

1 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS -TPSOD]:
Transaction Processing Services Protocols Overview

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

Á Copyrights. This documentation is covered by Microsoft copyrights. Regardles s of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute p ortions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDLôs, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Á Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise . If you would prefer a written license, or if the te chnologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associatio n with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specific ally described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Micr osoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This document provides an overview of the Transaction Processing Services Protocols Overview
Protocol Family. It is intended for use in conjunction with the Microsoft Protocol Tec hnical
Documents, publicly available standard specifications, network programming art, and Microsoft
Windows distributed systems concepts. It assumes that the reader is either familiar with the

aforementioned material or has immediate access to it.

A Proto col System Document does not require the use of Microsoft programming tools or
programming environments in order to implement the Protocols in the System. Developers who
have access to Microsoft programming tools and environments are free to take advantage of them.

Abstract

This document provides an overview of the functionality and relationship of the Transaction
Processing protocols, which are specified in [MS -DTCO], [MS -CMOM], [MS -DTCM], [MS -TIPP], [MS -

DTCLU], [WSAT10], [WSAT11], [MS -WSRVCAT], [MC -DTCXA] , [MS -CMP], and [MS -CMPO].
Transaction processing is designed to maintain a computation system in a known, consistent state.

It allows multiple individual operations to be linked together as a single, indivisible operation called
an atomic transaction. Bro adly speaking, transaction processing involves updating data, which may
be distributed across multiple systems, so that either all of the changes are processed or none of
the changes are processed.

This document describes the intended functionality of the Transaction Processing protocols and how
these protocols interact with each other. It provides examples of some common use cases. It does
not restate the processing rules and other details that are specific for each protocol. Those details
are described in the protocol specifications for each of the protocols and data structures that belong
to this protocols group.

Revision Summary

Date

Revision

History

Revision

Class Comments

03/30/2012 1.0 New Released new document.

07/12/2012 1.1 Minor Clarified the meaning of the technical content.

10/25/2012 1.1 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 1.1 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 1.2 Minor Clarified the meaning of the technical content.

3 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction 5
1.1 Conceptual Overview 5

1.1.1 Transaction Trees 6
1.1.2 The Two -Phase Commit Protocol 7
1.1.3 Phase Zero 8
1.1.4 Single -Phase Commit 8
1.1.5 Core and Optional Protocols 8

1.2 Glossary 8
1.3 References 10

2 Functional Architecture 12
2.1 Overview 12

2.1.1 Purpose 12
2.1.2 Interaction with External Components 12
2.1.3 System Components 14
2.1.4 System Communication 16
2.1.5 Member Protocol Functional Relationships 16
2.1.6 System Applicability 18
2.1.7 Relevant Standards 19

2.2 Protocol Summary 19
2.3 Environment 22

2.3.1 Dependencies on This System 22
2.3.2 Dependencies on Other Systems/Compone nts 22

2.4 Assumptions and Preconditions 23
2.5 Use Cases 23

2.5.1 Perform Transaction Work ï Application 23
2.5.2 Complete a Transaction ï Application 26
2.5.3 Transaction Management ï Management Tool 27
2.5.4 Recover In -doubt Transaction State ï Resource Manager 28
2.5.5 Transaction Recovery - Remote Transaction Manager 30
2.5.6 Supporting Use Cases 32

2.5.6.1 Create a Transaction ï Application 32
2.5.6.2 Enlist in a Transaction ï Resource Manager 33
2.5.6.3 Perform Transaction Work with Pull Propagation ï Application 33
2.5.6.4 Perform Transaction Work with Push Propagation ï External Application 35
2.5.6.5 Drive Completion of a Transaction ï Root Transaction Manager 36

2.6 Versioning, Capability Negotiation, and Extensibility 37
2.7 Error Handling 37

2.7.1 Connection Disconnected 37
2.7.2 Internal Failures 38
2.7.3 System Configuration Corruption or Unavailability 38
2.7.4 Log Corruption or Unavailability 38

2.8 Coherency Requirements 39
2.9 Security 39

2.9.1 Transaction Information Security 40
2.9.2 System Configuration Security 40
2.9.3 Message Security 41
2.9.4 Event Secur ity 41
2.9.5 Connection Type and Feature Restriction 41
2.9.6 Internal Security 42

4 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.9.7 External Security 42
2.10 Additional Considera tions 43

3 Examples 44
3.1 Example 1: Perform Transaction Work 44
3.2 Example 2: Commit a Transaction 47
3.3 Example 3: Abort a Transaction 49
3.4 Example 4: Transaction Manager Recovers after a Connection Resource Manager

Failure 51
3.5 Example 5: Connection to a Resource Manager Breaks Down 54
3.6 Example 6: Distributed Transaction Coordination with External Components 57

3.6.1 Precursory Message Exchange 58
3.6.2 Application -Driven Transactional Message Exchange 61
3.6.3 Two -Phase Commit Transactional Message Exchange 64

4 Microsoft Implementations 68
4.1 Product Behavior 68

5 Change Tracking 69

6 INDEX 71

5 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

In a distributed computer network, it is sometimes necessary to ensure that a set of separate
operations is either all completed, or that none of the operations is completed. In application
programming, it is possible to achieve such semantics by using transactions . Systems that need
transactions generally rely on a transaction processing service in which the service coordinates
multiple operations simultaneously.

The transaction processing services described in this document p rovide transaction coordination for
distributed systems. Very broadly, a transaction is defined as an activity that makes changes to the

state of a set of resources so that either all the changes are completed or none of the c hanges are
completed. Resources may be data, such as rows in a database, or logical entities, such as the
execution state of a program. Resources changed by a transaction can also be in separate systems.

Achieving this under all expected and unexpected con ditions is difficult but there is a well -
established solution, described in [GRAY]. The solution identifies three participants in the
transaction execution:

Á The application

Á The transaction manager

Á The resource manager (RM)

These participants communicate with each other by using The Two -Phase Commit protocol (section
1.1.2) . The transaction manager and the RM are usually provided as part of an operating system or
other platform elements, such as a database, leaving most programmers wi th only the application to

write.

