

 WinStationWd,

 WinStationPd,

 WinStationPrinter,

 WinStationClient,

 WinStationModules,

 WinStationInformation,

 WinStationTrace,

 WinStationBeep,

 WinStationEncryptionOff,

 WinStationEncryptionPerm,

 WinStationNtSecurity,

 WinStationUserToken,

 WinStationUnused1,

 WinStat ionVideoData,

 WinStationInitialProgram,

 WinStationCd,

 WinStationSystemTrace,

 WinStationVirtualData,

 WinStationClientData,

 WinStationSecureDesktopEnter,

 WinStationSecureDesktopExit,

 WinStationLoadBalanceSessionTarget,

 WinStationLoadIndicator,

 WinStationShadowInfo,

 WinStationDigProductId,

 WinStationLockedState,

 WinStationRemoteAddress,

 WinStationIdleTime,

 WinStationLastReconnectType,

 WinStationDisallowAutoReconnect,

 WinStationUnused2,

 WinStationUnused3,

 WinStationUnused4,

20 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 WinStationUnused5,

 WinStationReconnectedFromId,

 WinStationEffectsPolicy,

 WinStationType,

 WinStationInformationEx

 } WINSTATIONINFOCLASS;

WinStationCreateData: Query the data used to c reate an instance of WinStation. <13>

WinStationConfiguration: Query or set the WinStation parameters.

WinStationPdParams: Query or set the Protocol Drivers (PD) parameters.

WinStationWd: Query the Window Driver (WD) configuration. (Only one WD configura tion can be
loaded.)

WinStationPd: Query the PD configuration. (Many PD configurations can be loaded).

WinStationPrinter: Query or set the Line Printer Terminal (LPT) mapping to printer queues. <14>

WinStationClient: Query information about the client.

W inStationModules: Query information about all client modules.

WinStationInformation: Query information about the WinStation.

WinStationTrace: Enable or disable WinStation tracing. <15>

WinStationBeep: Sound a beep in the WinStation. <16>

WinStationEncryp tionOff: Turn off encryption. <17>

WinStationEncryptionPerm: Encryption is permanently on. <18>

WinStationNtSecurity: Select logon service <19> security desktop. <20>

WinStationUserToken: Query the primary access token of the logged -on user.

WinStationUnused1: Not used.

WinStationVideoData: Query the horizontal resolution, vertical resolution, and color depth. <21>

WinStationInitialProgram: Identify the initial program run by Terminal Services when the user logs

on. <22>

WinStationCd: Query the Client Device (CD) configuration. (Only one CD configuration can be
loaded.) <23>

WinStationSystemTrace: Enable or disable system tracing. <24>

WinStationVirtualData: Query the client virtual data.

WinStationClientData: Send data to a client. <25>

WinStationSecureDesktopEnter: Turn encryption on, if enabled. <26>

WinStationSecureDesktopExit: Turn encryption off, if enabled. <27>

WinStationLoadBalanceSessionTarget: Load balance information from a redirected client. <28>

WinStationLoadIndicator: Quer y load capacity information.

WinStationShadowInfo: Query or set shadow state and parameters. <29>

21 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

WinStationDigProductId: Get the WINSTATIONPRODID , as specified in section 2.2.2.36. <30>

WinStationLockedState: Used by the logon service <31> to notify appli cations and services.

WinStationRemoteAddress: Query the client IP address.

WinStationIdleTime: Query for the amount of time the WinStation is idle. <32>

WinStationLastReconnectType: Query if the last reconnect for this WinStation was manual or
auto - reco nnect. <33>

WinStationDisallowAutoReconnect: Allow or disallow auto - reconnect for this WinStation. <34>

WinStationUnused2: Not used.

WinStationUnused3: Not used.

WinStationUnused4: Not used.

WinStationUnused5: Not used.

WinStationReconnectedFromId: In the case of reconnected sessions, return the session ID of the
temporary session from which it was reconnected, or -1 if no temporary session was created.

WinStationEffectsPolicy: Return policies that differentiate among implementations.

WinStationType: Return the type of the session associated with this WinStation. <35>

WinStationInformationEx: Return the extended information about the WinStation. <36>

2.2.1.9 WINSTATIONSTATECLASS

The WINSTATIONSTATECLASS enumeration represents the current state of a session.

 typedef enum _WINSTATIONSTATECLASS

 {

 State_Active = 0,

 State_Connected = 1,

 State_ConnectQuery = 2,

 State_Shadow = 3,

 State_Disconnected = 4,

 State_Idle = 5,

 State_Listen = 6,

 State_Reset = 7,

 State_Down = 8,

 State_Init = 9

 } WINSTATIONSTATECLASS;

State_Active: A user is logged on to a session and the client is connected.

State_Connected: A client is connected to a session but the user has not yet log ged on.

State_ConnectQuery: A session is in the process of connecting to a client.

State_Shadow: A session is shadowing another session.

State_Disconnected: A user is logged on to the session but the client is currently disconnected from
the server.

Sta te_Idle: A session is waiting for a client to connect to the server.

State_Listen: A listener is waiting for connections from the Terminal Services client.

22 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

State_Reset: A session is being reset. As a result, the user is logged off, the session is termin ated,
and the client is disconnected. <37>

State_Down: A session is currently tearing down or is in the down state, indicating an error.

State_Init: A session is in the process of being initialized.

2.2.1.10 SDCLASS

The SDCLASS (stack dr iver class) enumeration is used to specify a type of binary or driver in the
union PDPARAMS and to indicate which structure in the union PDPARAMS applies to a given instance

of the PDPARAMS structure.

 typedef enum _SDCLASS

 {

 SdNone = 0,

 SdConsole,

 SdNetwork,

 SdAsync,

 SdOemTransport

 } SDCLASS;

SdNone: None.

SdConsole: Not used.

SdNetwork: Indicates the networking binaries. <38>

SdAsync: Indicates the async (modem) drivers. <39>

SdOemTransport: Indicates the user transport drivers. <40>

2.2.1.11 SHADOWCLASS

The SHADOWCLASS enumeration is used to indicate the shadow -related settings for a session
running on a terminal server.

 typedef enum _SHADOWCLASS

 {

 Shadow_Disable,

 Shadow_EnableInputNotify,

 Shadow_EnableInp utNoNotify,

 Shadow_EnableNoInputNotify,

 Shadow_EnableNoInputNoNotify,

 } SHADOWCLASS;

Shadow_Disable: Shadowing is disabled.

Shadow_EnableInputNotify: Permission is asked first from the session being shadowed. The

shadower is also permitted keyboard a nd mouse input.

Shadow_EnableInputNoNotify: Permission is not asked first from the session being shadowed. The
shadower is also permitted keyboard and mouse input.

Shadow_EnableNoInputNotify: Permission is asked first from the session being shadowed. The

shadower is not permitted keyboard and mouse input and MUST observe the shadowed session.

23 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Shadow_EnableNoInputNoNotify: Permission is not asked first from the session being shadowed.
The shadower is not permitted keyboard and mouse input and MUST observe the shadowed

session.

2.2.1.12 RECONNECT_TYPE

The RECONNECT_TYPE enumeration specifies the reconnect type of the last session reconnect.

 typedef enum _RECONNECT_TYPE

 {

 NeverReconnected = 0,

 ManualReconnect = 1,

 AutoReconnec t = 2

 } RECONNECT_TYPE,

 *PRECONNECT_TYPE;

NeverReconnected: Session has never been reconnected to. This is the default type until the first

time the session has been reconnected to.

ManualReconnect: Session was disconnected from and was manually reconnected to by the user.

AutoReconnect: Session was disconnected from and was automatically reconnected to by the
Terminal Services client and the server negotiating the reconnect without input from the user.

2.2.1.13 CLIENTDATANAME

The CLIENTDATANAME type spec ifies the name of the client data being provided.

 typedef CHAR CLIENTDATANAME[CLIENTDATANAME_LENGTH + 1];

 typedef CHAR * PCLIENTDATANAME;

The name has the following form:

 name syntax: xxxyyyy<null>

The elements are as follows:

xxx: The OEM ID.

yyyy: Client data name.

<null>: Trailing null.

2.2.1.14 TNotificationId

Specifies the type of notification for which to wait from the terminal server.

It MUST be a bitwise OR of any of the values shown in the following table.

This type is declared as follows:

 typedef ULONG TNotificationId;

24 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

WTS_NOTIFY_NONE

0x0

No notification

WTS_NOTIFY_CREATE

0x1

Session creation notification

WTS_NOTIFY_CONNECT

0x2

Session connection notification

WTS_NOTIFY_DISCONNECT

0x4

Session disconnection notification

WTS_NOTIFY_LOGON

0x8

Session logon notification

WTS_NOTIFY_LOGOFF

0x10

Session logoff notification

WTS_NOTIFY_SHADOW_START

0x20

Session shadow start notification

WTS_NOTIFY_SHADOW_STOP

0x40

Session shadow stop notification

WTS_NOTIFY_TERMINATE

0x80

Session termination notification

WTS_NOTIFY_CONSOLE_CONNECT

0x100

Console session connection notification

WTS_NOTIFY_CONSOLE_DISCONNECT

0x200

Console session disconnect notification

WTS_NOTIFY_LOCK

0x400

Session lock notification

WTS_NOTIFY_UNLOCK

0x800

Session unlock notification

WTS_NOTIFY_ALL

0xffffffff

All notifications

2.2.1.15 NOTIFY_HANDLE

A handle to a notification object.

Used in asynchronous calls such as RpcRegisterAsyncNotification and RpcWaitAsyncNotification.

This type is declared as follows:

 typedef [context_handle] void* NOTIFY_HANDLE;

25 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1.16 BOUNDED_ULONG

A bounded ULONG.

This type is declared as follows:

 typedef [range(0, 0x8000)] ULONG BOUNDED_ULONG;

2.2.1.17 UINT _PTR

An unsigned integer, whose length is dependent on processor word size.

 #if defined(_WIN64)

 typedef unsigned __int64 UINT_PTR;

 #else

 typedef unsigned int UINT_PTR;

 #endif

2.2.1.18 SESSIONTYPE

The SESSIONTYPE enumeration defines the type of the session.

 typedef enum _SessionType

 {

 SESSIONTYPE_UNKNOWN = 0,

 SESSIONTYPE_SERVICES,

 SESSIONTYPE_LISTENER,

 SESSIONTYPE_REGULARDESKTOP,

 SESSIONTYPE_ALTERNATESHELL,

 SESSIONTYPE_REMOTEAPP,

 SESSIONTYPE_MEDIACENTEREXT

 } SESSIONTYPE;

SESSIONTYPE_UNKNOWN: The type of the session cannot be determined.

SESSIONTYPE_SERVICES: The session is used only to run the operating system services, and that
no user can be logged on to the session.

SESSIONTYPE_LISTENER: The session is used only to run the Terminal Services listeners, and that
no user can be logged on to the session.

SESSIONTYPE_REGULARDESKTOP: The session is connected by using Terminal Services and is
running the standard shell. <41>

SESSIONTYPE_ALTERNATESHELL: The session is connected by using Terminal Services and is

running an alternate shell instead of the standard shell.

SESSIONTYPE_REMOTEAPP: The session is a RAIL (Remote Applications Integrated Locally)

session as defined in [MS-RDPERP].

SESSIONTYPE_MEDIACENTEREXT: The session was connected by using a media center extender
device. For more information about the media center, see [MSFT -WINMCE].

2.2.1.19 SHADOW_CONTROL_REQUEST

The SHADOW_CONTROL_ REQUEST enumeration specifies if a shadow of user input control is being
requested.

26 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef enum

 {

 SHADOW_CONTROL_REQUEST_VIEW = 0,

 SHADOW_CONTROL_REQUEST_TAKECONTROL,

 SHADOW_CONTROL_REQUEST_Count

 } SHADOW_CONTROL_REQUEST;

SHADOW_CONTROL_REQUEST_VIEW: The shadow request is for a view -only session. User input
is not being requested.

SHADOW_CONTROL_REQUEST_TAKECONTROL: User input control is being requested.

SHADOW_CONTROL_REQUEST_Count: Count of enum values.

2.2.1.20 SHADOW_PERMISSI ON_REQUEST

The SHADOW_PERMISSION_REQUEST enumeration specifies whether user permission is being

requested.

 typedef enum

 {

 SHADOW_PERMISSION_REQUEST_SILENT = 0,

 SHADOW_PERMISSION_REQUEST_REQUESTPERMISSION,

 SHADOW_PERMISSION_REQUEST_Count

 } SHADOW_PERMISSION_REQUEST;

SHADOW_PERMISSION_REQUEST_SILENT: Permission is not requested.

SHADOW_PERMISSION_REQUEST_REQUESTPERMISSION: User permission will be requested
before the shadow session begins.

SHADOW_PERMISSI ON_REQUEST_Count: Count of enum values.

2.2.1.21 SHADOW_REQUEST_RESPONSE

The SHADOW_REQUEST_RESPONSE enumeration defines the response to a shadow session
request.

 typedef enum

 {

 SHADOW_REQUEST_RESPONSE_ALLOW = 0,

 SHADOW_REQUEST_RESPONSE_DECLINE,

 SHADOW_REQUEST_RESPONSE_POLICY_PERMISSION_REQUIRED,

 SHADOW_REQUEST_RESPONSE_POLICY_DISABLED,

 SHADOW_REQUEST_RESPONSE_POLICY_VIEW_ONLY,

 SHADOW_REQUEST_RESPONSE_POLICY_VIEW_ONLY_PERMISSION_REQUIRED,

 SHADOW_REQUEST_RESPONSE_SESSION_ALREADY_CONTROLLED

 } SHADOW_REQUEST_RESPONSE;

SHADOW_REQUEST_RESPONSE_ALLOW: The user has granted the request for permission to

shadow the session.

SHADOW_REQUEST_RESPONSE_DECLINE: The user has declined the request for permission to
shadow the session.

SHADOW_REQUEST_RESPONSE_POLICY_PERMISSION_REQUIRED: Permission was not
requested, but group policy specifies that permission is required.

27 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SHADOW_REQUEST_RESPONSE_POLICY_DISABLED: Shadowing has been disabled by group
policy.

SHADOW_REQ UEST_RESPONSE_POLICY_VIEW_ONLY: A request for control was made, but
group policy exclusively allows view -only shadowing.

SHADOW_REQUEST_RESPONSE_POLICY_VIEW_ONLY_PERMISSION_REQUIRED: A request
was made to take control without requesting permission, but g roup policy exclusively allows view -
only shadowing and also requires permission.

SHADOW_REQUEST_RESPONSE_SESSION_ALREADY_CONTROLLED: The session cannot be
shadowed because another shadow session is currently controlling the session.

2.2.2 Structures

2.2.2.1 SESSION_FILTER

The SESSION_FILTER enumeration specifies the types of filters to apply when retrieving the list of
session IDs running on a terminal server. There is only one type of filt er exposed by RPC.

 typedef enum _SESSION_FILTER

 {

 SF_SERVICES_SESSION_POPUP

 } SESSION_FILTER;

SF_SERVICES_SESSION_POPUP: Returns all sessions in a logged -on state.

2.2.2.2 PROTOCOLSTATUS_INFO_TYPE

The PROTOCOLSTATUS_ INFO_TYPE enumeration specifies the protocol status information
requested for a particular session running on a terminal server.

 typedef enum

 {

 PROTOCOLSTATUS_INFO_BASIC = 0,

 PROTOCOLSTATUS_INFO_EXTENDED = 1,

 } PROTOCOLSTATUS_INFO_TYPE;

PROTOCOLSTATU S_INFO_BASIC: Returns basic information about the protocol status in a
PROTOCOLSTATUS structure.

PROTOCOLSTATUS_INFO_EXTENDED: Returns extended information about the protocol status.
Extended information is returned in a PROTOCOLSTATUSEX structure.

2.2.2.3 QUERY _SESSION_DATA_TYPE

The QUERY_SESSION_DATA_TYPE enumeration specifies the type of session information that can be
requested for a particular session running on a terminal server.

 typedef enum

 {

 QUERY_SESSION_DATA_MODULE = 0,

 QUERY_SESSION_DATA_WDCONFIG,

 QUERY_SESSION_DATA_VIRTUALDATA,

 QUERY_SESSION_DATA_LICENSE,

 QUERY_SESSION_DATA_DEVICEID,

 QUERY_SESSION_DATA_LICENSE_VALIDATION

28 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 } QUERY_SESSION_DATA_TYPE;

QUERY_SESSION_DATA_MODULE: Retrieves data about protocol -specific binaries loaded for the
given Terminal Services session. The type of the data is PBYTE.

QUERY_SESSION_DATA_WDCONFIG: Retrieves protocol driver configuration data for the session.

The data returned is of type WDCONFIG.

QUERY_SESSION_DATA_VIRTUALDATA: Retrieves data about virtual channels for the given
Terminal Services session. The data returned is of type PBYTE.

QUERY_SESSION_DATA_LICENSE: Retrieves data about the licensing policies assoc iated with a
given Terminal Services session. <42><43>

QUERY_SESSION_DATA_DEVICEID: Retrieves the device ID of the client connected to a given

Terminal Services session. The data returned is of type PBYTE. <44>

QUERY_SESSION_DATA_LICENSE_VALIDATION: Retrie ves the data required to validate the

license associated with a given Terminal Services session. The data returned is of type
WINSTATIONVALIDATIONINFORMATION. <45>

2.2.2.4 PSESSIONENUM

PSESSIONENUM is a pointer to a structure containing information about the sessions running on the
terminal server. It is returned by RpcGetEnumResult.

 typedef struct _SESSIONENUM {

 DWORD Level;

 [switch_is(Level)] SessionInfo Data;

 } SESSIONENUM,

 *PSESSIONENUM;

Level: The level of information contained in the Data member; the valid values are 1 and 2.

Data: Contains information at a specified level of detail about sessions running on a computer.

2.2.2.4.1 SessionInfo

The SessionInfo is a union of structures, each structure providing differen t levels of detail about
sessions running on a computer, as specified in sections 2.2.2.4.1.1 and 2.2.2.4.1.2 respectively.

 typedef

 [switch_type(DWORD)]

 union _SessionInfo {

 [case(1)]

 SESSIONENUM_LEVEL1 SessionEnum_Level1;

 [case(2)]

 SESSIONENUM_LEVEL2 SessionEnum_Level2;

 } SessionInfo,

 *PSessionInfo;

SessionEnum_Level1: A SESSIONENUM_LEVEL1 structure containing a level of information about
sessions running on a computer.

SessionEnum_Level2: A SESSIONENUM_LEVEL2 structure containing a level of information about
sessions running on a computer.

2.2.2.4.1.1 SESSIONENUM_LEVEL1

29 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The SESSIONENUM_LEVEL1 structure contains basic information about sessions running on a
computer.

 typedef struct _SESSIONENUM_LEVEL1 {

 LONG SessionId;

 LONG State;

 WCHAR Name[33];

 } SESSIONENUM_LEVEL1,

 *PSESSIONENUM_LEVEL1;

SessionId: An identifier assigned by the operating system to the session contained in this structure.

State: The state of the session, as specified in section 3.3.4.1.8.

Name: A string that contains the name of the session assigned by Terminal Services followed by the
terminating NULL character.

2.2.2.4.1.2 SESSIONENUM_LEVEL2

The SESSIONENUM_LEVEL2 structure contains information about sessions running on a computer that
is more detailed than the information contained in SESSIONENUM_LEVEL1.

 typedef struct _SESSIONENUM_LEVEL2 {

 LONG SessionId;

 LONG State;

 WCHAR Name[33];

 ULONG Source;

 BOOL bFullDesktop;

 GUID SessionType;

 } SESSIONENUM_LEVEL2,

 *PSESSIONENUM_LEVEL2;

SessionId: An identifier assigned by the operating system to the session contained in this structure.

State: The state of the session, as specified in section 3.3.4.1.8.

Name: A string that contains the name of the session followed by the terminating NULL character.

Source: The parameter is always set to zero.

bFullDesktop: The parameter is always set to TRUE.

SessionType: Describes the type of the s ession. <46>

2.2.2.4.1.3 SESSIONENUM_LEVEL3

The SESSIONENUM_LEVEL3 structure contains information about sessions running on a computer that

is more detailed than the information contained in SESSIONENUM_LEV EL1 and
SESSIONENUM_LEVEL2.

 typedef struct _SESSIONENUM_LEVEL3 {

 LONG SessionId;

 LONG State;

 WCHAR Name[33];

 ULONG Source;

 BOOL bFullDesktop;

 GUID SessionType;

 ULONG ProtoDataSize;

 [size_is(ProtoDataSize)] UCHAR* pProtocolData;

 } SESSIONENUM_LEVEL3,

30 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 *PSESSIONENUM_LEVEL3;

SessionId: An identifier assigned by the operating system to the session contained in this structure.

State: The state of the session, as specified in section 3.3.4.1.8.

Name: A string that contains the name of the session followed by the terminating NULL character.

Source: The parameter is always set to zero.

bFullDesktop: The parameter is always set to TRUE.

SessionType: The parameter is always set to zero.

ProtoDataSize: Size of data, in bytes, contained in th e pProtocolData member.

pProtocolData: Data about the protocol status between the terminal server client and server. This
data will be of type PROTOCOLSTATUSEX.

2.2.2.5 PSESSIONENUM_EX

The PSESSIONENUM_EX is a pointer to a structure containing information about the sessions running
on the terminal server. It is returned by RpcGetEnumResultEx.

 typedef struct _SESSIONENUM_EX {

 DWORD Level;

 [switch_is(Level)] SessionInfo_Ex Data;

 } SESSIONE NUM_EX,

 *PSESSIONENUM_EX;

Level: The level of information contained in Data ; the valid values are 1, 2, and 3.

Value Meaning

1 The union SessionInfo_Ex has the SessionEnum_Level1 structure.

2 The union SessionInfo_Ex has the SessionEnum_Level2 structur e.

3 The union SessionInfo_Ex has the SessionEnum_Level3 structure.

Data: Contains information at a specified level of detail about sessions running on a computer. This
parameter is of type SessionInfo_Ex. If Level is set to 1, the union SessionInfo_Ex has the
SessionEnum_Level1 structure. If Level is set to 2, the union SessionInfo_Ex has the
SessionEnum_Level2 structure. If Level is set to 3, the union SessionInfo_Ex has the
SessionEnum_Level3 structure.

2.2.2.5.1 SessionInfo_Ex

The SessionInfo_Ex is a union of structures, each structure providing different levels of detail about
sessions running on a computer, as specified in sections 2.2.2.4.1.1, 2.2.2.4.1.2, and 2.2.2.4.1.3
respectively.

 typedef

 [switch_type(DWORD)]

 union _SessionInfo_Ex {

 [case(1)]

 SESSIONENUM_LEVEL1 SessionEnum_Level1;

 [case(2)]

 SESSIONENUM_LEVEL2 SessionEnum_Level2;

31 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [case(3)]

 SESSIONENUM_LEVEL3 SessionEnum_Level3;

 } SessionInfo_Ex,

 *PSessionInfo_Ex;

SessionEnum_Level1: A SESSIONENUM_LEVEL1 structure co ntaining a level of information about
sessions running on a computer.

SessionEnum_Level2: A SESSIONENUM_LEVEL2 structure containing a level of information about
sessions running on a computer.

SessionEnum_Level3: A SESSIONENUM_LEVEL3 structure containing a level of information about
sessions running on a computer.

2.2.2.6 PEXECENVDATA

PEXECENVDATA is a pointer to a structure containing information about the sessions running on the
terminal server and the sessions running on virtual machines hosted on the server. <47> It is returned

by RpcGetAllSessions.

 typedef struct _EXECENVDATA {

 DWORD Level;

 [switch_is(Level)] ExecEnvData Data;

 } EXECENVDATA,

 *PEXECENVDATA;

Level: The level of information contained in Data ; the valid values are 1 and 2.

Value Meaning

1 The union ExecEnvData has the EXECENVDATA_LEVEL1 structure.

2 The union ExecEnvData has the EXECENVDATA_LEVEL2 structure.

Data: Contains information at a specif ied level of detail about sessions running on a computer. This is
of type ExecEnvData.

2.2.2.6.1 ExecEnvData

The ExecEnvData is a union of structures, each structure providing different levels of detail about
sessions running on a computer and sessions running on virtual machines hosted on the server, <48>

as specified in sections 2.2.2.6.1.1 and 2.2.2.6.1.2 respectively.

 typedef

 [switch_type(DWORD)]

 union _ExecEnvData {

 [case(1)]

 EXECENVDATA_LEVEL1 ExecEnvEnum_Level1;

 [case(2)]

 EXECENVDATA_LEVEL2 ExecEnvEnum_Level2;

 } ExecEnvData,

 *PExecEnvData;

ExecEnvEnum_Level1: An EXECENVDATA_LEVEL1 structure containing a level of information about

sessions running on a computer and virtual machines hosted on the computer. <49>

ExecEnvEnum_Level2: An EXECENVDATA_LEVEL2 structure containing a level of information about
sessions running on a computer and virtual machines hosted on the computer. <50>

32 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.6.1.1 EXECENVDATA_LEVEL1

The EXECENVDATA_LEVEL1 s tructure contains basic information about sessions running on a
computer.

 typedef struct _EXECENVDATA_LEVEL1 {

 LONG ExecEnvId;

 LONG State;

 WCHAR SessionName[33];

 } EXECENVDATA_LEVEL1,

 *PEXECENVDATA_LEVEL1;

ExecEnvId: An identifier assigned to the s ession contained in this structure by the component that
aggregates the sessions on the server and sessions within virtual machines hosted on the
server. <51>

State: The state of the session, as specified in section 3.3.4.1.8.

SessionName: A string that contains the name of the session assigned by Terminal Services
followed by the terminating NULL character.

2.2.2.6.1.2 EXECENVDATA_LEVEL2

The EXECENVDATA_LEVEL2 structure contains information about se ssions running on a computer that
is more detailed than the information contained in EXECENVDATA_LEVEL1.

 typedef struct _EXECENVDATA_LEVEL2 {

 LONG ExecEnvId;

 LONG State;

 WCHAR SessionName[33];

 LONG AbsSessionId;

 WCHAR HostName[33];

 WCHAR UserName[33];

 WCHAR DomainName[33];

 WCHAR FarmName[33];

 } EXECENVDATA_LEVEL2,

 *PEXECENVDATA_LEVEL2;

ExecEnvId: An identifier assigned to the session contained in this structure by the component that
aggregates the sessio ns on the server and sessions within virtual machines hosted on the
server. <52>

State: The state of the session, as specified in section 3.3.4.1.8.

SessionName: A string that contains the name of the session followed by the terminating NULL
character.

Ab sSessionId: An identifier assigned by the operating system running in the virtual machine to the
session contained in this structure. If the session contained in this structure is not running under
the virtual machine, the value of AbsSessionId is same as ExecEnvId .

HostName: A string that contains the name of the machine that hosts the session contained in this
structure followed by the terminating NULL character.

UserName: A string that contains the name of the user logged onto the session followed by the
terminating NULL character.

DomainName: A string that contains the domain of the user logged onto the session followed by the
terminating NULL character.

33 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

FarmName: A string that contains the farm name associated with the session followed by the
termi nating NULL character.

2.2.2.7 PEXECENVDATAEX

PEXECENVDATAEX is a pointer to a structure containing information about the sessions running on
the terminal server and the sessions running on virtual machines host ed on the server. <53> It is
returned by RpcGetAllSessionsEx.

 typedef struct _EXECENVDATAEX {

 DWORD Level;

 [switch_is(Level)] ExecEnvDataEx Data;

 } EXECENVDATAEX,

 *PEXECENVDATAEX;

Level: The level of information contained in the Data member; the only valid value is 1.

Value Meaning

1 The union ExecEnvDataEx has the EXECENVDATAEX_LEVEL1 structure.

Data: Contains information at a specified level of detail about sessions running on a computer. This is
of type ExecEnvDataEx.

2.2.2.7.1 ExecEnvDataEx

ExecEnvDataEx is a union of structures that provides information about sessions running on a
computer and sessions running on virtual machines hosted on the server, <54> as specified in section
2.2.2.7.1.1.

 typedef

 [switch_type(DWORD)]

 union _ExecEnvDataE x {

 [case(1)]

 EXECENVDATAEX_LEVEL1 ExecEnvEnum_Level1;

 } ExecEnvDataEx,

 *PExecEnvDataEx;

ExecEnvEnum_Level1: An EXECENVDATAEX_LEVEL1 structure that contains information about
sessions running on a computer and virtual machines hosted on the comput er. <55>

2.2.2.7.1.1 EXECENVDATAEX_LEVEL1

The EXECENVDATAEX_LEVEL1 structure contains information about sessions running on a
computer.

 typedef struct _EXECENVDATAEX_LEVEL1 {

 LONG ExecEnvId;

 LONG State;

 LONG AbsSessionId;

 [string, max_is (256)] LPWSTR pszSessionName;

 [string, max_is (256)] LPWSTR pszHostName;

 [string, max_is (256)] LPWSTR pszUserName;

 [string, max_is (256)] LPWSTR pszDomainName;

 [string, max_is (256)] LPWSTR pszFarmName;

 } EXECENVDATAEX_LEVEL1,

 *PEXECENVDATAEX_LEVEL1;

34 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ExecEnvId: An identifier assigned to the session contained in this structure by the component that
aggregates the sessions on the server and sessions within virtual machines hoste d on the server.

State: The state of the session, as specified in section 3.3.4.1.8.

AbsSessionId: An identifier assigned by the operating system running in the virtual machine to the

session contained in this structure. If the session contained in this structure is not running under
the virtual machine, the value of AbsSessionId is the same as the value of the ExecEnvId
member.

pszSessionName: A string that contains the name of the session followed by the terminating NULL
character.

pszHostName: A stri ng that contains the name of the machine that hosts the session contained in
this structure, followed by the terminating NULL character.

pszUserName: A string that contains the name of the user logged onto the session followed by the
terminating NULL char acter.

pszDomainName: A string that contains the domain of the user logged onto the session followed by
the terminating NULL character.

pszFarmName: A string that contains the farm name associated with the session followed by the
terminating NULL character.

2.2.2.8 PLSMSESSIONINFORMATION

PLSMSESSIONINFORMATION is a pointer to a LSMSESSIONINFORMATION structure containing
information about a session running on a terminal server.

 typedef str uct _LSMSessionInformation {

 [string] WCHAR* pszUserName;

 [string] WCHAR* pszDomain;

 [string] WCHAR* pszTerminalName;

 LONG SessionState;

 BOOL DesktopLocked;

 hyper ConnectTime;

 hyper DisconnectTime;

 hyper LogonTime;

 } LSMSESSIONINFORMATION,

 *PLSMSESSIONINFORMATION;

pszUserName: The name of the user logged on to the session.

pszDomain: The domain to which the currently logged -on user belongs.

pszTerminalName: The name of the terminal associated with the specific sess ion.

SessionState: The state of the session, as described in section 3.3.4.1.8.

DesktopLocked: Set to TRUE if the session is currently locked; FALSE otherwise.

ConnectTime: The time of the most recent connection to the session.

Time is measured as the n umber of 100 -nanosecond intervals since January 1, 1601 (UTC).

DisconnectTime: The time of the most recent disconnection from the session.

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

LogonTime: The time of the most recent logon to the session.

35 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

2.2.2.9 PLSMSESSIONINFORMATION_EX

The PLSMSESSIONINFORMATION_EX is a pointer to a LSMSESSIONINFORMATION_EX structure
containing information about a session running on a terminal server and the level of detail of the
information provided.

 typedef struct _LSMSESSIONINFORMATION_EX {

 DWORD Level;

 [switch_is(Level)] LSM_SE SSIONINFO_EX Data;

 } LSMSESSIONINFORMATION_EX,

 *PLSMSESSIONINFORMATION_EX;

Level: The level of detail provided about the session. This field MUST be set to 1.

Data: Information about the session. This is of type LSM_SESSIONINFO_EX.

2.2.2.10 LSM_SESSIONINFO_EX

The LSM_SESSIONINFO_EX is a union of structures, each member containing a different level of
information about a terminal server session.

 typedef

 [switch_type(DWORD)]

 union _LSM_SESSIONINFO_EX {

 [case(1)]

 LSM_SESSIONINFO_EX_LEVEL1 LSM_SessionInfo_Level1;

 } LSM_SESSIONINFO_EX,

 *PLSM_SESSIONINFO_EX;

LSM_SessionInfo_Level1: The only supported member of the union. It contains session

information of level 1. It is of type LSM_SESSIONINFO_EX_LEVEL1.

2.2.2.11 LSM_SESSION INFO_EX_LEVEL1

The LSM_SESSIONINFO_EX_LEVEL1 is a structure containing information about a session running on a
terminal server.

 typedef struct _LSM_SESSIONINFO_EX_LEVEL1 {

 LONG SessionState;

 LONG SessionFlags;

 WCHAR SessionName[33];

 WCHAR DomainName[18];

 WCHAR UserName[21];

 hyper ConnectTime;

 hyper DisconnectTime;

 hyper LogonTime;

 hyper LastInputTime;

 ULONG ProtocolDataSize;

 [size_is(ProtocolDataSize)] PBYTE ProtocolData;

 } LSM_SESSIONINFO_EX_LEVEL1,

 *PLSM_SESSIONINFO_EX_LEVEL1;

SessionState: The state of the session, as described in section 3.3.4.1.8.

SessionFlags: The state of the session. The SessionFlags member MUST be one of the values
shown in the fol lowing table.

36 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

WTS_SESSIONSTATE_UNKNOWN

0xFFFFFFFF

Unknown session state

WTS_SESSIONSTATE_LOCK

0x00000000

Session is locked

WTS_SESSIONSTATE_UNLOCK

0x00000001

Session is unlocked

SessionName: The name of the terminal associated with the specific session.

DomainName: The domain to which the currently logged -on user belongs.

UserName: The name of the user logged on to the session.

ConnectTime: The time of the most recent connection to the session.

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

DisconnectTime: The time of the most recent disconnection from the session.

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

LogonTime: The time of the most recent logon to the session.

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

LastInputTime: The time the session last received input. This is an indicator of how long a session
has been idle.

Time is measur ed as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

ProtocolDataSize: Size of data, in bytes, contained in ProtocolData .

ProtocolData: Data about the protocol status between the terminal server client and server. This
data is of typ e PROTOCOLSTATUSEX.

2.2.2.12 PLISTENERENUM

PLISTENERENUM contains information about one terminal server listener and the level of detail of the
information provided.

 typedef struct _LISTENERENUM {

 DWORD Level;

 [switch_is(Level)] ListenerInfo Data;

 } LISTENERENUM,

 *PLISTENERENUM;

Level: The level of detail provided about the listener. The only supported value is 1.

Data: Information about the listener. This is of the type ListenerInfo.

2.2.2.12.1 ListenerInfo

ListenerInf o is a union of structures, each member containing a different level of information about a
terminal server listener.

37 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef

 [switch_type(DWORD)]

 union _ListenerInfo {

 [case(1)]

 LISTENERENUM_LEVEL1 ListenerEnum_Level1;

 [default] ;

 } Listene rInfo,

 *PListenerInfo;

ListenerEnum_Level1: The only supported member of the union. It contains listener information of
level 1. It is of the type LISTENERENUM_LEVEL1.

2.2.2.12.1.1 LISTENERENUM_LEVEL1

LISTENERENUM_LEVEL1 is a structure containing information of level 1 detail about a Terminal
Services listener.

 typedef struct _LISTENERENUM_LEVEL1 {

 LONG Id;

 BOOL bListening;

 WCHAR Name[33];

 } LISTENERENUM_LEVEL1,

 *PLISTENERENUM_LEVEL1;

Id: The identifier associated with the listener.

bListening: Set to TRUE if the listener is listening for incoming connections; FALSE otherwise.

Name: A string that contains the name of the listener followed by the terminating NULL character.

2.2.2.13 LOGONID

LOGONID is a macro defined to be the structure SESSIONID . This type represents information about

the session or WinStation identified by the identifie r SessionId . For more information, see the macro

definition in section 6.5.

 typedef struct _SESSIONID {

 union {

 ULONG SessionId;

 ULONG LogonId;

 } _SessionId_LogonId_union;

 WINSTATIONNAME WinStationName;

 WINSTATIONSTATECLASS State;

 } SESSION ID,

 *PSESSIONID;

SessionId: In a union with LogonId. It represents WinStation or session identifier numbered 0

through 65535 for Terminal Services sessions. A number of 65536 or greater indicates that the

WinStation is a listening WinStation.

LogonId: I n a union with SessionId . It is used internally only, within Terminal Services code.

WinStationName: The name of the WinStation represented by this structure. See section 2.2.1.5 for
more information on the type WINSTATIONNAME.

State: The current state o f the WinStation. See section 2.2.1.9 for more information on the type
WINSTATIONSTATECLASS.

38 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.14 TS_PROCESS_INFORMATION_NT4

The TS_PROCESS_INFORMATION_NT4 structure is returned by R pcWinStationEnumerateProcesses.

 typedef struct _TS_PROCESS_INFORMATION_NT4 {

 ULONG MagicNumber;

 ULONG LogonId;

 PVOID ProcessSid;

 ULONG Pad;

 } TS_PROCESS_INFORMATION_NT4,

 *PTS_PROCESS_INFORMATION_NT4;

MagicNumber: MUST be set to TS_PROCESS_INFO_MAGIC_NT4 (0x23495452).

LogonId: The session ID of the process.

ProcessSid: The security identifier (SID), as specified in [MS -DTYP] section 2.4.2, of the owner of

the process.

Pad: MUST be set to 0.

2.2.2.15 TS_ALL_PROCESSES_INFO

The TS_ALL_PROCESSES_INFO structure contains data on all the processes on the system

accessible to the user who issued the call.

 typedef struct _TS_ALL_PROCESSES_INFO {

 PTS_SYS_PROCESS_INFORMATION pTsProcessInfo;

 DWORD SizeOfSid;

 #ifdef __midl

 [size_is(SizeOfSid)] PBYTE pSid;

 #else

 PBYTE pSid;

 #endif

 } TS_ALL_PROCESSES_INFO,

 *PTS_ALL_PROCESSES_INFO;

pTsProcessInfo: Pointer to the process information TS_SYS_PROCE SS_INFORMATION.

SizeOfSid: Size of pSid , in bytes.

pSid: The security identifier (SID), as specified in [MS -DTYP], of the owner of the process.

2.2.2.15.1 TS_SYS_PROCESS_INFORMATION

The TS_SYS_PROCESS_INFORMATION structure contains information about a process running on a
system.

 typedef struct _TS_SYS_PROCESS_INFORMATION {

 ULONG NextEntryOffset;

 ULONG NumberOfThreads;

 LARGE_INTEGER SpareLi1;

 LARGE_INTEGER SpareLi2;

 LARGE_INTEGER SpareLi3;

 LARGE_INTEGER CreateTime;

 LARGE_INTEGER UserTime;

 LARGE_INTEGER KernelTime;

 TS_UNICODE_STRING ImageName;

 LONG BasePriority;

 DWORD UniqueProcessId;

39 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 DWORD InheritedFromUniqueProcessId;

 ULONG HandleCount;

 ULONG SessionId;

 ULONG SpareUl3;

 SIZE_T PeakVirtualSize;

 SIZE_T VirtualSize;

 ULONG PageFaultCount;

 ULONG PeakWorkingSetSize;

 ULONG WorkingSetSize;

 SIZE_T QuotaPeakPagedPoolUsage;

 SIZE_T QuotaPagedPoolUsage;

 SIZE_T QuotaPea kNonPagedPoolUsage;

 SIZE_T QuotaNonPagedPoolUsage;

 SIZE_T PagefileUsage;

 SIZE_T PeakPagefileUsage;

 SIZE_T PrivatePageCount;

 } TS_SYS_PROCESS_INFORMATION,

 *PTS_SYS_PROCESS_INFORMATION;

NextEntryOffset: Offset to the start of data for the next process.

NumberOfThreads: Number of threads in the process.

SpareLi1: Reserved.

SpareLi2: Reserved.

SpareLi3: Reserved.

CreateTime: Creation time of the process. Time is measured as the number of 100 -nanosecond
intervals since January 1, 1601 (UTC).

UserTime: Amount of time in milliseconds the process has spent running in user mode.

KernelTime: Amount of time in milliseconds the process has spent running in kernel mode.

ImageName: String containing the process's image name.

BasePriority: Base prior ity of the process.

UniqueProcessId: Process's unique process ID.

InheritedFromUniqueProcessId: Parent process's unique process ID.

HandleCount: Current number of handles open in the process.

SessionId: Session identifier of the process session.

Spare Ul3: Reserved.

PeakVirtualSize: Peak size of virtual memory, in bytes, used by the process.

VirtualSize: Current size of virtual memory, in bytes, used by the process.

PageFaultCount: Number of page faults in the process.

PeakWorkingSetSize: Peak size of the working set in kilobytes of the process.

WorkingSetSize: Current size, in bytes, of the working set of the process.

QuotaPeakPagedPoolUsage: Peak quota charged to the process for paged pool usage.

QuotaPagedPoolUsage: Current quota charged to th e process for paged pool usage.

40 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

QuotaPeakNonPagedPoolUsage: Peak quota charged to the process for nonpaged pool usage.

QuotaNonPagedPoolUsage: Current quota charged to the process for nonpaged pool usage.

PagefileUsage: Amount of bytes of page file stor age in use by the process.

PeakPagefileUsage: Peak amount of bytes of page file storage in use by the process.

PrivatePageCount: Current number of memory pages allocated by the process.

2.2.2.15.1.1 TS_UNICODE_STRING

The TS_UNICODE_STRING structure contains a Unicode string.

 typedef struct _TS_UNICODE_STRING {

 USHORT Length;

 USHORT MaximumLength;

 #ifdef __midl

 [size_is(MaximumLength),length_is(Length)]PWSTR Buffer;

 #else

 PWSTR Buffer;

 #endif

 } TS_UNICODE_STRING;

Length: The actual length of the string currently stored in the Buffer member, in bytes.

MaximumLength: The maximum length of the string tha t can be stored in Buffer , in bytes.

Buffer: A wide character string that MUST NOT be followed by the terminating NULL character.

2.2.2.16 TS_ALL_PROCESSES_INFO_NT6

The TS_ALL_PROCESSES_I NFO_NT6 structure contains data on all the processes on the system
that are accessible using the user's credentials.

 typedef struct _TS_ALL_PROCESSES_INFO_NT6 {

 PTS_SYS_PROCESS_INFORMATION_NT6 pTsProcessInfo;

 DWORD SizeOfSid;

 #ifdef __midl

 [s ize_is(SizeOfSid)] PBYTE pSid;

 #else

 PBYTE pSid;

 #endif

 } TS_ALL_PROCESSES_INFO_NT6, *PTS_ALL_PROCESSES_INFO_NT6;

pTsProcessInfo: Pointer to the process information.

SizeOfSid: Size, in bytes, of the security identifier (SID) structure pointed to by pSid .

pSid: Security identifier (SID), as specified in [MS -DTYP] section 2.4.2, of the process.

2.2.2.16.1 TS_SYS_PROCESS_INFORMATION_NT6

The TS_SYS_PROCESS_INFORMATION_NT6 structure contains information about a process running on
a system.

 typedef struct _TS_SYS_PROCESS_INFORMATION_NT6 {

 ULONG NextEntryOffset;

41 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 ULONG NumberOfThreads;

 LARGE_INTEGER SpareLi1;

 LARGE_INTEGER SpareLi2;

 LARGE_INTEGER SpareLi3;

 LARGE_INTEGER CreateTime;

 LARGE_INTEGER UserTime;

 LARGE_INTEGER KernelTime;

 NT6_TS_UNICODE_STRING ImageName;

 LONG BasePriority;

 DWORD UniqueProcessId;

 DWORD InheritedFromUniqueProcessId;

 ULONG HandleCount;

 ULONG SessionId;

 ULONG SpareUl3;

 SIZE_T PeakVirtualSize;

 SIZE_T VirtualSize;

 ULONG PageFaultCount;

 ULONG PeakWorkingSetSize;

 ULONG WorkingSetSize;

 SIZE_T QuotaPeakPagedPoolUsage;

 SIZE_T QuotaPagedPoolUsage;

 SIZE_T QuotaPeakNonPagedPoolUsage;

 SIZE_T QuotaNonPagedPoolUsage;

 SIZE_T PagefileUsage;

 SIZE_T PeakPagefileUsage;

 SIZE_T PrivatePageCount;

 } TS_SYS_PROCESS_INFORMATION_NT6,

 *PTS_SYS_PROCESS_INFORMATION_NT6;

NextEntryOffset: Offset to the start of data for the next process.

NumberOfThreads: Number of threads in the process.

SpareLi1: Reserved.

SpareLi2: Reserved.

SpareLi3: Reserved.

CreateTime: Creation time of the proc ess. Time is measured as the number of 100 -nanosecond
intervals since January 1, 1601 (UTC).

UserTime: Amount of time in milliseconds the process has spent running in user mode.

KernelTime: Amount of time in milliseconds the process has spent running in kernel mode.

ImageName: String containing the process's image name.

BasePriority: Base priority of the process, which is the starting priority for threads created within
the associated process.

UniqueProcessId: Process's unique process ID.

InheritedFrom UniqueProcessId: Parent process's unique process ID.

HandleCount: Current number of handles open in the process.

SessionId: Session identifier of the process session.

SpareUl3: Reserved.

PeakVirtualSize: Peak size, in bytes, of the virtual memory used by the process.

VirtualSize: Current size, in bytes, of virtual memory used by the process.

42 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PageFaultCount: Number of page faults in the process.

PeakWorkingSetSize: Peak size, in kilobytes, of the working set of the process.

WorkingSetSize: Current size, in bytes, of the working set of the process.

QuotaPeakPagedPoolUsage: Peak quota charged to the process for paged pool usage.

QuotaPagedPoolUsage: Current quota charged to the process for paged pool usage.

QuotaPeakNonPaged PoolUsage: Peak quota charged to the process for nonpaged pool usage.

QuotaNonPagedPoolUsage: Current quota charged to the process for nonpaged pool usage.

PagefileUsage: Number of bytes of page file storage in use by the process.

PeakPagefileUsage: Peak number of bytes of page file storage in use by the process.

PrivatePageCount: Current number of memory pages allocated by the process.

2.2.2.16.1.1 NT6_TS_UNICODE_STRING

The NT6_TS_UNICODE_STRING structure contains a Unicode string.

 typedef struct _NT6_TS_UNICODE_STRING {

 USHORT Length;

 USHORT MaximumLength;

 #ifdef __midl

 [size_is(MaximumLength / 2),length_is(Length / 2)]PWSTR Buffer;

 #else

 PWSTR Buffer;

 #endif

 } NT6_TS_UNICODE_STRING;

Length: The actual length of the string currently stored in Buffer , in bytes.

MaximumLength: The maximum length of the string that could be stored in Buffer , in bytes.

Buffer: A wide character string that MUST NOT be followed by the terminating N ULL character.

2.2.2.16.2 SYSTEM_THREAD_INFORMATION

The SYSTEM_THREAD_INFORMATION structure contains information about a thread running on a
system.

 typedef struct _SYSTEM_THREAD_INFORMATION {

 LARGE_INTEGER KernelTime;

 LARGE_INTEGER UserTime;

 LARGE_INTEGER CreateTime;

 ULONG WaitTime;

 PVOID StartAddress;

 CLIENT_ID ClientId;

 LONG Priority;

 LONG BasePriority;

 ULONG ContextSwitches;

 ULONG ThreadState;

 ULONG WaitReason;

 } SYSTEM_THREAD_INFORMATION,

 *PSYSTEM_THREAD_INFORMATION;

KernelTime: Number of 100 -nanosecond intervals spent executing kernel code.

43 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

UserTime: Number of 100 -nanosecond intervals spent executing user code.

CreateTime: System time wh en the thread was created.

WaitTime: Time spent in ready queue or waiting (depending on the thread state).

StartAddress: Start address of the thread.

ClientId: ID of the thread and the process owning the thread.

Priority: Dynamic thread priority.

BaseP riority: Base thread priority.

ContextSwitches: Total context switches.

ThreadState: Current thread state.

WaitReason: The reason the thread is waiting.

2.2.2.16.2.1 CLIENT_ID

The CLIENT_ID structure contains identifiers of a process and a thread.

 typedef struct _CLIENT_ID {

 HANDLE UniqueProcess;

 HANDLE UniqueThread;

 } CLIENT_ID;

UniqueProcess: Unique process identifier.

UniqueThread: Unique thread identifier.

2.2.2.17 TS_COUNTER

A Terminal Servi ces performance counter structure used to represent a single performance counter.

 typedef struct _TS_COUNTER {

 TS_COUNTER_HEADER counterHead;

 DWORD dwValue;

 LARGE_INTEGER startTime;

 } TS_COUNTER,

 *PTS_COUNTER;

counterHead: A header identifying the counter.

dwValue: The value of the counter. This indicates different things based on the counter.

startTime: Always set to zero because time stamps are not supported.

2.2.2.17.1 TS_COUNTER_HEADER

The TS_COUNTER_HEADER is the header of the Terminal Services performance counter structure
providing general information on the counter.

 typedef struct _TS_COUNTER_HEADER {

 DWORD dwCounterID;

 boolean bResult;

44 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 } TS_COUNTER_HEADER, *PTS_COUNTER_HEADER;

dwCounterID: The identifier of the counter. Set by the caller of
RpcWinStationGetTermSrvCountersValue to indicate the counter on which to retrieve data. This
will be set to zero by RpcWinStationGetTermSrvCountersValue if the dwCo unterId isn't

recognized.

The following values for dwCounterId are supported.

Value Meaning

TERMSRV_TOTAL_SESSIONS

0x01

Total number of sessions : Value will indicate the total
number of reconnections to the server since startup.

TERMSRV_DISC_SESSIONS

0x02

Number of disconnected sessions : Value will indicate
the total number of disconnections from the server since
startup.

TERMSRV_RECON_SESSIONS

0x03

Number of reconnected sessions : Value will indicate
the total number of all recon nected sessions that have
existed on the server since startup.

TERMSRV_CURRENT_ACTIVE_SESSIONS

0x04

Current number of active sessions : Value will indicate
the current number of active sessions on the server.

TERMSRV_CURRENT_DISC_SESSIONS

0x05

Current num ber of disconnected sessions : Value will
indicate the current number of disconnected sessions on
the server.

TERMSRV_PENDING_SESSIONS

0x06

Current number of pending sessions : Value will

indicate the current number of pending connections to
the server. <56>

TERMSRV_SUCC_TOTAL_LOGONS

0x07

Total number of successful logons : Value will indicate
the total number of successful logons on the server, both
locally and remotely. <57>

TERMSRV_SUCC_LOCAL_LOGONS

0x08

Total number of successful local logons : Value will
indicate the total number of successful local logons on
the server. <58>

TERMSRV_SUCC_REMOTE_LOGONS

0x09

Total number of successful remote logons : Value will
indicate the total number of successful remote logons on
the server. <59>

TERMSRV_SUCC_SESSION0_LOGONS

0x0A

Total number of successful session 0 logons : Value
will indicate the total number of successful connects on
the server to session 0. <60>

TERMSRV_CURRENT_TERMINATING_SESSIONS

0x0B

Number of terminating sessions : Value will indicate

the current number of terminating sessions on the
server. <61>

TERMSRV_CURRENT_LOGGEDON_SESSIONS

0x0C

Number of logged on sessions : Value will indicate the
current number of logged -on sessions on the
server. <62>

bResult: Set to TRUE if counter information is returned. Set to FALSE if counter data isn't being
returned because the counter ID being requested was unrecognized.

45 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.18 USERCONFIG

For a specific terminal server session, the USERCONFIG structure indicates the user and session
configuration.

 typedef struct _USERCONFIG {

 ULONG fInheritAutoLogon : 1;

 ULONG fInheritResetBroken : 1;

 ULONG fInheritReconnectSame : 1;

 ULONG fInheritInitialProgram : 1;

 ULONG fInheritCallback : 1;

 ULONG fInheritCallbackNumber : 1;

 ULONG fInheritShadow : 1;

 ULONG fInheritMaxSessionTime : 1;

 ULONG fInheritMaxDisconnectionTime : 1;

 ULONG fInheritMaxIdleTime : 1;

 ULONG fInheritAutoClient : 1;

 ULONG fInheritSecurity : 1;

 ULONG fPromptForPassword : 1;

 ULONG fResetBroken : 1;

 ULONG fReconnectSame : 1;

 ULONG fLogonDisabled : 1;

 ULONG fWallPaperDisabled : 1;

 ULONG fAutoClientDrives : 1;

 ULONG fAutoClientLpts : 1;

 ULONG fForceClientLptDef : 1;

 ULONG fRequireEncryption : 1;

 ULONG fDisableEncryption : 1;

 ULONG fUnused1 : 1;

 ULONG fHomeDirectoryMapRoot : 1;

 ULONG fUseDefaultGina : 1;

 ULONG fCursorBlinkDisabled : 1;

 ULONG fPublishedApp : 1;

 ULONG fHideTitleBar : 1;

 ULONG fMaximize : 1;

 ULONG fDisableCpm : 1;

 ULONG fDisableCdm : 1;

 ULONG fDisableCcm : 1;

 ULONG fDisableLPT : 1;

 ULONG fDisableClip : 1;

 ULONG fDisableExe : 1;

 ULONG fDisableCam : 1;

 ULONG fDisableAutoReconnect : 1;

 ULONG ColorDepth : 3;

 ULONG fInheritColorDepth: 1;

 ULONG fErrorInvalidProfile : 1;

 ULONG fPasswordIsScPin: 1;

 ULONG fDisablePNPRedir:1;

 WCHAR UserName[USERNAME_LENGTH + 1];

 WCHAR Domain[DOMAIN_LENGTH + 1];

 WCHAR Password[PASSWORD_LENGTH + 1];

 WCHAR WorkDirectory[DIRECTORY_LENGTH + 1];

 WCHAR InitialProgram[INITIALPROGRAM_LENGTH + 1];

 WCHAR CallbackNumber[CALLBAC K_LENGTH + 1];

 CALLBACKCLASS Callback;

 SHADOWCLASS Shadow;

 ULONG MaxConnectionTime;

 ULONG MaxDisconnectionTime;

 ULONG MaxIdleTime;

 ULONG KeyboardLayout;

 BYTE MinEncryptionLevel;

 WCHAR NWLogonServer[NASIFILESERVER_LENGTH + 1];

 APPLICATIONNAME PublishedName;

 WCHAR WFProfilePath[DIRECTORY_LENGTH + 1];

 WCHAR WFHomeDir[DIRECTORY_LENGTH + 1];

 WCHAR WFHomeDirDrive[4];

46 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 } USERCONFIG, * PUSERCONFIG;

fInheritAutoL ogon: The prompt for the password setting. TRUE indicates the use of client -specified
autologon settings, FALSE specifies the use of machine autologon settings.

fInheritResetBroken: Reset the session when the connection is broken. TRUE indicates the valu e to

use for fResetBroken from the user properties if the machine/user policy is not set, FALSE
otherwise.

fInheritReconnectSame: Reconnect from the same client setting. TRUE indicates the value to use
for fReconnectSame from the user properties if the ma chine/user policy is not set, FALSE
otherwise.

fInheritInitialProgram: The initial program setting. TRUE indicates the value to use for

InitialProgram from the user properties if the machine/user policy is not set, FALSE otherwise.

fInheritCallback: The callback setting. TRUE indicates the value to use for Callback from the user
properties if the machine/user policy is not set, FALSE otherwise. <63>

fInheritCallbackNumber: The callback number setting. TRUE indicates the value to use for
CallbackNumber from the user properties if the machine/user policy is not set, FALSE
otherwise. <64>

fInheritShadow: The shadow setting. TRUE indicates the value to use for Shadow from the user

properties if the machine/user policy is not set, FALSE otherwise.

fInheritMaxSessionTime: The maximum allowed session connection time setting. TRUE indicates
the value to use for MaxSessionTime from the user properties if the machine/user policy is not
set, FALSE otherwise.

fInheritMaxDisconnectionTime: The maximum allowed session disconnect time setting. TRUE
indicates the value to use for MaxDisconnectionTime from the user properties if the
machine/user policy is not set, FALSE otherwise.

fInherit MaxIdleTime: The maximum allowed session idle time. TRUE indicates the value to use for
MaxIdleTime from the user properties if the machine/user policy is not set, FALSE otherwise.

fInheritAutoClient: The auto client setting. TRUE indicates the value to use for fAutoClientDrivers
and fAutoClientLpts from the user properties if the machine/user policy is not set, FALSE
otherwise.

fInheritSecurity: Inherit security setting. TRUE indicates the use of security settings from the user

properties if the machine /user policy is not set, FALSE otherwise.

fPromptForPassword: Set to TRUE to ignore the credential sent from the client and always prompt
for a password, FALSE otherwise.

fResetBroken: Set to TRUE to log off the session when the idle timers for the sessi on expire.
Otherwise, the session will be disconnected when the timer expires.

fReconnectSame: FALSE indicates that the user can reconnect from any client computer to a
disconnected session.

TRUE indicates that the user must reconnect to a disconnected se ssion from the same client
computer that initially established the disconnected session. Logging on from a different client
computer will lead to a new terminal server session being created.

fLogonDisabled: TRUE indicates that a user cannot log on to a se ssion remotely, FALSE
otherwise. <65>

47 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

fWallPaperDisabled: TRUE indicates display of the desktop wallpaper in the session has been
disabled, FALSE otherwise.

fAutoClientDrives: TRUE specifies to automatically redirect local drives on the client so they are
accessible to the user in the remote terminal server session, FALSE otherwise.

fAutoClientLpts: TRUE specifies to automatically redirect printers on the client so they are
accessible to the user in the remote terminal server session, FALSE otherwise.

fFo rceClientLptDef: TRUE indicates to force the client's redirected printer to be the default printer
for the user, FALSE otherwise.

fRequireEncryption: TRUE indicates the connection must be encrypted, FALSE otherwise.

fDisableEncryption: TRUE indicates the connection does not need encryption, FALSE otherwise.

fUnused1: Not used.

fHomeDirectoryMapRoot: Not used.

fUseDefaultGina: TRUE indicates to override a third -party GINA so that only the default GINA is
used for the terminal server session , FALSE otherwise. <66>

fCursorBlinkDisabled: TRUE indicates disable the blinking of the mouse cursor, FALSE
otherwise. <67>

fPublishedApp: Not used.

fHideTitleBar: Not used.

fMaximize: Not used.

fDisableCpm: TRUE indicates disable client printer redirection, FALSE otherwise.

fDisableCdm: TRUE indicates disable client drive redirection, FALSE otherwise.

fDisableCcm: TRUE indicates disable client COM port redirection, FALSE otherwise.

fDisableLPT: TRUE indicates disable client printer (LPT) port redirection, FALSE otherwise.

fDisableClip: TRUE indicates disable client clipboard redirection, FALSE otherwise.

fDisableExe: TRUE indicates disable .exe file execution, FALSE otherwise.

fDisableCam: TRUE indicates disable client audio redirection, FAL SE otherwise.

fDisableAutoReconnect: TRUE indicates disable auto - reconnect functionality, FALSE
otherwise. <68>

ColorDepth: The color depth of the session. <69>

fInheritColorDepth: Set to TRUE to inherit color depth from the user or client configuration, FALSE

otherwise. <70>

fErrorInvalidProfile: Set to TRUE if WFProfilePath, WFHomeDir, or WFHomeDirDrive is invalid (too
long), FALSE otherwise. <71>

fPasswordIsScPin: Set to TRUE if the password field contains a smart card PIN. <72>

fDisablePNPRedir: Set to TRUE if Plug and Play (PnP) redirection is disabled, FALSE otherwise.

UserName: The user name used in autologon scenarios.

48 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Domain: The domain name used in autologon scenarios.

Password: The password used in autologon scenarios.

WorkDirectory: The work directory for the initial program.

InitialProgram: The program to run instead of the default. <73>

CallbackNumber: The telephone number that will be returned by the Terminal Services server to the
client when the server is unable to complete the connecti on request from the client. The user on
the client side can use this number to call back for technical support. <74>

Callback: The callback class for callback operations. <75>

Shadow: The shadow setting of the session.

MaxConnectionTime: The maximum allowed session connection time setting of the session in
milliseconds. The session will disconnect/logoff once the limit is reached.

MaxDisconnectionTime: The maximum allowed session disconnect time of the session in
milliseconds. The session wil l logoff once the limit is reached.

MaxIdleTime: The maximum allowed session idle time setting of the session in milliseconds. The
session will disconnect/logoff once the limit is reached.

KeyboardLayout: The keyboard layout (HKL) of the session.

MinEncr yptionLevel: The minimum allowed encryption level. Possible numeric values for this

parameter include 1 (Low), 2 (Client Compatible), 3 (High), and 4 (FIPS). Detailed description of
these encryption levels is included in [MS -RDPBCGR] sections 5.3.1 and 5. 4.1.

NWLogonServer: The NetWare logon server name. <76>

PublishedName: Not used.

WFProfilePath: The terminal server profile path. Overrides the standard profile path.

WFHomeDir: The terminal server home directory path. Overrides the standard home directory.

WFHomeDirDrive: The terminal server home directory drive. Overrides the standard home

directory.

2.2.2.18.1 CALLBACKCLASS

The CALLBACKCLASS enumeration is used for callback options to indicate the type of callback. <77>

 typ edef enum _CALLBACKCLASS

 {

 Callback_Disable,

 Callback_Roving,

 Callback_Fixed,

 } CALLBACKCLASS;

Callback_Disable: Callback is disabled.

Callback_Roving: The callback number is a roving number.

Callback_Fixed: The callback number is a fixed number.

2.2.2.18.2 APPLICATIONNAME

49 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This data type represents an application name.

 typedef WCHAR APPLICATIONNAME[MAX_BR_NAME];

 typedef WCHAR* PAPPLICATIONNAME;

2.2.2.19 WINSTATIONCLIENT

The WINSTATIONCLIENT structure defines the client - requested configuration when connecting to a
session.

 typedef struct _WINSTATIONCLIENT {

 ULONG fTextOnly :1;

 ULONG fDisableCtrlAltDel :1;

 ULONG fMouse :1;

 ULONG fDoubleClickDetect :1;

 ULONG fINetClient :1;

 ULONG fPromptForPassword :1;

 ULONG fMaximizeShell :1;

 ULONG fEnableWindowsKey :1;

 ULONG fRemoteConsoleAudio :1;

 ULONG fPasswordIsScPin :1;

 ULONG fNoAudioPlayback :1;

 ULONG fUsingSavedCreds :1;

 ULONG fRestrictedLogon :1;

 WCHAR Clie ntName[CLIENTNAME_LENGTH + 1];

 WCHAR Domain[DOMAIN_LENGTH + 1];

 WCHAR UserName[USERNAME_LENGTH + 1];

 WCHAR Password[PASSWORD_LENGTH + 1];

 WCHAR WorkDirectory[DIRECTORY_LENGTH + 1];

 WCHAR InitialProgram[INITIALPROGRAM_LENGTH + 1];

 ULONG SerialNumber;

 BYTE EncryptionLevel;

 ULONG ClientAddressFamily;

 WCHAR ClientAddress[CLIENTADDRESS_LENGTH + 1];

 USHORT HRes;

 USHORT VRes;

 USHORT ColorDepth;

 USHORT ProtocolType;

 ULONG KeyboardLayout;

 ULONG KeyboardType;

 ULONG KeyboardSubType;

 ULONG KeyboardFunctionKey;

 WCHAR imeFileName[IMEFILENAME_LENGTH + 1];

 WCHAR ClientDirectory[DIRECTORY_LENGTH + 1];

 WCHAR ClientLicense[CLIENTLICENSE_LENGTH + 1];

 WCHAR ClientModem[CLIENTMODEM_LENGTH + 1];

 ULONG ClientBuildNumber;

 ULONG ClientHardwareId;

 USHORT ClientProductId;

 USHORT OutBufCountHost;

 USHORT OutBufCountClient;

 USHORT OutBufLength;

 WCHAR AudioDriverName[9];

 TS_TIME_ZONE_INFORMATION ClientTimeZone;

 ULONG ClientSessionId;

 WCHAR clientDigProductId[CLIENT_PRODUCT_ID_LENGTH];

 ULONG PerformanceFlags;

 ULONG ActiveInputLocale;

 } WINSTATIONCLIENT,

 *PWINSTATIONCLIENT;

fTextOnly: Tex t -only client session. This is always FALSE.

fDisableCtrlAltDel: Set to TRUE to specify that CTRL+ALT+DEL is disabled.

50 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

fMouse: TRUE indicates the mouse is connected to the client, FALSE otherwise.

fDoubleClickDetect: Double -click the detect flag. TRUE indicates detect double -click, FALSE

otherwise.

fINetClient: Always set to FALSE.

fPromptForPassword: TRUE indicates the user will always be prompted for a password, even if the
password is saved from previous connection; FALSE otherwise.

fMaxi mizeShell: TRUE indicates maximize the shell, FALSE otherwise.

fEnableWindowsKey: TRUE indicates that the Windows key (E0_5B) is enabled in the terminal
server session. FALSE indicates that it is disabled.

fRemoteConsoleAudio: Set to TRUE if audio f or the console session is left remotely at the server,
FALSE otherwise. <78>

fPasswordIsScPin: Set to TRUE if the password field contains a smart card PIN, FALSE

otherwise. <79>

fNoAudioPlayback: Set to TRUE to disable audio playback, or FALSE to enable audio playback. <80>

fUsingSavedCreds: Set to TRUE if the terminal server connection was made using a credential
saved on the client computer, FALSE otherwise.

fRestrictedLogon: Set to TRUE if the client is running in Restricted Administration mo de, FALSE

otherwise. In Restricted Administration mode, user credentials are not sent to the server, which
can protect the user if the server has been compromised. <81>

ClientName: The name of the client computer.

Domain: The user's domain name.

UserN ame: The user's user name.

Password: The user's password.

WorkDirectory: The work directory for the initial program.

InitialProgram: The program to run instead of the default. <82>

SerialNumber: The client computer's unique serial number.

Encry ptionLevel: The encryption level.

ClientAddressFamily: The address family of the client's address. <83>

ClientAddress: The client's address. The format depends on the value of ClientAddressFamily .
See [MSDN -SOCKET] for more information.

HRes: The h orizontal resolution, in pixels.

VRes: The vertical resolution, in pixels.

ColorDepth: The color depth. <84>

ProtocolType: The type of protocol. <85>

KeyboardLayout: The keyboard layout (HKL).

KeyboardType: The keyboard type.

51 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

KeyboardSubType: The keyboard subtype.

KeyboardFunctionKey: The number of keyboard function keys.

imeFileName: The file name of the input method editor (IME), if any, used for the session. For
more information on IMEs, see [MSFT - IME].

ClientDirectory: The director y in which the client was installed.

ClientLicense: The client's license. <86>

ClientModem: The client's modem. <87>

ClientBuildNumber: The client's build number.

ClientHardwareId: The client -specific hardware identifier.

ClientProductId: The client -specific product identifier.

OutBufCountHost: The number of output buffers on the host computer.

OutBufCountClient: The number of output buffers on the client computer.

OutBufLength: The length of the output buffer, in bytes.

AudioDriverName: The audio driver's name.

ClientTimeZone: The client's time zone. <88>

ClientSessionId: The client's session ID. <89>

clientDigProductId: The client -specific product ID. <90>

PerformanceFlag s: Protocol -specific performance flags. <91> It MUST be any bitwise OR
combination of the following except TS_PERF_DISABLE_NOTHING .

Value Meaning

TS_PERF_DISABLE_NOTHING

0x00000000

Disable nothing.

TS_PERF_DISABLE_WALLPAPER

0x00000001

Disable wallpaper.

TS_PERF_DISABLE_FULLWINDOWDRAG

0x00000002

Disable full window drag animation.

TS_PERF_DISABLE_MENUANIMATIONS

0x00000004

Disable menu animations.

TS_PERF_DISABLE_THEMING

0x00000008

Disable themes.

TS_PERF_ENABLE_ENHANCED_GRAPHICS

0x00000010

Enable enhanced graphics.

TS_PERF_DISABLE_CURSOR_SHADOW

0x00000020

 Disable cursor shadow.

TS_PERF_DISABLE_CURSORSETTINGS

0x00000040

Disable cursor settings.

52 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

TS_PERF_ENABLE_FONT_SMOOTHING

0x00000080

Enable font smoothing. <92>

TS_PERF_ENABLE_DESKTOP_COMPOSITION

0x00000100

 Enable desktop composition. <93>

TS_PERF_DEFAULT_NONPERFCLIENT_SETTING

0x40000000

Reserved and used internally by the client.

TS_PERF_RESERVED1

0x80000000

Reserved and used internally by the client.

ActiveIn putLocale: Client language locale HKL. <94>

For information about keyboard functions and handling, see [MSFT -W2KDDK].

2.2.2.19.1 TS_TIME_ZONE_INFORMATION

 The TS_TIME_ZONE_INFORMATION structure contains client time zone infor mation.

 typedef struct _TS_TIME_ZONE_INFORMATION {

 LONG Bias;

 WCHAR StandardName[32];

 TS_SYSTEMTIME StandardDate;

 LONG StandardBias;

 WCHAR DaylightName[32];

 TS_SYSTEMTIME DaylightDate;

 LONG DaylightBias;

 } TS_TIME_ZONE_INFORMATION;

Bias: A 32 -bit integer. Current bias for local time translation on the client, in minutes. The bias is the

difference, in minutes, between Coordinated Universal Time (UTC) and local time. All translations
between UTC and local ti me are based on the following formula:

UTC = local time + bias

StandardName: A description for standard time on the client. For example, this field could contain
the string "Pacific Standard Time" to indicate Pacific Standard Time. An array of 32 Unicode
characters.

StandardDate: A TS_SYSTEMTIME structure that contains the date and local time when the

transition from daylight saving time to standard time occurs on the client. If this field is specified,
the DaylightDate field is also specified.

StandardBi as: A 32 -bit integer that defines the bias value in number of minutes to be used during
local time translations that occur during standard time. This field SHOULD be ignored if a value is
not supplied in the StandardDate field. This value is added to the value of the Bias field to form

the bias used during standard time. In most time zones, the value of this field is 0.

DaylightName: An array of 32 Unicode characters that describes daylight time on the client. For
example, this field could contain "Pacifi c Daylight Time" to indicate Pacific Daylight Time.

DaylightDate: A TS_SYSTEMTIME that contains a date and local time when the transition from
standard time to daylight saving time occurs on the client. If this field is specified, the
StandardDate field i s also specified.

53 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

DaylightBias: A 32 -bit integer that defines the bias value to be used during local time translations
that occur during daylight saving time. This field SHOULD be ignored if a value for the

DaylightDate field is not supplied. This value i s added to the value of the Bias field to form the
bias used during daylight saving time. In most time zones, the value of this field is 60.

2.2.2.19.1.1 TS_SYSTEMTIME

 Information about a time zone. This structure is identical to the str ucture SYSTEMTIME. For more
information, see [MSDN -SYSTIME].

 typedef struct _TS_SYSTEMTIME {

 USHORT wYear;

 USHORT wMonth;

 USHORT wDayOfWeek;

 USHORT wDay;

 USHORT wHour;

 USHORT wMinute;

 USHORT wSecond;

 USHORT wMilliseconds;

 } TS_SYSTEMTIME;

wYear: The year when transition from daylight saving time to standard time occurs (1601 to 30827).

wMonth: The month when transition from daylight saving time to standard time occurs.

This member can be one of the following values.

Value Meaning

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September

10 October

11 November

12 December

wDayOfWeek: The day of the week when the transition from daylight saving time to standard time
occurs.

This member can be one of the following values.

Value Meaning

0 Sunday

54 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

wDay: The occurrence of wDayOfWeek within the month when the transition from daylight saving
time to standard time takes place.

This member can be one of the following values.

Value Meaning

1 First occurrence of wDayOfWeek

2 Second occurrence of wDayOfWeek

3 Third occurrence of wDayOfWeek

4 Fourth occurrence of wDayOfWeek

5 Last occurrence of wDayOfWeek

wHour: The hour when transition from daylight saving time to standard time occurs (0 to 23).

wMinute: The minute when transition from daylight saving ti me to standard time occurs (0 to 59).

wSecond: The second when transition from daylight saving time to standard time occurs (0 to 59).

wMilliseconds: The millisecond when transition from daylight saving time to standard time occurs
(0 to 999).

2.2.2.20 WINSTATIONINFORMATION

Provides the current values of various properties such as state, connect time, last input time, and so
on, for a session.

 typedef struct _WINSTATIONINFORMATION {

 WINSTATIONSTATECLASS ConnectState;

 WINSTATIONNAME WinStationName;

 ULONG LogonId;

 LARGE_INTEGER ConnectTime;

 LARGE_INTEGER DisconnectTime;

 LARGE_INTEGER LastInputTime;

 LARGE_INTEGER LogonTime;

 PROTOCOLSTATUS Status;

 WCHAR Domain[DOMAIN_LENGTH + 1];

 WCHAR UserName[USERNAME_LENGTH + 1];

 LARGE_INTEGER CurrentTime;

 } WINSTATIONINFORMATION,

 *PWINSTATIONINFORMATION;

ConnectState: The current connect state of the session.

55 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

WinStationName: The name of the session.

LogonId: The session identifier of the session.

ConnectTime: The time of the most recent connection to the session. This is a 64 -bit value
representing the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

DisconnectTime: The time of the most recent disconnecti on from the session. This is a 64 -bit value
representing the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

LastInputTime: The time the session last received input. This is an indicator of how long a session
has been idle. This is a 64 -bi t value representing the number of 100 -nanosecond intervals since
January 1, 1601 (UTC).

LogonTime: The time of the logon to the session. This is a 64 -bit value representing the number of
100 -nanosecond intervals since January 1, 1601 (UTC).

Status: The status of the protocol, as specified in section 2.2.2.20.1.

Domain: The user's domain name.

UserName: The user's user name.

CurrentTime: The current time in the session. This is a 64 -bit value representing the number of 100 -
nanosecond intervals since January 1, 1601 (UTC).

2.2.2.20.1 PROTOCOLSTATUS

 The status of the protocol used by the session.

 typedef struct _PROTOCOLSTATUS {

 PROTOCOLCOUNTERS Output;

 PROTOCOLCOUNTERS Input;

 CACHE_STATISTICS Cache;

 ULONG AsyncSignal;

 ULONG AsyncSignalMask;

 } PROTOCOLSTATUS,

 *PPROTOCOLSTATUS;

Output: A PROTOCOLCOUNTERS structure containing the output protocol counters.

Input: A PROTOCOLCOUNTERS structure containing the input protocol counters.

Cache: A CACHE_STATISTICS structure containing statistics for the cache.

AsyncSignal: Indicator of async signal, such as MS_CTS_ON, for async protocols. For more

information on asynchronous protocols, see [MSDN -SERIAL].

AsyncSignalMask: Mask of async signal eve nts, such as EV_CTS, for async protocols. For more
information on asynchronous protocols, see [MSDN -SERIAL].

2.2.2.20.1.1 PROTOCOLSTATUSEX

The PROTOCOLSTATUSEX structure defines the extended status of the proto col used by the session.

 typedef struct {

 PROTOCOLSTATUS ProtocolStatus;

 LARGE_INTEGER Counters[MAX_COUNTER_EXTENSIONS];

 } PROTOCOLSTATUSEX,

 *PPROTOCOLSTATUSEX;

56 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ProtocolStatus: The status of the protocol as described in section 2.2.2.20.1.

Counters: The value of the various counters associated with the protocol as specified in

PROTOCOLCOUNTERS.

2.2.2.20.1.2 PROTOCOLCOUNTERS

Protocol performance counters.

 typedef struct _PROTOCOLCOUNTERS {

 ULONG WdBytes;

 ULONG WdFrames;

 ULONG WaitForOutBuf;

 ULONG Frames;

 ULONG Bytes;

 ULONG CompressedBytes;

 ULONG CompressFlushes;

 ULONG Errors;

 ULONG Timeouts;

 ULONG AsyncFramingError;

 ULONG AsyncOverrunError;

 ULONG AsyncOverflowError;

 ULONG AsyncParityError;

 ULONG TdErrors;

 USHORT ProtocolType;

 USHORT Length;

 union {

 TSHARE_COUNTERS TShareCounters;

 ULONG Reserved[100];

 } Specific;

 } PROTOCOLCOUNTERS,

 *PPROTOCOLCOUNTERS;

WdBytes: WinStation driver number of bytes sen t and received.

WdFrames: WinStation driver number of frames sent and received.

WaitForOutBuf: The number of times waited for an output buffer to become available.

Frames: Transport driver number of frames.

Bytes: Transport driver number of bytes.

Comp ressedBytes: Number of compressed bytes.

CompressFlushes: Number of compress flushes. A compress flush occurs when compression for a
packet fails and the original uncompressed packet replaces it.

Errors: Number of packets that were in error during the session.

Timeouts: Number of time -outs.

AsyncFramingError: Number of async framing errors.

AsyncOverrunError: Number of async overrun errors.

AsyncOverflowError: Number of async overflow errors.

AsyncParityError: Number of async parity errors.

TdErrors: Number of transport protocol errors.

ProtocolType: Protocol type.

57 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Length: Length of data in the protocol -specific area. Can be up to 100 * sizeof(ULONG) in size.

Specific: Specifies which types of counters are to be queried. It can be one of the following:

TShareCounters: Protocol performance counters.

Reserved: Reserved for future use.

2.2.2.20.1.2.1 TSHARE_COUNTERS

TSHARE_COUNTERS is not used.

 typedef struct _TSHARE_COUNTERS {

 ULONG Reser ved;

 } TSHARE_COUNTERS,

 *PTSHARE_COUNTERS;

Reserved: This value is not used.

2.2.2.20.1.3 CACHE_STATISTICS

Cache statistics on the protocol.

 typedef struct CACHE_STATISTICS {

 USHORT ProtocolType;

 USHORT Length;

 union {

 RESERVED_CACHE ReservedCacheStats;

 TSHARE_CACHE TShareCacheStats;

 ULONG Reserved[20];

 } Specific;

 } CACHE_STATISTICS,

 *PCACHE_STATISTICS;

ProtocolType: Protocol type.

Length: Length of data in the protocol -specific area. Can be up to 20 * sizeof(ULONG) in size.

Specific: The union of the following members:

ReservedCacheStats: Not used.

TShareCacheStats: Protocol cache statistics.

Reserved: Reserved for future use.

2.2.2.20.1.3.1 RESERVED_CACHE

Cache statistics. <95>

 typedef struct _RESERVED_CACHE {

 THINWIRECACHE ThinWireCache[MAX_THINWIRECACHE];

 } RESERVED_CACHE,

 *PRESERVED_CACHE;

ThinWireCache: The ThinWireCache structure used for the terminal server's display for
RESERVED_CACHE.

58 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.20.1.3.1.1 THINWIRECACHE

The ThinWireCache structure used for the terminal server's display for RESERVED_CACHE.

 typedef struct _THINWIRECACHE {

 ULONG CacheReads;

 ULONG CacheHits;

 } THINWIRECACHE,

 *PTHINWIRECACHE;

CacheReads: Number of cache reads.

CacheHits: Number of cache hits.

2.2.2.20.1.3.2 TSHARE_CACHE

TSHARE_CACHE is not used.

 typedef struct _TSHARE_CACHE {

 ULONG Reserved;

 } TSHARE_CACHE,

 *PTSHARE_CACHE;

Reserved: This value is not used.

2.2.2.21 PDPARAMS

The protocol driver parameters structure. The core Terminal Services binaries only read this data from
the system data store and pass it to callers of RpcWinStationQueryInformation and other places. The
core Terminal Services binaries do not process this data in any way before returning it to callers. The
actual use of this configuration data is in lower - level protocol dr ivers.

 typedef struct _PDPARAMS {

 SDCLASS SdClass;

 union {

 NETWORKCONFIG Network;

 ASYNCCONFIG Async;

 NASICONFIG Nasi;

 OEMTDCONFIG OemTd;

 };

 } PDPARAMS,

 *PPDPARAMS;

SdClass: Stack driver class. Indicates which one of the union's stru ctures is valid.