The RM represents the resources involved in the transaction. A transaction manager coordinates the
transaction, keeping all of the participants in step. All the changes to the resources involved in a
transaction are made b y applications via implementation -specific protocols outside the scope of the
two - phase commit protocol. Only one of the applications involved in the transaction initiates and

completes the transaction, through communications with its transaction manager. This application is

known as the root application . As other participants are added to the transaction, each participant
is said to be enlisted in the transaction.

For more detailed descriptions of transaction processing concepts, see [GRAY] chapter 2.1, and [MS -
DTCO] section 1.3.

1.1 Conceptual Overview

A transaction is an atomic unit of work that can either succeed or fail. A transaction cannot be
partially completed. Because a transaction can be made up of many steps, each step in the
transaction must succeed for the transaction to be successful. If any step of the transaction fails,
the entire transaction fails. When a transaction fails, the system needs to return to the state that it
was in before the transaction was started. This is called a rollback . When a transaction fails, the

cha nges that had been made are said to be rolled back.

The following sections provide a conceptual overview of the major components and processes of the

transaction processing services:

Á Transaction Trees (section 1.1.1)

%5bMS-GLOS%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

6 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Á The Two -Phase Commit Protocol (section 1.1.2)

Á Phase Zero (section 1.1.3)

Á Single -Phase Commit (section 1.1.4)

Á Core and Optional Protocols (section 1.1.5)

1.1.1 Transaction Trees

Multiple transaction managers and resource managers can participate in a transaction. Their
individual responsibilities in the two -phase commit protocol are defined by a transaction tree, as
shown in the following figure.

Figure 1: Transaction tree

The transaction manager at the root of the tree is the root transaction manager . This is the
transaction manager with which the root application communicates. Any participant that enlists with

a transaction manager is called a subordinate participant . Each transaction manager is a
superior transaction manager if any of its subordinate participants are tran saction managers. All

transaction managers in the tree, apart from the root transaction manager, are subordinate
transaction managers .

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

7 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.1.2 The Two - Phase Commit Protocol

The two phases of the two -phase commit protocol described in [GRAY] are Phase One and Phase
Two . These phases can be described informally as "are you ready" and "go / no go," respectively.

Phase One (are you ready) begins when all the required changes to the resource state have been
made, and the root application asks the transaction manager to comp lete the transaction. Phase
One ends when the transaction manager determines the outcome of the transaction; that is,
whether all the changes are to be made or whether no changes are to be made.

When the root application asks the root transaction manager t o complete the transaction, it makes
either a commit request , asking that all the changes are to be made, or an abort request , asking
that no changes are to be made. A commit request causes the ro ot transaction manager to ask each

of the subordinate participants involved in the transaction whether they are prepared to commit the
changes made. This is called voting on the transaction outcome. Each subordinate participant must
vote one of three outco mes:

Á Read-Only

Á Prepared

Á Aborted

Read-Only and Prepared are positive votes. Aborted is a negative vote. If every subordinate
participant votes positively, then the final outcome of the transaction as a whole is to make all the
changes; that is, commit outcome .

If any subordinate participant votes negatively, the root transaction manager determines that the
final outcome of the transaction as a whole is to make no changes; that is, abort outcome . A n
abort request causes the root transaction manager to notify each subordinate participant to make

no changes and to notify each of their respective subordinate participants, if any, to abort the
transaction.

A subordinate transaction manager determines it s vote by aggregating the votes of its subordinate

participants. If a subordinate transaction manager has no subordinate participants, or if all of its
subordinate participants vote Read -Only, then the subordinate transaction manager votes Read -
Only. If at least one subordinate participant votes Prepared, and after collecting all votes no

subordinate participant votes Aborted, then the subordinate transaction manager votes Prepared. In
all other cases, the subordinate transaction manager votes Aborted, in w hich case it must also notify
any subordinate participants that had voted Prepared that the transaction has been aborted.

Until a participant votes on the outcome of a transaction, that participant can unilaterally abort the
transaction by issuing an abort request to its transaction manager. This is called a unilateral abort.
Further details of unilateral abort are described in [MS -DTCO] section 1.3.2.1.

Phase Two begins after the root transaction manager determines the outcome of the transaction. In

this phase, each subordinate participant that voted Prepared is sent either a request to commit the
changes if the outcome was the commit outcome or a request to undo (rollback) the changes if the
outcome was the abort outcome. The root transaction manager also sends the outcome of the
transaction to the root application. A subordinate participant that voted Read -Only is not notified of

the outcome of the transaction; for example, a resource manager might vote Read -Only if it made
no changes as part of the transaction. A subordinate participant that voted Abort is also not notified
of the transaction outcome.

Phase Two ends after the root transaction manager tells the participants what the outcome is
(commit or abort), and participan ts have notified the transaction manager that the operation is
successfully completed.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

8 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This is the two -phase commit protocol described in [GRAY]. The DTCO protocol adds Phase Zero
(section 1.1.3) , which expands the beginning of Phase One.

1.1.3 Phase Zero

The transaction processing services protocols extend the two -phase commit protocol by adding
Phase Zero , which expands the beginning of Phase One. It begins when the root application
requests completion of the transaction and it ends when all Phase Zero participants have voted that
the phase is complete, after which Phase One proceeds, as described previous ly. The value of the
additional phase is that during Phase Zero, new participants can be enlisted in the transaction.

In the two -phase commit protocol described in [GRAY], the set of participants is fixed from the
moment that Phase One begins. Phase Zero i s a useful extension in several scenarios. For example,

a caching resource manager can be placed between an application and a database resource
manager so that all requested changes are held in memory until the caching resource manager
receives a request f rom the transaction manager to exit Phase Zero. Only then is the database
resource manager enlisted in the transaction and the changes made to the durable store, yielding

potentially significant performance gains. Further details of Phase Zero are describe d in [MS -DTCO]
section 1.3.1.1.

1.1.4 Single - Phase Commit

As an extension to the two -phase commit protocol, transaction processing services protocols use a
mechanism called single - phase commit optimization, which is described in [MS -DTCO] section
1.3.2.2 .

This optimization is performed when the root transaction manager has only one subordinate
transaction manager. In this case, instead of Pha se One, the root transaction manager sends a

request to the subordinate transaction manager to perform a single -phase commit. If the
subordinate transaction manager supports this operation, then the root transaction manager gives
the responsibility to coor dinate the outcome of the transaction to the subordinate transaction
manager. When the outcome is determined, the subordinate transaction manager notifies the root
transaction manager with the result. If the subordinate transaction manager does not support

single -phase commit optimization, it rejects the initial request, and the root transaction manager
resumes the normal two -phase commit. Single -phase commit optimization is useful when the root

transaction manager and the subordinate transaction manager ar e on separate networks.