Network: Configuration of network drivers. Used if SdClass is SdNetwork.

Async: Configuration of async (modem) driver. Used if SdClass is SdAsync. <96>

Nasi: Reserved.

OemTd: Configuration of OEM transport driver. Used if SdClass is SdOemTransport. <97>

2.2.2.22 NETWORKCONFIG

The network protocol driver's configuration structure. The following block determines
NETWORKCONFIG.

59 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _NETWORKCONFIG {

 LONG LanAdapter;

 DEVICENAME NetworkName;

 ULONG Flags;

 } NETWORKCONFIG,

 *PNETWORKCONFIG;

LanAdapter: The LANA ID of the network adapter.

NetworkName: Not used.

Flags: Not used.

2.2.2.23 ASYNCCONFIG

The asynchronous protocol driver's configuration structure.

 typedef struct _ASYNCCONFIG {

 DEVICENAME DeviceName;

 MODEMNAME ModemName;

 ULONG BaudRate;

 ULONG Parity;

 ULONG StopBits;

 ULONG ByteSize ;

 ULONG fEnableDsrSensitivity :1;

 ULONG fConnectionDriver :1;

 FLOWCONTROLCONFIG FlowControl;

 CONNECTCONFIG Connect;

 } ASYNCCONFIG,

 *PASYNCCONFIG;

DeviceName: The device's name.

ModemName: The modem's name.

BaudRate: The baud rate of the modem .

Parity: The parity setting.

StopBits: The number of stop bits.

ByteSize: The size of a byte.

fEnableDsrSensitivity: TRUE indicates enable Data Set Ready (DSR) sensitivity, FALSE otherwise.

fConnectionDriver: Set to TRUE if there is a connection driver, FALSE otherwise.

FlowControl: The flow control setting of the modem.

Connect: The connect configuration.

2.2.2.23.1 MODEMNAME

The name of a modem.

 typedef WCHAR MODEMNAME[MODEMNAME_LENGTH + 1];

 typedef WCHAR* PMODEMNAME;

2.2.2.23.2 FLOWCONTROLCONFIG

60 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Flow control configuration of an async driver.

 typedef struct _FLOWCONTROLCONFIG {

 ULONG fEnableSoftwareTx :1;

 ULONG fEnableSoftwareRx :1;

 ULONG fEnableDTR :1;

 ULONG fEnableRTS :1;

 CHAR XonChar;

 CHAR XoffChar;

 FLOWCONTROLCLASS Type;

 RECEIVEFLOWCONTROLCLASS HardwareReceive;

 TRANSMITFLOWCONTROLCLASS HardwareTransmit;

 } FLOWCONTROLCONFIG,

 *PFLOWCONTROLCONFIG;

fEnableSoftwareTx: TRUE indicates software transmi t flow control, FALSE otherwise.

fEnableSoftwareRx: TRUE indicates software receive flow control, FALSE otherwise.

fEnableDTR: TRUE indicates Data Terminal Ready (DTR) enabled, FALSE otherwise.

fEnableRTS: TRUE indicates Request to Send (RTS) enabled, F ALSE otherwise.

XonChar: Xon flow control character.

XoffChar: Xoff flow control character.

Type: The type of flow control in use.

HardwareReceive: Hardware receive flow control information.

HardwareTransmit: Hardware transmit flow control information .

2.2.2.23.2.1 FLOWCONTROLCLASS

The FLOWCONTROLCLASS enumeration specifies the type of flow control, if any, supported.

 typedef enum _FLOWCONTROLCLASS

 {

 FlowControl_None,

 FlowControl_Hardware,

 FlowControl_Software

 } FLOWCONTROLCLASS;

FlowControl_None: Flow control is not enabled.

FlowControl_Hardware: Hardware flow control is enabled.

FlowControl_Software: Software flow control is enabled.

2.2.2.23.2.2 RECEIVEFLOWCONTROLCLASS

The RECEIVEFLOWCONTROLCLASS enumeration specifies which, if any, means of receive flow
control are supported.

 typedef enum _RECEIVEFLOWCONTROLCLASS

 {

 ReceiveFlowControl_None,

 ReceiveFlowControl_RTS,

 ReceiveFlowControl_DTR,

61 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 } RECEIVEF LOWCONTROLCLASS;

ReceiveFlowControl_None: No receive flow control currently.

ReceiveFlowControl_RTS: Receive flow control Request to Send (RTS).

ReceiveFlowControl_DTR: Receive flow control Data Terminal Ready (DTR).

2.2.2.23.2.3 TRANSMITFLOWCONTROLCLASS

The TRANSMITFLOWCONTROLCLASS enumeration specifies which, if any, means of transit flow
control is supported.

 typedef enum _TRANSMITFLOWCONTROLCLASS

 {

 TransmitFlowControl_None,

 TransmitFlowControl_CTS,

 TransmitFlowControl_DSR,

 } TRANSMITFLOWCONTROLCLASS;

TransmitFlowControl_None: No transmit flow control currently.

TransmitFlowControl_CTS: Transmit flow control Clear to Send (CTS).

TransmitFlowControl_DSR: Transmit flow control Data Set Ready (DSR).

2.2.2.23.3 CONNECTCONFIG

The CONNECTCONFIG structure specifies connectivity parameters.

 typedef struct _CONNECTCONFIG {

 ASYNCCONNECTCLASS Type;

 ULONG fEnableBreakDisconnect :1;

 } CONNECTCONFIG,

 *PCONNECTCONFIG;

Type: Type of asynchronous connection. This value is not used.

fEnableBreakDisconnect: If TRUE, enable break disconnect.

2.2.2.23.3.1 ASYNCCONNECTCLASS

The ASYNCCONNECTCLASS enumeration is not used.

 typedef enum _ASYNCCONNECTCLASS {

 Connect_CTS,

 Connect_DSR,

 Connect_RI,

 Connect_DCD,

 Connect_FirstChar,

 Connect_Perm,

 } ASYNCCONNECTCLASS;

2.2.2.24 NASICONFIG

The NASICONFIG structure determines the data type of NASICONF IG.

62 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _NASICONFIG {

 NASISPECIFICNAME SpecificName;

 NASIUSERNAME UserName;

 NASIPASSWORD PassWord;

 NASISESIONNAME SessionName;

 NASIFILESERVER FileServer;

 BOOLEAN GlobalSession;

 } NASICONFIG, *PNASICONFIG;

SpecificName: The NASI -specific (Netware Asynchronous Services Interface) name.

UserName: The NASI user's user name.

PassWord: The NASI user's password.

SessionName: The NASI session name.

FileServer: The NASI file server name.

GlobalSession: Set to TRUE if the session is a global session.

2.2.2.24.1 NASIUSERNAME

The NASI user's user name.

This type is declared as follows:

 typedef WCHAR NASIUSERNAME[NASIUSERNAME_LENGTH + 1];

2.2.2.24.2 NASIPASSWORD

The NASI user's password.

This type is declared as follows:

 typedef WCHAR NASIPASSWORD[NASIPASSWORD_LENGTH + 1];

2.2.2.24.3 NASISESIONNAME

The NASI session name.

This type is declared as follows:

 typedef WCHAR NASISESIONNAME[NASISESSIONNAME_LENGTH + 1];

2.2.2.24.4 NASISPECIFICNAME

The NASI -specific name.

This type is declared as follows:

 typedef WCHAR NASISPECIFICNAME[NASISPECIFICNAME_LENGTH + 1];

2.2.2.24.5 NASIFILESERVER

63 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The NASI file server name.

This type is declared as follows:

 typedef WCHAR NASIFILESERVER[NASIFILESERVER_LENGTH + 1];

2.2.2.25 OEMTDCONFIG

The OEM transport driver configuration structure.

 typedef struct _OEMTDCONFIG {

 LONG Adapter;

 DEVICENAME DeviceName;

 ULONG Flags;

 } OEMTDCONFIG,

 *POEMTDCONFIG;

Adapter: The ID of the adapter (OEM driver -specific).

Devi ceName: The network name (OEM driver -specific).

Flags: Driver flags (OEM driver -specific).

2.2.2.26 PDCONFIG

The protocol driver configuration structure.

 typedef struct _PDCONFIG {

 PDCONFIG2 Create;

 PDPARAMS Params;

 } PDCONFIG,

 *PPDCONFIG;

Create: The software configuration of the driver.

Params: The hardware configuration for the driver.

2.2.2.26.1 PDCONFIG2

The protocol driver's software configuration.

 typedef struct _PDCONFIG2 {

 PDNAME PdName;

 SDCLASS SdClass;

 DLLNAME PdDLL;

 ULONG PdFlag;

 ULONG OutBufLength;

 ULONG OutBufCount;

 ULONG OutBufDelay;

 ULONG InteractiveDelay;

 ULONG PortNumber;

 ULONG KeepAliveTimeout;

 } PDCONFIG2,

 *PPDCONFIG2;

PdName: The descriptive name of the protocol driver.

64 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SdClass: The type of driver.

PdDLL: The driver's image name.

PdFlag: Driver flags MUST be any bitwise OR combination of the following values:

Value Meaning

PD_UNUSED

0x00000001

Unused.

PD_RELIABLE

 0x00000002

Error - free protocol.

PD_FRAME

0x00000004

Frame -oriented protocol.

PD_CONNECTION

0x00000008

Connection -oriented protocol.

PD_CONSOLE

 0x00000010

Directly connected console.

PD_LANA

0x00000020

Network class uses LANAs (NetBIOS).

PD_TRANSPORT

0x00000040

Transport driver (lowest level).

PD_SINGLE_INST

0x00000080

Single instance only (async).

PD_NOLOW_WATERMARK

 0x00000100

Low water mark to resume transmission.

OutBufLength: Optimal output buffers length, in bytes.

OutBufCount: Optimal number of output buffers.

OutBufDelay: Write delay, in milliseconds.

InteractiveDelay: Write delay during active input.

PortNumber: Network listen port number.

KeepAliveTimeout: Frequency to send keep -alives, in milliseconds.

2.2.2.26.2 PDNAME

The protocol driver name (PDNAME) data type.

 typedef WCHAR PDNAME[PDNAME_LENGTH + 1];

 typedef WCHAR* PPDNAME;

2.2.2.27 WDCONFIG

The WinStation (session) driver configuration. <98>

65 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _WDCONFIG {

 WDNAME WdName;

 DLLNAME WdDLL;

 DLLNAME WsxDLL;

 ULONG WdFlag;

 ULONG WdInputBufferLength;

 DLLNAME CfgDLL;

 WDPREFIX WdPrefix;

 } WDCONFIG,

 *PWDCONFIG;

WdName: The descriptive name of the WinStation driver.

WdDLL: The driver's image name.

WsxDLL : Used by the Terminal Services service to communicate with the WinStation driver. <99>

WdFlag: Driver flags. It MUST be any bitwise OR combination of the following values.

Value Meaning

WDF_UNUSED

0x00000001

Not used.

WDF_SHADOW_SOURCE

0x00000002

Valid shadow source.

WDF_SHADOW_TARGET

0x00000004

Valid shadow target.

WDF_OTHER

0x00000008

Other protocol.

WDF_TSHARE

0x00000010

Remote Protocol used by Terminal Services.

WDF_DYNAMIC_RECONNECT

0x00000020

 Session can resize display at reconnect. <100>

WDF_USER_VCIOCTL

0x00000040

User mode applications can send virtual channel IOCTL.

WDF_SUBDESKTOP

0x00008000

Sub -desktop session. <101>

WdInputBufferLength: Length, in bytes, of the input buffer used by the driver. Defaults to 2048.

CfgDLL: Configuration DLL used by Terminal Services administrative tools for configuring the

driver. <102>

WdPrefix: Used as the prefix of the WinStation name generated for the connected sessions with this
WinStation driver. < 103>

2.2.2.27.1 WDNAME

The WDNAME data type.

 typedef WCHAR WDNAME[WDNAME_LENGTH + 1];

66 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef WCHAR* PWDNAME;

2.2.2.27.2 WDPREFIX

The WDPREFIX data type.

 typedef WCHAR WDPREFIX[WDPREFIX_LENGTH + 1];

 typedef WCHAR* PWDPREFIX;

2.2.2.28 CDCONFIG

Connection driver configuration. <104> It is used for connecting via modem to a server.

 typedef struct _CDCONFIG {

 CDCLASS CdClass;

 CDNAME CdName;

 DLLNAME CdDLL;

 ULONG CdFlag;

 } CDCONFIG,

 *PCDCONFIG;

CdClass: Connection driver type.

CdName: Connection driver descriptive name.

CdDLL: Connection driver image name.

CdFlag: Connection driver flags. Connection driver specific.

2.2.2.28.1 CDCLASS

The CDCLASS enumeration specifies a type of connection driver.

 typedef enum _CDCLA SS

 {

 CdNone,

 CdModem,

 CdClass_Maximum,

 } CDCLASS;

CdNone: No connection driver.

CdModem: Connection driver is a modem.

CdClass_Maximum: A given CdClass variable will always be less than this value.

2.2.2.28.2 CDNAME

The CDNAME type contains the connection driver name.

 typedef WCHAR CDNAME[CDNAME_LENGTH + 1];

 typedef WCHAR* PCDNAME;

67 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.29 WINSTATIONCREATE

The WINSTATIONCREATE structure specifies a session to which the user can connect.

 typedef struct _WINSTATIONCREATE {

 ULONG fEnableWinStation :1;

 ULONG MaxInstanceCount;

 } WINSTATIONCREATE, * PWINSTATIONCREATE;

fEnableWinStation: TRUE if enabled.

MaxInstanceCount: Maximum number of instances that can connect to the WinStation.

2.2.2.30 WINSTATIONCONFIG2

The WINSTATIONCONFIG2 structure specifies configuration of a session that the user can connect

to.

 typedef struct _WINSTATIONCONFIG2 {

 WINSTATIONCREATE Create;

 PDCONFIG Pd[MAX_PDCONFIG];

 WDCONFIG Wd;

 CDCONFIG Cd;

 WINSTATIONCONFIG Config;

 } WINSTATIONCONFIG2, * PWINSTATIONCONFIG2;

Create: General creation information.

Pd: An array of protocol data configuration structures for this WinStation.

Wd: The WinSt ation (session) driver for this WinStation configuration.

Cd: The connection driver for this WinStation configuration.

Config: The specific configuration values for the WinStation (session).

2.2.2.30.1 WINSTATIONCONFIG

WinStation configuration data. Included inside a WINSTATIONCONFIG2 structure.

 typedef struct _WINSTATIONCONFIG {

 WCHAR Comment[WINSTATIONCOMMENT_LENGTH + 1];

 USERCONFIG User;

 char OEMId[4];

 } WINSTATIONCONFIG,

 *PWINSTATIONCONFIG;

Comment: The WinStation descriptive comment.

User: The user configuration data for the session (WinStation).

OEMId: Value identifying who implemented the TermService Listener that this session (WinStation)
belongs to. This can be an y value defined by the implementer (OEM) of the listener.

68 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.31 POLICY_TS_MACHINE

The POLICY_TS_MACHINE structure defines the machine policy of the server. Each item in the
policy has a flag to indicate if the policy is present and a value for the policy. <105>

 typedef struct _POLICY_TS_MACHINE {

 ULONG fPolicyDisableClip :1;

 ULONG fPolicyDisableCam :1;

 ULONG fPolicyDisableCcm :1;

 ULONG fPolicyDisableLPT :1;

 ULONG fPolicyDisableCpm :1;

 ULONG fPolicyPromptForPassword :1;

 ULONG fPolicyMaxInstanceCount :1;

 ULONG fPolicyMinEncryptionLevel :1;

 ULONG fPolicyFipsEnabled :1;

 ULONG fPolicyD isableAutoReconnect :1;

 ULONG fPolicyWFProfilePath :1;

 ULONG fPolicyWFHomeDir :1;

 ULONG fPolicyWFHomeDirDrive :1;

 ULONG fPolicyDenyTSConnections :1;

 ULONG fPolicyTempFoldersPerSession :1;

 ULONG fPolicyDeleteTempFoldersOnExit :1;

 ULONG fPolicyColorDepth :1;

 ULONG fPolicySessionDirectoryActive :1;

 ULONG fPolicySessionDirectoryLocation :1;

 ULONG fPolicySessionDirectoryClusterName :1;

 ULONG fPolicySessionDirectoryAdditionalParams :1;

 ULONG fPolicySessionDirectoryExposeServerI P :1;

 ULONG fPolicyPreventLicenseUpgrade :1;

 ULONG fPolicySecureLicensing :1;

 ULONG fPolicyWritableTSCCPermissionsTAB :1;

 ULONG fPolicyDisableCdm :1;

 ULONG fPolicyForceClientLptDef :1;

 ULONG fPolicyShadow :1;

 ULONG fPolicyResetBroken :1;

 ULONG fPolicyReconnectSame :1;

 ULONG fPolicyMaxSessionTime :1;

 ULONG fPolicyMaxDisconnectionTime :1;

 ULONG fPolicyMaxIdleTime :1;

 ULONG fPolicyInitialProgram :1;

 ULONG fPolicySingleSessionPerUser :1;

 ULONG fPolicyDisableWallpaper :1;

 ULONG fPolicyKeepAlive :1;

 ULONG fPolicyEnableTimeZoneRedirection :1;

 ULONG fPolicyDisableForcibleLogoff :1;

 ULONG fPolicyLicensingMode :1;

 ULONG fPolicyExplicitLSDiscovery :1;

 ULONG fPolicyDisableTerminalSer verTooltip :1;

 ULONG fDisableClip :1;

 ULONG fDisableCam :1;

 ULONG fDisableCcm :1;

 ULONG fDisableLPT :1;

 ULONG fDisableCpm :1;

 ULONG fPromptForPassword :1;

 ULONG ColorDepth :3;

 ULONG fDenyTSConnections :1;

 ULONG fTempFoldersPerSes sion :1;

 ULONG fDeleteTempFoldersOnExit :1;

 ULONG fWritableTSCCPermissionsTAB :1;

 ULONG fDisableCdm :1;

 ULONG fForceClientLptDef :1;

 ULONG fResetBroken :1;

 ULONG fReconnectSame :1;

 ULONG fSingleSessionPerUser :1;

 ULONG fDisableWallpaper :1;

 ULONG fKeepAliveEnable :1;

 ULONG fPreventLicenseUpgrade :1;

 ULONG fSecureLicensing :1;

69 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 ULONG fEnableTimeZoneRedirection :1;

 ULONG fDisableAutoReconnect :1;

 ULONG fDisableFor cibleLogoff :1;

 ULONG fPolicyEncryptRPCTraffic :1;

 ULONG fEncryptRPCTraffic :1;

 ULONG fErrorInvalidProfile :1;

 ULONG fPolicyFallbackPrintDriver :1;

 ULONG FallbackPrintDriverType :3;

 ULONG fDisableTerminalServerTooltip :1;

 BYTE bSecurit yLayer;

 ULONG fPolicySecurityLayer :1;

 BYTE bUserAuthentication;

 ULONG fPolicyUserAuthentication :1;

 ULONG fPolicyTurnOffSingleAppMode :1;

 ULONG fTurnOffSingleAppMode :1;

 ULONG fDisablePNPPolicyIsEnfored :1;

 ULONG fDisablePNPPolicyValue :1;

 ULONG MaxInstanceCount;

 ULONG LicensingMode;

 BYTE MinEncryptionLevel;

 WCHAR WFProfilePath[DIRECTORY_LENGTH + 1];

 WCHAR WFHomeDir[DIRECTORY_LENGTH + 1];

 WCHAR WFHomeDirDrive[4];

 ULONG SessionDirectoryActive;

 WCHAR SessionDirectoryLocation[DIRECTORY_LENGTH+1];

 WCHAR SessionDirectoryClusterName[DIRECTORY_LENGTH+1];

 WCHAR SessionDirectoryAdditionalParams[DIRECTORY_LENGTH+1];

 ULONG SessionDirectoryExposeServerIP;

 ULONG KeepAliveInterval;

 SHADOWCLASS Shadow;

 ULONG MaxConnectionTime;

 ULONG MaxDisconnectionTime;

 ULONG MaxIdleTime;

 WCHAR WorkDirectory[DIRECTORY_LENGTH+1];

 WCHAR InitialProgram[INITIALPROGRAM_LENGTH + 1];

 WCHAR LicenseServers[MAX_LICENSE_SERVER_LENG TH + 1];

 } POLICY_TS_MACHINE,

 *PPOLICY_TS_MACHINE;

fPolicyDisableClip: TRUE indicates the policy for DisableClip is set; FALSE otherwise.

fPolicyDisableCam: TRUE indicates the policy for DisableCam is set; FALSE otherwise.

fPolicyDisableCcm: TRUE indic ates the policy for DisableCcm is set; FALSE otherwise.

fPolicyDisableLPT: TRUE indicates the policy for DisableLPT is set; FALSE otherwise.

fPolicyDisableCpm: TRUE indicates the policy for DisableCpm is set; FALSE otherwise.

fPolicyPromptForPassword: TRUE indicates the policy for PromptForPassword is set; FALSE
otherwise.

fPolicyMaxInstanceCount: TRUE indicates the policy for MaxInstanceCount is set; FALSE
otherwise.

fPolicyMinEncryptionLevel: TRUE indicates the policy for MinEncryptionLevel is set; F ALSE
otherwise.

fPolicyFipsEnabled: TRUE indicates the policy for Fips is enabled; FALSE otherwise. <106>

fPolicyDisableAutoReconnect: TRUE indicates the policy for DisableAutoReconnect is set; FALSE
otherwise.

fPolicyWFProfilePath: TRUE indicates the po licy for WFProfilePath is set; FALSE otherwise.

70 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

fPolicyWFHomeDir: TRUE indicates the policy for WFHomeDir is set; FALSE otherwise.

fPolicyWFHomeDirDrive: TRUE indicates the policy for WFHomeDirDrive is set; FALSE otherwise.

fPolicyDenyTSConnections: TRUE indicates the policy for DenyTSConnections is set; FALSE
otherwise.

fPolicyTempFoldersPerSession: TRUE indicates the policy for TempFoldersPerSession is set; FALSE
otherwise.

fPolicyDeleteTempFoldersOnExit: TRUE indicates the policy for DeleteTempFoldersOnExit is set;
FALSE otherwise.

fPolicyColorDepth: TRUE indicates the policy for ColorDepth is set; FALSE otherwise.

fPolicySessionDirectoryActive: TRUE indicates the policy for SessionDirectoryActive is set; FAL SE
otherwise.

fPolicySessionDirectoryLocation: TRUE indicates the policy for SessionDirectoryLocation is set;

FALSE otherwise.

fPolicySessionDirectoryClusterName: TRUE indicates the policy for SessionDirectoryClusterName
is set; FALSE otherwise.

fPolicyS essionDirectoryAdditionalParams: TRUE indicates the policy for
SessionDirectoryAdditionalParams is set; FALSE otherwise.

fPolicySessionDirectoryExposeServerIP: TRUE indicates the policy for
SessionDirectoryExposeServerIP is set; FALSE otherwise.

fPolicyP reventLicenseUpgrade: TRUE indicates the policy for PreventLicenseUpgrade is set; FALSE
otherwise.

fPolicySecureLicensing: TRUE indicates the policy for SecureLicensing is set; FALSE
otherwise. <107>

fPolicyWritableTSCCPermissionsTAB: TRUE indicates the policy for WritableTSCCPermissionsTAB

is set; FALSE otherwise.

fPolicyDisableCdm: TRUE indicates the policy for DisableCdm is set; FALSE otherwise.

fPolicyForceClientLptDef: TRUE indicates the policy for ForceClientLptDef is set; FALSE otherwise.

fPolicy Shadow: TRUE indicates the policy for Shadow is set; FALSE otherwise.

fPolicyResetBroken: TRUE indicates the policy for ResetBroken is set; FALSE otherwise.

fPolicyReconnectSame: TRUE indicates the policy for ReconnectSame is set; FALSE otherwise.

fPoli cyMaxSessionTime: TRUE indicates the policy for MaxSessionTime is set; FALSE otherwise.

fPolicyMaxDisconnectionTime: TRUE indicates the policy for MaxDisconnectionTime is set; FALSE

otherwise.

fPolicyMaxIdleTime: TRUE indicates the policy for MaxIdleTim e is set; FALSE otherwise.

fPolicyInitialProgram: TRUE indicates the policy for InitialProgram is set; FALSE otherwise.

fPolicySingleSessionPerUser: TRUE indicates the policy for SingleSessionPerUser is set; FALSE
otherwise.

fPolicyDisableWallpaper: TRUE indicates the policy for DisableWallpaper is set; FALSE otherwise.

71 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

fPolicyKeepAlive: TRUE indicates the policy for KeepAlive is set; FALSE otherwise.

fPolicyEnableTimeZoneRedirection: TRUE indicates the policy for EnableTimeZoneRedirection is

set; FALS E otherwise. <108>

fPolicyDisableForcibleLogoff: TRUE indicates the policy for DisableForcibleLogoff is set; FALSE

otherwise. <109>

fPolicyLicensingMode: TRUE indicates the policy for LicensingMode is set; FALSE otherwise. <110>

fPolicyExplicitLSDiscovery: TRUE indicates the policy for ExplicitLSDiscovery is set; FALSE
otherwise. <111>

fPolicyDisableTerminalServerTooltip: TRUE indicates the policy for DisableTerminalServerTooltip
is set; FALSE otherwise. <112>

fDisableClip: TRUE indicates disable client clipboard redirection; FALSE otherwise.

fDisableCam: TRUE indicates disable client audio redirection; FALSE otherwise.

fDisableCcm: TRUE indicates disable client COM port redirection; FALSE otherwise.

fDisableLPT: TRUE indicates disable client LPT port redirection; FALSE otherwise.

fDisableCpm: TRUE indicates disable client printer redirection; FALSE otherwise.

fPromptForPassword: Set to FALSE to log on user with previously provided credentials, or TRUE to
prompt the user for password.

ColorDepth: The color depth of the session. <113> The following supported values translate to the
number of colors supported:

Á 0x1 256 (8 bpp)

Á 0x2 32,768 (15 bpp)

Á 0x3 65,536 (16 bpp)

Á 0x4 16 million (24 bpp)

Á 0x5 16 million with transparency (32 bpp)

fDenyTSConnections: If set to TRUE, Terminal Services is effectively disabled since remote
connections will be declined; FALSE otherwise.

fTempFoldersPerSession: Set to TRUE if there are temporary folders per session instead of one
common temp folder, FALSE otherwise.

fDeleteTempFoldersOnExit: If set to TRUE, delete temporary folders on session exit; FALSE
otherwise.

fWritableTSCCPermissionsTAB: If set to TRUE, an administrator can change the per -connection

security description, FALSE otherwise.

fDisa bleCdm: TRUE indicates disable client drive redirection; FALSE otherwise.

fForceClientLptDef: TRUE indicates force the client's redirected printer to be the default printer for
the user; FALSE otherwise.

fResetBroken: TRUE indicates reset the session if the connection is broken or if the connection or
idle timers expire; FALSE otherwise.

72 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

fReconnectSame: Set to FALSE to indicate that the user can reconnect from any client computer to
a disconnected session. TRUE indicates that the user can reconnect to a disconnected session only

from the same client computer that initially established the disconnected session. Logging on from
a different client computer will lead to a new Terminal Services session being created.

fSingleSessionPerUser: TRUE indicates eac h user can have only a single session; FALSE otherwise.

fDisableWallpaper: TRUE indicates display of the desktop wallpaper in the session has been
disabled; FALSE otherwise.

fKeepAliveEnable: TRUE indicates KeepAlive is enabled; FALSE otherwise.

fPrevent LicenseUpgrade: TRUE indicates licenses are prevented from being upgraded; FALSE
otherwise.

fSecureLicensing: TRUE indicates secure licensing is enabled; FALSE otherwise. <114>

fEnableTimeZoneRedirection: TRUE indicates Client time zone redirection is en abled; FALSE
otherwise. <115>

fDisableAutoReconnect: TRUE indicates disable auto - reconnect functionality; FALSE otherwise.

fDisableForcibleLogoff: TRUE indicates disable forcible logoff; FALSE otherwise. <116>

fPolicyEncryptRPCTraffic: TRUE indicates policy for EncryptRpcTraffic is set; FALSE
otherwise. <117>

fEncryptRPCTraffic: TRUE indicates the policy for EncryptRpcTraffic is set; FALSE otherwise.

fErrorInvalidProfile: Set to TRUE if WFProfilePath, WFHomeDi r, or WFHomeDirDrive is invalid (too
long), FALSE otherwise. <118>

fPolicyFallbackPrintDriver: TRUE indicates the policy for FallbackPrintDriver is set; FALSE
otherwise. <119>

FallbackPrintDriverType: The fallback printer driver type. Can be any of the following
values: <120>

Å NO_FALLBACK_DRIVERS (0x0)

Å FALLBACK_BESTGUESS (0x1)

Å FALLBACK_PCL (0x2)

Å FALLBACK_PS (0x3)

Å FALLBACK_PCLANDPS (0x4)

fDisableTerminalServerTooltip: TRUE indicates disable terminal server tooltip; FALSE
otherwise. <121>

bSecuri tyLayer: If non -zero, indicates the SSL security layer in use. <122>

fPolicySecurityLayer: TRUE indicates the policy for SecurityLayer is set; FALSE otherwise. <123>

bUserAuthentication: The user authentication level. It can be any of the following values :

Á TS_USER_AUTHENTICATION_NONE

Á TS_USER_AUTHENTICATION_VIA_HYBRID

Á TS_USER_AUTHENTICATION_VIA_SSL

73 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á TS_USER_AUTHENTICATION_DEFAULT (same as TS_USER_AUTHENTICATION_NONE)

fPolicyUserAuthentication: TRUE indicates the policy for UserAuthentication is set; FALSE

otherwise. <124>

fPolicyTurnOffSingleAppMode: TRUE indicates the policy for TurnOffSingleAppMode is set; FALSE

otherwise. <125>

fTurnOffSingleAppMode: TRUE specifies that the desktop is always displayed when a client
connects to a remote computer. FALSE spe cifies an initial program can be specified that runs on
the remote computer after the client connects to the remote computer.

fDisablePNPPolicyIsEnfored: TRUE indicates policy for PnP redirection is set, FALSE otherwise.

fDisablePNPPolicyValue: TRUE ind icates disable PnP redirection, FALSE otherwise.

MaxInstanceCount: The maximum number of instances that can connect.

LicensingMode: The licensing mode of the server.

MinEncryptionLevel: The minimum allowed encryption level. Possible numeric values for this
parameter include 1 (Low), 2 (Client Compatible), 3 (High), and 4 (FIPS). Detailed description of
these encryption levels is included in [MS -RDPBCGR] sections 5.3.1 and 5.4.1.

WFProfilePath: The Terminal Services profile path. Overrides standard prof ile path.

WFHomeDir: The Terminal Services home directory path. Overrides standard home directory.

WFHomeDirDrive: The Terminal Services home directory drive. Overrides standard home directory.

SessionDirectoryActive: Set to TRUE if the machine is part of a Terminal Server Farm, FALSE
otherwise. For information about Terminal Server Farms, see [MSFT -SDLBTS].

SessionDirectoryLocation: The name of the Session Directory Server. For information about
Session Directory, see [MSFT -SDLBTS].

SessionDirecto ryClusterName: The name of the Terminal Server Farm to which this machine
belongs. For information about Terminal Server Farms, see [MSFT -SDLBTS].

SessionDirectoryAdditionalParams: Additional parameters to pass to the session directory. This is
an opaque type.

SessionDirectoryExposeServerIP: If set to TRUE, expose the server's IP address to the client;
otherwise FALSE.

KeepAliveInterval: Specifies the interval between keep -alives.

Shadow: Specifies whether shadowing of the session is allowed.

MaxConnectionTime: The maximum allowed session connection time setting of the session in

milliseconds.

MaxDisconnectionTime: The maximum allowed session disconnect time of the session in
milliseconds.

MaxIdleTime: The maximum allowed session idle time s etting of the session in milliseconds.

WorkDirectory: The work directory for the initial program.

InitialProgram: The program to run instead of the default, if set. <126>

74 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

LicenseServers: A hardcoded array of license servers that the server will use inste ad of using
license server discovery.

2.2.2.32 WINSTATIONUSERTOKEN

The WINSTATIONUSERTOKEN structure defines the user token for a session.

 typedef struct _WINSTATIONUSERTOKEN {

 HANDLE ProcessId;

 HANDLE ThreadId;

 HANDLE UserToken;

 } WINSTATIONUSERTOKEN,

 *PWINSTATIONUSERTOKEN;

ProcessId: Specifies the Process ID.

ThreadId: Specifies the handle to the calling thread.

UserToken: Returns the user token that is currently logged on to the session.

2.2.2.33 W INSTATIONVIDEODATA

The WINSTATIONVIDEODATA structure defines the resolution and color depth of a session.

 typedef struct _WINSTATIONVIDEODATA {

 USHORT HResolution;

 USHORT VResolution;

 USHORT fColorDepth;

 } WINSTATIONVIDEODATA,

 *PWINSTATIONVIDEODATA;

HResolution: Specifies the horizontal resolution, in pixels.

VResolution: Specifies the vertical resolution, in pixels.

fColorDepth: Specifies the color depth. Th e supported values 1, 2, 4, 8, and 16 are translated,
respectively, as the following number of colors supported: 16 (4 bpp), 256 (8 bpp), 65,536 (16
bpp), 16 million (24 bpp), 32,768 (15 bpp). <127>

2.2.2.34 WINSTATIONLOADINDICATORDATA

The WINSTATIONLOADINDICATORDATA structure defines data used for the load balancing of a server.

 typedef struct _WINSTATIONLOADINDICATORDATA {

 ULONG RemainingSessionCapacity;

 LOADFACTORTYPE LoadFactor;

 ULONG TotalSessions;

 ULONG DisconnectedSessions;

 LARGE_INTEGER IdleCPU;

 LARGE_INTEGER TotalCPU;

 ULONG RawSessionCapacity;

 ULONG reserved[9];

 } WINSTATIONLOADINDICATORDATA,

 *PWINSTATIONLOADINDICATORDATA;

RemainingSessionCapacity: The estimated number of additional sessions that can be supported
given the CPU constraint.

75 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

LoadFactor: Indicates the most constrained current resource.

TotalSessions: The total number of sessions.

DisconnectedSessions: The nu mber of disconnected sessions.

IdleCPU: This is always set to 0.

TotalCPU: This is always set to 0.

RawSessionCapacity: The raw number of sessions capacity.

reserved: Reserved.

2.2.2.34.1 LOADFACTORTYPE

The LOADFACTORTYPE enumeration specifies the most constrained resource affecting load balancing.

 typedef enum _LOADFACTORTYPE

 {

 ErrorConstraint,

 PagedPoolConstraint,

 NonPagedPoolConstraint,

 AvailablePagesConstrai nt,

 SystemPtesConstraint,

 CPUConstraint

 } LOADFACTORTYPE;

ErrorConstraint: An error occurred while obtaining constraint data.

PagedPoolConstraint: The amount of paged pool is the constraint.

NonPagedPoolConstraint: The amount of non -paged pool is th e constraint.

AvailablePagesConstraint: The amount of available pages is the constraint.

SystemPtesConstraint: The number of system page table entries (PTEs) is the constraint.

CPUConstraint: CPU usage is the constraint.

2.2.2.35 WINSTATIONSHADOW

The WINSTATIONSHADOW structure is used for RpcWinStationQueryInformation and
RpcWinStationSetInformation operations.

 typedef struct _WINSTATIONSHADOW {

 SHADOWSTATECLASS ShadowState;

 SHADOWCLASS ShadowClass;

 ULONG SessionId;

 ULONG ProtocolType;

 } WINSTATIONSHADOW,

 *PWINSTATIONSHADOW;

ShadowState: Specifies the current state of shadowing.

ShadowClass: Specifies the type of shadowing.

SessionId: Specifies the session ID of the session.

ProtocolType: Specifies the type of protocol on the session. Can be one of the following values.

76 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name Value

PROTOCOL_OTHERS 1

PROTOCOL_RDP 2

PROTOCOL_CONSOLE 0<128>

2.2.2.35.1 SHADOWSTATECLASS

The SHADOWSTATECLASS enumeration specifies WinStation shadow states.

 typedef enum _SHADOWSTATECLASS

 {

 State_NoShadow,

 State_Shadowing,

 State_Shadowed,

 } SHADOWSTATECLASS;

State_NoShadow: No shadow operations are currently being performed on this sessio n.

State_Shadowing: The session is shadowing a different session. The current session is referred to

as a shadow client.

State_Shadowed: The session is being shadowed by a different session. The current session is
referred to as a shadow target.

2.2.2.36 WINSTATI ONPRODID

The WINSTATIONPRODID structure represents a product ID for the session.

 typedef struct _WINSTATIONPRODID {

 WCHAR DigProductId[CLIENT_PRODUCT_ID_LENGTH];

 WCHAR ClientDigProductId[CLIENT _PRODUCT_ID_LENGTH];

 WCHAR OuterMostDigProductId[CLIENT_PRODUCT_ID_LENGTH];

 ULONG curentSessionId;

 ULONG ClientSessionId;

 ULONG OuterMostSessionId;

 } WINSTATIONPRODID,

 *PWINSTATIONPRODID;

DigProductId: The product ID of the server. For information about the ProductID property, see

[MSDN -ProductID]. <129>

ClientDigProductId: The product ID of the client. <130>

OuterMostDigProductId: Not used.

curentSessionId: The current session identifier.

ClientSessionId: The client's session identifi er.

OuterMostSessionId: Not used.

77 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.37 WINSTATIONREMOTEADDRESS

The WINSTATIONREMOTEADDRESS structure specifies the client's remote address. Only TCP/IP
addresses are supported. <131>

 typedef struct {

 unsigned short sin_family;

 union {

 struct {

 USHORT sin_port;

 ULONG in_addr;

 UCHAR sin_zero[8];

 } ipv4;

 struct {

 USHORT sin6_port;

 ULONG sin6_flowinfo;

 USHORT sin6_addr[8];

 ULONG sin 6_scope_id;

 } ipv6;

 };

 } WINSTATIONREMOTEADDRESS,

 *PWINSTATIONREMOTEADDRESS;

sin_family: MUST be AF_INET to indicate that IPv4 is supported or AF_INET6 to indicate that IPv6 is

supported. For more information on AF_INET and AF_INET6, see [MSDN -SOCKET].

ipv4: IPv4 address. For more information, see [MSDN -TDIADDRESS].

sin_port: Specifies a TCP or User Datagram Protocol (UDP) port number.

in_addr: Indicates the IP address.

sin_zero: An array filled with zeros.

ipv6: IPv6 address.

sin6_port: Spec ifies a TCP or UDP port number.

sin6_flowinfo: Ipv6 flow information.

sin6_addr: Indicates the IP address.

sin6_scope_id: Set of interfaces for a scope. For more information, see [MSDN -SOCKADDR_IN6].

2.2.2.38 ExtendedClientCredentials

The ExtendedClientCredentials structure holds longer user name, password, and domain fields. <132>

 typedef struct _ExtendedClientCredentials {

 WCHAR UserName[EXTENDED_USERNAME_LEN + 1];

 WCHAR Password[EXTENDED_PASSWORD_LEN + 1];

 WCHAR Domain[EXTENDED_DOMAIN_LEN + 1];

 } ExtendedClientCredentials,

 *pExtendedClientCredentials;

UserName: Specifies the user's username.

Password: Specifies the user's password.

Domain: Specifies the user's domain name.

78 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.39 TS_TRACE

The TS_TRACE structure specifies fields used for configuring tracing operations in TS binaries if they
are checked.

 typedef struct _TS_TRACE {

 WCHAR TraceFile[256];

 BOOLEAN fD ebugger;

 BOOLEAN fTimestamp;

 ULONG TraceClass;

 ULONG TraceEnable;

 WCHAR TraceOption[64];

 } TS_TRACE,

 *PTS_TRACE;

TraceFile: Specifies the file name, if any, to which to write debug information.

fDebugger: Specifies whether debugger is attached.

fTimestamp: Specifies whether to append time stamp to the traces logged.

TraceClass: Classes of tracing to log. They enable tracing for the various terminal server
binaries/functionalities. It MUST be a bitwise OR combination of one or more of the follow ing
values.

Value Meaning

TC_ICASRV

0x00000001

Enable tracing for the Terminal Services Service. <133>

TC_ICAAPI

0x00000002

Enable tracing for the DLL providing the API for Terminal Services to communicate with the
WinStation Driver. <134>

TC_ICADD

0x00000004

Enable tracing for the Terminal Services Device Driver. <135>

TC_WD

0x00000008

Enable tracing for the WinStation Driver. <136>

TC_CD

0x00000010

Enable tracing for the Connection Driver. <137>

TC_PD

0x00000020

Enable tracing for the Protocol Driver. <138>

TC_TD

0x00000040

Enable tracing for the Transport Driver. <139>

TC_RELIABLE

0x00000100

Not used.

TC_FRAME

0x00000200

Enable tracing for the Frame Protocol Driver. <140>

TC_COMP

0x00000400

Enable tracing for the Compression library. <141>

TC_CRYPT

0x00000800

Enable tracing for the Encryption binary. <142>

79 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

TC_TW

0x10000000

Not used.

TC_DISPLAY

0x10000000

Enable tracing for the Display Driver. <143>

TC_WFSHELL

0x20000000

Not used.

TC_WX

0x40000000

Enable tracing f or the WinStation Extension. <144>

TC_LOAD

0x80000000

Enable tracing for the Load balancing binary. <145>

TC_ALL

0xffffffff

Everything.

TraceEnable: Type of tracing calls log. It MUST be a bitwise OR combination of one or more of the
following values.

Value Meaning

TT_API1

0x00000001

API level 1.

TT_API2

0x00000002

API level 2.

TT_API3

0x00000004

API level 3.

TT_API4

0x00000008

API level 4.

TT_OUT1

0x00000010

Output level 1.

TT_OUT2

0x00000020

Output level 2.

TT_OUT3

0x00000040

Output level 3.

TT_OUT4

0x00000080

Output level 4.

TT_IN1

0x00000100

Input level 1.

TT_IN2

0x00000200

Input level 2.

TT_IN3

0x00000400

Input level 3.

80 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

TT_IN4

0x00000800

Input level 4.

TT_ORAW

0x00001000

Raw output data.

TT_IRAW

0x00002000

Raw input data.

TT_OCOOK

0x00004000

Cooked output data.

TT_ICOOK

0x00008000

Cooked input data.

TT_SEM

0x00010000

Semaphores.

TT_NONE

0x10000000

Only view errors.

TT_ERROR

0xffffffff

Error condition.

TraceOption: Trace option string. This SHOULD be in the format "<filename>(start -end)", where
<filename> is the name of the file that requires trace to be collected and (start -end) is the
starting and ending line numbers during which trace is to be collected. This is an optional
parameter and can be an empt y string meaning collect trace for all files belonging to TraceClass
and all lines in those files.

2.2.2.40 BEEPINPUT

The BEEPINPUT structure performs a beep in the session.

 typedef struct _BEEPINPUT {

 ULONG uType;

 } B EEPINPUT,

 *PBEEPINPUT;

uType: If the session ID is 0, this can be any of the values that can be passed to the standard
MessageBeep function ([MSDN -MSGBeep]). If the session ID is not 0, a frequency and duration is
chosen by the server to send as a beep t o the session.

2.2.2.41 WINSTATIONCLIENTDATA

The WINSTATIONCLIENTDATA structure is a ClientData structure used to send data through
RpcWinStationSetInformation to the client.

 typedef struct _WINSTATIONCLIENTDATA {

 CLIENTDATANAME DataName;

 BOOLEAN fUnicodeData;

 } WINSTATIONCLIENTDATA,

 *PWINSTATIONCLIENTDATA;

81 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

DataName: Identifies the type of data sent in this WINSTATIONCLIENTDATA structure. The definition
is dependent on the caller and on the cli ent receiving it. This MUST be a data name following a

format similar to that of the CLIENTDATANAME data type.

fUnicodeData: TRUE indicates data is in Unicode format; FALSE otherwise.

2.2.2.42 SESSION_CHANGE

The SESSION_CHANGE structure contains the ID of a session running on a terminal server and a
mask of the notifications that were received for that session.

 typedef struct _SESSION_CHANGE {

 LONG SessionId;

 TNotificationId NotificationId;

 } SESSION_CHANGE,

 *PSESSION_CHANGE;

SessionId: Identifies the session for which notification was received.

NotificationId: Mask of the notifications that were received for this session.

2.2.2.43 RCM_REMOTEADDRESS

The RCM_REMOTEADDRESS structure defines a remote address.

 typedef struct {

 USHORT sin_family;

 union switch (USHORT sin_family) {

 case 2: struct {

 USHORT sin_port;

 ULONG in_addr;

 UCHAR sin_zero[8];

 } ipv4;

 case 23: struct {

 USHORT sin6_port;

 ULONG sin6_flowinfo;

 USHORT sin6_addr[8];

 ULONG sin6_scope_id;

 } ipv6;

 };

 } RCM_REMOTEADDRESS, *PRCM_REMOTEADDRESS;

sin_family: Specifies the type of IP address. Vali d values are 2 for IPv4 addresses, and 23 for IPv6
addresses.

ipv4: IPv4 address. For more information, see [MSDN -TDIADDRESS].

sin_port: Specifies a TCP or UDP port number.

in_addr: Indicates the IP address.

sin_zero: An array filled with zeros.

ipv6: IPv6 address.

sin6_port: Specifies a TCP or UDP port number.

sin6_flowinfo: IPv6 flow information.

82 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

sin6_addr: Indicates the IP address.

sin6_scope_id: Set of interfaces for a scope. For more information about these interfaces, see

[MSDN -SOCKADDR_IN6].

2.2.2.44 CLIENT_STACK_ADDRESS

The CLIENT_STACK_ADDRESS structure represents the client network address. <146>

 typedef struct _CLIENT_STACK_ADDRESS {

 BYTE Address[STACK_ADDRESS_LENGTH];

 } CLIENT_STACK_ADDRESS,

 *PCLIENT_STACK_ADDRESS;

Address: The first two bytes represent the address family to which the client network address
belongs. For more information, see [MSDN -SOCKET]. The remaining bytes represent the client

network address in a TD I_ADDRESS_IP structure. For more information, see [MSDN -

TDIADDRESS].

2.2.2.45 VARDATA_WIRE

The VARDATA_WIRE structure defines the size and offset of the variable - length data succeeding it.
This structure is used be fore variable - length data fields that are returned by using specific
WinStationInformationClass classes (see section 3.7.4.1.6).

 typedef struct _VARDATA_WIRE {

 USHORT Size;

 USHORT Offset;

 } VARDATA_WIRE,

 *PVARDATA_WIRE;

Size: Size of the variable len gth data, in bytes, succeeding this structure.

Offset: Offset, in bytes, of the succeeding variable - length structure in the whole data BLOB.

2.2.2.46 PDPARAMSWIRE

The PDPARAMSWIRE structure precedes a PDPARAMS str ucture and defines the size and offset of the

PDPARAMS structures in the complete data BLOB.

 typedef struct _PDPARAMSWIRE {

 SDCLASS SdClass;

 VARDATA_WIRE SdClassSpecific;

 } PDPARAMSWIRE,

 *PPDPARAMSWIRE;

SdClass: Value of SDCLASS that the succeeding PDPARAMS structure corresponds to.

SdClassSpecific: VARDATA_WIRE structure defining the size and offset of the variable - length
PDPARAMS data succeeding it.

2.2.2.47 WINSTACONFIGWIRE

The WINSTACO NFIGWIRE structure precedes a variable - length user configuration data BLOB and

defines the size and offset of the user configuration data.

83 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _WINSTACONFIGWIRE {

 WCHAR Comment[61];

 char OEMId[4];

 VARDATA_WIRE UserConfig;

 VARDATA_WIRE NewFields;

 } WINSTACONFIGWIRE,

 *PWINSTACONFIGWIRE;

Comment: The WinStation descriptive comment.

OEMId: Value identifying the OEM implementor of the TermService Listener to which this session
(WinStation) belongs. This can be any value defined by the imple menter (OEM) of the listener.

UserConfig: VARDATA_WIRE structure defining the size and offset of the variable - length user
configuration data succeeding it.

NewFields: VARDATA_WIRE structure defining the size and offset of the variable - length new data

succeeding it. This field is not used and is a placeholder for any new data, if and when added.

2.2.2.48 TSVIP_SOCKADDR

The TSVIP_SOCKADDR structure defines a socket address.

 typedef struct _TSVIP_SOCKADDR {

 #ifdef __midl

 union switch (unsigned short sin_family) u

 {

 case 2: // AF_INET

 struct {

 USHORT sin_port;

 ULONG in_addr;

 UCHAR sin_zero[8];

 } ipv4;

 case 23: // AF_INET6

 struct {

 USHORT sin6_port;

 ULONG sin6_flowinfo;

 USHORT sin6_addr[8];

 ULONG sin6_scope_id;

 } ipv6;

 };

 #else

 USHORT sin_family;

 union

 {

 struct {

 USHORT sin_port;

 ULONG in_addr;

 UCHAR sin_zero[8];

 } ipv4;

 struct {

 USHORT sin6_port;

 ULONG sin6_flowinfo;

 USHORT sin6_addr[8];

 ULONG sin6_scope_ id;

 }ipv6;

 } u;

 #endif

 } TSVIP_SOCKADDR,

 *PTSVIP_SOCKADDR;

ipv4: IPv4 address. For more information, see [MSDN -TDIADDRESS].

84 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

sin_port: Specifies a TCP or UDP port number.

in_addr: Indicates the IP address.

sin_zero: An array filled with zeros.

ipv6: IPv6 flow information.

sin6_port: Specifies a TCP or UDP port number.

sin6_flowinfo: IPv6 flow information.

sin6_addr: Indicates the IP address.

sin6_scope_id: Set of interfaces for a scope. For more information, see [MSDN -SOCKADDR_IN6].

2.2.2.49 TSVIPAddress

The TSVIPAddress structure defines a session's IP address.

 typedef struct _TSVIPAddress {

 DWORD dwVersion; //Structure version

 TSVIP_SOCKADDR IP Address; //IPv4 is in network byte order.

 ULONG PrefixOrSubnetMask; //IPv4 is a mask in network byte order,

 #ifdef __midl //IPv6 is prefix length.

 [range(0, TSVIP_MAX_ADAPTER_ADDRESS_LENGTH)]

 UINT PhysicalAddressLength;

 [length_is(PhysicalAddressLength)]

 BYTE PhysicalAddress[TSVIP_MAX_ADAPTER_ADDRESS_LENGTH];

 #else

 UINT PhysicalAddressLength;

 BYTE PhysicalAddress[TSVIP_MAX_ADAPTER_ADDRE SS_LENGTH];

 #endif

 ULONG LeaseExpires;

 ULONG T1;

 ULONG T2;

 } TSVIPAddress,

 *PTSVIPAddress;

dwVersion: Specifies the current TSVIPAddress structure version. This field MUST be set to 0x01,
the only supported version.

IPAddress: Specifies the IP address.

PrefixOrSubnetMask: Subnet mask of the IP address.

PhysicalAddressLength: Number of bytes in the PhysicalAddress .

Where TSVIP_MAX_ADAPTER_ADDRESS_LENGTH is defined as

 #define TSVIP_MAX_ADAPTER_AD DRESS_LENGTH 16

PhysicalAddress: The MAC address used to acquire the IP address.

LeaseExpires: The lease expiration time for the IP address.

T1: The time at which a request to renew the IP address will be made.

T2: Not used.

85 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2.50 TSVIPSession

The TSVIPSession structure defines a session with its IP address information.

 typedef struct _TSVIPSession {

 DWORD dwVersion;

 DWORD SessionId;

 TSVIPAddress SessionIP;

 } TSVIPSession,

 *PTSVIPSession;

dwVersion: Specifies the version of the structure. This field MUST be set to 0x01, the only supported
version.

SessionId: Specifies the ID of the session.

SessionIP: Specifies the IP address for the session. This is of type TSVIPAddress .

2.2.2.51 WINSTATIONVALIDATIONINFORMATION

The WINSTATIONVALIDATIONINFORMATION structure contains information that is required to identify
and validate a per -device terminal se rver (TS) client access license (CAL) associated with the session.

A TS CAL is a license that is issued to a user or device to allow remote access to sessions on a
terminal server. A per -device TS CAL is a license that is issued to a specific client device . For more
information, see [MSFT -WSTSL].

 typedef struct _WINSTATIONVALIDATIONINFORMATION {

 WINSTATIONPRODUCTINFO ProductInfo;

 BYTE License[VALIDATIONINFORMATION_LICENSE_LENGTH];

 ULONG LicenseLength;

 BYTE HardwareID[VALIDATIONINFORMATION_HARDWAREID_LENGTH];

 ULONG HardwareIDLength;

 } WINSTATIONVALIDATIONINFORMATION,

 *PWINSTATIONVALIDATIONINFORMATION;

ProductInfo: Specifies information that identifies the type of license.

License: The per -device l icense BLOB associated with the session.

LicenseLength: The length, in bytes, of License .

HardwareID: An identifier that uniquely identifies the client device.

HardwareIDLength: The length, in bytes, of HardwareID .

2.2.2.52 WINSTATIONPRODUCTINFO

The WINSTATIONPRODUCTINFO structure defines the type of license.

 typedef struct _WINSTATIONPRODUCTINFO {

 WCHAR CompanyName[PRODUCTINFO_COMPANYNAME_LENGTH];

 WCHAR ProductID[PRODUCTINFO_PRODUCTID_LENGTH];

 } WINSTATIONPRODUCTINFO,

 *PWINSTATIONPRODUCTINFO;

CompanyName: The name associated with the license. All licenses are associated with "Microsoft
Corporation".

86 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ProductID: An ID identifying the type of license. The product ID for per -device licenses i s "A02".

2.3 Directory Service Schema Elements

The Terminal Services Terminal Server Runtime Interface accesses the following directory service
attributes in the user class listed in the following table.

For the syntactic specifications of the following attributes, see Active Directory Domain Services (AD
DS) ([MS -ADA1], [MS -ADA2], [MS -ADA3], and [MS -ADSC]).

Directory service
attributes Description

msTSAllowLogon Not used by Terminal Services.

msTSBrokenConnectionAction Not used by Terminal Services.

msTSConnectClientDrives Not used by Terminal Services.

msTSConnectPrinterDrives Not used by Terminal Services.

msTSDefaultToMainPrinter Not used by Terminal Services.

msTSHomeDirectory Not used by Terminal Services; CtxWFHomeDir defined in section 2.3.2 is used
instead.

msTSHomeDrive Not used by Terminal Services; CtxWFHomeDirDrive defined in section 2.3.2 is
used instead.

msTSInitialProgram Not used by Terminal Services; CtxInitialProgram defined in section 2.3.2 is used
instead.

msTSMaxConnectionTime Not used by Termi nal Services; CtxMaxConnectionTime defined in section 2.3.2
is used instead.

msTSMaxDisconnectionTime Not used by Terminal Services; CtxMaxDisconnectionTime defined in section
2.3.2 is used instead.

msTSMaxIdleTime Not used by Terminal Services; CtxMaxId leTime defined in section 2.3.2 is used
instead.

msTSProfilePath Not used by Terminal Services; CtxWFProfilePath defined in section 2.3.2 is used
instead.

msTSReconnectionAction Not used by Terminal Services.

msTSRemoteControl Not used by Terminal Servi ces; CtxShadow defined in section 2.3.2 is used
instead.

msTSWorkDirectory Not used by Terminal Services; CtxWorkDirectory defined in section 2.3.2 is used
instead.

userParameters This attribute contains a binary BLOB composed of various fields of the
USERCONFIG structure returned by RpcGetConfigData. For the binary BLOB
structure, see UserParameters (section 2.3.1).

msTSProperty01 This attribute contains multi -strings that represent the personal desktop
assigned to the user. For the structure of this attribute, see msTSProperty01
(section 2.3.4).

Note Any of the previously defined properties can be set for either a user or a machine. Machine
properties MAY override user properties and hence the value returned by the RPC calls as previously

defined wi ll depend on whether machine properties are set in addition to the user properties.

87 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.3.1 userParameters

The userParameters attribute is used by Terminal Services to store the configuration data associated
with the user connected to a session running on a terminal server. This configuration data is returned

in a USERCONFIG structure by the RpcGetConfigData method. Terminal Ser vices does not use UTF -8
or UTF -16 encoding to store the configuration data in the userParameters attribute. Terminal
Services stores the user configuration data in the userParameters attribute in the following format:

0
1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReservedData (96 bytes)

...

...

Signature TSPropertyCount

TSPropertyArray (variable)

...

ReservedData (96 bytes): A 96 -byte array of reserved data. <147>

Signature (2 bytes): A 2 -byte Unicode character. This field is used by Terminal Services to assert
the validity of the TSPropertyCount and TSPropertyArray fields. Terminal Services compares

the data contained in this field with Unicode character "P". If this field contains the aforementioned
character, then the information inside the TSPropertyArray and TSPropertyCount fields is
considered valid. If it contains a different value, then all information inside the TSPropertyCount
and TSPropertyArray fields is considered invalid.

TSPropertyCount (2 bytes): A 2 -byte unsigned integer indicating the number of elements in
TSPropertyArray .

TSPropertyArray (variable): A variable - length array of TSProperty structures. The number of
elements in this array is specified by the field TSPropert yCount .

2.3.2 TSProperty

Following is the format of each TSProperty structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NameLength ValueLength

Type PropName (variable)

...

PropValue (variable)

...

88 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

NameLength (2 bytes): A 2 -byte unsigned integer indicating the length of the PropName field in
bytes.

ValueLength (2 bytes): A 2 -byte unsigned integer indicating the length of the PropValue field in
bytes.

Type (2 bytes): A 2 -byte unsigned integer indicati ng the type of the PropValue field. It can have the
following values:

Value Meaning

PROP_TYPE_ITEM

0x01

Indicates that the property contains one item.

PropName (variable): A Unicode string whose length is indicated by the NameLength field. The
string indicates the name of the property.

PropValue (variable): An encoded binary BLOB of length indicated by the ValueLength field. This

field either contains a 32 -bit unsigned integer or an array of ASCII characters. See Encoding and
decoding PropValue field for encoding and decoding this BLOB.

The following table describes various PropName fields and associated PropValue fields used by
Terminal Services.

PropName
PropValue
type Description

[MS -TSTS] RPC call
that can be used to
query this value

CtxCfgPresent 32 -bit

unsigned
integer

It indicates presence of valid TSProperty

structures in TSPropertyArray. If the
TSPropertyArray does not contain a
TSProperty structure containing this
PropName and PropValue, Terminal
Services ignore the remaining con tents of
TSPropertyArray. The PropValue field can
only contain value 0xB00B1E55.

None.

CtxCfgFlags1 32 -bit
unsigned
integer

Each bit in the PropValue maps to a
Boolean field of the USERCONFIG
structure returned by the
RpcGetConfigData method. For details
about each bit, see the table of
CtxCfgFlags1 values in this section.

RpcGetConfigData.

CtxCallBack 32 -bit
unsigned

integer

The callback class for callback operations. Returned by
RpcGetConfigData

method in Callback
field of USERCONFIG
structure.

CtxKeyboardLayout 32 -bit
unsigned
integer

The keyboard layout (HKL) of the user
session.

Returned by the
RpcGetConfigData
method in the
KeyboardLayout field
of the USERCONFIG
structure.

CtxMinEncryptionLevel 8-bit
integer

The minimum allowed encryption level of
the user session.

Returned by the
RpcGetConfigData
method in the
MinEncryptionLevel
field of the

89 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PropName
PropValue
type Description

[MS -TSTS] RPC call
that can be used to
query this value

USERCONFIG
structure.

CtxNWLogonServer 32 -bit
unsigned
integer

The NetWare logon server name. Returned by the
RpcGetConfigData
method in t he
NWLogonServer field
of the USERCONFIG
structure.

CtxWFHomeDir Variable -

length
ASCII
character
array

This attribute specifies the home directory

for the user. Each user on a terminal
server has a unique home directory. This
ensures that application info rmation is
stored separately for each user in a multi -
user environment. To set a home
directory on the local computer, the
implementer specifies a local path; for
example, C: \ Path. To set a home
directory in a network environment, the
implementer MUST firs t set the
CtxWFHomeDirDrive property, and then
set this property to a Universal Naming
Convention (UNC) path.

Returned by the

RpcGetConfigData
method in the
WFHomeDir field of
the USERCONFIG
structure.

CtxWFHomeDirDrive Variable -
length
ASCII
character
arr ay

This attribute specifies a home drive for
the user. In a network environment, this
property is a string containing a drive
specification (a drive letter followed by a
colon) to which the UNC path specified in
the TerminalServicesCtxWFHomeDir
property is mapped. To set a home
directory in a network environment, the
implementer MUST first set this property,
and then set the CtxWFHomeDir property.

Returned by the
RpcGetConfigData
method in the
WFHomeDirDrive field
of the USERCONFIG
structure.

CtxInitialProgram Variable -
length
ASCII
character
array

This attribute specifies the path and file
name of the application that the user
requires to start automatically when the
user logs on to the terminal server. To set
an init ial application to start when the
user logs on, the implementer MUST first
set this property, and then set the
CtxWorkDirectory property. If the
implementer sets only the
CtxInitialProgram property, the
application starts in the user's session in
the defau lt user directory.

Returned by the
RpcGetConfigData
method in the
InitialProgram field of
the USERCONFIG
structure.

CtxMaxConnectionTime 32 -bit
unsigned
integer

This attribute specifies the maximum
duration (in minutes) of the Terminal
Services session. A fter the specified
number of minutes has elapsed, the
session can be disconnected or
terminated.

Returned by the
RpcGetConfigData
method in the
MaxConnectionTime
field of the
USERCONFIG
structure.

CtxMaxDisconnectionTime 32 -bit
unsigned
integer

This attri bute specifies the maximum
amount of time (in minutes) that a
disconnected Terminal Services session
remains active on the terminal server.

Returned by the
RpcGetConfigData
metho d in the
MaxDisconnectionTime

90 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PropName
PropValue
type Description

[MS -TSTS] RPC call
that can be used to
query this value

After the specified number of minutes has
elapsed, the session is terminated.

field of the
USERCONFIG
structure.

CtxMaxIdleTime 32 -bit
unsigned
integer

This attribute specifies the maximum
amount of time (in minutes) that the
Terminal Services session can remain
idle. After the specified number of
minu tes has elapsed, the session can be
disconnected or terminated.

Returned by the
RpcGetConfigData
method in the
MaxIdleTime field of
the USERCONFIG
structure.

CtxWFProfilePath Variable -
length
ASCII
character
array

This attribute specifies a roaming or
mandatory profile path to use when the
user logs on to the terminal server. The
profile path is in the following network
path format: \ \ servername \ profiles folder
name \ username.

Returned by the
RpcGetConfigData
method in the
WFProfilePath field of
the USER CONFIG
structure.

CtxShadow 32 -bit
unsigned
integer

This attribute specifies whether to allow
remote observation or remote control of
the user's Terminal Services session. The
values are as follows:

0. Disable

1. EnableInputNotify

2. EnableInputNoNotify

3. EnableNoInputNotify

4. EnableNoInputNoNotify

For a description of these values, see
[MSDN -RCMWin32_TSRCS].

Returned by the
RpcGetConfigData
method in the Shadow
field of the
USERCONFIG
structure.

CtxWorkDirectory Variable -
length
ASCII
character
array

This attribute specifies the working
directory path for the user. To set an
initial application to start when the user
logs on to the terminal server, the
implementer MUST first set the
CtxInitialProgram property, and then set
this property.

Returned by the
RpcGetConfigData
method in the
WorkDirectory field of
the USERCONFIG
structure.

CtxCallbackNumber Variable -
length
ASCII
character
array

This attribute specifies the call back
number provided to the user on the client
side for technical support.

Returned by the
RpcGetConfigData
method in the
CallbackNumber field
of the USERCONFIG
structure.

The following table provides the details of each bit in the PropValue associated with the PropName

'CtxCfgFlags1'.

Bit mask in CtxCfgFlags1 PropValue [MS -TSTS] RPC call that can be used to query this value

0x10000000 Returned by the RpcGetConfigData method in
fInheritInitialProgram field of the USERCONFIG structure.

F1MSK_INHERITCALLBACK

0x08000000

Returned by the RpcGetConfigData method in the
fInheritCallback field of the USERCONFIG structure.

F1MSK_INHERITCALLBACKNUMBER Returned by the RpcGetConfigData method in the

91 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Bit mask in CtxCfgFlags1 PropValue [MS -TSTS] RPC call that can be used to query this value

0x04000000 fInheritCallbackNumber field of the USERCONFIG structure.

F1MSK_INHERITSHADOW

0x02000000

Returned by the RpcGetConfi gData method in the fInheritShadow
field of the USERCONFIG structure.

F1MSK_INHERITMAXSESSIONTIME

0x01000000

Returned by the RpcGetConfigData method in the
fInheritMaxSessionTime field of the USERCONFIG structure.

F1MSK_INHERITMAXDISCONNECTIONTIME

0x0080 0000

Returned by the RpcGetConfigData method in the
fInheritMaxDisconnectionTime field the USERCONFIG structure.

F1MSK_INHERITMAXIDLETIME

0x00400000

Returned by the RpcGetConfigData method in the
fInheritMaxIdleTime field of the USERCONFIG structure.

F1MSK_INHERITAUTOCLIENT

0x00200000

Returned by the RpcGetConfigData method in the
fInheritAutoClient field of the USERCONFIG structure.

F1MSK_INHERITSECURITY

0x00100000

Returned by the RpcGetConfigData method in the
fInheritSecurity field of t he USERCONFIG structure.

F1MSK_PROMPTFORPASSWORD

0x00080000

Returned by the RpcGetConfigData method in the
fPromptForPassword field of the USERCONFIG structure.

F1MSK_RESETBROKEN

0x00040000

Returned by the RpcGetConfigData method in the fResetBroken
fiel d of the USERCONFIG structure.

F1MSK_RECONNECTSAME

0x00020000

Returned by the RpcGetConfigData method in the
fReconnectSame field of the USERCONFIG structure.

F1MSK_LOGONDISABLED

0x00010000

Returned by the RpcGetConfigData method in the fLogonDisabled
field of the USERCONFIG structure.

F1MSK_AUTOCLIENTDRIVES

0x00008000

Returned by the RpcGetConfigData method in the
fAutoClientDrives field of the USERCONFIG structure.

F1MSK_AUTOCLIENTLPTS

0x00004000

Returned by the RpcGetConfigData method in the fAutoClientLpts
field of the USERCONFIG structure.

F1MSK_FORCECLIENTLPTDEF

0x00002000

Returned by the RpcGetConfigData method in the

fForceClientLptDef field of the USERCONFIG structure.

F1MSK_DISABLEENCRYPTION

0x00001000

Returned by the RpcGetConfigData method in the
fDisableEncryption field of the USERCONFIG structure.

F1MSK_HOMEDIRECTORYMAPROOT

0x00000800

Returned by the RpcGetConfigData method in the
fHomeDirectoryMapRoot field of the USERCONFIG structure.

F1MSK_USEDEFAULTGINA

0x00000400

Returned by the RpcGetConfigData method in the
fUseDefaultGina field of the USERCONFIG structure.

F1MSK_DISABLECPM

0x00000200

Returned by the RpcGetConfigData method in the fDisableCpm
field of the USERCONFIG structure.

F1MSK_DISABLECDM

0x00000100

Returned by the RpcGetConfigData method in the fDisableCdm
field of the USERCONFIG structure.

F1MSK_DISABLECCM Returned by the RpcGetConfigData method in the fDisableCcm

92 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Bit mask in CtxCfgFlags1 PropValue [MS -TSTS] RPC call that can be used to query this value

0x00000080 field of the USERCONFIG structure.

F1MSK_DISABL ELPT

0x00000040

Returned by the RpcGetConfigData method in the fDisableLPT
field of the USERCONFIG structure.

F1MSK_DISABLECLIP

0x00000020

Returned by the RpcGetConfigData method in the fDisableClip
field of the USERCONFIG structure.

F1MSK_DISABLEEXE

0x00000010

Returned by the RpcGetConfigData method in the fDisableExe
field of the USERCONFIG structure.

F1MSK_WALLPAPERDISABLED

0x00000008

Returned by the RpcGetConfigData method in the
fWallPaperDisabled field of the USERCONFIG structur e.

F1MSK_DISABLECAM

0x00000004

Returned by the RpcGetConfigData method in the fDisableCam
field of the USERCONFIG structure.

2.3.3 Encoding PropValue Field in TSProperty Structure

To create the encoded binary BLOB for the PropValue field, for each byte of the input create its
ASCII -encoded hexadecimal representation and place this representation in 2 consecutive bytes of the
output buffer, the most significant hexadecimal digit first followed by the lea st significant hexadecimal
digit. For example, if the input byte contains the ASCII representation of character 'A', the resulting
output will be a sequence of two ASCII characters: character '4' followed by character '1' because the
hexadecimal representa tion of a byte that contains the ASCII character 'A' is 41. Hence, the output
buffer corresponding to the input buffer byte containing character 'A' will be a sequence of 2 bytes

whose hexadecimal representations are 34 and 31. As another example, the inpu t buffer containing
the ASCII string "ABCDE \ 0" would be encoded into the ASCII string "414243444500" (without the
terminating 0), which is the same as a sequence of 12 bytes whose hexadecimal representations are

34, 31, 34, 32, 34, 33, 34, 34, 34, 35, 30, and 30.

See Encoding/Decoding Example (section 4.5) for an example of code that demonstrates encoding and
decoding of the PropValue field.

2.3.4 msTSProperty01

The personal desktop information stored in the msTSProperty01 attribute consists of multiple strings.
Each string has the format <Property name>=<Value>. The following property names are stored in
this multi -string attribute:

Á machine=<FQDN of the machine>

Á vmname=<FQDN of the machine>

Á vmtype=2

Á plugin=vmresource

The machine and the vmname properties are the FQDN of the machine that is assigned to the user as
a personal desktop. The vmtype property describes the desktop type, which can have one of the
following values:

Á MYDESKTOP_PHYSICAL (0): Rese rved for future use.

93 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á MYDESKTOP_FARM (1): This desktop type means virtual machine belongs to a collection of virtual
machines, where a single virtual machine can be assign to the user.

Á MYDESKTOP_NONFARM (2): Reserved for future use.

The plugin property desc ribes the plugin used by the connection broker to process the connection

request. The only supported value is "vmresource".

For example, if machine LaBigMac.PulpFiction.com is assigned to user VincentVega, the
msTSProperty01 attribute of this user object w ill have the following strings:

Á machine=LaBigMac.PulpFiction.com

Á vmname=LaBigMac.PulpFiction.com

Á vmtye=2

Á plugin=vmresource

94 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

The methods comprising this RPC interface all ret urn a value greater than or equal to 0 on success
and a nonzero, implementation -specific error code on failure. If the return type of the function is
HRESULT as specified in section 2.2, a negative number will be treated as failure. If the return type of
the function is Boolean as specified in section 2.2, a nonzero value will be treated as success. Unless
otherwise specified in the following sections, a server -side implementation of this protocol can choose

any nonzero Win32 error value to signify an error condition, as specified in section 1.8.

The client side of the Terminal Services Terminal Server Runtime Interface Protocol MUST return error
codes to the caller without modification. The client side of the Terminal Services Terminal Server
Runtime Interf ace Protocol MUST simply return error codes to the invoking application without taking
any protocol action.

Note that the terms "client side" and "server side" refer to the initiating and receiving ends of the

protocol, respectively, rather than to client or server versions of an operating system. These methods
MUST all behave the same way regardless of whether the "server side" of the protocol is running in a

client or server version of an operating system.

3.1 Determining a Caller's Permissions and Access Rig hts

To determine access rights, the caller's token is retrieved from the RPC transport, as described for
RpcImpersonationAccessToken in [MS -RPCE] section 3.3.3.4.3. It MAY use the security identifier
(SID) that represents the user account in the caller's token. For more information about tokens, see
[MS -DTYP] section 2.5.2. For more information about SIDs, see [MS -DTYP] section 2.4.2.

3.1.1 Determining a Caller's Permissions

During processing of methods that implement access checks, this protocol performs access security
verification on the caller's identity by usin g the algorithm specified by the Access Check Algorithm
Pseudo code ([MS -DTYP] section 2.5.3.2). The input parameters of that algorithm are mapped as
follows:

Á SecurityDescriptor : This MUST be the SECURITY_DESCRIPTOR of the session. <148> For

more informatio n about SECURITY_DESCRIPTOR , see [MS -DTYP] section 2.4.6.

Á Token / Authorization Context : This MUST be the caller's token.

Á Access Request mask : This is specified by each method's processing logic and MUST be one or
more of the WinStationOpen access values s pecified in section 6.5.

Á Object Tree : This parameter MUST be NULL.

Á PrincipalSelfSubst SID : This parameter MUST be NULL.

3.1.2 Determining Whether a Caller Is SYSTEM

During processing of methods that implement access checks of whether the caller is SYSTEM, this

protocol performs access security verification on the caller's identity by checking whether the SID of
the SYSTEM is the same as the SID that represents the user account in the caller's token.

3.1.3 Determining Whether a Caller Is an Administrator

During processing of methods that implement access checks of whether the caller is an administrator,
this protocol performs access security verification on the caller's identity by using the support function
SidInToken ([MS -DTYP] section 2.5.3.1.1). The input par ameters of that algorithm are mapped as

follows:

95 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á Token: MUST be the caller's token.

Á SidToTest: MUST be the SID of administrators.

Á PrincipalSelfSubstitute: MUST be NULL.

3.1.4 Determining Whether a Caller Is the Same User Who Logged onto the Session

During processing of methods that implement access checks of whether the caller is the same user
who logged onto the session, this protocol performs access security verification on the caller's identity
by checking whether the SID of the user logged onto the sess ion is the same as the SID that

represents the user account in the caller's token.

3.2 Local Session Manager Client Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS -RPCE].

3.2.3 Initia lization

The client MUST create an RPC connection to the term inal server by using the details specified in
section 2.1.

3.2.4 Processing Events and Sequencing Rules

When a method completes, the values returned by RPC MUST be returned unmodified to the upper

layer.

3.2.5 Timer Events

No protocol timer event s are required on the client except those that are required in the underlying

RPC transport.

3.2.6 Other Local Events

None.

3.3 Local Session Manager Server Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not m andate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

96 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.3.1.1 Abstract Data Types

TS_COUNTER: A Terminal Services performance counter structure used to represent a single
performance counter. It is described in section 2.2.2.17. An array of these structures is returned

by the RpcGetSessionCounters method.

dwCounterID: Identifier of a performance counter. It is used with RpcGetSessionCounters and MUST
be set to one of the values descri bed in section 2.2.2.17.1.

SessionHandle: Handle to a session. It is defined in section 2.2.1.1. The following list shows how
SessionHandle is used with various methods.

Á RpcOpenSession as the phSession parameter.

Á RpcCloseSession as the phSession parameter.

Á RpcConnect as the hSession parameter.

Á RpcDisconnect as the hSession parameter.

Á RpcLogoff as the hSession parameter.

Á RpcGetUserName as the hSession parameter.

Á RpcGetTerminalName as the hSession parameter.

Á RpcGetSt ate as the hSession parameter.

Á RpcIsSessionDesktopLocked as the hSession parameter.

Á RpcShowMessageBox as the hSession parameter.

Á RpcGetTimes as the hSession parameter.

ExecutionEnvironmentData: A structure containing information about the sessions running on the
terminal server and the sessions running on virtual machines hosted on the server. It is used with

RpcGetAllSessions and returned as the ppSessionData parameter.

SessionState: Current st ate of a session. It MUST be set to one of the values of the

WINSTATIONSTATECLASS enumeration as defined in section 2.2.1.9. The following list shows
how SessionState is used with various methods.

Á RpcGetState as the plState parameter.

Á RpcGetSessionInformat ionEx as the SessionState member of the
LSM_SESSIONINFO_EX_LEVEL1 structure.

Á RpcWaitForSessionState as the State parameter.

Á RpcFilterByState as the State parameter.

Á RpcGetEnumResultEx as the State member of the SESSIONENUM_LEVEL1,

SESSIONENUM_LEVEL2, and S ESSIONENUM_LEVEL3 structures.

Á RpcGetAllSessions as the State member of the EXECENVDATA_LEVEL1 and
EXECENVDATA_LEVEL2 structures.

hEnum: Handle to the session enumeration object. This is of type ENUM_HANDLE. It is used with
TermSrvEnumeration methods.

hNoti fy: Handle to the notification object. It is of type NOTIFY_HANDLE. It is used with
TermSrvNotification methods.

97 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

UserSessions: The number of sessions which are of SESSIONTYPE_REGULARDESKTOP, or
SESSIONTYPE_ALTERNATESHELL, or SESSIONTYPE_REMOTEAPP as define d in

SESSIONTYPE (section 2.2.1.18). It is used with the RpcGetLoggedOnCount method and is
returned as the pUserSessions parameter.

DeviceSessions: The number of sessions connected using media center extender device only. These
sessions are of SESSIONTYPE_ MEDIACENTEREXT as defined in SESSIONTYPE (section 2.2.1.18).
It is used with the RpcGetLoggedOnCount method and is returned as the pDeviceSessions
parameter. For more information on media center, see [MSFT -WINMCE].

PSESSIONENUM: Pointer to a structure cont aining information about the sessions running on the
terminal server. This structure is described in detail in section 2.2.2.4. It is used with the
RpcGetEnumResult method and returned as the ppSessionEnumResult parameter.

SessionInfo: Union of structures , each structure providing different levels of detail about sessions
running on a computer. This union is described in detail in section 2.2.2.4.1. It is used with the
RpcGetEnumResult method and returned as the Data field of the ppSessionEnumResult
parame ter.

SessionInfo_Ex: Union of structures, each structure providing different levels of detail about
sessions running on a computer. This union is described in detail in section 2.2.2.5.1. It is used

with the RpcGetEnumResultEx method and returned as the Da ta field of the ppSessionEnumResult
parameter.

PSESSIONENUM_EX: Pointer to a structure containing information about the sessions running on the
terminal server. This structure is described in detail in section 2.2.2.5. It is used with the
RpcGetEnumResultE x method and returned as the ppSessionEnumResult parameter.

SESSIONTYPE: Represents the type of the session as described in section 2.2.1.18. It is used with
the RpcGetSessionType method and returned as the pSessionType parameter.

ConnectTime: Represents the most recent time of a connection to the session. It is used with the
RpcGetTimes method and returned as the pConnectTime parameter.

DisconnectTime: Represents the most recent time of a disconnection from the session. It is used
with the Rpc GetTimes method and returned as the pDisconnectTime parameter.

LogonTime: Represents the most recent time of a logon to the session. It is used with the
RpcGetTimes method and returned as the pLogonTime parameter.

PLSMSESSIONINFORMATION: Pointer to a structure containing information about a session running

on the terminal server. This structure is described in detail in section 2.2.2.8. It is used with the
RpcGetSessionInformation method and returned as the pSession Info parameter.

PLSMSESSIONINFORMATION_EX: Pointer to a structure containing information about a session
running on the terminal server. This structure is described in detail in section 2.2.2.9. It is used
with the RpcGetSessionInformationEx method and ret urned as the LSMSessionInfoExPtr
parameter.

PEXECENVDATA: Pointer to a structure containing information about the sessions running on the

terminal server and the sessions running on virtual machines hosted on the server. This structure
is described in deta il in section 2.2.2.6. It is returned by the RpcGetAllSessions method.

EXECENVDATA_LEVEL1: Structure that contains basic information about sessions running on a
computer. This structure is described in detail in section 2.2.2.6.1.1. It is used with the
RpcGetAllSessions method.