1.1.5 Core and Optional Protocols

To facilitate transaction coordination, the system supports a set of core protocols and a set of
optional protocols, as described in the Protocol Summary (section 2.2) . Core protocols are
proprietary to the system and are used by default by applications, application services, and resource
managers. Optional protoc ols allow interoperability through transaction processing industry

standards. Relevant industry standards are listed in section 2.1.7 . Applications, application services,
resource managers, and transacti on managers communicating with the system over optional
protocols are referred to as external applications, external application services, external resource
managers, and external transaction managers. The system allows the possibility of processing a
tran saction using only a single core or optional protocol, or a combination of core and optional

protocols.

1.2 Glossary

The following terms are defined in [MS -GLOS] :

%5bMS-GLOS%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

abort request
application

atomic transaction
commit request

enlistment
globally unique identifier (GUID)
facet
.NET Framework
Phase One
Phase Two
Phase Zero

recovery
remote procedure call (RPC)
resource manager (RM)
security provider
single - phase commit
subordinate transaction manager

superior transaction manager
transaction
transaction identifier
transaction manager
transaction propagation
two - phase commit

The following terms are defined in [MS -DTCO] :

abort outcome
commit outcome
outcome
participant
pull propagation
push propagation
resource

rollback
root application
root transaction manager
subordinate participant

The following t erms are defined in [MS -DTCLU] :

cold recovery

log
logical unit (LU)
LU name pair
remote LU

The following protocol abbreviations are used in this document:

CMPO: MSDTC Connection Manager: OleTx Transports Protocol, specified in [MS -CMPO].

DTCLU: MSDTC Connection Manager: OleTx Transaction Protocol Logical Unit Mainframe

Extension, specified in [MS -DTCLU] .

DTCO: MSDTC Connection Manager: OleTx Transaction Protocol, specified in [MS -DTCO] .

%5bMS-DTCO%5d.pdf
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191386
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191392

10 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.3 References

[GRAY] Gray, J. and Reuter, A., "Transaction Processing: Concepts and Techniques", San Mateo, CA:
Morgan Kaufmann Publishers, 1993, ISBN: 1558601902.

[LU62Peer] IBM Corporation, "SNA LU 6.2 Peer Protocols SC31 -6808 -02", October 1996,
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC31 -
6808 -02

[LU62SPS] IBM Corporation, "SNA Sync Point Services Architecture References SC31 -8134 -00",
August 1994,
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SR
X&PBL=SC31 -8134 -00

[LU62Verb] IBM Corporation, "SNA Transaction Programmer's Reference Manual for LU Type 6.2
GC30 -3084 -05", November 1993,
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SR
X&PBL=GC30 -3084 -05

[MC -DTCXA] Microsoft Corporation, " MSDTC Connection Manager: OleTx XA Protocol ".

[MS -CMOM] Microsoft Corporation, " MSDTC Connection Manager: OleTx Management Protocol ".

[MS -CMP] Microsoft Corporation, " MSDTC Connection Manager: OleTx Multiplexing Protocol ".

[MS -CMPO] Microsoft Corporation, " MSDTC Connection Manager: OleTx Transports Protocol ".

[MS -COM] Microsoft Corporation, " Component Object Model Plu s (COM+) Protocol ".

[MS -DTCLU] Microsoft Corporation, " MSDTC Connection Manager: OleTx Transaction Protocol Logical
Unit Mainframe Extension ".

[MS -DTCM] Microsoft Corporation, " MSDTC Connection M anager: OleTx Transaction Internet
Protocol ".

[MS -DTCO] Microsoft Corporation, " MSDTC Connection Manager: OleTx Transaction Protocol ".

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Gl ossary ".

[MS -MQOD] Microsoft Corporation, " Message Queuing Protocols Overview ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extensions ".

[MS -TIPP] Microsoft Corporation, " Transaction Internet Protocol (TIP) Extensions ".

[MS -WSRVCAT] Microsoft Corporation, " WS-AtomicTransaction (WS -AT) Version 1.0 Protocol
Extensions ".

[RFC2371] Lyon, J., Evans, K., and Klein, J., "Transaction Internet Protocol Version 3.0", RFC 2371,
July 1998, http://www.ietf.org/rfc/rfc2371.txt

[WSAT10] Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., IBM, IONA Technologies and
Micr osoft", Web Services Atomic Transaction (WS -AtomicTransaction)", August 2005,
http://schemas.xmlsoap.org/ws/2004/10/wsat/

[WSAT11] OASIS, "Web Services Atomic Transaction (WS -AtomicTransaction) Version 1.1", July

2007, http://docs.oasis -open.org/ws - tx/wsat/2006/06

http://go.microsoft.com/fwlink/?LinkId=92615
http://go.microsoft.com/fwlink/?LinkId=92615
http://go.microsoft.com/fwlink/?LinkId=92616
http://go.microsoft.com/fwlink/?LinkId=92616
http://go.microsoft.com/fwlink/?LinkId=92613
http://go.microsoft.com/fwlink/?LinkId=92613
%5bMC-DTCXA%5d.pdf
%5bMS-CMOM%5d.pdf
%5bMS-CMP%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-COM%5d.pdf
%5bMS-DTCLU%5d.pdf
%5bMS-DTCLU%5d.pdf
%5bMS-DTCM%5d.pdf
%5bMS-DTCM%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQOD%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-TIPP%5d.pdf
%5bMS-WSRVCAT%5d.pdf
%5bMS-WSRVCAT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90338
http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067

11 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[WSC10] Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., IBM, IONA Technologies and
Microsoft, "Web Services Coordinati on (WS -Coordination)", August 2005,

http://schemas.xmlsoap.org/ws/2004/10/wscoor/

[WSC11] OASIS, "Web Services Coordination (WS -Coordination) 1.1", March 2006,

http://docs.oasis -open.org/ws - tx/wscoor/2006/06

[X509] ITU -T, "Information Technology - Open Systems Interconnection - The Directory: Public -Key
and Attribute Certificate Frameworks", Recommendation X.509, August 2005,
http://www.itu.int/rec/T -REC-X.509/en

Note There is a charge to download the specification.

[XOPEN-DTP] The Open Group, "Distributed Transaction Processing: The XA Specification", February
1992, http://www.opengroup.org/bookstore/catalog/c193.htm

http://go.microsoft.com/fwlink/?LinkId=113068
http://go.microsoft.com/fwlink/?LinkId=113069
http://go.microsoft.com/fwlink/?LinkId=90590
http://go.microsoft.com/fwlink/?LinkId=95800

12 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Functional Architecture

The transaction processing services protocols are an internal infrastructure of the Windows
operating system and support applications and systems that need transaction coordination services.
For example, a message queuing system such as the one specified i n [MS -MQOD] can use
transaction processing to make sure that operations on separate queues either are completed or
aborted. Or a middle - tier application server system such as COM+, specified in [MS -COM] , use
transaction services. [MS -MQOD] and [MS -COM] describe ho w those systems interact with the
transaction processing services protocols.

Transaction processing services consist of one or more transaction managers that communicate with
each other by using protocols internal to the system. Multiple transaction manage rs may be involved
in a transaction for many reasons; for example, when applications and the resources involved are
distributed over a network, or when one of the resources involved is associated with its own
specialized transaction manager.

To provide int eroperability with other well -known transaction processing standards, the transaction

processing services protocols provide specific external interfaces to enable applications, resource

managers, and transaction managers that do not support the internal pr otocols defined by the
system, to participate in transactions. These are referred to as external applications , external
resource managers , and external transaction managers .

2.1 Overview

2.1.1 Purpose

The transaction processing services protocols provide distributed transaction coordination services
for applications, application services, resource managers, external applications, external application
services, external resource managers, and external tr ansaction managers. The protocols are also
used by clients that configure and manage the system.

The purpose of these protocols is to:

Á Use the two -phase commit protocol, described in [GRAY] and in [MS -DTCO] section 1.3.1 to

coordinate the transaction participants.

Á Enable applications, resource managers, and transaction managers distributed over a networked

computer system to participate in a single transaction.

Á Enab le participating transaction managers and resource managers to recover from local failures

by reestablishing a state consistent with that of the other participants in a distributed

transaction. This is referred to as transaction recovery , and it is described in [MS -DTCO] section
1.3.4 .

Á Enable external transaction managers to participate in coordinating a transaction.

2.1.2 Interaction with External Components

The following figure illustrates the external components that interact with the transaction processing
services.

http://go.microsoft.com/fwlink/?LinkId=246389
http://go.microsoft.com/fwlink/?LinkId=234303
http://go.microsoft.com/fwlink/?LinkId=207259
http://go.microsoft.com/fwlink/?LinkId=234303
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf

13 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 2: Components interacting with the transaction processing services

Applications, application services, resource managers, external applications, external application
services, external resource managers, and external transaction managers use a set o f system
interfaces to participate in a distributed transaction and perform transaction -processing -specific
operations such as transaction marshaling, propagation, and recovery.

Applications and external applications use the system to:

Á Demarcate when a tra nsaction begins and completes within a series of operations.

Á Marshal a transaction to other applications and resource managers.

Á Propagate a transaction from one transaction manager to another.

Á Perform administrative operations on a specific transaction or a transaction manager.

Resource managers and external resource managers use the system to:

Á Register with a transaction manager and performing recovery operations.

Á Enlist for a specific transaction and participating in the corresponding two -phase commit pro tocol

notifications.

Á Vote on transaction outcomes.

External transaction managers use the system to:

Á Enlist with the system as a superior transaction manager or subordinate transaction manager for

a specific transaction.

Á Participate in two -phase commit prot ocol notifications.

Á Coordinate recovery operations.

The system can also be used by applications or other systems to provide transaction coordination
semantics to higher - level applications. For example, application programming frameworks, such as

the .NET Framework , or a middle - tier application server system such as COM+ provide transaction

%5bMS-GLOS%5d.pdf

14 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

processing services to their clients by providing a set of high - level interfaces, but in the background,
they can use transaction processing services to fulfill the required transaction coordination

semantics. This way, the complexity of interacting with the transaction processing services is
minimized.

2.1.3 System Components

This section describes the externally visible view of the system and the components within the
system.

The conceptual framework for the transaction processing services is defined in terms of the roles
specified in [MS -DTCO] section 1.3.3. The most basic role interaction scenario is illustrated in the
following figure. The application performs work on a local resource manager. No propagation is

necessary because the resource manager and th e application share a common local transaction
manager. All communications between the application and the transaction manager, between the
resource manager and the transaction manager, and between the management tool and the
transaction manager are based on core protocols. Communications between the application and the

resource manager are implementation -specific.

Figure 3: Basic communication between the roles defined in the transaction lifecycle

The following roles us e the core protocols.

Application: A client application that performs transacted work on a number of resource

managers. The application creates a transaction, and therefore, only that application has the
right to commit the transaction.

Application service : A service that accepts requests to perform transacted work on local
resource managers. An application service does not have the right to commit transactions.

%5bMS-DTCO%5d.pdf

15 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Transaction manager: A service that coordinates the lifetime of transactions, providing
function ality for resource managers to enlist in these transactions. The transaction manager

also provides functionality to enlist in transactions that are coordinated by remote transaction
managers.

Resource manager: A participant that is responsible for coordina ting the state of a resource
with the outcome of transactions. For a specified transaction, a resource manager enlists with
exactly one transaction manager to vote on that transaction outcome and to obtain the final
outcome.

Management tool: An application that monitors the health of a transaction manager and
configures settings related to transaction coordination.

The following roles use the optional protocols:

External application: An application that uses a protocol other than a core protocol to
communic ate with the transaction processing services.

External application service: An application service that uses a protocol other than a core
protocol to communicate with the transaction processing services.

External transaction manager: A transaction manager that uses a protocol other than a core
protocol to communicate with the transaction processing services.

External resource manager: A resource manager that uses a protocol other than a core
protocol to communicate with the transaction processing services.

The following figure illustrates a distributed scenario. The application performs work on a local
resource manager and a remote resource manager. It is necessary for the transaction to be
propagated from the application's local transaction manager to the r emote resource manager's
transaction manager.