EXECENVDATA_LEVEL2: Structure that contains information about sessions running on a computer

that is more detailed than the information contained in EXECENVDATA_LEVEL1 . This structure is
described in detail in section 2.2.2.6.1.2. It is used with the RpcGetAllSessions method.

98 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SESSION_FILTER: Represents the type of filter to apply when retrieving the list of session IDs
running on a terminal server. It is described in section 2.2.2.1. It is used with the

RpcGetSessionIds method as the Filter parameter.

SESSION_CHANGE: Structure containing the ID of a session running on a terminal server and a

mask of the notifications that were received for that session. This structure is described in detail in
section 2.2.2.42. It is used with the RpcW aitAsyncNotification method.

PEXECENVDATAEX: Pointer to a structure containing information about the sessions running on the
terminal server and the sessions running on virtual machines hosted on the server. This structure
is described in detail in section 2.2.2.7. It is returned by the RpcGetAllSessionsEx method.

EXECENVDATAEX_LEVEL1: Structure that contains basic information about sessions running on a
computer. This structure is described in detail in section 2.2.2.7.1.1. It is used with the

RpcGetAllSes sionsEx method.

3.3.2 Timers

None.

3.3.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

3.3.4 Processing Events and Sequencing Rul es

This protocol asks the RPC runtime to perform a strict Network Data Representation (NDR) data
consistency check at target level 6.0 for all methods unless otherwise specified, as defined in [MS -
RPCE] section 1.3.

When a m ethod completes, the values returned by RPC MUST be returned unmodified to the upper

layer. The methods MAY throw exceptions and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.3.4.1 TermSr vSession Methods

TermSrvSession provides methods that manage, and provide information about, a session on a given

terminal server. The version for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcOpenSession Returns a handle to a specified session on the terminal server.

Opnum: 0

RpcCloseSession Closes the connection to the specified session on the terminal server.

Opnum: 1

RpcConnect Reconnects a session handle returned by RpcOpenSession to another specified
session on the terminal server.

Opnum: 2

RpcDisconnect Disconnects the specified session on the terminal server.

Opnum: 3

99 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

RpcLogoff Logs off the specified session on the terminal server.

Opnum: 4

RpcGetUserName Gets the username and domain name of the user logged on to the specified
session on the terminal server.

Opnum: 5

RpcGetTerminalName Gets the name of the terminal associated with the specified session on the
terminal server.

Opnum: 6

RpcGetState Gets the state of the specified session on the terminal server.

Opnum: 7

RpcIsSessionDesktopLocked Checks whether the specified session on the terminal server is locked.

Opnum: 8

RpcShowMessageBox Displays a message box, with a specified message and title, in the target user
session running on the terminal server.

Opnum: 9

RpcGetTimes Gets the connected, disconnected, and logged on time for the specified session on
the terminal server.

Opnum: 10

RpcGetSessionCounters Returns the various performance counters associated with the terminal server.

Opnum: 11

RpcGetSessionInformation Retrieves information about a specified session running on a terminal server.

Opnum: 12

Opnum13NotUsedOnWire Not implem ented.

Opnum: 13

Opnum14NotUsedOnWire
Not implemented.

Opnum: 14

RpcGetLoggedOnCount Gets the number of user -connected and device -connected sessions.

Opnum: 15

RpcGetSessionType Gets the type of the specified session on a terminal server.

Opnum: 16

RpcGetSessionInformationEx Retrieves extended information about a specified session running on a terminal
server.

Opnum: 17

Opnum18NotUsedOnWire Not implemented.

Opnum: 18

Opnum19NotUsedOnWire Not implemented.

Opnum: 19

3.3.4.1.1 RpcOpenSession (Opnum 0)

100 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 The RpcOpenSession method returns a handle to a specified session on the terminal server. No
special permissions are required to call this method.

 HRESULT RpcOpenSession(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [out] SESSI ON_HANDLE* phSession

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The identifier of the session to open. This session MUST be present on the terminal
server, or this call will fail. This MUST NOT be the session ID of any of the listener sessions.

phSession: A handle to the session. This is of type SESSION_HANDLE.

Retur n Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.2 RpcCloseSession (Opnum 1)

The RpcCloseSession method closes the connection to the specified session on the terminal server.
This method MUST be called after RpcOpenSession. The call to this method MUST be serialized if there
are multiple threads running otherwise the behavior o f this function is unknown. No special

permissions are required to call this method.

 HRESULT RpcCloseSession(

 [in, out] SESSION_HANDLE* phSession

);

phSession: Pointer to a handle to the session to close. The pointer is returned by RpcOpenSession.
This is of type SESSION_HANDLE. The handle is set to NULL when the call returns.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Desc ription

0x00000000

S_OK

Successful completion.

3.3.4.1.3 RpcConnect (Opnum 2)

The RpcConnect method reconnects a session handle returned by RpcOpenSession to another
specified session on the terminal server. This method MUST be called aft er RpcOpenSession. If the

method succeeds, the state of the session is State_Active as defined in the
WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

101 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The caller MUST have WINSTATION_CONNECT permission to connect the current session and the
caller MUST have WINSTATION_DISCONNECT permission to disconnect the target session. For each

aforementioned required permission, the method checks whether the caller has the permission
(section 3.1.1) by setting the Access Request mask to the specific permission, and fails if the caller

does not have the permission.

 HRESULT RpcConnect(

 [in] SESSION_HANDLE hSession,

 [in] LONG TargetSessionId,

 [in, string] WCHAR* szPassword

);

hSession: The handle to a session returned by RpcOpenSession. This is of type SESSION_HANDLE.

TargetSessionId: The identifier of the session on the terminal server to which to reconnect the
session handle. This session MUST be present on the terminal server or this call will fail.

szPassword: The password of the user connected to th e current session. This is an optional field. If

not specified, the terminal server will impersonate the current user, making the call and checking
whether it has permission to disconnect the current session.

Return Values: The method MUST return S_OK (0x0 0000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.4 RpcDisconnect (Opnum 3)

The RpcDisconnect method disconnects the specified session on the terminal server. This method
MUST be called after RpcOpenSession. If the method succeeds, the state of the session is
State_Disconnected as defined in the WINSTATIONSTATECLASS enumeration (s ection 2.2.1.9).

The caller MUST have WINSTATION_DISCONNECT permission to disconnect the session. The method
checks whether the caller has WINSTATION_DISCONNECT permission (section 3.1.1) by setting it as

the Access Request mask, and fails if the caller do es not have the permission.

 HRESULT RpcDisconnect(

 [in] SESSION_HANDLE hSession

);

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwi se, it MUST return

an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

102 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.3.4.1.5 RpcLogoff (Opnum 4)

The RpcLogoff method logs off the specified session on the terminal server. This method MUST be
called after RpcOpenSession. The caller MUST have WINSTATION_LOGOFF permission to log off the

session. The method checks whether the caller has WINSTATION_LOGOF F permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcLogoff(

 [in] SESSION_HANDLE hSession

);

hSession: The handle to the session returned by RpcOpenSession. This is of ty pe SESSION_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.6 RpcGetUserName (Opnum 5)

The RpcGetUserName method gets the username and domain name of the user logged on to the
specified session on the terminal server. This method MUST be called after RpcOpenSession. The caller

MUST have WINSTATION_QUERY permission for the session. The method checks whether the caller
has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and
fails if the caller does not have the permission.

 HRESULT RpcGetUserName(

 [in] SESSION_HANDLE hSession,

 [out, string] WCHAR** pszUserName,

 [out, string] WCHAR** pszDomain

);

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

pszUserName: The name of the user who is logged on to the specific session.

pszDomain: The domain to which the cur rently logged -on user belongs. If the terminal server is not
joined to a domain, pszDomain will be the name of the terminal server computer.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.7 RpcGetTerminalName (Opnum 6)

103 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The RpcGetTerminalName method gets the name of the terminal associated with the specified session
on the terminal server. This method MUST be called after RpcOpenSession. The caller MUST have

WINSTATION_QUERY permission for the session. The method checks w hether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if

the caller does not have the permission.

 HRESULT RpcGetTerminalName(

 [in] SESSION_HANDLE hSession,

 [out, string] WCHAR** pszTermin alName

);

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

pszTerminalName: The name of the terminal associated with the specific session.

Return Values: The method MUST return S_OK (0x00000000) on success; ot herwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.8 RpcGetState (Opnum 7)

The RpcGetState method gets the state of the specified session on the terminal server. This method
MUST be called after RpcOpenSession. The caller MUST have WINSTATION_QUERY permission for the
session. The method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcGetState(

 [in] SESSION_HANDLE hSession,

 [out] LONG* plState

);

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

plState: The current state of the session as defined in WINSTATIONSTATECLASS (section 2.2.1.9).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.9 RpcIsSessionDesktopLocked (Opnum 8)

The RpcIsSessionDesktopLocked method checks whether the specified session on the terminal server

is in a locked state. This method MUST be called after RpcOpenSession. The caller MUST have
WINSTATION_QUERY permission for the session. The method checks whet her the caller has

104 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

 HRESULT RpcIsSessionDesktopLocked(

 [in] SESSION_HANDLE hSession

);

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) if the session is locked; otherwise, it
MUST return an implementation -specific negative value.

Return value/code Description

0x000 00000

S_OK

Successful completion.

3.3.4.1.10 RpcShowMessageBox (Opnum 9)

The RpcShowMessageBox method displays a message box, with specified message and title, in the
target user session running on the terminal server. This method MUST be called after
RpcOpenSession. The caller MUST have WINSTATION_MSG permission for the sessio n. The method
checks whether the caller has WINSTATION_MSG permission (section 3.1.1) by setting it as the
Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcShowMessageBox(

 [in] SESSION_HANDLE hSession,

 [in, string] WCHAR* szTitle,

 [in, string] WCHAR* szMessage,

 [in] ULONG ulStyle,

 [in] ULONG ulTimeout,

 [out] ULONG* pulResponse,

 [in] BOOL bDoNotWait

);

hSession: The handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

szTitle: The title to assign to the message box.

szMessage: The message to display inside the message box.

ulStyle: Specifies the contents and behavior of the message box. This parameter can be a
combination of flags specified for the uType parameter of the MessageB ox function as defined in
[MSDN -MSGBOX].

ulTimeout: The time in seconds for which to display the message box. This time -out value is

managed by another system component which dismisses the message box if no user input is
entered during this interval.

pulRe sponse: Pointer to a variable that receives the user's response, which can be one of the

following values. The values defined in [MSDN -MSGBOX].

Value Meaning

IDABORT The Abort button was selected.

105 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

3

IDCANCEL

2

The Cancel button was selected.

IDIGNORE

5

The Ignore button was selected.

IDNO

7

The No button was selected.

IDOK

1

The OK button was selected.

IDRETRY

4

The Retry button was selected.

IDYES

6

The Yes button was selected.

IDASYNC

32001

The bDoNotWait parameter was TRUE, so the function returned without waiting for a
response.

IDTIMEOUT

32000

The bDoNotWait parameter was FALSE and the time -out interval elapsed.

bDoNotWait: Set to FALSE to wait for the message box to time -out or close, TRUE otherwise.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.11 RpcGetTimes (Opnum 10)

The RpcGetTimes method gets the connected, disconnected, and logged -on time for the specified
session on the terminal server. This method MUST be called after RpcOpenSession. The caller MUST
have WINSTATION_QUERY permission for t he session. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

 HRESULT RpcGetTimes(

 [in] SESSION_HANDLE hSession,

 [out] h yper* pConnectTime,

 [out] hyper* pDisconnectTime,

 [out] hyper* pLogonTime

);

hSession: Handle to the session returned by RpcOpenSession. This is of type SESSION_HANDLE.

pConnectTime: The most recent time of a connection to the session.

106 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

pDisconnectTime: The most recent time of a disconnection from the session.

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

pLogonTime: The most recent time of a logon to the session.

Time is measured as the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.12 RpcGetSessionCounters (Opnum 11)

The RpcGetSessionCounters method returns the various performance counters associated with the

terminal server. No special permissions are required to call this method.

 HRESULT RpcGetSessionCounters(

 [in] handle_t hBin ding,

 [in, out, size_is(uEntries)] PTS_COUNTER pCounter,

 [in] ULONG uEntries

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

pCounter: An array of TS_COUNTER structures. The caller MUST set the dwCounterId field in the

TS_COUNTER structures for each entry in the array to indicate the counter whose current value to
retrieve. On return, the method MUST set the value for that performance counter. If the
performance counter ID is not recognized or is not supported, the method will set the bResult
field to 0.

uEntries: The number of performance counters to query. Indicates the size of the array pointed to by
the pCounter parameter.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return

an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.13 RpcGetSessionInformation (Opnum 12)

The RpcGetSessionInformation method retrieves information about a specified session running on a
terminal server. The caller MUST have WINSTATION_QUERY permission for the session. The method
checks whether the caller has WINSTATION_QUERY permission (sectio n 3.1.1) by setting it as the

Access Request mask, and fails if the caller does not have the permission.

107 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HRESULT RpcGetSessionInformation(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [ref, out] PLSMSESSIONINFORMATION pSessionInfo

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The identifier of the session whose information is to be retrieved.

pSessionInfo: A PLSMSESSIONINFORMATION element containing information about the session.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.14 RpcGetLoggedOnCount (Opnum 15)

The RpcGetLoggedOnCount method gets the number of user -connected and device -connected
sessions. No special permissions are required to call this metho d.

 HRESULT RpcGetLoggedOnCount(

 [in] handle_t hBinding,

 [out] ULONG* pUserSessions,

 [out] ULONG* pDeviceSessions

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

pUserSessions: The number of sessions that are of SESSIONT YPE_REGULARDESKTOP, or
SESSIONTYPE_ALTERNATESHELL, or SESSIONTYPE_REMOTEAPP as defined in
SESSIONTYPE (section 2.2.1.18).

pDeviceSessions: The number of sessions connected using media center extender device only. These
sessions are of SESSIONTYPE_MEDIACENT EREXT as defined in SESSIONTYPE (section 2.2.1.18).
For more information on media center, see [MSFT -WINMCE].

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return val ue/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.15 RpcGetSessionType (Opnum 16)

The RpcGetSessionType method gets the type associated with the specified session. No special
permissions are required to call this method. <149>

108 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HRESULT RpcGetSessionType(

 [in] handle_t hBinding,

 [in] LONG* SessionId,

 [out] ULONG* pSessionType

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The identifier of the session whose type is being retrieved.

pSessionType: The type of the session as defined in SESSIONTYPE (section 2.2.1.18).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.1.16 RpcGetSessionInformationEx (Opnum 17)

The RpcGetSessionInformationEx method retrieves extended information about a specified session
running on a terminal server. <150> The caller MUST have WINSTATION_QUERY permission for the
session. The method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcGetSessionInformationEx(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [in] DWORD Level,

 [ref, out] PLSMSESSIONINFORMATION_EX LSMSessionInfoExPtr

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

Level: The level of the information to be retrieved. This MUST be 1.

LSMSessionInfoExPtr: A PLSMSESSIONINFORMATION_EX element containing information about the
session.

Return Values: The method MUST return S_OK (0x00000000) on success; othe rwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.2 TermSrvNotification

The TermSrvNotification, or LSM Notification interface, provides methods that manage asynchronous
operations. Methods that initiate asynchronous operations return a pointer to an LSM Notification

109 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

(TermSrvNotification) interface, allowing the caller to optionally cancel, or wait for, the status of the
asynchronous operation. The version for this interfac e is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcWaitForSessionState Blocks until the state of the specified session running on a terminal server
changes to the desired state.

Opnum: 0

RpcRegisterAsyncNotification Registers for an event or events happening on a terminal server.

Opnum: 1

RpcWaitAsyncNotification Starts the wait for the specified notification to be signaled by the terminal
server.

Opnum: 2

RpcUnRegisterAsyncNotification Cancels the asynchronous operation of waiting for notification from the terminal
server.

Opnum: 3

3.3.4.2.1 RpcWaitForSessionState (Opnum 0)

The RpcWaitForSessionState method blocks until the state of the specified session running on a
terminal server changes to the desired state. The caller MUST have WINSTATION_QUERY permission
for the session. The method checks whether the caller has WINSTATI ON_QUERY permission (section

3.1.1) by setting it as the Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcWaitForSessionState(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [in] LONG State,

 [in] ULONG Timeout

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session for which to await state change. This MUST NOT be the session ID
of any of the listener sessions.

State: The desired state of t he session, as specified in WINSTATIONSTATECLASS (section 2.2.1.9)
with the exception of State_Idle and State_Listen, for which to wait. The call will return when the

session changes to this state.

Timeout: Maximum time, in milliseconds, to wait for the c all to return.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

110 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.3.4.2.2 RpcRegisterAsyncNotification (Opnum 1)

The RpcRegisterAsyncNotification method registers for an event or events happening on a terminal

server. The caller MUST call RpcWaitAsyncNotification after calling RpcRegist erAsyncNotification to
wait for the notification. No special permissions are required to call this method.

 HRESULT RpcRegisterAsyncNotification(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [in] TNotificationId Mask,

 [out] NOTIFY_HANDLE* phNotify

) ;

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session for which to wait for notification. If the value is -1, the call will

register for notification for all sessions running on the terminal server . This MUST NOT be the
session ID of any of the listener sessions.

Mask: Specifies the type of notification to wait for. This is of the type TNotificationId.

phNotify: Handle to the notification object. For more information, see NOTIFY_HANDLE.

Return Valu es: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.2.3 RpcWaitAsyncNotification (Opnum 2)

The RpcWaitAsyncNotification method starts the wait for the specified terminal server notification. The
notification object specified in RpcRegisterAsyncNotification is called by RPC when a notification
occurs. This is asynchronous notification and RpcWaitAsyncNotification starts the wait for notification
and returns. Specify the notification object using RpcRegisterAsyncNotification and then start the
notification wait process using RpcWaitAsyncNotification. No speci al permissions are required to call
this method.

 HRESULT RpcWaitAsyncNotification(

 [in] NOTIFY_HANDLE hNotify,

 [out, size_is(, *pEntries)] PSESSION_CHANGE* SessionChange,

 [out] ULONG* pEntries

);

hNotify: The notification handle returned by RpcRegis terAsyncNotification.

SessionChange: An array of type SESSION_CHANGE containing information about all the sessions
and the notifications received for that session.

pEntries: The number of entries returned in the SessionChange array.

111 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.2.4 RpcUnRegisterAsyncNotification (Opnum 3)

The RpcUnRegisterAsyncNotification method cancels the asynchronous operation of waiting for
notification from the terminal server. This MUST be called after RpcRegisterAs yncNotification. The call
to this method MUST be serialized if there are multiple threads running otherwise the behavior of this
function is unknown. No special permissions are required to call this method.

 HRESULT RpcUnRegisterAsyncNotification(

 [in, out] NOTIFY_HANDLE* phNotify

);

phNotify: The notification handle returned by RpcRegisterAsyncNotification. This is of type
NOTIFY_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specifi c negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.3 TermSrvEnumeration

The TermSrvEnumeration provides methods for enumerating sessions and session information. The
version for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcOpenEnum Returns a handle of type ENUM_HANDLE, which can be used to query information
about the sessions currently running o n a terminal server.

Opnum: 0

RpcCloseEnum Closes the enumeration object returned by RpcOpenEnum. This method MUST be
called after RpcOpenEnum.

Opnum: 1

RpcFilterByState Based on the state of the sessions, adds a filter to the session enumeration result
running on a terminal server.

Opnum: 2

112 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

RpcFilterByCallersName Based on the caller name, adds a filter to the session enumeration result running on a
terminal server.

Opnum: 3

RpcEnumAddFilter Adds another filter to the current enumerat ion.

Opnum: 4

RpcGetEnumResult Returns a structure of the type PSESSIONENUM containing the list of sessions
currently running on the terminal server after applying the specified filter.

Opnum: 5

RpcFilterBySessionType Based on the type of the session, adds a filter to the session enumeration result
running on a terminal server.

Opnum: 6

Opnum7NotUsedOnWire Not implemented.

Opnum: 7

RpcGetSessionIds Returns a list of the IDs associated with the sessions running on a terminal server that
satisfies the specified filter.

Opnum: 8

RpcGetEnumResultEx Returns a structure of PSESSIONENUM_EX containing the list of sessions currently
running on the terminal server after applying the specified filter.

Opnum: 9

RpcGetAllSessions Returns a structur e of PEXECENVDATA containing the list of sessions currently running
on the terminal server and the sessions currently running on the virtual machines
hosted by the server.

Opnum: 10

RpcGetAllSessionsEx Returns a structure of PEXECENVDATAEX containing the list of sessions currently
running on the terminal server and the sessions currently running on the virtual
machines hosted by the server.

Opnum: 11

3.3.4.3.1 RpcOpenEnum (Opnum 0)

The RpcOpenEnum method returns a handle of the type ENUM_HANDLE, which can be used to query
information about the sessions that are currently running on a terminal server. No special permissions
are required to call this method. However, only sessions to which the caller has WINSTATION_QUERY
permission are enumerated.

 HRESULT RpcOpenEnum(

 [in] handle_t hBinding,

 [out] ENUM_HANDLE* phEnum

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

phEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

Retur n Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

113 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.3.2 RpcCloseEnum (Opnum 1)

The RpcCloseEnum method closes the enumeration object returned by RpcOpenEnum. This method
MUST be called after RpcOpenEnum. No special permissions are required to call this method.

 HRESULT RpcCloseEnum(

 [in, out] ENUM_HANDLE* phEnum

);

phEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Descr iption

0x00000000

S_OK

Successful completion.

3.3.4.3.3 RpcFilterByState (Opnum 2)

The RpcFilterByState method adds a filter to the session enumeration result, running on a terminal

server, based on the state of the sessions. This method MUST be called after RpcOpenEnum and
before RpcGetEnumResult or RpcGetEnumResultEx. No special permissions are required to call this
method.

 HRESULT RpcFilterByState(

 [in] ENUM_HANDLE hEnum,

 [in] LONG State,

 [in] BOOL bInvert

);

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

State: The session state, as specified in section 3.3.4.1.8, to be used to filter out the enumeration
result. Only the sessions with the specified state will be returned.

b Invert: Set to TRUE to imply that the result of the comparison during enumeration will be inverted,

FALSE otherwise.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

114 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.3.4.3.4 RpcFilterByCallersName (Opnum 3)

The RpcFilterByCallersName method adds a filter to the session enumeration result, running on a

terminal server, based on the caller name. The enumeration will return only sessions belonging to the
user making this call. This method MUST be called after RpcOpenEnum and before RpcGetEnumResult
or RpcGetEnumResultEx. No special permissions are required to call this method.

 HRESULT RpcFilterByCallersName(

 [in] ENUM_HANDLE hEnum

);

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an im plementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.3.5 RpcEnumAddFilter (Opnum 4)

The RpcEnumAddFilter method adds another filter to the current enumeration. This method MUST be

called after RpcOpenEnum and before RpcGetEnumResult or RpcGetEnumResultEx. No special
permissions are required to call this method.

 HRESULT RpcEnumAddFilter(

 [in] ENUM_HANDLE hEnum,

 [in] ENUM_HANDLE hSubEnum

);

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

hSubEnum: The handle to another enumeration whose filter will be applied to the current
enumeration. The other enumeration MUST be created using RpcOpenEnum and any combination
of RpcFilterByState, RpcFilterByCallersName, and RpcFilterBySessionType.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return

an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.3.6 RpcGetEnumResult (Opnum 5)

The RpcGetEnumResult method returns a pointer of the type PSESSIONENUM which points to the list
of sessions currently running on the terminal server after applying the specified filter. This method

115 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

MUST be called after RpcOpenEnum. No special permissions a re required to call this method. However,
only sessions for which the caller has WINSTATION_QUERY permission are enumerated. The method

checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the
Access Request mask, and skips the sessions for which the caller does not have the permission.

 HRESULT RpcGetEnumResult(

 [in] ENUM_HANDLE hEnum,

 [out, size_is(,*pEntries)] PSESSIONENUM* ppSessionEnumResult,

 [in] DWORD Level,

 [out] ULONG* pEntries

);

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

ppSessionEnumResult: A pointer of the type PSESSIONENUM which points to the list of sessions
currently running on the terminal server.

Level: The level of information requested. This field MUST b e set to the supported values of 1 or 2. If

the server does not support the level requested, it will set the level to the maximum supported
level and return information accordingly. <151>

pEntries: The number of sessions currently running on the terminal s erver and returned in the
ppSessionEnumResult structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful com pletion.

3.3.4.3.7 RpcFilterBySessionType (Opnum 6)

The RpcFilterBySessionType method adds a filter to the session enumeration result, running on a
terminal server, based on the type of the session. This method MUST be called after RpcOpenEnum
and before RpcGetEnumResult or RpcGetEnumResultEx. No special permissions are required to call
this method.

 HRESULT RpcFilterBySessionType(

 [in] ENUM_HANDLE hEnum,

 [in] GUID* pSessionType

);

hEnum: The handle to the session en umeration object. This is of type ENUM_HANDLE.

pSessionType: The session GUID to be used to filter out the enumeration result. Only the session

with the specified GUID will be returned.

Return Values: The method MUST return S_OK (0x00000000) on success; o therwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000 Successful completion.

116 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

S_OK

3.3.4.3.8 RpcGetSessionIds (Opnum 8)

The RpcGetSessionIds method returns a list of the IDs associated with the sessions running on a
terminal server that satisfy the specified filter. No special permissions are required to call this method.

However, only sessions for which the caller has WINS TATION_QUERY permission are enumerated. The
method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as
the Access Request mask, and skips sessions for which the caller does not have the permission.

 HRESULT RpcGetSessionIds(

 [in] handle_t hBinding,

 [in] SESSION_FILTER Filter,

 [in, range(0, 0xFFFF)] ULONG MaxEntries,

 [out, size_is(,*pcSessionIds)] LONG** pSessionIds,

 [out] ULONG* pcSessionIds

);

hBinding: The RPC binding handle. For more inf ormation, see [MSDN -RPCBIND].

Filter: The filter to apply to the sessions running on the terminal server. This is of type
SESSION_FILTER.

MaxEntries: The maximum number of session IDs to return. This value MUST be less than or equal
to the number of entr ies in the pSessionIds array.

pSessionIds: An array to contain the list of session IDs running on the terminal server and filtered

as specified by Filter .

pcSessionIds: The number of session IDs returned.

Return Values: The method MUST return S_OK (0x00 000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.3.9 RpcGetEnumResultEx (Opnum 9)

The RpcGetEnumResultEx method returns a pointer of the type PSESSIONENUM_EX, which points to
the list of sessions currently running on the terminal server after applying the specified filter. This

method MUST be called after RpcOpenEnum. No special permiss ions are required to call this method.
However, only sessions for which the caller has WINSTATION_QUERY permission are enumerated. The
method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as
the Access Request mask , and skips the sessions for which the caller does not have the permission.

 HRESULT RpcGetEnumResultEx(

 [in] ENUM_HANDLE hEnum,

 [out, size_is(,*pEntries)] PSESSIONENUM_EX* ppSessionEnumResult,

 [in] DWORD Level,

117 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [out] ULONG* pEntries

);

hEnum: The handle to the session enumeration object. This is of type ENUM_HANDLE.

ppSessionEnumResult: A pointer of the type PSESSIONENUM_EX which points to the list of sessions
currently running on the terminal server.

Level: The level of information requested. This field MUST be set to the supported values of 1, 2, or 3.
If the server does not support the level requested, it will set the level to the maximum supported
level and return information accordingly. <152>

Value Meaning

1 The union SessionInfo_Ex will have the SessionEnum_Level1 structure.

2 The union SessionInfo_Ex will have the SessionEnum_Level2 structure.

3 The union SessionInfo_Ex will have the SessionEnum_Level3 structure.

pEntries: The number of sessions currently running on the terminal server and returned in the
ppSessionEnumResult structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return

an implementation -specific negative value.

Retu rn value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.3.10 RpcGetAllSessions (Opnum 10)

The RpcGetAllSessions method returns a pointer of type PEXECENVDATA, which points to the list of
sessions currently running on the terminal server and the sessions running on various virtual
machines hosted by the server. No special permissions are required to call this method. However, only

sessions for which the caller has WINSTATION_QUERY permission are enumerated. T he method
checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the
Access Request mask, and skips the sessions for which the caller does not have the permission. <153>

 HRESULT RpcGetAllSessions(

 [in] handle_t hBinding ,

 [in, out] ULONG* pLevel,

 [out, size_is(,*pcEntries)] PEXECENVDATA* ppSessionData,

 [out] ULONG* pcEntries

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

pLevel: The level of information requested. This field MUST be s et to the supported values of 1 or 2.
If the server does not support the level requested, it will set the level to the maximum supported

level and return an implementation -specific nonzero value.

118 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

1 The union ExecEnvData will have the EXECENVDATA_LEVEL1 structure.

2 The union ExecEnvData will have the EXECENVDATA_LEVEL2 structure.

ppSessionData: A pointer of type PEXECENVDATA (section 2.2.2.6), which points to the list of
sessions currently running on the terminal server and the sessi on running on virtual machines

hosted by the server. <154>

pcEntries: The number of sessions currently running on the terminal server and returned in the
ppSessionData structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.4.3.11 RpcGetAllSessionsEx (Opnum 11)

The RpcGetAllSessionsEx method returns a pointer of type PEXECENVDATAEX, which points to the
list of sessions currently running on the terminal server and the sessions running on various virtual
machines hosted by the server. No special permissions are required to call this meth od. However, only
sessions for which the caller has WINSTATION_QUERY permission are enumerated. The method
checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the
Access Request mask, and skips the sessions for which the caller does not have the permission. <155>

 HRESULT RpcGetAllSessionsEx(

 [in] handle_t hBinding,

 [in] ULONG Level,

 [out, size_is(,*pcEntries)] PEXECENVDATAEX* ppSessionData,

 [out] ULONG* pcEntries

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

Level: The level of information requested. This field MUST be set to 1. If the server does not support
the level requested, it will set the level to the maximum supported level and return an
implementation -specific nonzero value.

Value Meaning

1 The union ExecEnvDataEx has the EXECENVDATAEX_LEVEL1 structure.

ppSessionData: A pointer of type PEXECENVDATAEX (section 2.2.2.7), which points to the list of
sessions currently running on the terminal server and the sessions running on virtual machines
hosted by the server.

pcEntries: The number of sessions currently running on the terminal server and returned in the
ppSessionData structure.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise , it MUST return
an implementation -specific negative value.

119 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x00000000

S_OK

Successful completion.

3.3.5 Timer Events

No protocol timer events are required on the client except the timers that are required in the
underlying RPC transport.

3.3.6 Other Local Events

No local events are used on the server except the events maintained in the underlying RPC transport.

3.4 TermSrv Client Details

3.4.1 Abstract Data Model

None.

3.4.2 Timers

No protocol timers are required except those used internally by RPC to implement resiliency to
network outages, as specified in [MS -RPCE] section 3.3.3.2.1.

3.4.3 Initialization

The client MUST create an RPC connection to the terminal se rver using the details specified in section

2.1.

3.4.4 Processing Events and Sequencing Rules

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer.

3.4.5 Timer Events

None.

3.4.6 Other Local Events

None.

3.5 TermSrv Server Details

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does n ot mandate that implementations

120 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

adhere to this model as long as their external behavior is consistent with that described in this
document.

3.5.1.1 Abstract Data Types

PROTOCOLSTATUS_INFO_TYPE : Specifies the protocol status information requested for a particular
session running on a terminal server. It is defined in section 2.2.2.2. The following list shows how
PROTOCOLSTATUS_INFO_TYPE is used with various methods.

Á RpcGetProtocolStatus: as the InfoType parameter.

Á RpcGetSessionProtocolLastInputTime: as the InfoType parameter.

QUERY_SESSION_DATA_TYPE : The type of data to retrieve about the session. It is used with
RpcQuerySessionData and MUST be set to one of the values described in section 2.2.2.3.

WINSTATIONCLIENT : Structure that defines the client - requested config uration when connecting to
a session. This structure is described in detail in section 2.2.2.19. It is used with the

RpcGetClientData method.

PLISTENERENUM : Structure that contains information about a terminal server listener. This

structure is described i n detail in section 2.2.2.12. It is used with RpcGetAllListeners and returned
as the ppListeners parameter.

WINSTATIONCONFIG : Structure that contains WinStation configuration data. This structure is
described in detail in section 2.2.2.30.1. It is used wit h the RpcGetConfigData method.

PROTOCOLSTATUS : The status of the protocol used by the session. It is defined in section
2.2.2.20.1. It is used with the RpcGetProtocolStatus and RpcGetSessionProtocolLastInputTime
methods.

PROTOCOLSTATUSEX : Structure defines the extended status of the protocol used by the session.
This structure is described in detail in section 2.2.2.20.1.1. It is used with the
RpcGetProtocolStatus and RpcGetSessionProtocolLastInputTime methods.

WDCONFIG : Structure containing the WinStation (session) driver configuration. This structure is
described in detail in section 2.2.2.27. It is used with the RpcQuerySessionData method.

WINSTATIONCONFIG2 : Structure that contains WinStation configuration data. This structure is

described in detail in se ction 2.2.2.30. It is used with the RpcGetConfigData method.

CACHE_STATISTICS : Structure that represents cache statistics on the protocol. This structure is
described in detail in section 2.2.2.20.1.3. It is used with the RpcGetProtocolStatus method.

PROTO COLCOUNTERS : Structure that represents the status of the protocol used by the system. This
structure is described in detail in section 2.2.2.20.1.2. It is used with the RpcGetProtocolStatus
method.

WINSTATIONVALIDATIONINFORMATION : Structure that contains i nformation that is required to

identify and validate a per -device terminal server (TS) client access license (CAL) associated with

the session. This structure is described in detail in section 2.2.2.51. It is used with the
RpcQuerySessionData method.

RCM_R EMOTEADDRESS : Structure that defines a remote address. This structure is described in
detail in section 2.2.2.43. It is used with the RpcGetRemoteAddress method.

121 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.5.2 Timers

MaxConnectionTime : The maximum allowed connection time setting of the session, in milliseconds.
The session will disconnect/log off when the limit is reached.

MaxDisconnectionTime : The maximum allowed disconnect time of the session, in milliseconds. The
session will disconnect/log off when the limit is reached.

MaxIdleTime : The maximum allowed idle time setting of the session, in milliseconds. The session will
disconnect/log off when the limit is reached.

3.5.3 Initiali zation

The parameters necessary to initialize the RPC protocol are specified in secti on 2.1.

3.5.4 Message Processing Events and Sequencing Rules

This protocol a sks the RPC runtime to perform a strict NDR data consistency check at target level 6.0
for all methods unless otherwise specified, as defined in [MS -RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the u pper
layer. The methods MAY throw an exception and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.5.4.1 RCMPublic

The RCMPublic interface methods provide data about clients and sessions, and enable shadowing
sessions. The version for this interface is 1.0.

For information about endpoints, UUID values, and versions, s ee sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcGetClientData Returns information about the client that is connected to a particular
session running on a terminal server.

Opnum: 0

RpcGetConfigData Returns the configuration data that is associated with the user connected
to a particular session running on a terminal server.

Opnum: 1

RpcGetProtocolStatus Retrieves information about the status of the protocol that is used to
connect to a particular session running on a terminal ser ver.

Opnum: 2

RpcGetLastInputTime Returns the time the last user input was received for the specified session
running on a terminal server by the associated protocol.

Opnum: 3

RpcGetRemoteAddress Retrieves the IP address of the client machine that is connected to the
session on the terminal server.

Opnum: 4

Opnum5NotUsedOnWire Not implemented.

Opnum: 5

122 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum6NotUsedOnWire Not implemented.

Opnum: 6

Opnum7NotUsedOnWire Not implemented.

Opnum: 7

RpcGetAllListeners Returns a list of all Terminal Servic es listeners running on a terminal
server.

Opnum: 8

RpcGetSessionProtocolLastInputTime Returns the protocol status and time the last input was received by the
protocol associated with a specific session running on a terminal server.

Opnum: 9

RpcGetUserCertificates Returns the client X509 certificate used to connect to a session running on
a terminal server.

Opnum: 10

RpcQuerySessionData Returns information about a particular session running on a terminal
server.

Opnum: 11

3.5.4.1.1 RpcGetClientData (Opnum 0)

The RpcGetClientData method returns information about the client that is connected to a particular
session running on a terminal server. The caller must have WINSTATION_QUERY permission. The

method checks whether the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as
the Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcGetClientData(

 [in] handle_t hBinding,

 [in] ULONG SessionId,

 [out, size_is(,*pOutBuffB yteLen)]

 unsigned char** ppBuff,

 [out] ULONG* pOutBuffByteLen

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session from which client data is to be retrieved.

ppBuff: The buffer that contains the client data. This data is of type PWINSTATIONCLIENT, specified
in section 2.2.2.19. The buffer is allocated by RpcGetClientData.

pOutBuffByteLen: The n umber of bytes of client data that is returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

123 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.5.4.1.2 RpcGetConfigData (Opnum 1)

The RpcGetConfigData method returns the configuration data associated with the user connected to a

particular session running on a terminal server. The caller MUST have WINSTATION_QUERY
permission . The method checks whether the caller has WINSTATION_QUERY permission (section
3.1.1) by setting it as the Access Request mask, and fails if the caller does not have the
permission. <156>

 HRESULT RpcGetConfigData(

 [in] handle_t hBinding,

 [in] ULONG SessionId,

 [out, size_is(,*pOutBuffByteLen)]

 unsigned char** ppBuff,

 [out] ULONG* pOutBuffByteLen

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session fo r which the client configuration data is to be retrieved.

ppBuff: The buffer that will contain the client configuration data. This will be allocated by
RpcGetConfigData. This data is of type PWINSTATIONCONFIG.

pOutBuffByteLen: The number of bytes of client configuration data that is returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.5.4.1.3 RpcGetProtocolStatus (Opnum 2)

 The RpcGetProtocolStatus method retrieves information about the status of the protocol used to
connect to a particular session running on a terminal server. The caller MUST have
WINSTATION_QUERY permission for the session. The method checks whether the ca ller has

WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

 HRESULT RpcGetProtocolStatus(

 [in] handle_t hBinding,

 [in] ULONG SessionId,

 [in] PROTOCOLSTATUS_INFO_ TYPE InfoType,

 [out, size_is(,*pcbProtoStatus)]

 unsigned char** ppProtoStatus,

 [out] ULONG* pcbProtoStatus

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session for which protocol status is to be retrieved.

124 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

InfoType: Specifies what type of information to gather. This is of the type
PROTOCOLSTATUS_INFO_TYPE.

ppProtoStatus: The buffer that will contain protocol status data. This data is of the type
PROTOCOLSTATUS.

pcbProtoStatus: The num ber of bytes of protocol data that is returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion

3.5.4.1.4 RpcGetLastInputTime (Opnum 3)

 The RpcGetLastInputTime method returns the time the last user input was received by the associated

protocol for the specified sessions running on a terminal server. The caller MU ST have
WINSTATION_QUERY permission for the session. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

 HRESULT RpcGetLastInp utTime(

 [in] handle_t hBinding,

 [in] ULONG SessionId,

 [out] hyper* pLastInputTime

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session for which the last user input time is to be retrieved.

pLastInputTime: The time when the last user input was received by the server. This is a 64 -bit
value representing the number of 100 -nanosecond intervals since January 1, 1601 (UTC).

Return Values: The method MUST return S_OK (0x00000000) on success; othe rwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion

3.5.4.1.5 RpcGetRemoteAddress (Opnum 4)

The RpcGetRemoteAddress method retrieves the IP address of the client computer connected to the
session on the terminal server. The caller MUST have WINSTATION_QUERY permission for the session.
The method checks whether the caller has WINSTATION_QUERY perm ission (section 3.1.1) by setting
it as the Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcGetRemoteAddress(

 [in] handle_t hBinding,

125 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [in] ULONG SessionId,

 [out] PRCM_REMOTEADDRESS pRemoteAddress

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session for which client data is to be retrieved.

pRemoteAddress: The address of the client computer that is connected to the session. This is of the
type PRCM_REMOTEADDRESS.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.5.4.1.6 RpcGetAllListeners (Opnum 8)

 The RpcGetAllListeners method returns a list of all Terminal Services listeners running on a terminal

server. No special permissions are required to call this method. However, only listeners for which the
caller has WIN STATION_QUERY permission are enumerated.