16 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 4: Distributed communication between the roles defined in the transaction lifecycle

As illustrated in the preceding figure, the system uses various facets to enable communication
between different roles. Specific details about these facets and their use are discussed later in this

section.

The communication between the application and application service, between the application and
the re source manager, and between the application service and the resource manager are
implementation -specific. The expectation is that this communication will consist of a request for
work to be done, along with all information that is necessary to enlist in th e transaction, including
the transaction identifier . Otherwise, all other communication is based on the core protocols.

2.1.4 System Communication

2.1.5 Member Protocol Functional Relationships

The following figure represents the dependencies of the protocols used by the transaction processing

Services.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

17 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 5: Transaction processing services protocol dependencies

This section describes the roles played by each member protocol in the overall function of the
system.

Á MSDTC Connection Manager: OleTx Transaction Protocol (DTCO), specified in [MS -DTCO] ,

supports all the communications between the components described in section 2.1.2 , except

those between the management tool and the transaction m anager, between the application and
the application service, between the application and the resource manager, and between the

application service and the resource manager. The abstract state machine that drives the
transaction lifecycle that is specified in [MS -DTCO] section 1.3.1 is defined only in [MS -DTCO] .
An implementation of this state machine is ne cessary for any implementation of a transaction
manager, and therefore, any implementation of the protocols specified in [MS -DTCM] , [MS -TIPP] ,
[MS -DTCLU] , [MS -CMOM] , [WSAT10] , [WSAT11] , [MS -WSRVCAT] , and [MC -DTCXA] requires a
DTCO implementation.

Á MSDTC Connection Manager: OleTx Transaction Protocol Lo gical Unit Mainframe Extension

(DTCLU) [MS -DTCLU] supports communication from the external resource manager to the
transaction manager. The system uses this protocol to provide transactional sup port to
implementations of LU 6.2 [LU62Peer] .

Á MSDTC Connection Manager: OleTx Transaction Internet Protocol specified in [MS -DTCM]

supports communication from the external application to the transaction manager and external
application service to transaction manager communications. The system uses this protocol to

allow external application and external application services to reques t the system to pull a
transaction from, or push a transaction to, an external transaction manager that implements
Transaction Internal Protocol (TIP).

http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191391
http://go.microsoft.com/fwlink/?LinkId=191430
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191384
http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067
http://go.microsoft.com/fwlink/?LinkId=214691
%5bMC-DTCXA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=92615
http://go.microsoft.com/fwlink/?LinkId=191391

18 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Á Transaction Internet Protocol (TIP) Extensions specified in [MS -TIPP] supports external

application to transaction manager communications, external application service to transaction

manager communications, and external transaction manager to transaction manager

communications. This protocol repre sents an extension to TIP [RFC2371] . It provides
mechanisms to associate TIP transactions and the transactions internal to the system. It also
provides mechanisms for driving a single atomic outc ome, coordinating the distribution of this
outcome, and transaction propagation .

Á WS-AtomicTransaction protocol, [WSAT10] and [WSAT11] , is an alternative transaction

coordination protocol. It supports external application to transaction manager communications,
external application service to transaction manager communications, and external transaction

manag er to transaction manager communications.

Á WS-AtomicTransaction (WS -AT) Protocol Extensions, specified in [MS -WSRVCAT] , supports

external application to external transaction manager communication s, and external application to
external application service communications. The system uses this protocol to provide support for
external applications to exchange system specific transaction propagation information with
external application services. By us ing the data structures in the WS -AtomicTransaction (WS -AT)

Extensions and also by using DTCO, external applications can query system specific transaction
propagation information from the system. External applications can then include this information
in W S-AtomicTransaction messages when communicating with external application services. If
the external application service also supports the protocols specified in [MS -WSRVCAT] and [MS -
DTCO] , then for performance reasons, it may choose to communicate with the system by using
core protocols rather than by using WS -AtomicTransaction protocol. See [MS -WSRVCAT] for

further details about this protocol and its usage scenarios.

Á MSDTC Connection Manager: OleTx XA Protocol, as specified in [MC -DTCXA], supports

communication from:

Á An external transaction manager to a transaction manager

Á An external application to a transaction manager

Á An external resource manager to a transaction manager

The system uses this protocol to provide transactional support for external transaction managers
and external resource managers implementing the protoco l specified in [XOPEN -DTP] .

Á MSDTC Connection Manager: OleTx Management Protocol, specified in [MS -CMOM] , is used for

communications b etween the management tool and the transaction manager and performs
administration and configuration operations on the system.

Á MSDTC Connection Manager: OleTx Transports Protocol, specified in [MS-CMPO], is a framing

and message transport protocol. It implements remote procedure call (RPC) interfaces as
specified in [MS -RPCE] for establishing duplex sessions between two partners and for exchanging
messages between them. [MS -CMPO] describes specific restrictions on the use of RPC interfaces.
Details are specified in [MS -CMPO] sections 1.3 , 1.7 , and 2.

Á MSDTC Connection Manager: OleTx Multiplexing Protocol, specified in [MS -CMP], supports both

multiplexing multiple logical sessions over a single CMPO session, and multiplexing multiple

protocol messages into a single CMPO.

2.1.6 System Applicability

The transaction processing services protocols are applicable in scenarios where atomic transaction
processing is required where the participants may be on the same computer or distributed in a

http://go.microsoft.com/fwlink/?LinkId=191430
http://go.microsoft.com/fwlink/?LinkId=90338
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=95800
http://go.microsoft.com/fwlink/?LinkId=191384
http://go.microsoft.com/fwlink/?LinkId=191386
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191386
http://go.microsoft.com/fwlink/?LinkId=191386
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
%5bMS-CMPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191385
%5bMS-GLOS%5d.pdf

19 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

network, and where each participant may be configured to use a different transaction processing
protocol.

2.1.7 Relevant Standards

The system uses the standards listed in the following table for interoperability with external
systems.

Protocol name

Specification

reference System use description

Transaction Internet Protocol

(TIP)

[RFC2371] Allows transaction propagation between the

system and TIP transaction managers.

SNA LU Type 6.2 Protocol (LU

6.2)

[LU62Peer] ,

[LU62Verb] ,

[LU62SPS]

Allows resources with LU 6.2 implementation to

participate in transactions.

Web Services Atomic

Transaction (W S-

AtomicTransaction)

[WSAT10] ,

[WSAT11]

Allows distributed transaction processing and

transaction propagation with systems

implement ing WS -AtomicTransaction.

Distributed Transaction

Processing: The XA

Specification (XA)

[XOPEN-DTP] Allows distributed transaction processing and

transaction propagation with systems

implementing XA.

2.2 Protocol Summary

The following tables list the core and optional protocols that facilitate transaction coordination. Core
protocols are proprietary to the system and are used by default by applications , application services,

and resource managers. Optional protocols enable interoperability through industry standards of
transaction processing as specified in section 2.1.7 .

The following table lists eac h member protocol of the transaction processing services, its purpose,

and its corresponding specification.

Protocol name Protocol purpose

Document

short name

MSDTC Connection Manager:

OleTx Transaction Protocol

Specification

Enables the creation of, init iation of, distributed

propagation of, and participation in transactions.

[MS -DTCO]

MSDTC Connection Manager:

OleTx Management Protocol

Specification

Enables management tools to obtain a list o f

transactions being processed by a transaction

manager. Enables the changing of settings that are

used by other transaction processing services

protocols.

[MS -CMOM]

MSDTC Connection Manager:

OleTx Transaction Internet

Protocol Specification

Enables the initiation of distributed transaction

propagation via the TIP protocol.

[MS -DTCM]

Transaction Internet Protocol

(TIP) Extensions

Enables distributed propagation of transactions by

using the TIP protocol over TCP.

[MS -TIPP]

MSDTC Connection Manager: Enables an im plementation of logical unit (LU) type [MS -DTCLU]

http://go.microsoft.com/fwlink/?LinkId=90338
http://go.microsoft.com/fwlink/?LinkId=92615
http://go.microsoft.com/fwlink/?LinkId=92613
http://go.microsoft.com/fwlink/?LinkId=92616
http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067
http://go.microsoft.com/fwlink/?LinkId=95800
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191384
http://go.microsoft.com/fwlink/?LinkId=191391
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390

20 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol name Protocol purpose

Document

short name

OleTx Transaction Protocol

Logical Unit Mainframe

Extension

6.2 as defined by the IBM System Network Architecture

(SNA) to participate in transactions coordinated by a

transaction manager that does not implement SNA

protocols.

WS-AtomicTransaction Protocol Enables distributed transaction processing and

propagation by using the WS -AtomicTransaction

protocol. The system supports both versions 1.0 and

1.1 of the protocol.

[WSAT10] ,

[WSAT11]

WS-AtomicTransaction (WS -

AT) Protocol Extensions

Enables external applications to query the system for

system -specifi c transaction propagation information. It

also describes how this information can be propagated

by extending the WS -AtomicTransaction Protocol.

[MS -

WSRVCAT]

MSDTC Connection Manager:

OleTx XA Protocol Specification

Enables external transaction managers and external

resource managers by using the protocol described on

[XOPEN-DTP] to participate in tra nsactions with the

system.

[MC -DTCXA]

MSDTC Connection Manager:

OleTx Multiplexing Protocol

Specification

Enables multiplexing multiple logical protocol

connections through a single CMPO connection, which

reduces the number of messages exchanged over the

wire.

[MS -CMP]

MSDTC Connection Manager:

OleTx Transports Protocol

Specification

Provides negotiation of connections and sending of

variable - length data for the MSDTC Connection

Manager Protocols.

[MS -CMPO]

The following tables group the member protocols of the transaction processing services according to
their primary purpose.

Protocols that enable communication among transaction managers

The protocols listed in the following table enable communication among transaction managers. The
transaction processing services protocol s consist of one or more transaction managers that

communicate with each other by using protocols internal to the system and that collectively provide
external interfaces to applications and resource managers. All of this communication uses a base set
of s ystem -defined protocols that are referred to as the core protocols.

Protocol name Description

Document

short name

MSDTC Connection

Manager: OleTx

Transaction Protocol

Specification

Enables the creation of, initiation of, distributed

propagation of, and pa rticipation in transactions.

[MS -DTCO]

MSDTC Connection

Manager: OleTx

Management Protocol

Specification

Enables management tools to obtain a list of transactions

being processed by a transaction manager. Enables the

changing of settings that are used by other transaction

processing services protocols.

[MS -CMOM]

Protocols that enable participants that support optional protocols to participate in
transactions

http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=95800
%5bMC-DTCXA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191385
http://go.microsoft.com/fwlink/?LinkId=191386
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191384

21 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The protocols listed in the following table enable applications and transaction managers that support
protocols other than the core protocols to participate in transactions. These protocols are referred to

as the optional protocols, and the participants that use optional protocols are referred to as external
applications, external resource managers, and external transaction managers in this docu ment.

Protocol name Description

Document

short name

MSDTC Connection Manager:

OleTx Transaction Internet

Protocol Specification

Enables the initiation of distributed transaction

propagation via the TIP protocol.

[MS -DTCM]

Transaction Internet Protocol

(TIP) Extensions

Enables distributed propagation of transactions by using

the TIP protocol over TCP.

[MS -TIPP]

MSDTC Connection Manager:

OleTx Transaction Protocol LU

Mainframe Extension

Enables an implementation of LU type 6.2 as defined by

the IBM System Network Architecture (SNA) to

participate in transactions coordinated by a transaction

manager that does not i mplement SNA protocols.

[MS-DTCLU]

WS-AtomicTransaction

Protocol

Enables distributed transaction processing and

propagation by using the WS -AtomicTransaction

protocol. The system supports both versions 1.0 and

1.1 of the protocol.

[WSAT10] ,

[WSAT11]

WS-AtomicTransaction (WS -

AT) Protocol Extensions

Enables external applications to query the system for

system -specific transaction propagation information. It

also describes how this information can be propagated

by extending the WS -AtomicTransaction Protocol.

[MS -

WSRVCAT]

MSDTC Connection Manager:

OleTx XA Protocol

Specification

Enables external transaction managers and external

resource ma nagers by using the protocol described on

[XOPEN-DTP] to participate in transactions with the

system.

[MC -DTCXA]

Protocols that enable the underlying communication for the core protocols

The pro tocols listed in the following table enable the underlying communications functionality for the
core protocols and the protocols described in [MS -DTCM] , [MS -DTCLU] , and [MC -DTCXA].