 HRESULT RpcGetAllListeners(

 [in] handle_t hBinding,

 [out, size_is(,*pNumListeners)]

 PLISTENERENUM* ppListeners,

 [in] DWORD Level,

 [out] ULONG* pNumListeners

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

ppListeners: The list of Terminal Services listeners running on the terminal server. This is an array
of type PLISTENERENUM.

Level: The level of information that is requested for the list eners. The only supported value is 1.

pNumListeners: The number of listeners returned.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.5.4.1.7 RpcGetSessionProtocolLastInputTime (Opnum 9)

The RpcGetSessionProtocolLastInputTime method returns the protocol status and the time the last
input was received by the protocol associated with a specific session running on a terminal server. The

126 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

caller MUST have WINSTATION_QUERY permission for the ses sion. The method checks whether the
caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask,

and fails if the caller does not have the permission.

 HRESULT RpcGetSessionProtocolLastInputTime(

 [in] handle_t hBinding,

 [in] ULONG SessionId,

 [in] PROTOCOLSTATUS_INFO_TYPE InfoType,

 [out, size_is(,*pcbProtoStatus)]

 unsigned char** ppProtoStatus,

 [out] ULONG* pcbProtoStatus,

 [out] hyper* pLastInputTime

);

hBinding: The RPC binding handle. For more informati on, see [MSDN -RPCBIND].

SessionId: The ID of the session from which information is to be retrieved.

InfoType: Specifies what type of information to gather. This is of type

PROTOCOLSTATUS_INFO_TYPE.

ppProtoStatus: The buffer that contains protocol status data. This data is of type
PROTOCOLSTATUS, specified in section 2.2.2.20.1.

pcbProtoStatus: The number of bytes of protocol data returned.

pLastInputTime: The time the last input was received by the server.

Time is measured as the number of 100 -nanoseco nd intervals since January 1, 1601 (UTC).

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return

an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion

3.5.4.1.8 RpcGetUserCertificates (Opnum 10)

The RpcGetUserCertificates method returns a client X509 certificate if the client used the certificate to
connect to a session running on a terminal server. For more inform ation, see [X509]. The caller MUST
have WINSTATION_QUERY permission for the session. The method checks whether the caller has

WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the pe rmission.

 HRESULT RpcGetUserCertificates(

 [in] handle_t hBinding,

 [in] ULONG SessionId,

 [out] ULONG* pcCerts,

 [out, size_is(, *pcbCerts)] byte** ppbCerts,

 [out] ULONG* pcbCerts

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session for which the certificate is to be retrieved.

127 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pcCerts: The number of client certificates returned.

ppbCerts: Certificate data.

pcbCerts: The size, in bytes, of ppbCerts .

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return

an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.5.4.1.9 RpcQuerySessionData (Opnum 11)

 The RpcQuerySessionData method returns information about a particular session running on a
terminal server. The caller MUST have WINSTATION_QUERY permission to the session being queried.
The method checks whether the cal ler has WINSTATION_QUERY permission (section 3.1.1) by setting

it as the Access Request mask, and fails if the caller does not have the permission.

 HRESULT RpcQuerySessionData(

 [in] handle_t hBinding,

 [in] ULONG SessionId,

 [in] QUERY_SESSION_DATA_TYP E type,

 [in, unique, size_is(cbInputData)]

 byte* pbInputData,

 [in, range(0, 8192)] DWORD cbInputData,

 [out, ref, size_is(cbSessionData), length_is(*pcbReturnLength)]

 byte* pbSessionData,

 [in, range(0, 8192)] ULONG cbSessionData,

 [out, ref] ULONG* pcbReturnLength,

 [out, ref] ULONG* pcbRequireBufferSize

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

SessionId: The ID of the session for which data is to be retrieved.

type: The type of data to retrieve about the session. This is of type QUERY_SESSION_DATA_TYPE.

pbInputData: Input data. This is a string specifying the name of the virtual channel and is required
only when querying virtual channel information.

cbInputData: The size, in bytes, of input data.

pbSessionData: The output data containing the requested information. The data returned is of type
WDCONFIG if the type specified is QUERY_SESSION_DATA_WDCONFIG. It is of type

WINSTATIONVALIDATIONINFORMATION if the type speci fied is
QUERY_SESSION_DATA_LICENSE_VALIDATION. For other types, it is protocol -specific.

cbSessionData: The size, in bytes, of pbSessionData .

pcbReturnLength: The length of the returned data, in bytes.

pcbRequireBufferSize: The buffer size, in bytes, re quired by the returned data.

128 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion

3.5.4.2 RCMListener

 The RCMListener interface provides methods that open, close, start, and stop a listener. The version
for this interface is 1.0.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcOpenListener Returns a handle to the specified Terminal Services listener running on a terminal server.

Opnum: 0

RpcCloseListener Closes the handle for a Terminal Services listener running on a terminal server.

Opnum: 1

RpcStopListener Stops the specified Terminal Services listener running on a terminal server.

Opnum: 2

RpcStartListener Starts the specified Term inal Services listener on a terminal server.

Opnum: 3

RpcIsListening Checks if the specified Terminal Services listener is running on a terminal server.

Opnum: 4

3.5.4.2.1 RpcOpenListener (Opnum 0)

 The RpcOpenListener method return s a handle to the specified Terminal Services listener running on

a terminal server. No special permissions are required to call this method.

 HRESULT RpcOpenListener(

 [in] handle_t hBinding,

 [in, string] WCHAR* szListenerName,

 [out] HLISTENER* phList ener

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

szListenerName: The name of the listener for which to retrieve a handle.

phListener: Pointer to a handle to the listener. The handle is of type HLISTENER.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

129 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x00000000

S_OK

Successful completion.

3.5.4.2.2 RpcCloseListener (Opnum 1)

The RpcCloseListener method closes the handle for a Terminal Services listener running on a terminal
server. This MUST be called after RpcOpenListener. The call to this meth od MUST be serialized if there

are multiple threads running otherwise the behavior of this function is unknown. No special
permissions are required to call this method.

 HRESULT RpcCloseListener(

 [in, out] HLISTENER* phListener

);

phListener: Pointer to a handle to the listener as returned by RpcOpenListener. The handle is of type

HLISTENER. The handle is set to NULL when the call returns.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implemen tation -specific negative value. <157>

Return value/code Description

0x00000000

S_OK

Successful completion.

3.5.4.2.3 RpcStopListener (Opnum 2)

The RpcStopListener method stops the specified Terminal Services listener running on a terminal

server. This MUST be called after RpcOpenListener. The caller MUST have WINSTATION_RESET
permission to the listener. The method checks whether the caller has WINSTATION_RESET permission
(section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not have the
permission.

 HRESULT RpcStopListener(

 [in] HLISTENER hListener

);

hListener: The handle to the listener. This is of type HLISTENER.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return

an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

130 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.5.4.2.4 RpcStartListener (Opnum 3)

The RpcStartListener method starts the specified Terminal Services listener on a terminal server. This
MUST be called after RpcOpenListener. The caller MUST have WINSTATION_RESET and

WINSTATION_QUERY permissions to the listener. The method checks whether the caller has
WINSTATION_RESET and WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access
Request mask, and fails if the caller does not have the permissions.

 HRESULT RpcStartListener(

 [in] HLISTENER hListener

);

hListener: The handle to the listener. This is of type HLISTENER.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful comp letion.

3.5.4.2.5 RpcIsListening (Opnum 4)

The RpcIsListening method checks whether the specified Terminal Services listener is running on a

terminal server. This MUST be called after RpcOpenListener. The caller MUST have
WINSTATION_QU ERY permission to the listener. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission.

 HRESULT RpcIsListening(

 [in] HLISTENER hListener,

 [out] BOOL* pbIsListening

);

hListener: The handle to the listener. This is of type HLISTENER.

pbIsListening: Set to TRUE if the listener is listening for a connection, FALSE otherwise.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return

an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.5.5 Timer Events

None.

131 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.5.6 Other Local Events

None.

3.6 Legacy Client Details

3.6.1 Abstract Data Model

None.

3.6.2 Timers

No protocol timers are required beyond those used internally by RPC to impleme nt resiliency to

network outages, as specified in [MS -RPCE].

3.6.3 Initialization

The client M UST create an RPC connection to the terminal server, using the details specified in section
2.1.

3.6.4 Message Processing Events and Sequencing Rules

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer.

3.6.5 Timer Events

There are no timer events.

3.6.6 Other Local Events

None.

3.7 Legacy Server Details

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as lon g as their external behavior is consistent with that described in this
document.

3.7.1.1 Abstract Data Types

dwCounterID : Identifier of a performance counter. It is used with
RpcWinStationGetTermSrvCountersValue and MUST be set to one of the values described in
section 2.2.2.17.1.

hServer : Handle to the server object. This is of type SERVER_HANDLE. This handle is returned by the
RpcWinStationOpenServer method and is used as an input parameter with all other LegacyApi
methods.

132 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PDCONFIG2 : Structure that contains the protocol driver's software configuration. This structure is
described in detail in section 2.2.2.26.1. It is returned by the RpcWinStationQueryInformation

method as part of transport protocol driver configuration data.

WinStationInformation : Provides the c urrent values of various properties for a session such as

state, connect time, last input time, and so on. It is used with RpcWinStationQueryInformation
and is returned as the pWinStationInformation parameter when "WinStationInformation" is passed
as the WinStationInformationClass parameter.

WINSTATIONPRODID : Structure that represents a product ID for the session. This structure is
described in detail in section 2.2.2.36. It is used with RpcWinStationQueryInformation and is
returned as the pWinStationInform ation parameter when "WinStationDigProductId" is passed as
the WinStationInformationClass parameter.

WINSTATIONUSERTOKEN : Structure that defines the user token for a session. This structure is
described in detail in section 2.2.2.32. It is used with RpcWinStationQueryInformation and is
returned as the pWinStationInformation parameter when "WinStationUserToken" is passed as the
WinStationInformationClass parameter.

POLICY_TS_MACHINE : Structure that defines the machine policy of the server. This structure is
described in detail in section 2.2.2.31. It is used with the RpcWinStationGetMachinePolicy method

and is returned as the pPolicy parameter.

WINSTATIONINFOCLASS : Enumeration that specifies the class of data to retrieve. It is defined in
section 2.2.1.8. The following list shows how WINSTATIONINFOCLASS is used with various
methods.

Á RpcWinStationQueryInformation: as the WinSta tionInformationClass parameter.

Á RpcWinStationSetInformation: as the WinStationInformationClass parameter.

USERCONFIG : Structure that contains user and session configuration information. This structure is

described in detail in section 2.2.2.18. It is used with the RpcWinStationQueryInformation and
RpcWinStationSetInformation methods.

WINSTATIONCLIENT : Structure that defines the client - requested configuration when connecting to
a session. This structure is described in detail in section 2.2.2.19. It is used with the
RpcWinStationQueryInformation method.

LOGONID : Structure that represents information about the session or WinStation. This structure is
described in detail in section 2.2.2.13. It is used with the RpcWinStationEnumerate method and is

returned as the pLogonId parameter.

TS_PROCESS_INFORMATION_NT4 : Structure that represents information about a process running
in a session. This structure is described in detail in section 2.2.2.14. It is used with the
RpcWinStationEnumerateProcesses method and is returned inside the pProcessBuffer parameter.

TS_ALL_PROCESS_INFO : Structure that contains data about all the processes running on the
system that are accessible to a user. This structure is described in detail in section 2.2.2.15. It is

used with the Rpc WinStationGetAllProcesses method and is returned as the ppTsAllProcessesInfo

parameter.

TS_SYS_PROCESS_INFORMATION : Structure that contains information about a process running in
a session. This structure is described in detail in section 2.2.2.15.1. It is used with the
RpcWinStationEnumerateProcesses method and is returned inside the pProcessBuffer parameter.

TS_PROCESS_INFORMATION_NT6 : Structure that represents information about a process running
in a session. This structure is described in detail in sect ion 2.2.2.16. It is used with the

RpcWinStationGetAllProcesses_NT6 method and is returned inside the ppTsAllProcessesInfo
parameter.

133 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PDPARAMS : Structure containing the protocol driver parameters. This structure is described in detail
in section 2.2.2.21. I t is used with the RpcWinStationQueryInformation and

RpcWinStationSetInformation methods.

PDPARAMSWIRE : Structure precedes a PDPARAMS structure and defines the size and offset of the

PDPARAMS structures in the complete data BLOB. This structure is describe d in detail in section
2.2.2.46. It is used with the RpcWinStationQueryInformation and RpcWinStationSetInformation
methods.

PdName : String containing the transport protocol type. This MUST be any of the following strings:
"tcp", "netbios", "ipx", or "spx". It is used with the RpcWinStationGetLanAdapterName method as
the pPdName parameter.

WDCONFIG : Structure containing the WinStation (session) driver configuration. This structure is

described in detail in section 2.2.2.27. It is used with the RpcWinStationQ ueryInformation method.

CDCONFIG : Structure that represents connection driver configuration. This structure is described in
detail in section 2.2.2.28. It is used with RpcWinStationQueryInformation and is returned as the

pWinStationInformation parameter wh en "WinStationCd" is passed as the
WinStationInformationClass parameter.

WINSTATIONCREATE : Structure that represents a session to which the user can connect. This

structure is described in detail in section 2.2.2.29. It is used with RpcWinStationQueryInfor mation
and is returned as the pWinStationInformation parameter when "WinStationCreateData" is passed
as the WinStationInformationClass parameter.

WINSTATIONVIDEODATA : Structure that represents the resolution and color depth of a session.
This structure is described in detail in section 2.2.2.33. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation parameter when
"WinStationVideoData" is passed as the WinStationInformationClass parameter.

WINSTATIONLOADINDICATORDATA : Structure that represents the data used for the load
balancing of a server. This structure is described in detail in section 2.2.2.34. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation parameter when

"WinStationLoadIndicator" is passed as the WinStationInformationClass parameter.

WINSTATIONSHADOW : Structure that represents the current shadow state of a session. This
structure is described in detail in section 2.2.2.35. The following list shows how
WINSTATIONSHADOW is used with various methods.

Á RpcWinStationQueryInformation: as the pWinStationInformation parameter when
"WinStationShadowInfo" is passed as the WinStationInformationClass parameter.

Á RpcWinStationSetInformation: as the pWinStat ionInformation parameter when
"WinStationShadowInfo" is passed as the WinStationInformationClass parameter.

DEVICENAME : Represents the name of a device. It is described in detail in section 2.2.1.7 and is
used with RpcWinStationGetLanAdapterName.

WINSTATIO NNAME : Represents the name of a session. It is described in detail in section 2.2.1.5

and is used with RpcLogonIdFromWinStationName.

WINSTATIONREMOTEADDRESS : Structure that contains the client's remote address. This structure
is described in detail in sect ion 2.2.2.37. It is returned by the RpcWinStationQueryInformation
method.

IdleTime : Represents the idle time for the session, in seconds. It is of type ULONG. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation param eter when

"WinStationIdleTime" is passed as the WinStationInformationClass parameter.

134 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

LastReconnectType : Represents the last reconnect type for the session. It is of type ULONG. It is
used with RpcWinStationQueryInformation and is returned as the pWinSta tionInformation

parameter when "WinStationReconnectType" is passed as the WinStationInformationClass
parameter.

WinStationVirtualData : Represents client virtual data. It is of type BYTE. It is used with
RpcWinStationQueryInformation and is returned as the pWinStationInformation parameter when
"WinStationVirtualData" is passed as the WinStationInformationClass parameter.

WINSTATIONCLIENTDATA : Structure used to send data to the client. It is described in 2.2.2.41. It
is used with RpcWinStationSetInformation and is returned as the pWinStationInformation
parameter when "WinStationClientData" is passed as the WinStationInformationClass parameter.

TS_TRACE : Structure that specifies fields used for configuring tracing operations in TS binaries if they

are checked . This structure is described in detail in section 2.2.2.39. It is used with the
RpcWinStationSetInformation method.

WINSTACONFIGWIRE : Structure precedes a variable length user configuration data BLOB and

defines the size and offset of the user configurati on data. This structure is described in detail in
section 2.2.2.47. It is used with the RpcWinStationQueryInformation and
RpcWinStationSetInformation methods.

3.7.2 Timers

Send Message Timeout : The time, in seconds, that the RpcWinStationSendMessage method waits
for the user's response to the message box displayed by that method. For more information, see
description of the Timeout param eter to the RpcWinStationSendMessage method.

3.7.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

3.7.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data -consistency check at target level 6.0
for all methods, unless otherwise specified, as defined in [MS -RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw an exception and the Terminal Services client MUST handle these

exceptions by returning the unmodified exception code to the upper layer.

Legacy server methods are part of the LegacyApi interface.

3.7.4.1 LegacyApi

The LegacyApi provides legacy methods that manipulate a terminal client. The version for this

interface is 1.0.

For endpoints, UUID values, and versions , see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcWinStationOpenServer Returns a server handle that can be used in other WinStation API
methods for querying information on the WinStation (sessions) on the
server.

135 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum: 0

RpcWinStationCloseServer Closes the server handle for WinStation APIs.

Opnum: 1

RpcIcaServerPing Verifies that the server is alive.

Opnum: 2

RpcWinStationEnumerate Retrieves a list of LOGONID structures for sessions on a terminal
server.

Opnum: 3

RpcWi nStationRename Enables the caller to change the name of the session.

Opnum: 4

RpcWinStationQueryInformation Retrieves various types of configuration information on a session.

Opnum: 5

RpcWinStationSetInformation Sets various types of configuration inform ation for a session.

Opnum: 6

RpcWinStationSendMessage Displays a message box on a given terminal server session and,
optionally, waits for a reply.

Opnum: 7

RpcLogonIdFromWinStationName Given a session name, returns the session's session ID.

Opnum: 8

RpcWinStationNameFromLogonId Retrieves the Windows Station (WinStation) name for a specific
session.

Opnum: 9

RpcWinStationConnect Connects a user's terminal server client from a given terminal server
session to a different terminal server sessi on.

Opnum: 10

Opnum11NotUsedOnWire Reserved for local use.

Opnum: 11

Opnum12NotUsedOnWire Reserved for local use.

Opnum: 12

RpcWinStationDisconnect On the server, disconnects the terminal server client from a session.

Opnum: 13

RpcWinStationReset Resets a session.

Opnum: 14

RpcWinStationShutdownSystem Shuts down the system and, optionally, logs off all sessions. May also
reboot the system.

Opnum: 15

RpcWinStationWaitSystemEvent Waits synchronously for a system event from an RP C API request on
behalf of the caller.

Opnum: 16

RpcWinStationShadow Starts a shadow operation (remote control) of another terminal server
session.

136 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum: 17

Opnum18NotUsedOnWire Reserved for local use.

Opnum: 18

Opnum19NotUsedOnWire Reserved for local use.

Opnum: 19

Opnum20NotUsedOnWire Reserved for local use.

Opnum: 20

Opnum21NotUsedOnWire Reserved for local use.

Opnum: 21

Opnum22NotUsedOnWire Reserved for local use.

Opnum: 22

Opnum23NotUsedOnWire Reserved for local use.

Not implemented.

Opnum: 23

Opnum24NotUsedOnWire Reserved for local use.

Opnum: 24

Opnum25NotUsedOnWire Reserved for local use.

Opnum: 25

Opnum26NotUsedOnWire Reserved for local use.

Opnum: 26

Opnum27NotUsedOnWire Reserved for local use.

Opnum: 27

Opnum28NotUsedOnWire Reserved for local use.

Opnum: 28

RpcWinStationBreakPoint Breaks into the debugger in either the session process of a specific
session or in the terminal server service process.

Opnum: 29

RpcWinStationReadRegistry Tells the server to reread from the registry the configuration data for
all the WinStations.

Opnum: 30

Opnum31NotUsedOnWire Reserved for local use.

Opnum: 31

Opnum32NotUsedOnWire Reserved for local use.

Opnum: 32

Opnum33NotUsedOnWire Reserved for local use.

Opnum: 33

OldRpcWinStationEnumerateProcesses This function in turn calls the RpcWinStationEnumerateProcesses
function.

Opnum: 34

137 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum35NotUsedOnWire Reserved for local use.

Opnum: 35

RpcWinStationEnumerateProcesses Returns the process information for an NT4 term inal server.
Supported only for backward compatibility with that platform.

Opnum: 36

RpcWinStationTerminateProcess Terminates the specified process.

Opnum: 37

Opnum38NotUsedOnWire Reserved for local use.

Opnum: 38

Opnum39NotUsedOnWire Reserved for local use.

Opnum: 39

Opnum40NotUsedOnWire Not implemented.

Opnum: 40

Opnum41NotUsedOnWire Not implemented.

Opnum: 41

Opnum42NotUsedOnWire Reserved for local use.

Opnum: 42

RpcWinStationGetAllProcesses Retrieves a list of the processes on a remote server on which the
caller has permission to receive information.

Opnum: 43

RpcWinStationGetProcessSid Retrieves the process SID for a given process ID and process start
time combi nation.

Opnum: 44

RpcWinStationGetTermSrvCountersValue Retrieves the current value of requested terminal server performance
counters.

Opnum: 45

RpcWinStationReInitializeSecurity Reinitializes security for all non -console WinStation remote connection
prot ocols specified in the registry.

Opnum: 46

Opnum47NotUsedOnWire Reserved for local use.

Opnum: 47

Opnum48NotUsedOnWire Reserved for local use.

Opnum: 48

Opnum49NotUsedOnWire Reserved for local use.

Opnum: 49

Opnum50NotUsedOnWire Reserved for local use.

Opnum: 50

Opnum51NotUsedOnWire Reserved for local use.

Opnum: 51

Opnum52NotUsedOnWire Not implemented.

138 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum: 52

RpcWinStationGetLanAdapterName Returns the LAN adapter GUID as a string.

Opnum: 53

Opnum54NotUsedOnWire Reserved for local use.

Opnum: 54

Opnum55NotUsedOnWire Reserved for local use.

Opnum: 55

Opnum56NotUsedOnWire Reserved for local use.

Opnum: 56

Opnum57NotUsedOnWire Reserved for local use.

Opnum: 57

RpcWinStationUpdateSettings Rereads settings for all WinStations.

Opnum: 58

RpcWinStationShadowStop Stops all shadow operations on the specified session.

Opnum: 59

RpcWinStationCloseServerEx Closes the server handle for WinStation APIs.

Opnum: 60

RpcWinStationIsHelpAssistantSession Determines whether a session is created by a HelpAssistant account
(used for Remote Assistance).

Opnum: 61

RpcWinStationGetMachinePolicy Returns a copy of the terminal server machine policy to the caller.

Opnum: 62

Opnum63NotUsedOnWire Reserved for local use.

Opnum: 63

Opnum64NotUsedOnWire Reserve d for local use.

Opnum: 64

RpcWinStationCheckLoopBack Checks if there is a loopback when a client tries to connect.

Opnum: 65

RpcConnectCallback Initiates a connection back to the Remote Assistance (RA) client.

Opnum: 66

Opnum67NotUsedOnWire Reserved for local use.

Opnum: 67

Opnum68NotUsedOnWire Reserved for local use.

Opnum: 68

Opnum69NotUsedOnWire Reserved for local use.

Opnum: 69

RpcWinStationGetAllProcesses_NT6 Retrieves the processes running a remote server on whic h the caller
has access to retrieve information.

Opnum: 70

139 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

Opnum71NotUsedOnWire Reserved for local use.

Opnum: 71

Opnum72NotUsedOnWire Reserved for local use.

Opnum: 72

Opnum73NotUsedOnWire Reserved for local use.

Opnum: 73

Opnum74NotUsedOnWire Reserved for local use.

Opnum: 74

RpcWinStationOpenSessionDirectory Pings the Session Directory to see if it can accept RPC calls.

Opnum: 75

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT s end the

opnum, and the server behavior is undefined, because it does not affect interoperability. <158>

3.7.4.1.1 RpcWinStationOpenServer (Opnum 0)

The RpcWinStationOpenServer method returns a server handle that can be used in ot her WinStation
API methods for querying information about the WinStation (sessions) on the server. No special
permissions are required to call this method.

 BOOLEAN RpcWinStationOpenServer(

 [in] handle_t hBinding,

 [out] DWORD* pResult,

 [out] SERVER_HA NDLE* phServer

);

hBinding: The RPC binding handle.

pResult: Failure error code if the call to RpcWinStationOpenServer failed. If the call was successful,
this parameter is STATUS_SUCCESS (0x00000000) (as specified in [MS -ERREF]).

Value Meaning

STATUS_SUCCESS

0x00000000

Successful call.

STATUS_CANCELLED

0xC0000120

The server is shutting down.

STATUS_NO_MEMORY

0xC0000017

Not enough memory to complete the operation.

phServer: Handle to the server object. This is of type SERVER_HANDLE. This hand le is used by other
RpcWinStation methods.

Return Values: Returns TRUE if the call succeeded, or FALSE if the call failed. On failure, pResult

indicates the failure status code.

Return value/code Description

0x01 Successful completion.

140 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

TRUE

0x00

FALSE

Method call failed.

3.7.4.1.2 RpcWinStationCloseServer (Opnum 1)

The RpcWinStationCloseServer method closes the server handle for WinStation APIs. No special
permissions are required to call this method.

 BOOLEAN RpcWinStationCloseServer(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer MUST be
returned from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter is STATUS_SUCCESS (0x00000000), as specified in

[MS -ERREF]; otherwise, it MUST be an implementation -specific negative value.

Return Value s: Returns TRUE if the call succeeded, or FALSE if the call failed. On failure, pResult
indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.3 RpcIcaServerPing (Opnum 2)

The RpcIcaServerPing method is called to verify that the server is alive. No special permissions are
required to call this method. <159>

 BOOLEAN RpcIcaServerPing(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult

);

hServe r: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter is STATUS_SUCCESS (0x00000000), as specified in
[MS -ERREF]; otherwise it MUST be an implementation -specific negative value.

Return Values: Returns TRUE if the call succeeded and the server is alive, or FALSE if the method
failed. On failure, pResult indicates the failure status code.

141 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Descri ption

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.4 RpcWinStationEnumerate (Opnum 3)

The RpcWinStationEnumerate method retrieves a list of LOGONID structures for sessions on a terminal
server. No special permissions are required to call this method. However, only sessions to which the
caller has WINSTATION_QUERY permission are enumerated. The method checks whether the caller
has WINSTATION_QUERY permission (section 3.1.1) by setting it a s the Access Request mask, and
fails if the caller does not have the permission.

 BOOLEAN RpcWinStationEnumerate(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in, out] PULONG pEntries,

 [in, out, unique, size_is(*pByteCount)]

 PCHAR pLogonId,

 [in, out] PULONG pByteCount,

 [in, out] PULONG pIndex

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to Rp cWinStationOpenServer.

pResult: If the call was successful, this parameter will be STATUS_SUCCESS (0x00000000), as

specified in [MS -ERREF]; otherwise, it MUST be an implementation -specific negative value.

pEntries: Pointer to the number of entries to retu rn to the caller. On return from this method, this is
the number of logon IDs actually returned in this call to RpcWinStationEnumerate.

pLogonId: Buffer where the logon IDs are stored when the method returns. This will be an array of
LOGONID structures. C aller MUST cast this to PCHAR before calling this method.

pByteCount: Size of the buffer, in bytes, to which pLogonId points.

pIndex: Last index of the logon ID lookup from this call, passed to the server the next time this

method is called. Initial valu e of this passed by the caller MUST be 0.

Return Values: Returns TRUE if the call succeeded, or FALSE if the lookup failed. On failure, pResult
indicates the failure status code. If all of the logon IDs have already been retrieved from the
server, TRUE will be returned, and pResult will be STATUS_NO_MORE_ENTRIES (as specified in
[MS -ERREF]), indicating to the call that all logon IDs have been ret rieved.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

142 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.7.4.1.5 RpcWinStationRename (Opnum 4)

The RpcWinStationRename method enables the caller to change the name of the session. T he caller

MUST have DELETE permission, as specified in [MS -DTYP] section 2.4.3, on the session that is
identified by the old name. <160>

 BOOLEAN RpcWinStationRename(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in, size_is(NameOldSize)] PWCHAR pWinStationNameOld,

 [in, range(0, 256)] DWORD NameOldSize,

 [in, size_is(NameNewSize)] PWCHAR pWinStationNameNew,

 [in, range(0, 256)] DWORD NameNewSize

);

hServer: Handle to the server object. This is of type SERVER _HANDLE. The hServer MUST be

obtained from a previous call to RpcWinStationOpenServer.

pResult: The failure error code if the call to RpcWinStationRename fails. If the call is successful, this
parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS -ERREF].

Value Meaning

STATUS_SUCCESS

0x00000000

The call is successful.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have DELETE permission.

STATUS_CTX_WINSTATION_NAME_INVALID

0xC00A0001

The sizes are 0, one or the other of the pointers is NULL,
or a pointer is invalid.

STATUS_CTX_WINSTATION_NOT_FOUND

0xC00A0015

No se ssion exists with the name given in
pWinStationNameOld .

STATUS_CTX_WINSTATION_NAME_COLLISION

0xC00A0016

 A session already exists with the name given in
pWinStationNameNew .

pWinStationNameOld: The pointer to a string that is the old name of the session being renamed.

NameOldSize: The length of the string in characters pointed to by pWinStationNameOld including
the terminating NULL character.

pWinStationNameNew: The pointer to a string that is the new name of the session being renamed.

NameNewSize: The length of the string in characters pointed to by pWinStationNameNew including
the terminating NULL character. Name MUST be shorter than or equal to

WINSTATIONNAME_LENGTH.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

143 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x00

FALSE

Method call failed.

3.7.4.1.6 RpcWinStationQueryInformation (Opnum 5)

The RpcWinStationQueryInformation method retrieves various types of configuration information on a
session. The caller MUST have the WINSTATION_QUERY permission right as well as specific

permission rights for so me operations as indicated in the following sections. The method checks
whether the caller has WINSTATION_QUERY permission and the specific permission required for some
operations (section 3.1.1) by setting it as the Access Request mask, and fails if the c aller does not
have the permission. <161>

 BOOLEAN RpcWinStationQueryInformation(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in] DWORD WinStationInformationClass,

 [in, out, unique, size_is(WinStationInformationLength)]

 PCHAR pWinStationInformation,

 [in, range(0, 0x8000)] DWORD WinStationInformationLength,

 [out] DWORD* pReturnLength

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained

from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationQueryInformation failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_S UCCESS

0x00000000

Successful completion.

STATUS_INVALID_INFO_CLASS

0xC0000003

The class is not recognized.

STATUS_BUFFER_TOO_SMALL

0xC0000023

WinStationInformationLength is too small.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission for the operation.

LogonId: The session ID of the session for which to retrieve information.

WinStationInformationClass: The class of data to retrieve. These values come from the enum type
WINSTATIONINFOCLASS.

The following classes are supporte d.

Value Meaning

WinStationCreateData

0

Retrieves general information on the type of terminal server session
(protocol) to which the session belongs.

144 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

The pWinStationInformation argument points to a
WINSTATIONCREATE structure, and WinStationInformationLength
MUST be sizeof(WINSTATIONCREATE). <162>

WinStationConfiguration

1

Retrieves general configuration data on the terminal server session.

The pWinStati onInformation argument points to a
WINSTACONFIGWIRE structure followed by a USERCONFIG
structure. The WinStationInformationLength MUST be
sizeof(WINSTACONFIGWIRE) + sizeof(USERCONFIG). The Size field
in the USERCONFIG structure inside WINSTACONFIGWIRE MUST be
set to sizeof(USERCONFIG) and the Offset set to
sizeof(WINSTACONFIGWIRE). The Size field in the NewFields
structure inside WINSTACONFIGWIRE MUST be set to 0, and the
offset MUST be set to sizeof(WINSTACONFIGWIRE) +
sizeof(USERCONFIG).

WinStationPdParams

2

Retrieves transport protocol driver parameters. <163> The structure
coming into the function indicates via SDClass the specific protocol
driver on which to receive parameter information. The result will be
returned in the union in the s tructure.

The pWinStationInformation argument points to a PDPARAMSWIRE
structure followed by a PDPARAMS structure. The
WinStationInformationLength MUST be sizeof(PDPARAMSWIRE)
+ sizeof(PDPARAMS). The Size field in SdClassSpecific field inside
PDPARAMSWIRE MUST be set to sizeof(PDPARAMS) and the offset
MUST be set to sizeof(PDPARAMSWIRE).

WinStationWd

3

Retrieves WinStation protocol driver configuration data for the
session. <164>

The pWinStationInformation argument points to a VARDATA_WIRE
structure followed by a WDCONFIG structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE)
+ sizeof(WDCONFIG). The Size field in the VARDATA_WIRE
structure MUST be set to sizeof(WDCONFIG) and the Offset set to
sizeof(VARDATA_WIRE).

WinStationPd

4

Retrieves transport protocol driver configuration data for the
session. <165>

The pWinStationInformation argument points to a VARDATA_WIRE,
followed by a PDPARAMSWIRE structure, followed by a PDCONFIG2
structure and finally ending with a PDPARAMS structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE)
+ sizeof(PDPARAMSWIRE) + size of(PDCONFIG2) +
sizeof(PDPARAMS). The Size field in the VARDATA_WIRE structure
MUST be set to sizeof(PDCONFIG2) and the Off set set to
sizeof(VARDATA_WIRE) + sizeof(PDPARAMSWIRE). The Size field in
SdClassSpecific field inside PDPARAMSWIRE MUST be set to
sizeof(PDPARAMS) - sizeof(SDCLASS), and the offset MUST be set
to Offset + Size of the VARDATA_WIRE structure.

WinStationPri nter

5

Not supported.

WinStationClient

6

Retrieves data on the terminal server client of the session.

The pWinStationInformation argument points to a VARDATA_WIRE
structure followed by a WINSTATIONCLIENT structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE) +
sizeof(WINSTATIONCLIENT). The Size field in the VARDATA_WIRE
structure MUST be set to sizeof(WINSTATIONCLIENT) and the
Offset set to sizeof(VARDATA_WIRE).

145 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

WinStationModules

7

Internal get function to retrieve data on protocol -spec ific binaries
loaded for the given terminal server session. The structure pointed
to by pWinStationInformation and the size of the buffer is Terminal
Service protocol -specific.

WinStationInformation

8

Retrieves information on the session, including connect state,
session's name, connect time, disconnect time, time last input was
received from the client, logon time, user's username and domain,
and the current time.

pWinStationInformation points to a VA RDATA_WIRE structure
followed by a WINSTATIONINFORMATION structure. The
WinStationInformationLength MUST be sizeof(VARDATA_WIRE) +
sizeof(WINSTATIONINFORMATION). The Size field in the
VARDATA_WIRE structure MUST be set to
sizeof(WINSTATIONINFORMATION) and the Offset set to
sizeof(VARDATA_WIRE).

WinStationUserToken

14

Retrieves the user's token in the session. Caller requires
WINSTATION_ALL_ACCESS permission.

The pWinStationInformation argument points to a
WINSTATIONUSERTOKEN structure, and
WinStationInformationLength MUST be
sizeof(WINSTATIONUSERTOKEN).

WinStationVideoData

16

Retrieves resolution and color depth of the session.

The pWinStationInformation argument points to a
WINSTATI ONVIDEODATA structure, and
WinStationInformationLength MUST be
sizeof(WINSTATIONVIDEODATA).

WinStationCd

18

Retrieves connection driver configuration data.

The pWinStationInformation points to a CDCONFIG structure, and
WinStationInformationLength MUST be sizeof(CDCONFIG).

WinStationVirtualData

20

Query client virtual data.

The pWinStationInformation argument MUST point to 8 bytes and
WinStationInformationLength MUST be 8.

WinStationLoadBalanceSessionTarget

24

Retrieves the target session ID for a client redirected from another
server in a load balancing cluster.

The pWinStationInformation points to a ULONG, and
WinStationInformationLength MUST be sizeof(ULONG). If there is
no redirection, -1 is returned in pWi nStationInformation .<166>

WinStationLoadIndicator

25

Retrieves an indicator of the load on the server.

The pWinStationInformation argument points to a
WINSTATIONLOADINDICATORDATA structure.
WinStationInformationLength MUST be
sizeof(WINSTATIONLOADINDICAT ORDATA).

WinStationShadowInfo

26

Retrieves the current shadow state of a session.

The pWinStationInformation argument points to a
WINSTATIONSHADOW structure. WinStationInformationLength
MUST be sizeof(WINSTATIONSHADOW). <167>

WinStationDigProductId

27

Retrieves the client product ID and current product ID of the
session.

The pWinStationInformation argument points to a
WINSTATIONPRODID structure. WinStationInformationLength MUST
be sizeof(WINSTATIONPRODID). <168>

146 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

WinStationLockedState

28

Retrieves the current locked state of the session, TRUE or FALSE.

The pWinStationInformation argument points to a BOOL variable.
WinStationInformationLength MUST be sizeof(BOOL).

WinStationRemoteAddress

29

Retrieves the remote IP address of the terminal server client in the
session.

The pWinStationInformation argument points to a
WINSTATIONREMOTEADDRESS structure.
WinStationInformationLength MUST be
sizeof(WINSTATIONREMOTEADDRESS).

WinStationIdleTime

30

Retrieves the idle time for the session, in seconds.

The pWinStationInformation argument points to a ULONG variable.

WinStationInformationLength MUST be sizeof(ULONG). <169>

WinStationLastReconnectType

31

Retrieves the last reconnect type for the session. Th e value placed
in pWinStationInformation will come from the enum
RECONNECT_TYPE.

The pWinStationInformation argument points to a ULONG variable.

WinStationInformationLength MUST be sizeof(ULONG). <170>

WinStationDisallowAutoReconnect

32

Retrieves the allow (1) or disallow (0) state for auto -reconnect, 1 or
0.

The pWinStationInformation argument points to a BOOLEAN
variable.

WinStationInformationLength MUST be sizeof(BOOLEAN).

WinStationReconnectedFromId

37

In case of reconnected sessions, this will return the session ID of
the temporary session from which it was reconnected, or -1 if no
temporary session was created.

The WinStationInformationLength argument points to a ULONG
variable.

WinStationInformationLength MUST be sizeof(ULONG).

WinStationEffe ctsPolicy

38

Return policies that differentiate among implementations.

The pWinStationInformation argument points to a ULONG variable.

WinStationInformationLength MUST be sizeof(ULONG).

WinStationType

39

Returns the type associated with this WinStation.

The pWinStationInformation argument points to a ULONG variable.

WinStationInformationLength MUST be sizeof(ULONG).

WinStationInformationEx

40

Retrieves extended information on the session, including connect
state, flags, session's name, connec t time, disconnect time, time
last input was received from the client, logon time, user's username
and domain, and the current time.

pWinStationInformation points to a VARDATA_WIRE structure
followed by a WINSTATIONINFORMATIONEX structure.

The WinStationInformationLength MUST be sizeof(VARDATA_WIRE)
+ sizeof(WINSTATIONINFORMATIONEX). The Size field in the
VARDATA_WIRE structure MUST be set to
sizeof(WINSTATI ONINFORMATIONEX) and the Offset set to
sizeof(VARDATA_WIRE).

pWinStationInformation: Pointer to buffer allocated by the caller in which to retrieve the data. The
data type or structure that pWinStationInformation points to is determined by the value of

147 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

WinStationInformationClass . See previous sections for what pWinStationInformation SHOULD
point to for each class.