Protocol name Description

Document

short name

MSDTC Connection Manager:

OleTx Multiplexing Protocol

Specification

Enables multiplexing multiple logical protocol

connections through a single CMPO connection, which

reduces the number of messages exchanged over the

wire.

[MS -CMP]

MSDTC Connection Manager:

OleTx Transports Protocol

Specification

Provides negotiation of connections and sending of

variable - length data for the MSDTC Connection

Manager Protocols.

[MS -CMPO]

Protocols that enable support for TIP transactions

The protocols listed in the following table enable support for TIP transactions

http://go.microsoft.com/fwlink/?LinkId=191391
http://go.microsoft.com/fwlink/?LinkId=191430
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=113068
http://go.microsoft.com/fwlink/?LinkId=113067
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=95800
http://go.microsoft.com/fwlink/?LinkId=191391
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191385
http://go.microsoft.com/fwlink/?LinkId=191386

22 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol name Description

Document

short name

MSDTC Connection Manager: OleTx

Transaction Internet Protocol

Specification

Enables the initiation of distri buted

transaction propagation via the TIP

protocol.

[MS -DTCM]

Transaction Internet Protocol (TIP)

Extensions

Enables distributed propagation of

transactions by using the TIP protocol

over TCP.

[MS -TIPP]

Protocols that enable support for WS - AtomicTransactions

Protocol name Description

Document

short name

WS-AtomicTransaction

Protocol

Enables distributed transaction processing and pro pagation

by using the WS -AtomicTransaction protocol. The system

supports both versions 1.0 and 1.1 of the protocol.

[WSAT10] ,

[WSAT1 1]

WS-AtomicTransaction

(WS -AT) Protocol

Extensions

Enables external applications to query the system for

system -specific transaction propagation information. It also

describes how this information can be propagated by

extending the WS -AtomicTransaction P rotocol.

[MS -

WSRVCAT]

2.3 Environment

The following sections identify the context in which the system exists. This includes the systems that

use the interfaces provided by this system of protocols, other systems that depend on this system,
and, as appropriate, how components of the system comm unicate.

2.3.1 Dependencies on This System

The following systems depend on Transaction Processing Services:

Message Queuing System: The message queuing protocols, as described in [MS -MQOD] ,
depend on the transaction processing services to allow message queues to be treated as

resources in the context of a distributed transaction. Without transaction processing services,
the message queuing system would need to either extend its internal tra nsaction manager to
support distributed transactions or rely on another transaction processing system to achieve
this.

COM+: The COM+ protocol, as described in [MS -COM] , depends on transaction p rocessing
services to implement its transactional features. Without transaction processing services, the
COM+ protocol would need to either implement an internal transaction processing system, or

to rely on another transaction processing system, to achieve the same functionality.

2.3.2 Dependencies on Other Systems/Components

The system depends on a durable storage system to maintain the state that is used when recovering
from failure. The storage that holds this state is referred to as a log. The log is a crucial component
of the system. Without the log, following a transient failure where everything in -memory is lost, it is

not possible for the system to determine the last known state of a given transaction and whether
the transaction outcome has been communicated to the corresponding participants. If recovery is
needed, but t he log that has the recovery information is lost, it is not possible to recover the

http://go.microsoft.com/fwlink/?LinkId=191391
http://go.microsoft.com/fwlink/?LinkId=191430
http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=214691
http://go.microsoft.com/fwlink/?LinkId=246389
http://go.microsoft.com/fwlink/?LinkId=234303

23 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

corresponding transactions. As a result, data corruption or data loss may occur on the affected
resources.

The transaction processing Services protocols depend on a network ing system to connect the
computers involved in the system together if the system spans multiple computers. The system has

no specific requirements regarding the type of network that needs to be used for this purpose. The
system internal components may spa n across multiple computers, or some transaction participants
may be remotely communicating with the system over a network. In either case the components on
separate computers rely on the networking system to discover and communicate with each other.

The t ransaction processing services protocols depend on a security identity management system to
authenticate identities and group them. The system uses the security identity management system
to restrict access to its assets and functionality to specified grou ps.

2.4 Assumptions and Preconditions

The following assumptions and preconditions apply to the transaction processing services protocols:

Á The system must have access to a durable storage system where it can keep a log. The system

holds state information for each running transaction in the log. Depending on the number of
running transactions at a given time, the log size requirement may diffe r because the size of the

log will grow with the number of transaction states that it stores.

Á If the system spans across a computer network, the system must be installed on all the

computers involved.

Á The system must be configured so that participants can access its services locally or remotely.

Á If the system components span across a computer network, the computers in the network must

be connected to each other via the durable network described previously.

Á It is assumed that each transaction participant is trusted by the system. It is possible that a

malicious participant may start several new transactions and never complete them, resulting in a
filled log. Such a case would force the system to stop responding to new incoming transaction

requests until enoug h log space is available again.

Member protocols supported by the system, as listed in section 2.2 , may have additional

assumptions and preconditions when that protocol is being used. See the relevant me mber protocol
specification for details.

2.5 Use Cases

2.5.1 Perform Transaction Work – Application

In this use case, the application performs the transaction between multiple transaction managers.

Context of use: When an application performs transactional work across multiple transaction
managers.

24 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 6: Use case diagram for performing transaction work

Goal: Perform transactional work between a root transaction manager and one or more remote

transaction managers.

Actors:

25 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Application: A primary actor that perf orms transacted work on a number of transaction
managers. The application creates a transaction, and therefore, only that application has

the right to commit the transaction.

Root transaction manager: The root transaction manager is a supporting actor. It is a

service that coordinates the lifetime of transactions, providing functionality for resource
managers to enlist in these transactions. The root transaction manager provides
functionality to enlist in transactions that are coordinated by remote transact ion
managers. A root transaction manager is a transaction manager that creates and starts
the transaction.

Remote transaction manager: The remote transaction manager is a supporting actor. It
is a transaction manager that receives requests to perform trans actions depending on its

availability.

Resource manager: The resource manager is a supporting actor that is responsible for
coordinating the state of a resource with the outcome of transactions. For a specified
transaction, a resource manager enlists with exactly one transaction manager (here it is

the root transaction manager) to vote on that transaction outcome and to obtain the
final outcome.