WinStationInformationLength: Size of the data pointed to by pWinStationInformation , in bytes.

pReturnLength: Pointer to a variable to receive th e size, in bytes, of the data retrieved. If

WinStationInformationLength is too small, pReturnLength indicates the correct number of bytes
for the caller to allocate.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On fail ure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.7 RpcWinStationSetInformation (Opnum 6)

The RpcWinStationSetInformation method sets various types of configuration information for a
session. The caller MUST have the WINSTATION_SET permission. Some operations MUST have more
specific permissions as indi cated in more detail in the sections that follow. The method checks whether
the caller has WINSTATION_SET permission and the specific permission for the configuration

information (section 3.1.1) by setting it as the Access Request mask, and fails if the ca ller does not
have the permissions. <171>

 BOOLEAN RpcWinStationSetInformation(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in] DWORD WinStationInformationClass,

 [in, out, unique, size_is(WinStationInformationLength)]

 PCHAR pWinStationInformation,

 [in, range(0, 0x8000)] DWORD WinStationInformationLength

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained

from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationSetInformation failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

Successful completion.

STATUS_INVALID_INFO_CLASS

0xC0000003

The class is not recognized.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission for the operation.

148 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

LogonId: The ID of the session for which to set information.

WinStationInformationClass: The class of data to set. These values come from the enum type

WINSTATIONINFOCLASS. See the following sections for the supported classes.

Value Meaning

WinStationConfiguration

1

Merges configuration data into the terminal server session's data.

The pWinStationInformation argument points to a
WINSTACONFIGWIRE structure followed by a USERCONFIG structure.
The WinStationInformationLength MUST be
sizeof(WINSTACONFIGWIRE) + sizeof(USERCONFIG). The Size field in
the USERCONFIG structure inside WINSTACONFIG WIRE MUST be set to
sizeof(USERCONFIG) and the Offset set to
sizeof(WINSTACONFIGWIRE). The Size field in the NewFields
structure inside WINSTACONFIGWIRE MUST be set to 0, and the offset
MUST be set to sizeof(WINSTACONFIGWIRE) + sizeof(USERCONFIG).

WinStat ionPdParams

2

Sets transport protocol driver parameters. The structure coming into
the function indicates via SDClass the specific protocol driver for which
to set the parameter information.

The pWinStationInformation argument points to a PDPARAMSWIRE
stru cture followed by a PDPARAMS structure. The
WinStationInformationLength MUST be sizeof(PDPARAMSWIRE) +
sizeof(PDPARAMS). The Size field in SdClassSpecific field inside
PDPARAMSWIRE MUST be set to sizeof(PDPARAMS) and the offset
MUST be set to sizeof(PDPARA MSWIRE).

WinStationTrace

9

Enables tracing on the lower - level terminal server drivers for this
session. This MUST be called by a process running as SYSTEM or as an
administrator. The method performs access checks as defined in
sections 3.1.2 and 3.1.3. Th e method fails if both checks fail.

The pWinStationInformation argument points to a TS_TRACE structure,
and WinStationInformationLength MUST be sizeof(TS_TRACE).

WinStationBeep

10

Sends a beep to the session.

The pWinStationInformation argument points to a BEEPINPUT
structure, and WinStationInformationLength MUST be
sizeof(BEEPINPUT).

WinStationEncryptionOff

11

Turns encryption off. <172>

WinStationEncryptionPerm

12

Turns encryption permanently on. <173>

WinStatio nNtSecurity

13

Sends logon service in the session a CTRL+ALT+DEL message. <174>

The pWinStationInformation argument and
WinStationInformationLength are not used for this class. Set them to
dummy valid data, however, as there always has to be something in
th ese parameters.

WinStationInitialProgram

17

Not used.

WinStationSystemTrace

19

Enables global tracing on the lower - level terminal server drivers for this
session. This MUST be called by a process running as SYSTEM or as an
administrator. The method perfo rms access checks as defined in
sections 3.1.2 and 3.1.3. The method fails if both checks fail.

The pWinStationInformation argument points to a TS_TRACE structure,
and WinStationInformationLength MUST be sizeof(TS_TRACE).

149 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

WinStationClientData

21

Sends data to the terminal server client.

WinStationInformationLength represents the complete length of all
items to send and MUST be at least sizeof(VARDATA_WIRE) +
sizeof(WINSTATIONCLIENTDATA). Otherwise,
STATUS_INFO_LENGTH_MISMA TCH (as specified in [MS -ERREF]) is
returned in pResult . If the data is larger than this but still less than
what is expected, STATUS_INVALID_USER_BUFFER (as specified in
[MS -ERREF]) is returned in pResult .

The pWinStationInformation points to a VARDATA_WI RE structure
followed by the WINSTATIONCLIENTDATA structure itself. The Size
field in the VARDATA_WIRE structure MUST be set to
sizeof(WINSTATIONCLIENTDATA) and the Offset set to
sizeof(VARDATA_WIRE).

WinStationSecureDesktopEnter

22

Not used.

WinStationS ecureDesktopExit

23

Not used.

WinStationShadowInfo

26

Not used.

WinStationLockedState

28

Notifies processes of the new locked state of the session. TRUE or
FALSE. The pWinStationInformation argument points to a BOOL
variable. WinStationInformationLength MUST be sizeof (BOOL).

WinStationDisallowAutoReconnect

32

Allows or disallows auto - reconnect behavior for this session, TRUE or
FALSE. This MUST be called by a process running as SYSTEM.

The pWinStationInformation argument points to a BOOL variable.
WinStationInformationLength MUST be sizeof (BOOL).

pWinStationInformation: Pointer to buffer allocated by the caller in which the data for the operation
is located. The data type or st ructure to which pWinStationInformation points is determined by the
value of WinStationInformationClass .

WinStationInformationLength: Size of the data pointed to by pWinStationInformation , in bytes.

Return Values: Returns TRUE if the call succeeded, or FA LSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.8 RpcWinStationSendMessage (Opnum 7)

The RpcWinStationSendMessage method displays a message box on a given terminal server session
and, optionally, waits for a reply. The caller MUST have WINSTATION_MSG permission for this method
to succeed. The method checks whether the caller has WINSTATION_MSG permission (section 3.1.1)
by setting it as the Access Request mask, and fails if the caller does not have the permission. <175>

150 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 BOOLEAN RpcWinStationSendMessage(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in, size_is(TitleLength)] PWCHAR pTitle,

 [in, range(0, 1024)] DWORD TitleLength,

 [in, size_is(MessageLength)] PWCHAR pMessage,

 [in, range(0, 1024)] DWORD MessageLength,

 [in] DWORD Style,

 [in] DWORD Timeout,

 [out] DWORD* pResponse,

 [in] BOOLEAN DoNotWait

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationSendMessage failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

STATUS_ACCESS_DENIED

0xC0000022

The caller doe s not have WINSTATION_MSG permission.

LogonId: The session ID of the session on which to display the message box.

pTitle: Pointer to the title for the message box to display.

TitleLength: The length, in bytes, of the title to display.

pMessage: Pointe r to the message to display.

MessageLength: The length, in bytes, of the message to display in the specified session.

Style: Can be any value that the standard MessageBox() method's Style parameter takes. For more

information, see [MSDN -MSGBOX].

Timeout: The response time -out, in seconds. If the message box is not responded to in Timeout
seconds, a response code of IDTIMEOUT MUST be returned in pResponse to indicate that the
message box t imed out. This time -out value is managed by another system component which
dismisses the message box if no user input is entered during this interval.

pResponse: The return code from the MessageBox method. This value will be a standard
MessageBox return v alue. For more information, see [MSDN -MSGBOX].

DoNotWait: If set to TRUE, do not wait for the response to the message. On return, if no errors

occur in queuing the message, the pResponse parameter will be set to IDASYNC.

If FALSE, wait for a response.

Ret urn Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01 Successful completion.

151 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

TRUE

0x00

FALSE

Method call failed.

3.7.4.1.9 RpcLogonIdFromWinStationName (Opnum 8)

The RpcLogonIdFromWinStationName method returns a session's session ID given its session name.
The caller MUST have WINSTATION_QUERY permission. The method checks whether the caller has
WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request mask, and fails if
the caller does not have the permission. <176>

 BOOLEAN RpcLogonIdFromWinStationName(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in, size_is(NameSize)] PWCHAR pWinStationName,

 [in, range(0, 256)] DWORD NameSize,

 [out] DWORD* pLogonId

);

hServer: The Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be
obtained from a previous call to Rp cWinStationOpenServer.

pResult: The failure error code if the call to RpcLogonIdFromWinStationName fails. If the call is
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call is successful.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission for the operation.

pWinStationName: The pointer to a buffer holding the session name.

NameSize: The length of the string in characters pointed to by pWinStationName including the
termin ating NULL character. MUST be less than or equal to WINSTATIONNAME_LENGTH.

pLogonId: The matching session ID for the session specified by pWinStationName .

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,

pResul t indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

152 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.7.4.1.10 RpcWinStationNameFromLogonId (Opnum 9)

The RpcWinStationNameFromLogonId method retrieves the Windows Station (WinStation) name for a
specific session. The caller MUST have WINSTATION_QUERY permission. The method checks whether

the caller has WINSTATION_QUERY permission (section 3.1.1) by setting it as the Access Request
mask, and fails if the caller does not have the permission. <177>

 BOOLEAN RpcWinStationNameFromLogonId(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LoginId,

 [in, out, size_is(NameSize)] PWCHAR pWinStationName,

 [in, range(0, 256)] DWORD NameSize

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer MUST be
obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationNameFromLogonId failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

STATUS_INVALID_PARAMETER

0xC000000D

NameSize value is less than WINSTATIONNAME_LENGTH + 1.

0x80071B6E The session does not exist or the caller does not have

WINSTATION_QUERY permission.

LoginId: The ID of the session for which to retrieve the WinStation name.

pWinStationName: Pointer to a buffer holding the session name. The length of the buffer MUST be
equal to or greater than (WINSTATIONNAME_LENGTH + 1).

NameSize: The size, in bytes, of the buffer where the WinStation name will be stored.

Return Valu es: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,

pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.11 RpcWinStationConnect (Opnum 10)

The RpcWinStationConnect method connects a user's terminal server client from a given terminal

server session to a different terminal server session. If there is a user connected to the cli ent session,
it will be disconnected at the end of this call. If the method succeeds, the state of the session is
State_Active as defined in the WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

153 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The client indicated by ConnectLogonId MUST have WINSTATION _DISCONNECT permission. Similarly,
TargetLogonId MUST have WINSTATION_CONNECT and WINSTATION_DISCONNECT permissions. For

each of the aforementioned permissions, the method checks whether the caller has the permission
(section 3.1.1) by setting the Access R equest mask to the specific permission, and fails if the caller

does not have the permission. <178>

 BOOLEAN RpcWinStationConnect(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD ClientLogonId,

 [in] DWORD ConnectLogonId,

 [in] DWORD TargetLogonId,

 [in, size_is(PasswordSize)] PWCHAR pPassword,

 [in, range(0, 1024)] DWORD PasswordSize,

 [in] BOOLEAN Wait

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST

be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST b e an implementation -specific negative value.

ClientLogonId: The session ID of the caller of this method.

ConnectLogonId: The ID of the session from which the connection is being made. This MUST be the
same as ClientLogonId and MUST be an existing session ID. The user MUST be logged on. To
indicate the current session, this MUST be LOGONID_CURRENT.

TargetLogonId: The session ID of the session to which the connection is being made. Cannot be the
same as ConnectLogonId and MUST be an existing session ID.

pPa ssword: The password of TargetLogonId 's session. The password MUST be valid. The password

MAY be NULL if the same user is making the call as the user logged on to TargetLogonId 's session.

PasswordSize: The length of the string pPassword in characters incl uding the terminating NULL
character.

Wait: TRUE indicates to wait for the connection to complete, FALSE otherwise. <179>

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status co de.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.12 RpcWinStationDisconnect (Opnum 13)

The RpcWinStationDisconnect method disconnects, on the server, the terminal server client from a
session. If the method succeeds, the state of the session is State_Disconnected as defined in the

WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

154 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The calle r of this method MUST have WINSTATION_DISCONNECT permission on the session to
disconnect. The method checks whether the caller has WINSTATION_DISCONNECT permission

(section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not h ave the
permission. <180>

 BOOLEAN RpcWinStationDisconnect(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in] BOOLEAN bWait

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationDisconnect failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission to disconnect the session.

LogonId: The ID of the session to disconnect. Can be LOGONID_CURRENT to indicate the current
session.

bWait: TRUE to wait for the disconnect to complete before returning, FALSE otherwise. <181>

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.13 RpcWinStationReset (Opnum 14)

The RpcWinStationReset method resets a session. Resetting a session will lead to the user being
logged off and his or her term inal server client being disconnected. The caller MUST have

WINSTATION_RESET permissions. The method checks whether the caller has WINSTATION_RESET

permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have t he permission. <182>

 BOOLEAN RpcWinStationReset(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in] BOOLEAN bWait

155 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationReset failed. If the call was successful, this

parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have WINSTATION_RESET permission.

LogonId: The ID of the session to reset.

bWait: TRUE to wait for the disconnect to complete before returning, FALSE otherwise.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,

pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.14 RpcWinStationShutdownSystem (Opnum 15)

The RpcWinStationShutdownSystem method shuts down the system and optionally logs off all

sessions and/or reboots the system. The caller requires SeShutdownPrivilege (see [MSDN -
PRVLGECNSTS]) when performing the shutdown locally and SeRemoteShutdownPrivilege (see [MSDN -
PRVLGECNSTS]) when performing the shutdown remotely. The caller calls ExitWindowsEx (see
[MSDN -ExitWindowsEx]) to perform the actual shutdown once all checks have been completed.

 BOOLEAN RpcWinStationShutdownSystem(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD ClientLogonId,

 [in] DWORD ShutdownFlags

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer MUST be
obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationShutdownSystem failed. If the call was
successful, this param eter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS The call succeeded.

156 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

0x00000000

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission to shut down the system.

ClientLogonId: The session requesting to shut down the sys tem. Ignored when the RPC call is
remote.

ShutdownFlags: Shutdown flags. It MUST be any bitwise OR combination of the following flags.

Value Meaning

WSD_LOGOFF

0x00000001

Forces sessions to logoff.

WSD_SHUTDOWN

0x00000002

Shuts down the system.

WSD_REBOOT

0x00000004

Reboots after shutdown.

WSD_POWEROFF

0x00000008

Powers off after shutdown.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.15 RpcWinStationWaitSystemEvent (Opnum 16)

The RpcWinStationWaitSystemEvent method waits synchronously for a system event from an RPC API
request on behalf of the caller. There is no time -out on the wait. Only one ev ent wait at a time can be
posted per server handle. If an event wait is already outstanding and the new request is not a cancel,
the new request will fail. The caller is not required to have any specific permission to call
RpcWinStationWaitSystemEvent. The first time this is called, the server will create an event block for
the handle specified by hServer. This event block will be cleared if RpcWinStationWaitSystemEvent is

called with EventMask equal to WEVENT_NONE or if RpcWinStationCloseServer or

RpcWinSt ationCloseServerEx are closed for the handle hServer .

 BOOLEAN RpcWinStationWaitSystemEvent(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD EventMask,

 [out] DWORD* pEventFlags

);

157 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

hServer: Handle to the server object. This is of type SE RVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation -specific negative value.

EventMask: The mask of events for which to wait. It MUST be any bitwise OR combination of the
following except for WEVENT_NONE.

Value Meaning

WEVENT_NONE

0x00000000

 The client requests to clear its event wait block. This MUST be called when
completing waiting for the event. When RpcWinStationCloseServer is called for
hServer, this method and mask value is called on the client's behalf.

WEVENT_CREATE

0x00000001

Wait for a new session to be created.

WEVENT_DELETE

0x00000002

Wait for an existing session to be deleted.

WEVENT_RENAME

0x00000004

Wait for a session to be renamed.

WEVENT_CONNECT

0x00000008

The session connected to a client.

WEVENT_DISCONNECT

0x00000010

A client disconnected from the session.

WEVENT_LOGON

0x00000020

A user logged on to the session.

WEVENT_LOGOFF

0x00000040

A user logged off from the session.

WEVENT_STATECHANGE

0x00000080

The session state changed.

WEVENT_LICENSE

0x00000100

The license state changed. <183>

WEVENT_ALL

0x7fffffff

Wait for all event types.

WEVENT_FLUSH

0x80000000

Release all waiting clients.

pEventFlags: Pointer to a variable to receive a bitmask that is a subset of EventMask indicating
which events actually occurred during this wait operation.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

158 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x00

FALSE

Method call failed.

3.7.4.1.16 RpcWinStationShadow (Opnum 17)

The RpcWinStationShadow method starts a shadow (remote control) operation of another terminal
server session. If the method succeeds, the state of the session that started the shadow operation is

State_Shadow and the state of the session being shadowed is State_Active as defined in the
WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

The caller MUST have WINSTATION_SHADOW permission. The other session can be local or on a
terminal server. The method MUST be called from inside a remote terminal server ses sion. The session
to shadow MUST be in the active state with a user logged on. The method checks whether the caller

has WINSTATION_SHADOW permission (section 3.1.1) by setting it as the Access Request mask, and

fails if the caller does not have the permiss ion. <184>

 BOOLEAN RpcWinStationShadow(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in, unique, size_is(NameSize)]

 PWCHAR pTargetServerName,

 [in, range(0, 1024)] DWORD NameSize,

 [in] DWORD TargetLogonId,

 [in] BYTE HotKeyVk,

 [in] USHORT HotkeyModifiers

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument value

MUST be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the ca ll was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation -specific negative value.

LogonId: The ID of the session to shadow from.

pTargetServerName: The shadow target server name. Set pTargetServerName to NULL to indicate
the current server.

NameSize: The size of the string pTargetServerName , in bytes. MAY be 0 if pTargetServerName is

NULL.

TargetLogonId: The shadow target session ID.

HotKeyVk: The vir tual key code of the key to press to stop shadowing. This key is used in
combination with the HotkeyModifiers parameter.

HotkeyModifiers: The virtual modifier that signifies the modifier key, such as shift or control, to
press to stop shadowing. The modifi er key is used in combination with the key signified by the

HotKeyVk parameter. This parameter MAY be any combination of KBDSHIFT, KBDCTRL, and
KBDALT to indicate the SHIFT key, the CTRL key, and the ALT key, respectively.

Return Values: Returns TRUE if th e call succeeded, or FALSE if the method failed. On failure, pResult
indicates the failure status code.

159 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.17 RpcWinStationBreakPoint (Opnum 29)

The RpcWinStationBreakPoint method breaks into the debugger in either the session process of a
specific session or in the terminal server service process. When this method is called, the server
impersonates the caller and then tries to enable SeShutdownPrivilege (see [MSDN -PRVLGECNSTS]). If
the attempt to enable this privilege fails, the RpcWinStationBreakPoint call fails. <185>

 BOOLEAN RpcWinStationBreakPoint(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in] BOOLEAN KernelFlag

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST

be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWi nStationBreakPoint failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

STATUS_ACCESS_DENIED

0xC0000022

The SeShutdownPrivilege (see [MSDN -PRVLGECNSTS]) privilege cannot be
enabled.

LogonId: The ID of the session to break into the debugger. If this parameter is -2, the terminal
server service MUST break into the debugger instead. <186>

KernelFlag: Set to TRUE to indicate that the serv er will break into the debugger in a particular
session in kernel mode. If LogonId is -2, the server MUST break into the debugger in user mode.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

160 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.7.4.1.18 RpcWinStationReadRegistry (Opnum 30)

The RpcWinStationReadRegistry method tells the terminal server to reread, from the registry, the
configuration data for all the WinStations, and to update the memory locations where this data was

stored with the values read from the registry. <187> The caller of this RPC method MUST be running
either as SYSTEM or as an Administrator. <188>

 BOOLEAN RpcWinStationReadRegistry(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStat ionOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as
specified in [MS -ERREF]; otherwise, it MUST be an implementation -specific negative value.

Return Values: Returns TRUE if the call succeeded, or FAL SE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.19 OldRpcWinStationEnumerateProcesses (Opnum 34)

The OldRpcWinStationEnumerateProcesses method calls the RpcWinStationEnumerateProcesses
method and returns whatever is returned by that method. It has the same parameters as the
RpcWinStationEnumerateProces ses method. No special permissions are required to call this
method. <189>

 BOOLEAN OldRpcWinStationEnumerateProcesses(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [out, size_is(ByteCount)] PBYTE pProcessBuffer,

 [in, range(0, 0x8000)] DWORD ByteCount

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationEnumerateProcesses failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS -
ERREF].

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

161 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

STATUS_INFO _LENGTH_MISMATCH

0xC0000004

ByteCount is too small to receive the data.

pProcessBuffer: Pointer to a buffer receiving the list of processes.

In pProcessBuffer for each process, the server will return the following in the buffer, in this order:

1. A TS_PROCESS_INFORMATION_NT4 structure.

2. A number of SYSTEM_THREAD_INFORMATION (see [WININTERNALS] or [MSFT -
WINSYSINTERNALS]) structures equal to the maximum number of threads in the process.

3. A TS_SYS_PROCESS_INFORMATION structure for the process.

Only up to SIZEOF TS4_SYSTEM_THREAD_INFORMATION of the SYSTEM_THREAD_INFORMATION
structure (as specified in (see [WININTERNALS] or [MSFT -WINSYSINTERNALS]) is copied into the

buffer and only up to SIZEOF TS4_SYSTEM_PROCESS_INFORMATION of the
TS_SYS_PROCESS_INFORMATION _NT4 structure is copied into the buffer.

ByteCount: The size, in bytes, of the pProcessBuffer parameter. If ByteCount is too small to receive

the data, the method returns an error code (STATUS_INFO_LENGTH_MISMATCH, as specified in
[MS -ERREF]) in the pResult parameter. Note that during failure no indication is given to the caller
specifying the correct size if pProcessBuffer is too small.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,
pResult indicates the fa ilure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.20 RpcWinStationEnumerateProcesses (Opnum 36)

The RpcWinStationEnumerateProcesses method retrieves the processes running on a remote server on
which the caller has WINSTATION_QUERY permission to retrieve information. The method checks
whether the caller has WINSTATION_QUERY permission (section 3.1.1) by s etting it as the Access
Request mask, and fails if the caller does not have the permission. <190>

 BOOLEAN RpcWinStationEnumerateProcesses(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [out, size_is(ByteCount)] PBYTE pProcessBuffer,

 [in, range(0 , 0x8000)] DWORD ByteCount

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

162 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pResult: Failure error code if the call to RpcWinStationEnumerateProcesses failed . If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS -

ERREF].

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

STATUS_INFO_LENGTH_MISMATCH

0xC0000004

ByteCount is too small to receive the data.

pProcessBuffer: Pointer to a buffer receiving the list of processes.

In pProcessBuffer for each process, the server will return the following in the buffer, in this order:

1. A TS_PROCESS_INFORMATION_NT4 structure.

2. A numbe r of SYSTEM_THREAD_INFORMATION (see [WININTERNALS] or [MSFT -
WINSYSINTERNALS]) structures equal to the maximum number of threads in the process.

3. A TS_SYS_PROCESS_INFORMATION structure for the process.

Only up to SIZEOF TS4_SYSTEM_THREAD_INFORMATION of the S YSTEM_THREAD_INFORMATION
structure (as specified in [WININTERNALS] or [MSFT -WINSYSINTERNALS]) is copied into the
buffer and only up to SIZEOF TS4_SYSTEM_PROCESS_INFORMATION of the
TS_SYS_PROCESS_INFORMATION_NT4 structure is copied into the buffer.

ByteCoun t: The size, in bytes, of the pProcessBuffer parameter. If ByteCount is too small to receive
the data, the method returns an error code (STATUS_INFO_LENGTH_MISMATCH, as specified in

[MS -ERREF]) in the pResult parameter. Note that during failure no indicat ion is given to the caller
specifying the correct size if pProcessBuffer is too small.

Return Values: Returns TRUE if the call succeeded, or FALSE if the method failed. On failure,

pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.21 RpcWinStationTerminateProcess (Opnum 37)

The RpcWinStationTerminateProcess method terminates the specified process. An attempt is made to

enable the SE_DEBUG_PRIVILEGE privilege to kill processes not owned by the current user, including
processes running in other terminal server sessions. Caller MUST have terminate permission to
terminate the process.

 BOOLEAN RpcWinStationTerminateProcess(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD ProcessId,

 [in] DWORD ExitCode

163 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. hServer MUST be obtained
from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationTerminateProcess failed. If the call was

successful, this parameter MUST be STATUS_SUCCESS (0x00000000), as specified in [MS -
ERREF].

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission to terminate the process.

ProcessId: The ID of the process to terminate.

ExitCode: The exit code to be used by the process and threads that are terminated as a result of this

call.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.22 RpcWinStationGetAllProcesses (Opnum 43)

The RpcWinStationGetAllProcesses method retrieves the list of processes running on the server
machine. Only the processes from the sessions on which the user has WINSTATION_ QUERY
permission will be retrieved. The method checks whether the caller has WINSTATION_QUERY
permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permission.

 BOOLEAN RpcWinStationGetAllProcesses(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] ULONG Level,

 [in, out] BOUNDED_ULONG* pNumberOfProcesses,

 [out, size_is(,*pNumberOfProcesses)]

 PTS_ALL_PROCESSES_INFO* ppTsAllProcessesInfo

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationGetAllProcesses failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

164 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

STATUS_SUCCESS

0x00000000

The call was successful.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission.

Level: MUST be 0. Any other value will lead to FALSE being returned by the method.

pNumberOfProcesses: The number of processes requested by the caller. On return, this indicates

the number of processes actually stored in the ppTsAllProcessesInfo parameter.

ppTs AllProcessesInfo: Pointer to an array of processes allocated and returned by the method.
* ppTsAllProcessesInfo is allocated by the method to be an array of TS_ALL_PROCESSES_INFO
structures. The array returned by the method MUST be freed by the caller.

Ret urn Values: Returns TRUE if the call succeeded, and FALSE if the lookup failed. On failure,

pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.23 RpcWinStationGetProces sSid (Opnum 44)

The RpcWinStationGetProcessSid method retrieves the process security identifier (SID), as specified in

[MS -DTYP] section 2.4.2, for a given process ID and process start time combination. <191> The caller
MUST have the PROCESS_QUERY_INFORMATION access right to the process being queried and the

TOKEN_QUERY access right to the access token associated with the process. For more information on
the process access rights, see [MSDN -PROCRIGHTS]. For more in formation on access rights for access
tokens, see [MSDN -TOKENRIGHTS].

 BOOLEAN RpcWinStationGetProcessSid(

 [in] SERVER_HANDLE hServer,

 [in] DWORD dwUniqueProcessId,

 [in] LARGE_INTEGER ProcessStartTime,

 [out] LONG* pResult,

 [in, out, unique, size_i s(dwSidSize)]

 PBYTE pProcessUserSid,

 [in, range(0, 1024)] DWORD dwSidSize,

 [in, out] DWORD* pdwSizeNeeded

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

dwUniqueProcessId: The process ID to retrieve the SID.

ProcessStartTime: The start time of the process ind icated by dwUniqueProcessId . This is a 64 -bit
value representing the number of 100 -nanosecond intervals since January 1, 1601 (UTC).
ProcessStartTime combined with dwUniqueProcessId is used to identify a process.

165 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pResult: Failure error code if the call to RpcWinStationGetProcessSid failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call succeeded.

0x8007007A The size of pProcessUserSid buffer is too small. <192>

STATUS_BUFFER_TOO_SMALL

0xC0000023

The size of pProcessUserSid buffer is too small. <193>

0x80070005 The caller does not have necessary permissions. <194>

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have necessary permis sions. <195>

pProcessUserSid: The buffer into which the method MUST copy the SID of the process. MUST be
NULL if dwSidSize is zero, in which case the correct size will be returned in pdwSizeNeeded .

dwSidSize: The size of the buffer, in bytes, pointed to by pProcessUserSid . If the buffer is too
small, STATUS_BUFFER_TOO_SMALL <196> or 0x8007007A <197> is returned in pResult .

pdwSizeNeeded: Indicates the length of the SID. If STATUS_BUFFER_TOO_SMALL <198> or
0x8007007A <199> is returned in pResult , this indicat es to the caller the correct size to allocate

to a buffer prior to calling the method again.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.24 RpcWinStationGetTermSrvCountersValue (Opnum 45)

The RpcWinStationGetTermSrvCountersValue method retrieves the current value of requested
terminal server performance counters. The caller is not required to have any specific permission to call
this method.

 BOOLEAN RpcWinStationGetTermSrvCountersValue(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in, range(0, 0x1000)] DWORD dwEntries,

 [in, out, size_is(dwEntries)] PTS_COUNTER pCounter

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

166 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise it MUST be an implementation -specific negative value.

dwEntries: The number of performance counters to query. Indicates the size of the array pointed to
by pCounter.

pCounter: An array of TS_COUNTER structures. The caller MUST set the dwCounterId in the
TS_COUNTER structures for each entry in the array to indicate the counter whose current value to
retrieve. On return, the method MUST set the value for that performance counter. If the
performance counter ID is not recognized or is not supported, it will set the bResult to 0.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code. Individual entries in the array pCounter will indicate
whether or not the counter data for that counte r could be retrieved.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.25 RpcWinStationReInitializeSecurity (Opnum 46)

The RpcWinStationReInitializeSecurity method reinitializes security for all non -console WinStations

(remote connection protocols). <200> Existing sessions will not be affected, but future sessions will
have the new security descriptor read from the registry applied to them. This method MUST be called
by processes running as SYSTEM or as an Administrator. <201>

 BOOLEAN RpcWinStationReInitializeSecurity(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult

);

hS erver: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x00000000);
otherwise, it MUST be an implementation -specific negative value.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indica tes the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.26 RpcWinStationGetLanAdapterName (Opnum 53)

167 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The RpcWinStationGetLanAdapterName method returns the name of the LAN adapter with a specific
LAN adapter number (lana) and transport type, if it is configured to be used for a Terminal Services

protocol connection. No special permissions are required to call this method. <202><203>

 BOOLEAN RpcWinStationGetLanAdapterName(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in, range(0, 0x1000)] DWORD PdNameSize,

 [in, size_is(PdNameSize)] PWCHAR pPdName,

 [in, range(0, 1024)] ULONG LanAdapter,

 [out] ULO NG* pLength,

 [out, size_is(,*pLength)] PWCHAR* ppLanAdapter

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: If the call was successful , this parameter MUST be STATUS_SUCCESS (0x00000000);

otherwise, it MUST be an implementation -specific negative value.

PdNameSize: The size, in bytes, of pPdName including the terminating NULL character.

pPdName: The transport protocol type on which to ret rieve information. This MUST be any of the
following strings: tcp, netbios, ipx, spx.

LanAdapter: The number of the LAN adapter to retrieve information (also known as lana). If this is
set to "0", it will always return a LAN adapter name to indicate all LA N adapters configured with
the protocol, irrespective of the transport protocol type specified in pPdName .

pLength: The pointer to a ULONG containing the length of the string ppLanAdapter , in characters
including the terminating NULL character. If LanAdapt er is 0, this value MUST be
DEVICENAME_LENGTH+1.

ppLanAdapter: The pointer to a string allocated by this method for retrieving the LAN adapter's

name. This memory MUST be freed by the caller.

Return Values: Returns TRUE if the call is successful, and FALSE if the method fails. On failure,

pResult indicates the failu re status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.27 RpcWinStationUpdateSettings (Opnum 58)

The RpcWinStationUpdateSettings method rereads settings for all WinStations. The caller MUST have

WINSTATION_QUERY permission. The method checks whether the caller has WINSTATION_QUERY
permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does not
have the permiss ion. <204>

 BOOLEAN RpcWinStationUpdateSettings(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

168 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [in] DWORD SettingsClass,

 [in] DWORD SettingsParameters

);

hServer: A handle to the server object of type SERVER_HANDLE. The hServer argument MUST be
obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationUpdateSettings failed. If the call was
successful, this pa rameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call was successful.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission to read the settings.

STATUS_INVALID_PARAMETER

0xC000000D

Unrecognized SettingsClass .

SettingsClass: The class for which to update settings.

Value Meaning

WINSTACFG_SESSDIR

0x00000001

Contacts Session Directory to reread the WinStation settings. <205>

WINSTACFG_LEGACY

0x00000000

Rereads settings from the local registry for the configured winstations. This does
the same thing as RpcWinStationReadRegistry.

SettingsParameters: MUST be 0.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the fai lure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.28 RpcWinStationShadowStop (Opnum 59)

The RpcWinStationShadowStop method stops all shadow operations on the specified session, including
whether the session is acting as a shadow client (a session that is shadowing another session) or as a
shadow target (a session being shadowed by another ses sion). If the method succeeds, both the state

of the session that started the shadow operation and the state of the session being shadowed are
State_Active as defined in the WINSTATIONSTATECLASS enumeration (section 2.2.1.9).

Caller MUST have WINSTATION_DI SCONNECT and WINSTATION_RESET permissions. For each
aforementioned required permission, the method checks whether the caller has the permission

169 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

(section 3.1.1) by setting the Access Request mask to the specific permission, and fails if the caller
does not have the permission. <206>

 BOOLEAN RpcWinStationShadowStop(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD LogonId,

 [in] BOOLEAN bWait

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST

be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationShadowStop failed. If the call was successful,
this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call was successful.

STATUS_CTX_WINSTATION_NOT_FOUND

0xC00A0015

Indicates the session does not exist.

STATUS_CTX_SHADOW_NOT_RUNNING

0xC00A0036

Indicates the session is either not active or not being
shadowed.

STATUS_ACCESS_ DENIED

0xC0000022

Indicates the caller does not have permission to end
shadowing on the session.

LogonId: The ID of the session on which to stop shadowing operations.

bWait: TRUE indicates wait for reset to complete, FALSE otherwise.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,

pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.29 RpcWinStationCloseServerEx (Opnum 60)

The RpcWinStationCloseServerEx method closes the server handle for WinStation APIs. The call to this

method MUST be serialized if there are multiple threads running; otherwise, the behavior of this
function is unknown. No special permissions are required to call this method.

 BOOLEAN RpcWinStationCloseServerEx(

 [in, out] SERVER_HANDLE* phServer,

 [out] DWORD* pResult

);

170 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

phServer: Pointer to a variable that is a handle to the server. The variable is of type
SERVER_HANDLE. The handle MUST be returned from a previous call to

RpcWinStationOpenServer. On return from this method, *phServer is set to NULL.

pResult: If the call was successful, this parameter MUST be STATUS_SUCCESS (0x 00000000);

otherwise, it MUST be an implementation -specific negative value.

Return Values: Returns TRUE if the call succeeded, and FALSE if the call failed. On failure, pResult
indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.30 RpcWinStationIsHelpAssistantSession (Opnum 61)

The RpcWinStationIsHelpAssistantSession method determines if a session is created by the built - in
HelpAssistant user account. <207> The caller is not required to have any specific permission to call
this method.

 BOOLEAN RpcWinStationIsHelpAssistantSession(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] ULONG SessionId

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST

be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationIsHelpAssistantSession failed. If no error was
encountered wh ile executing the call, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call was executed successfully.

STATUS_UNSUCCESSFUL

0xC0000001

Execution of the call failed.

STATUS_CTX_WINSTATION_NOT_FOUND

0xC00A0015

The SessionId does not exist.

STATUS_WRONG_PASSWORD

0xC000006A

This is a Help Assistant session but the help assistance ticket
associated with the session is no longer valid.

SessionId: The ID of the session to check.

Return Values: Returns TRUE if the session is running as HelpAssistant, and FALSE if this is not a
HelpAssistant session or if an error was encountered during the test. On failure, pResult indicates
the failure status code.

171 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Descri ption

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.31 RpcWinStationGetMachinePolicy (Opnum 62)

The RpcWinStationGetMachinePolicy method returns a copy of the terminal server machine policy to
the caller. <208> The caller is not required to have any specific permission to call this method.

 BOOLEAN RpcWinStationGetMachinePolicy(

 [in] SERVER_HANDLE hServer,

 [in, out, size_is(bufferSize)] PBYTE pPolicy,

 [in, range(0, 0x8000)] ULONG bufferSize

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pPolicy: Pointer to a buffer to receive the machine policy. This buffer MUST be of type
POLICY_TS_MACHINE.

bufferSize: Size of the buffer, in bytes, pointed to by pPolicy . This size MUST NOT be less than
sizeof(POLICY_TS_MACHINE).

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.32 RpcWinStationCheckLoopBack (Opnum 65)

The RpcWinStationCheckLoopBack method checks if there is a loopback when a client tries to connect.

Loopback refers to opening a terminal server session on the local machine. <209> The caller is not
required to have any specific permission to call this method.

 BOOLEAN RpcWinStationCheckLoopBack(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD ClientLogonId,

 [in] DWORD TargetLogonId,

 [in, size_is(NameSize)] PWCHAR pTargetServerName,

 [in, range(0, 1024)] DWORD NameSize

);

172 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

hServer: Handle t o the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationCheckLoopBack failed. If the call was
successful, this parame ter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call was successful.

STATUS_ACCESS_DENIED

0xC0000022

A loopback was detected.

STATUS_CTX_WINSTATION_ACCESS_DENIED

0xC00A002B

The server is in the process of shutting down and cannot
complete the request.

ClientLogonId: The ID of the session from which the terminal server client was started.

TargetLogonId: The session ID to which the client is trying to connect.

pTargetServerName: The name of the target server to which the client is connecting. The string
MUST contain the terminating NULL character.

NameSize: The length of the pTargetServerName string in characters including the terminating NULL
character.

Return Values: Returns FALSE if there is no loopback, and TRUE if a loopback was detected. This
method returns TRUE also in the case when an error was encountered during the loopback test. In
this case, the pResult value contains the relevant error code.

Return value/code Description

0x01

TRUE

A loopback was detected or the method call failed.

0x00

FALSE

A loopback was not detected.

3.7.4.1.33 RpcConnectCallback (Opnum 66)

The RpcConnectCallback method initiates a TCP connection to the specified IP address and waits for
the party on the other end of the connection to start the Remote Desktop Protocol (RDP) connection

sequence. More information on Remote Desktop Protocol can be found in [MS -RDPBCGR]. This method
MUST be called by processes running as SYSTEM. Note that this function assumes that the address
being passed in is an IPv4 address. IPv6 addresses are not supported. <210>

 BOOLEAN RpcConnectCallback(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] DWORD TimeOut,

 [in] ULONG AddressType,

 [in, size_is(A ddressSize)] PBYTE pAddress,

 [in, range(0, 0x1000)] ULONG AddressSize

);

173 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcConnectCallback failed. If the call was successful, this
parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call was successful.

STATUS_NOT_SUPPORTED

0xC00000BB

AddressType is not TDI_ADDRESS_TYPE_IP. This is a standard
representation of a type for an IP address. For more information, see
[MSDN -TDIADDRESS].

STATUS_INVALID_PARAMETER

0xC000000D

AddressSize is not TDI_ADDRESS_LENGTH_IP. For more information,
see [MSDN -TDIADDRE SS].

STATUS_ACCESS_DENIED

0xC0000022

The caller is not SYSTEM.

TimeOut: Not used.

AddressType: MUST be TDI_ADDRESS_TYPE_IP. For more information, see [MSDN -TDIADDRESS].

pAddress: Pointer to the address itself. MUST be TDI_ADDRESS_IP. This is a standard
representation for an IP address. For more information, see [MSDN -TDIADDRESS].

AddressSize: MUST be TDI_ADDRESS_LENGTH_IP. This is a standard representation for the length
of an I P address. For more information, see [MSDN -TDIADDRESS].

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completi on.

0x00

FALSE

Method call failed.

3.7.4.1.34 RpcWinStationGetAllProcesses_NT6 (Opnum 70)

The RpcWinStationGetAllProcesses_NT6 method retrieves the processes running a remote server
machine. Only the processes from the sessions on which the caller has WINSTATION_QUERY
permission will be retrieved. The method checks whether the caller has WINSTATION_QUERY

permission (section 3.1.1) by setting it as the Access Request mask, and fails if the caller does n ot
have the permission.

 BOOLEAN RpcWinStationGetAllProcesses_NT6(

 [in] SERVER_HANDLE hServer,

 [out] DWORD* pResult,

 [in] ULONG Level,

 [in, out] BOUNDED_ULONG* pNumberOfProcesses,

 [out, size_is(,*pNumberOfProcesses)]

 PTS_ALL_PROCESSES_INFO_NT6* ppTsAllProcessesInfo

174 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationGetAllProcesses_ NT6 failed. If the call was

successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

Value Meaning

STATUS_SUCCESS

0x00000000

The call was successful.

STATUS_ACCESS_DENIED

0xC0000022

The caller does not have permission for the operation.

Level: MUST be GAP_LEVEL_BASIC (0). Any other value will lead to the method returning FALSE.

pNumberOfProcesses: The number of processes requested by the caller. On return, this indicates
the number of processes actually stored in the ppTsAllProcessesInf o parameter.

ppTsAllProcessesInfo: Pointer to an array of processes allocated and returned by the method.
*ppTsAllProcessesInfo is allocated by the method to be an array of
TS_ALL_PROCESSES_INFO_NT6 structures. The array returned by the method MUST be fre ed by
the caller.

Return Values: Returns TRUE if the call succeeded, and FALSE if the lookup failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.4.1.35 RpcWinStationOpenSessionDirectory (Opnum 75)

The RpcWinStationOpenSessionDirectory method pings the Session Directory to see if it can accept
RPC calls. The caller MUST be either SYSTEM or an admini strator. The method performs access checks
as defined in sections 3.1.2 and 3.1.3. The method fails if both checks fail. For more information about

the Session Directory, see [MSFT -SDLBTS]. <211>

 BOOLEAN RpcWinStationOpenSessionDirectory(

 [in] SERVER_HAND LE hServer,

 [out] DWORD* pResult,

 [in, string, max_is(64)] PWCHAR pszServerName

);

hServer: Handle to the server object. This is of type SERVER_HANDLE. The hServer argument MUST
be obtained from a previous call to RpcWinStationOpenServer.

pResult: Failure error code if the call to RpcWinStationOpenSessionDirectory failed. If the call was
successful, this parameter MUST be STATUS_SUCCESS (0x00000000).

175 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

STATUS_SUCCESS

0x00000000

The call was successful.

STATUS_UNSUCCESSFUL

0xC0000001

The server is not in application server mode on an advanced servers Stock
Keeping Unit (SKU).

STATUS_ACCESS_DENIED

0xC0000022

The caller is not SYSTEM nor an administrator.

pszServerName: The name of the server hosting session directory to which to attempt connection.

Return Values: Returns TRUE if the call succeeded, and FALSE if the method failed. On failure,
pResult indicates the failure status code.

Return value/code Description

0x01

TRUE

Successful completion.

0x00

FALSE

Method call failed.

3.7.5 Timer Events

None.

3.7.6 Other Local Ev ents

None.

3.8 Virtual IP Client Detail

3.8.1 Abstract Data Model

None.

3.8.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS -RPCE].

3.8.3 Initialization

The client MUST create an RPC connection to the terminal server by using the details specified in
section 2.1.

3.8.4 Message Processing Events and Sequencing Rules

When a method completes, the values returned by the RPC MUST be returned unmodified to the upper
layer.

176 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.8.5 Timer Events

None.

3.8.6 Other Local Events

None.

3.9 Virtual IP Server Detail

3.9.1 Abstract Data Mo del

This section describes a conceptual model of possible data organizatio n that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

3.9.1.1 Abstract Data Types

TSVIPSession : Structure containing the IP address assigned to the session. It is described in section
2.2.2.50 and is used with RpcGetSessionIP.

3.9.2 Timers

None.

3.9.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

3.9.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict Network Data Representation (NDR) data
consistency check at target level 6.0 for all methods unless otherwise specified, as defined in [MS -

RPCE] section 1.3.

When a method completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw an ex ception and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.9.4.1 TSVIPPublic

The TSVIPPublic provides methods to retrieve IP assigned to the session.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcGetSessionIP Returns IP address assigned to the session.

Opnum: 0

177 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.9.4.1.1 RpcGetSessionIP (Opnum 0)

The RpcGetSessionI P method retrieves the IP address assigned to the session. This MUST be called
by an administrator or the same user who logged onto the session. <212> The method performs

access checks as defined in section 3.1.3 and 3.1.4. The method fails if both checks f ail.

 HRESULT RpcGetSessionIP(

 [in] handle_t hBinding,

 [in] USHORT Family,

 [in] DWORD SessionId,

 [ref, out] TSVIPSession* ppVIPSession

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

Family: MUST be AF_INET.

SessionId: The identifier of the session to open. This session MUST be present on the terminal

server. This MUST NOT be the session ID of any of the listener sessions.

ppVIPSession: The session structure containing the IP address assigned to the session. T his is of

type TSVIPSession.

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.9.5 Timer Events

None.

3.9.6 Other Local Events

None.

3.10 SessEnv Details

3.10.1 Abstract Data Model

None.

3.10.2 Timers

None.

3.10.3 Initialization

Parameters necessary to initialize the RPC protocol are specified in section 2.1.

178 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.10.4 Message Processing Events and Sequencing Rules

This protocol asks the RPC runtime to perform a strict NDR data consistency check at target level 6.0
for all methods unless otherwise specified, as defined in [MS -RPCE] section 1.3.

When a me thod completes, the values returned by RPC MUST be returned unmodified to the upper
layer. The methods MAY throw an exception, and the Terminal Services client MUST handle these
exceptions by returning the unmodified exception code to the upper layer.

3.10.4.1 Sess EnvPublicRpc

The SessEnvPublicRpc interface provides methods to call into the SessionEnv service remotely.

For information about endpoints, UUID values, and versions, see sections 2.1 and 1.9.

Methods in RPC Opnum Order

Method Description

RpcShadow2 Creat es a Windows Desktop Sharing API invitation in the specified target session.

Opnum: 0

3.10.4.1.1 RpcShadow2 (Opnum 0)

The RpcShadow2 method will create a shadow session using the Windows Desktop Sharing API in

the target session and return an invitation to that session.

The caller MUST have WINSTATION_SHADOW permission. The other session can be local or on a
terminal server. The sessio n to be shadowed MUST be in the active state with a user logged on. The
method checks whether the caller has WINSTATION_SHADOW permission (section 3.1.1) and fails if
the caller does not have the permission.

 HRESULT RpcShadow2(

 [in] handle_t hBinding,

 [in] ULONG TargetSessionId,

 [in] SHADOW_CONTROL_REQUEST eRequestControl,

 [in] SHADOW_PERMISSION_REQUEST eRequestPermission,

 [out] SHADOW_REQUEST_RESPONSE* pePermission,

 [out, string, size_is(cchInvitation)]

 LPWSTR pszInvitation,

 [in, range(1 ,8192)] ULONG cchInvitation

);

hBinding: The RPC binding handle. For more information, see [MSDN -RPCBIND].

TargetSessionId: The ID of the session to be shadowed.

eRequestControl: Specifies a request for either a UI interaction or a view -only session.

eRequestPermission: Specifies whether to request permission before the shadow session is started.
The call is synchronous, so if permission is requested, the call will wait until the user responds to
the request.

pePermission: User response to per mission request. If the response is anything other than

SHADOW_REQUEST_RESPONSE_ALLOW, the shadow session has been denied.

179 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

pszInvitation: The output data containing the invitation string for the shadow session. The data
returned is an invitation string in an XML format that can be used with the Windows Desktop

Sharing API IRDPSRAPIViewer::Connect method to connect to the session running in the target
session (specified by TargetSessionId). The caller must allocate a buffer to hold this data and

specify the size of the buffer in cchInvitation .

cchInvitation: The size, in WCHARs (16 -bit Unicode), of pszInvitation .

Return Values: The method MUST return S_OK (0x00000000) on success; otherwise, it MUST return
an implementation -specific negative value.

Return value/code Description

0x00000000

S_OK

Successful completion.

3.10.5 Timer Events

None.

3.10.6 Other Local Events

None.

180 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

4.1 LSM Enumeration Example

The following example shows how to enumerate sessions on a terminal server. This example uses

TermSrvBindSecure from section 4.3.

1. Get the LSM Binding.

 HANDLE GetLSMBinding(LPWSTR pszServerName)

 {

 HANDLE hLSMBinding = NULL;

 RPC_STATUS rpcStatus = RPC_S_OK;

 //ASSERT(NULL != pszServerName);

 rpcStatus = TermSrvBindSecure(

 gpszPublicUuid,

 gpszRemoteProtocolSequence,

 pszServerName,

 TSRPC_REMOTE_ENDPOINT,

 gpszOptions,

 &hLSMBinding

);

 if(rpcStatus != RPC_S_OK || hLSMBinding == NULL)

 {

 wprintf(L"ERR: TermSrvBindSecure failed: %d \ n",

 rpcStatus);

 SetLastError(rpcStatus);

 }

 return hLSMBinding;

 }

2. Enumerate the sessions.

 RpcTryExcept

 {

 hr = RpcOpenEnum(hLSMBind, &hEnum);

 if(hr == S_OK)

 {

 hr = RpcGetEnumResult(hEnum, &pAllSessions,

 CURRENT_ENUM_LEVEL, &Entries);

 if(hr == S_OK)

 {

 for(ULONG i=0;i<Entries;i++)

 {

 wprintf(L"% - 10d % - 20s % - 40s \ n",

 pAllSessions[i].Data.SessionEnum_Level3.SessionId,

 WinstationStateClassNames[pAllSessions[i].Data.

 SessionEnum_Leve l3.State],

 pAllSessions[i].Data.SessionEnum_Level3.Name);

 if(NULL != pAllSessions[i].Data.SessionEnum_Level3.

 pProtocolData)

 {

 MIDL_user_free(pAllSessions[i].Data.

 SessionEnum_Level3.pProtocolData);

 }

 }

 rv1 = TRUE;

 }

181 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 else

 {

 wprintf(L"ERR: RpcGetEnumResult failed %d \ n",hr);

 }

 if (pAllSessions)

 {

 MIDL_user_free(pAllSessions);

 }

 }

 else

 {

 wprintf(L"ERR: RpcOpenEnum failed %d \ n",hr);

 }

 }

 RpcExcept(I_RpcExceptionFilter(RpcExceptionCode()))

 {

 wprintf(L"ERR: RPC Exception %d \ n",RpcExceptionCode());

 }

 RpcEndExcept

3. Close the handles.

 if(hEnum)

 RpcCloseEnum(&hEnum);

 if(hLSMBind)

 RpcBindingFree(&hLSMBind);

The following diagram illustrates the message sequence for enumerating the sessions.

182 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 1 : LSM session enumeration sequence

The sequence of messages for enumerating sessions on the server is as follows:

1. After an RPC binding has been established to the server, the client requests a session enumeration
handle to be opened by the server by calling the RpcOpenEnum method.

2. The server, in response, opens a handle of the type ENUM_HANDLE and returns to the client.

3. The client then calls the RpcGetEnumResult method by passing this handle, along with an
uninitialized buffer, to get the list of sessions.

4. The server, on receiving t he request, allocates memory for the buffer and fills it with an array of
SESSIONENUM structures containing session information, one for each session on the server. It
also returns the number of sessions on the server.

5. The client, on receiving the data, ca lls the RpcCloseEnum method to inform the server to close the
enumeration handle.

6. The server, on receiving the RpcCloseEnum call, closes the enumeration handle.

7. The client frees the array of SESSIONENUM structures it received before exiting.

4.2 TermService Li stener Example

The following example retrieves the listeners that run on the terminal server . This example uses
TermSrvBindSecure from section 4.3.

1. Get the RCM binding.

 HANDLE GetRCMBinding(LPWSTR pszServerName)

 {

 RPC_STATUS rpcStatus = RPC_S_OK;

183 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 HANDLE hRCMBinding = NULL;

 rpcStatus = TermSrvBindSecure(

 gpszPublicUuid,

 gpszRemotePr otocolSequence,

 pszServerName,

 TSRCMRPC_REMOTE_ENDPOINT,

 gpszOptions,

 &hRCMBinding

);

 if(rpcStatus != RPC_S_OK || hRCMBinding == NULL)

 {

 wprintf(L"ERR: TermSrvBindSecure failed: %d \ n", rpcStatus);

 SetLastError(rpcStatus);

 }

 return hRCMBinding

 }

2. Get the list of listeners.

 hRCMBind = GetRCMBinding(pszServerName);

 if(hRCMBind)

 {

 RpcTryExcept

 {

 hr = RpcGetAllListeners(hRCMBind, &pListeners,

 CURRENT_LST_ENUM_LEVEL, &NumListeners);

 if(hr == S_OK)

 {

 for(ULONG i=0;i<Entries;i++)

 {

 wprintf(L"% - 10d % - 20s %- 40s \ n",

 pListeners[i].Data.ListenerEnum_Level1.Id,

WinstationStateClassNames[pListeners[i].Data.ListenerEnum_Level1.bListening ? State_Listen :

State_Down],

 pListeners[i].Data.ListenerEnum_Level1.Name);

 }

 rv2 = TRUE;

 }

 else

 {

 wprintf(L"ERR: RpcGetAllListeners failed %d \ n",hr);

 }

 if (pListeners)

 {

 MIDL_user_free(pListeners);

 }

 }

 RpcExcept(I_RpcExceptionFilter(RpcExceptionCode()))

 {

 hr = HRESULT_FROM_WIN32(RpcExceptionCode());

 wprintf(L"ERR: RpcGetAllListeners threw an exception: 0x%x \ n",

 hr);

 }

 RpcEndExcept

 RpcBindingFree(&hRCMBind);

 }

184 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. Close the handle.

 if(hRCMBind)

 RpcBindingFree(&hRCMBind);

4.3 TermSrvBindSecure Example

The following example creates an RPC binding to an endpoint that uses authentication, authorization,
and security quality -of -service information.

 RPC_STATUS

 TermSrvBindSecure(

 LPCWSTR pszUuid,

 LPCWSTR pszProtocolSequence,

 LPCWSTR pszNetworkAddress,

 LPCWSTR pszEndPoint,

 LPCWSTR pszOptions,

 RPC_BINDING_HANDLE *pHandle

)

 {

 RPC_STATUS Statu s;

 RPC_SECURITY_QOS qos;

 LPWSTR wszServerSPN = NULL;

 *pHandle = NULL;

 Status = TermSrvBind(

 pszUuid,

 pszProtocolSequence,

 pszNetworkAddress,

 pszEndPoint,

 pszOptions,

 pHandle);

 if(Status != RPC_S_OK)

 {

 wprintf (L"Error %d in TermSrvBind", Status);

 goto TS_EXIT_POINT;

 }

 qos.Capabilities = RPC_C_QOS_ CAPABILITIES_MUTUAL_AUTH;

 qos.IdentityTracking = RPC_C_QOS_IDENTITY_DYNAMIC;

 qos.ImpersonationType = RPC_C_IMP_LEVEL_IMPERSONATE;

 qos.Version = RPC_C_SECURITY_QOS_VERSION;

 if(PrepareServerSPN(pszNetworkAddress, &wszServerSPN))

 {

 Status = RpcBindingSetAuthInfoEx(

 *pHandle,

 wszServerSPN,

 RPC_C_AUTHN_LEVEL_PKT_PRIVACY,

 RPC_C_AUTHN_GSS_NEGOTIATE,

 NULL,

 RPC_C_AUTHZ_NAME,

 &qos);

 LocalFree(wszServerSPN);

 }

 else

 {

185 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Status = RpcBindingSetAuthInfoEx(

 *pHandle,

 (LPWSTR)pszNetworkAddress,

 RPC_C_AUTHN_LEVEL_PKT_PRIVACY,

 RPC_C_AUTHN_GSS_NEGOTIATE,

 NULL,

 RPC_C_AUTHZ_NAME,

 &qos);

 }

 if (RPC_S_OK != Status)

 {

 wprintf (L"Error %d in RpcBindingSetAuthInfoEx", Status);

 goto TS_EXIT_POINT;

 }

 TS_EXIT_POINT:

 if (RPC_S_OK != Status &&

 NULL != *pHandle)

 {

 RpcBindingFree(p Handle);

 }

 return Status;

 }

Generate a standard RPC binding from the protocol sequence, security options, and UUID, for
example.

 RPC_STATUS

 TermSrvBind(

 IN LPCWSTR pszUuid,

 IN LPCWSTR pszProtocolSequence,

 IN LPCWSTR pszNetworkAddress,

 IN LPCWSTR pszEndPoint,

 IN LPCWSTR pszOptions,

 OUT RPC_BINDING_HANDLE *pHandle

)

 {

 RPC_STATUS Status;

 LPWSTR pszString = NULL;

 /*

 * Compose the binding string using the helper routine

 * and our protocol sequence, security options, UUID, and so on.

 */

 Status = RpcStringBindingCompose(

 (LPWSTR)pszUuid,

 (LPWSTR)pszProtocolSequence,

 (LPWSTR)pszNetworkAddress,

 (LPWSTR)pszEndPoint,

 (LPWSTR)pszOptions,

 &pszString

);

 if(Status != RPC_S_OK)

 {

 wprintf (L"Error %d in RpcStringBindingCompose", Status);

 goto TS_EXIT_POINT;

 }

 /*

 * Now generate the RPC binding from the canonical RPC

186 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 * binding string.

 */

 Status = RpcBindingFromStringBinding(

 pszString,

 pHandle

);

 if(Status != RPC_S_OK)

 {

 wprintf (L"Error %d in RpcBindingFromStringBinding", Status);

 goto TS_EXIT_POINT;

 }

 TS_EXIT_POINT:

 if (NULL != pszString)

 {

 /*

 * Free the memory returned from RpcStringBindingCompose()

 */

 RpcStringFree(&pszString);

 }

 return(Status);

 }

Recreate a valid SPN for Windows Vista operating system from an existing SPN.

 BOOL

 PrepareServerSPN(

 IN LPCWSTR pszNetworkAddress,

 __deref_out_opt LPWSTR *ppwszServerSPN

)

 {

 // Windows Server 2008 RPC does not accept "net use" credential anymore.

 // <Domain> \ <Machine> is not a valid SPN, a valid SPN is host/<Machine Name>

 LPWSTR pszTemplate = L"host/%s";

 *ppwszServerSPN = NULL;

 HRESULT hr = S_OK;

 UINT stringLength = wcslen(pszTemplate)+wcslen(pszNetworkAddress)+1;

 *ppwszServerSPN = (LPWSTR)LocalAl loc(LPTR, stringLength * sizeof(WCHAR));

 if(*ppwszServerSPN)

 {

 hr = StringCchPrintf(*ppwszServerSPN, stringLength, pszTemplate,

 pszNetworkAddress);

 ASSERT(SUCCEEDED(hr));

 }

 if(FAILED(hr))

 {

 if(NULL != *ppwszServerSPN)

 {

 LocalFree(*ppwszServerSPN);

 *ppwszServerSPN = NULL;

 }

 }

 return SUCCEEDED(hr);

 }

187 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.4 Legacy Example

The following example shows how to enumerate sessions that use the legacy RPC methods.

1. Get the binding.

 Result = TermSrvBindSecure(

 pszUuid,

 pszRemoteProtocolSequence,

 pServerName,

 pszRemoteEndPoint,

 pszOptions,

 &RpcTSHandle

);

 //

 // Get a context handle from the server so it can

 // manage the connections state

 //

 RpcTryExcept {

 rc = RpcWinStationOpenServer(RpcTSHandle, &Result, &ContextHandle);

 }

 RpcExcept(I_RpcExceptionFilter(RpcExceptionCode())) {

 Result = RpcExceptionCode();

 rc = FALSE;

 wprintf(L"ERR: RPC Exception %d \ n",Result);

 }

 RpcEndExcept

2. Enumerate the sessions.

 RpcTryExcept {

 rc = RpcWinStationEnumerate(

 hServer,

 &Result,

 &LogonIdCount,

 (PCHAR)pLogonId,

 &Length,

 &Index

);

 Result = RtlNtStatusToDosError(Result);

 if (Result == ERROR_NO_MORE_ITEMS) {

 Result = ERROR_SUCCESS;

 break;

 }

 if(rc == TRUE)

 {

 wprintf(L"SessionID State Name \ n");

 for(ULONG i=0;i<LogonIdCount;i++)

 {

 wprintf(L"% - 10d % - 20s % - 40s \ n",

 pLogonId[i].SessionId,

 WinstationStateClassNames[pLogonId[i].State],

 pLogonId[i].WinStationName);

 }

 }

 }

 RpcExcept(I_RpcExceptionFilter(RpcExceptionCode())) {

 Result = RpcExceptionCode();

 wprintf(L"E RR: RPC Exception %d \ n",Result);

 }

 RpcEndExcept

188 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3. Close the binding handles.

 RpcTryExcept {

 bSuccess = RpcWinStationCloseServerEx(pHandle, pdwResult);

 if(!bSuccess) *pdwResult = RtlNtStatusToDosError(*pdwResult);

 }

 RpcExcept(I_RpcExceptionFilt er(RpcExceptionCode())) {

 *pdwResult = RpcExceptionCode();

 bSuccess = FALSE;

 }

 RpcEndExcept

The following diagram illustrates the message sequence for enumerating the sessions.

Figure 2 : Legacy session enumeration sequence

The sequence of messages for enumerating sessions on the server is as follows:

1. After an RPC binding has been established to the server, the client requests a handle to the server
to be opened by calling the RpcWinStationOpenServer meth od.

2. The server in response will open up a handle and return to the client.

3. The client then calls the RpcWinStationEnumerate method by passing this handle along with an
uninitialized buffer to get the list of sessions.

189 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4. The server on receiving the request wi ll allocate memory for the buffer and fill it with an array of
LOGONID structures containing session information, one for each session on the server. It will also

return the number of sessions on the server.

5. The client, on receiving the data, calls the Rpc WinStationCloseServerEx method to inform the

server to close the server handle.

6. The server on receiving the RpcWinStationCloseServerEx call will close the server handle.

7. The client frees the array of SESSIONENUM structures it received before exiting.

4.5 Encod ing/Decoding Example

The following is the example of encoding and decoding the PropValue field in the TSProperty structure.

 #include <stdio.h>

 #include <tchar.h>

 #include <Windows.h>

 DWORD

 EncodePropValue

 (

 __in BYTE* pbSource,

 __in DWORD dwSourceLength,

 __deref_out_bcount(*pdwDestLength) BYTE** ppbDest,

 __out DWORD* pdwDestLength

);

 DWORD

 DecodePropValue

 (

 __in BYTE* pbSource,

 __in DWORD dwSourceLength,

 __deref_out_bcount(*pdwDestLength) BYTE** ppbDest,

 DWORD *pdwDestLength

);

 int _tmain()

 {

 char* pPropValue = "ABCDE";

 char* pEncoded = NULL;

 DWORD cbEncoded = 0;

 char* pDecoded = NULL;

 DWORD cbDecoded = 0;

 //

 // Encoding a property value to be compatible with TSProperty structure.

 //

 EncodePropValue(PBYTE(pPropValue), (strlen(pPropValue)+1), (PBYTE*)&pEncoded, &cbEncoded

);

 //

 // Decoding the encoded string.

 //

 DecodePropValue(PBYTE(pEncoded), cbEncoded, (PBYTE*)&pDecoded, &cbDecoded);

 printf("Decoded: %s \ n", pDecoded);

 delete[] PBYTE(pEncoded);

 delete[] PBYTE(pDecoded);

 return 0;

 }

 DWORD

190 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 EncodePropValue

 (

 __in BYTE* pbSource,

 __in DWORD dwSourceLength,

 __deref_out_bcount(*pdwDestLength) BYTE** ppbDest,

 __out DWORD* pdwDestLength

)

 {

 *ppbDest = new BYTE[(dwSourceLength*2)+1];

 for(DWORD i=0; i<dwSourceLength; i++)

 {

 spr intf((char*)((*ppbDest)+(i*2)), "%02x", pbSource[i]);

 }

 *pdwDestLength = dwSourceLength*2;

 return 0;

 }

 #define MAPHEXTODIGIT(x) (x >= '0' && x <= '9' ? (x - '0') : \

 x >= 'A' && x <= 'F' ? (x - 'A'+10) : \

 x >= 'a' && x <= 'f' ? (x - 'a'+10) : 0)

 DWORD

 DecodePropValue

 (

 __in BYTE* pbSource,

 __in DWORD dwSourceLength,

 __deref_out_bcount(*pdwDestLength) BYTE** ppbDest,

 DWORD *pdwDestLength

)

 {

 *pdwDestLength = dwSourceLength/2;

 (*ppbDest) = new BYTE[*pdwDestLength];

 for(DWORD i=0; i<(*pdwDestLength); i++)

 {

 (*ppbDest)[i] = MAPHEXTODIGIT(pbSource[2*i]) * 16 +

 MAPHEXTODIGIT(pbSource[2*i+1]);

 }

 return 0;

 }

191 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

5.1 Security Considerations for Implementers

The Terminal Services Terminal Server Runtime Interface Protocol allows any user to connect to the

server, as specified in section 2.1. Therefore, any security bug in the server implementation could be
exploitable. The server implementation enforces security on each method.

5.2 Index of Security Parameters

The only security parameter is Authentication Protocol, section 2.1.

192 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 Appendix A: Full IDL

For ease of implementation, the full IDL and headers are provided in the following sections, where
"ms -dtyp.idl" is the IDL as described in [MS -DTYP] Appendix A.

When compiling these IDLs with the MIDL compiler, "MIDL_PASS" has to be defined. This can be done
by using the midl command line with the /D switch. For example, "midl /D MIDL_PASS legacy.idl".

6.1 Appendix A.1: tspubrpc.idl

For ease of implementation, the full IDL is provided, where "ms -dtyp.idl" is the IDL as described in
[MS -DTYP] Appendix A and "tsdef.h" is as specified in section 6.5.

 import "ms - dtyp.idl";

 #include "ms - tsts_tsdef.h"

 #include "ms - tsts_allproc.h"

 [

 uuid(484809d6 - 4239 - 471b - b5bc - 61df8c23ac48),

 version(1.0),

 pointer_default(unique)

]

 //

 // Public rpc interface to the session object

 //

 interface TermSrvSession

 {

 cpp_quote("#define WTS_SESSIONSTATE_UNKNOWN 0xFFFFFFFF")

 cpp_quote("#define WTS_SESSIONSTATE_LOCK 0x00000000")

 cpp_quote("#define WTS_SESSIONSTATE_UNLOCK 0x00000001")

 typedef [context_handle] void *SESSION_HANDLE;

 typedef struct _LSMSessionInformation {

 [string] WCHAR* pszUserName;

 [string] WCHAR* pszDomain;

 [string] WCHAR * pszTerminalName;

 LONG SessionState;

 BOOL DesktopLocked;

 hyper ConnectTime;

 hyper DisconnectTime;

 hyper LogonTime;

 } LSMSESSIONINFORMATION,

 *PLSMSESSIONINFORMATION;

 typedef struct _LSM_SESSIONINFO_EX_LEVEL1 {

 LONG SessionState;

 LONG SessionFlags;

 WCHAR SessionName[33];

 WCHAR DomainName[18];

 WCHAR UserName[21];

 hyper ConnectTime;

 hyper DisconnectTime;

 hyper LogonTime;

 hyper LastInputTime;

 ULONG ProtocolDataSize;

 [size_is(ProtocolDataSize)] PBYTE ProtocolData;

 } LSM_SESSIONINFO_EX_LEVEL1,

 *PLSM_SESSIONINFO_EX_LEVEL1;

 typedef [switch_type (DWORD)] union _LSM_SESSIONINFO_EX {

 [case(1)]

193 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 LSM_SESSIONINFO_EX_LEVEL1 LSM_SessionInfo_Level1;

 } LSM_SESSIONINFO_EX,

 *PLSM_SESSIONINFO_EX;

 typedef struct _LSMSESSIONINFORMATION_EX {

 DWORD Level;

 [switch_is(Level)] LSM_SESSIONINFO_EX Data;

 } LSMSESSIONINFORMATION_EX,

 *PLSMSESSIONINFORMATION_EX;

 //

 // Per Session specific call

 HRESULT RpcOpenSession(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [out] SESSION_HANDLE *phSession

);

 HRESULT RpcCloseSession(

 [in,out] SESSION_HANDLE *phSession

);

 HRESULT RpcConnect(

 [in] SESSION_HANDLE hSession,

 [in] LONG TargetSessionId,

 [in,string] WCHAR *szPassword

);

 HRESULT RpcDisconnect(

 [in] SESSION_HANDLE hSession

);

 HRESULT RpcLogoff(

 [in] SESSION_HANDLE hSession

);

 HRESULT RpcGetUserName(

 [in] SESSION_HANDLE hSession,

 [out, string] WCHAR **pszUserName,

 [out, string] WCHAR **pszDomain

);

 HRESULT RpcGetTerminalName(

 [in] SESSION_HANDLE hSession,

 [out, string] WCHAR **pszTerminalName

);

 HRESULT RpcGetState(

 [in] SESSION_HANDLE hSession,

 [out] LONG *plState

);

 HRESULT RpcIsSessionDesktopLocked(

 [in] SESSION_HANDLE hSession

);

 HRESULT RpcShowMessageBox(

 [in] SESSION_HANDLE hSession,

 [in, string] WCHAR *szTitle,

 [in, string] WCHAR *szMessage,

 [in] ULONG ulStyle,

 [in] ULONG ulTimeout,

 [out] ULONG *pulResponse,

 [in] BOOL bDoNotWait

);

 HRESULT RpcGetTimes(

 [in] SESSION_HANDLE hSession,

 [out] hyper *pConnectTime,

 [out] hyper *pDisconnectTime,

194 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [out] hyper *pLogonTime

);

 HRESULT RpcGetSessionCounters(

 [in] handle_t hBinding,

 [in,out, size_is(uEntries)] PTS_COUNTER pCounter,

 [in] ULONG uEntries

);

 HRESULT RpcGetSessionInformation(

 [in] handle_t hBinding,

 [in] LONG Session Id,

 [ref, out] PLSMSESSIONINFORMATION pSessionInfo

);

 VOID Opnum13NotUsedOnWire();

 VOID Opnum14NotUsedOnWire();

 HRESULT RpcGetLoggedOnCount(

 [in] handle_t hBinding,

 [out] ULONG *pUserSessions,

 [out] ULONG *pDeviceSessions

);

 HRESULT RpcGetSessionType (

 [in] handle_t hBinding,

 [in] LONG *SessionId,

 [out] ULONG *pSessionType

);

 HRESULT RpcGetSessionInformationEx(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [in] DWORD Level,

 [ref, out] PLSMSESSIONINFORMATIO N_EX LSMSessionInfoExPtr

);

 }

 VOID Opnum18NotUsedOnWire();

 VOID Opnum19NotUsedOnWire();

 //

 // notifications

 //

 [

 uuid(11899a43 - 2b68 - 4a76 - 92e3 - a3d6ad8c26ce),

 version(1.0),

 pointer_default(unique)

]

 interface TermSrvNotification

 {

 HRESULT RpcWaitForSessionState(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [in] LONG State,

 [in] ULONG Timeout

);

 ty pedef [context_handle] void *NOTIFY_HANDLE;

 HRESULT RpcRegisterAsyncNotification(

 [in] handle_t hBinding,

 [in] LONG SessionId,

 [in] TNotificationId Mask,

 [out] NOTIFY_HANDLE *phNotify

);

 HRESULT RpcWaitAsyncNotification(

195 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [in] NOTIFY_HANDLE hNotify,

 [out, size_is(, *pEntries)]

 PSESSION_CHANGE *SessionChange,

 [out] ULONG *pEntries

);

 HRESULT RpcUnRegisterAsyncNotification(

 [in,out] NOTIFY_HANDLE *phNotify

);

 }

 //

 // enumerations

 //

 [

 uuid(88143fd0 - c28d - 4b2b - 8fef - 8d882f6a9390),

 version(1.0),

 pointer_default(unique)

]

 interface TermSrvEnumeration

 {

 typedef [context_handle] void *ENUM_HANDLE;

 #define ENUM_LEVEL1 1

 #define ENUM_LEVEL2 2

 #define ENUM_LEVEL3 3

 #define CURRENT_ENUM_LEVEL 2

 typedef struct _SESSIONENUM_LEVEL1 {

 LONG SessionId;

 LONG State;

 WCHAR Name[33];

 } SESSIONENUM_LEVEL1,

 *PSESSIONENUM_LEVEL1;

 typedef struct _SESSIONENUM_LEVEL2 {

 LONG SessionId;

 LONG State;

 WCHAR Name[33];

 ULONG Source;

 BOOL bFullDesktop;

 GUID SessionType;

 } SESSIONENUM_LEVEL2,

 *PSESSIONENUM_LEVEL2;

 typedef struct _SESSIONENUM_LEVEL3 {

 LONG SessionId;

 LONG State;

 WCHAR Name[33];

 ULONG Source;

 BOOL bFullDesktop;

 GUID SessionType;

 ULONG ProtoDataSize;

 [size_is(ProtoDataSize)]UCHAR * pProtocolData;

 } SESSIONEN UM_LEVEL3,

 *PSESSIONENUM_LEVEL3;

 typedef [switch_type(DWORD)] union _SessionInfo {

 [case(1)]

 SESSIONENUM_LEVEL1 SessionEnum_Level1;

 [case(2)]

 SESSIONENUM_LEVEL2 SessionEnum_Level2;

 } SessionInfo,

 *PSessionInfo;

 typedef struct _SESSIONENUM {

 DWORD Level;

 [switch_is(Level)] SessionInfo Data;

 } SESSIONENUM,

 *PSESSIONENUM;

196 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef [switch_type(DWORD)] union _SessionInfo_Ex {

 [case(1)]

 SESSIONENUM_LEVEL1 SessionEnum_Level1;

 [case(2)]

 SESSIONENUM_LEVEL2 SessionEnum_Level2;

 [case(3)]

 SESSIONENUM_LEVEL3 SessionEnum_Level 3;

 } SessionInfo_Ex,

 *PSessionInfo_Ex;

 typedef struct _SESSIONENUM_EX {

 DWORD Level;

 [switch_is(Level)] SessionInfo_Ex Data;

 } SESSIONENUM_EX,

 *PSESSIONENUM_EX;

 #define UNIFIED_ENUM_LEVEL1 1

 #define UNIFIED_ENUM_LEVEL2 2

 #define CURRENT_UNIFIED_ENUM_LEVEL 2

 typedef struct _EXECENVDATA_LEVEL1 {

 LONG ExecEnvId;

 LONG State;

 WCHAR SessionName[33];

 } EXECENVDATA_LEVEL1,

 *PEXECENVDATA_LEVEL1;

 typedef struct _EXECENVDATA_LEVEL2 {

 LONG ExecEnvId;

 LONG State;

 WCHAR SessionName[33];

 LONG AbsSessionId;

 WCHAR HostName[33];

 WCHAR UserName[33];

 WCHAR DomainName[33];

 WCHAR FarmName[33];

 } EXECENVDATA_LEVEL2,

 *PEXECENVDATA_LEVEL2;

 typedef [switch _type(DWORD)] union _ExecEnvData {

 [case(1)]

 EXECENVDATA_LEVEL1 ExecEnvEnum_Level1;

 [case(2)]

 EXECENVDATA_LEVEL2 ExecEnvEnum_Level2;

 } ExecEnvData,

 *PExecEnvData;

 typedef struct _EXECENVDATA {

 DWORD Level;

 [switch_is(Level)] ExecEnvData Data;

 } EXECENVDATA,

 *PEXECENVDATA;

 typedef struct _EXECENVDATAEX_LEVEL1 {

 LONG ExecEnvI d;

 LONG State;

 LONG AbsSessionId;

 [string, max_is(256)] LPWSTR pszSessionName;

 [string, max_is(256)] LPWSTR pszHostName;

 [string, max_is(256)] LPWSTR pszUserName;

 [string, max_ is(256)] LPWSTR pszDomainName;

 [string, max_is(256)] LPWSTR pszFarmName;

 } EXECENVDATAEX_LEVEL1,

 *PEXECENVDATAEX_LEVEL1;

 typedef [switch_type(DWORD)] union _ExecEnvDataEx {

 [case(1)]

 EXECENVDATAEX_LEVEL1 ExecEnvEnum_Level1;

 } ExecEnvDataEx,

197 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 *PExecEnvDataEx;

 typedef struct _EXECENVDATAEX {

 DWORD Level;

 [switch_is(Level)] ExecEnvDataEx Data;

 } EXECENV DATAEX,

 *PEXECENVDATAEX;

 HRESULT RpcOpenEnum(

 [in] handle_t hBinding,

 [out] ENUM_HANDLE *phEnum

);

 HRESULT RpcCloseEnum(

 [in,out] ENUM_HANDLE *phEnum

);

 HRESULT RpcFilterByState(

 [in] ENUM_HANDLE hEnum,

 [in] LONG State,

 [in] BOOL bInvert

);

 HRESULT RpcFilterByCalle rsName(

 [in] ENUM_HANDLE hEnum

);

 HRESULT RpcEnumAddFilter(

 [in] ENUM_HANDLE hEnum,

 [in] ENUM_HANDLE hSubEnum

);

 HRESULT RpcGetEnumResult(

 [in] ENUM_HANDLE hEnum,

 [out, size_is(,*pEntries)]

 PSESSIONENUM *ppSessionEnumResult,

 [in] DWORD Level,

 [out] ULONG *pEntries

);

 HRESULT RpcFilterBySessionType(

 [in] ENUM_HANDLE hEnum,

 [in] GUID* pSessionType

);

 VOID Opnum7NotUsedOnWire(void);

 HRESULT RpcGetSessionIds(

 [in] handle_t hBinding,

 [in] SESSION_FILTER Filter,

 [in, range(0, 0xFFFF)]

 ULONG MaxEntries,

 [out, size_is(,*pcSessionIds)]

 LONG** pSessionIds,

 [out] ULONG* pcSessionIds

);

 HRESULT RpcGetEnumResultEx(

 [in] ENUM_HANDLE hEnum,

 [out, size_is(,*pEntries)]

 PSESSIONENUM_EX *ppSessionEnumResult,

 [in] DWORD Level,

 [out] ULONG *pEntries

);

 HRESULT RpcGetAllSessions(

 [in] handle_t hBinding,

 [in, out] ULONG *pLevel,

 [out, size_is(,*pcEntries)]

 PEXECENVDATA *ppSessionData,

198 / 253

[MS -TSTS-Diff] - v20180912
Terminal Services Terminal Server Runtime Interface Protocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [out] ULONG *pcEntries

);

 HRESULT RpcGetAllSessionsEx(

 [in] handle_t hBinding,

 [in] ULONG Level,

 [out, size_is(,*pcEntries)]

 PEXECENVDATAEX *ppSessionData,

 [out] ULONG *pcEntries

);

 }

6.2 Appendix A.2: rcmpublic.idl

For ease of implementation, the full IDL is provi ded, where "ms -dtyp.idl" is the IDL as described in
[MS -DTYP] Appendix A.

 import "ms - dtyp.idl";

 //

 // public access (local & remote)

 //

 [

 uuid(bde95fdf - eee0 - 45de - 9e12 - e5a61cd0d4fe),

 version(1.0),

 pointer_default(unique)

]

 interface RCMPublic

 {

 static const WCHAR TSRCMRPC_REMOTE_ENDPOINT[] = L" \ \ pipe \ \ TermSrv_API_service";

 typedef struct {

 USHORT sin_family;

 union switch (USHORT sin_family) {

 case 2:

 struct {

 USHORT sin_port;

 ULONG in_addr;

 UCHAR sin_zero[8];

 } ipv4;

 case 23:

 struct {

 USHORT sin6_port;

 ULONG sin6_flowinfo;

 USHORT sin6_addr[8];

 ULONG sin6_scope_id;

 } ipv6;

 };

 } RCM_REMOTEADDRESS, *PRCM_REMOTEADDRESS;

 typedef WCHAR LISTENER_NAME[32];

 #define LST_ENUM_LEVEL1 1

 #define CURRENT_LST_ENUM_LEVEL 1

 typedef struct _LISTENERENUM_LEVEL1 {

 LONG Id;

 BOOL bListening;

 WCHAR Name[33];

 } LISTENERENUM_LEVEL1, *PLISTENERENUM_LEVEL1;

 typedef [switch_type(DWORD)] union _ListenerInfo {

 [case(1)]

 LISTENERENUM_LEVEL1 ListenerEnum_Level1;

 [default]