Remote resource manager: The remote resource manager is a supporting actor. It is a
resource manager that enlists with remote transaction manager.

Application service: The application service is a supporting actor. It is a service that
accepts requests to perform transacted work on local resource managers. An application
service cannot commit transactions.

Stakehold ers:

Application: The application is a program that creates transactions in a distributed

computed network. Only that application has the right to commit the transaction.

Preconditions:

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Main success scenario:

1. Trigger : The application triggers the root transaction manager to create a transaction

(section 2.5.6.1).

2. The resource managers enlist in a transaction (section 2.5.6.2) with their respective root
transaction manager and remote transaction manager(s).

3. After succe ssful enlistment in a transaction, the resource manager(s) make the requested
updates to their resource in accordance with the semantics of the two -phase commit
protocol, such as isolation and durability.

4. The application perfo rms remote transaction work with pull propagation using the
application service (section 2.5.6.3).

Post - condition: The transaction is performed successfully.

Extensions: None.

%5bMS-GLOS%5d.pdf

26 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Variation – perform transac tion work – external application: All details are identical to the
use case described in this section except that the application performs the transaction with

push propagation where the application acts as an external application that makes use of
optional protocols (see section 2.2).

2.5.2 Complete a Transaction – Application

In this use case, the application either commits or aborts the transaction and completes the
transaction on all transaction participants.

Context of use: Commit or abort the transaction and drive it on all its participants until the
transaction is complete.

Figure 7: Use case diagram for transaction completion

Goal: To complete a transaction.

Actors:

Application: The ap plication is a primary actor that performs transacted work on a number

of resource managers. The application creates a transaction, and therefore, only that
application has the right to commit the transaction.

Root transaction manager: The root transaction manager is a supporting actor. The root
transaction manager is a service that coordinates the life time of transactions, providing

functionality for resource managers to enlist in these transactions, and that provides
functionality to enlist in transactio ns that are coordinated by remote transaction
managers. Here, the root transaction manager is a transaction manager that creates the

transaction and starts the transaction.

Stakeholders:

%5bMS-DTCO%5d.pdf

27 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Application: The application is a program that creates and performs transactions in a
distributed computed network, and therefore, only that application has the right to

commit the transaction.

Preconditions:

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Main success scenario:

1. Trigger : The application triggers the root transaction manager.

2. The application asks the root transaction manager to commit or abort a transaction.

3. The root t ransaction manager makes a durable record for the result of the transaction and

responds back to the application, indicating success.

4. The transaction manager initiates the Drive Completion of a transaction use case (section
2.5.6.5) to notify all participants of the outcome of the transaction.

Post condition: The transaction is completed successfully.

Extensions: None.

Variation – complete a transaction – external application: All details are identical to the

use case described in this section except that the application here is an external application
that makes use of optional protocols (see section 2.2).

2.5.3 Transaction Management – Management Tool

Context of use: When a transaction operation is monitored or managed by the management
tool.

Figure 8: Manage transactions use case

Goal: To monitor or manage a transaction.

Actors:

28 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Management tool: The management tool is the primary actor that triggers this use case.
The management tool is an application that monitors the health of a transaction

manager and configures settings related to t ransaction coordination.

Transaction manager: The transaction manager is the supporting actor. It is a service

that coordinates the lifetime of transactions, providing functionality for resource
managers to enlist in these transactions, and that provides f unctionality to enlist in
transactions that are coordinated by remote transaction managers.

Stakeholders:

Application: The application is a program that performs transactions in a distributed
computed network that creates a transaction, and therefore, onl y that application has
the right to commit the transaction.

Preconditions:

Á Transaction processing services are operational.

Á The management tool can access the transaction manager in the system.

Main Success Scenario:

1. Trigger : The management tool asks the transaction manager for a list of existing

transactions.

2. The transaction manager returns a list of existing transactions and their known states.

3. The management tool performs a Subs cribe for transaction information action against
transaction manager to monitor the progress of the two -phase commit protocol, described
in [MS -DTCO] section 1.3.1 and to resolve the transaction if it reaches an error state.

4. The management tool asks the transaction manager to update the state of a transaction.
For example, it may force the transaction to abort.

5. The transaction manager successfully updates the state of the transaction.

Post - condition: The transaction state is co rrectly updated.

2.5.4 Recover In - doubt Transaction State – Resource Manager

This use case shows how the resource manager drives recovery when a connection to a resource
manager breaks down after a participant has completed Phase One, but before completing Phase
Two of the two -phase commit protocol, as described in [GRAY]. The participant uses this use case to

recover the outcome of such transactions.

Context of use: When there is a failure during the two -phase commit process and the
transaction is in an in -doubt sta te in the root transaction manager's log.

%5bMS-DTCO%5d.pdf

29 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 9: Use case for transaction recovery by a resource manager

Goal: To recover the state of an in -doubt transaction in the root transaction manager's log.

Actors:

Resource manager: The resource manager is a primary actor which is a participant that is
responsible for coordinating the state of a resource with the outcome of transactions.
For a specified transaction, a resource manager enlists with exactly one transaction
mana ger to vote on that transaction outcome and to obtain the final outcome.

Transaction manager: The transaction manager is a supporting actor. The transaction
manager is a service that coordinates the lifetime of transactions, providing functionality
for res ource managers to enlist in these transactions, and that provides functionality to
enlist in transactions that are coordinated by remote transaction managers. Here, the
root transaction is a transaction manager that creates the transaction and starts

perfo rming the transaction.

Stakeholders:

Architects: An architect is responsible for the overall design of a system while managing
the technical risks associated with it.

An architect can use the transaction processing services as an element of a system in
th e design process to provide reliable support for distributed transactions.

IT operations personnel: If there are transactions in an in -doubt state in the resource
manager log, the resource manager must execute this use case to recover the affected
transact ions. Similarly, if a transaction manager has any transactions in a failed - to -

notify state, then a resource manager must execute this use case to receive the
outcomes of those transactions. Both of these operations may require manual
intervention by the IT operations personnel to trigger the recovery, or to force the

affected resource managers and transaction managers to forget the transactions in
either an in -doubt and failed - to -notify state.

Preconditions:

Á Transaction processing services is operational.

30 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Á The resource manager can access a transaction manager in the system.

Á The resource manager has transactions in in -doubt state in its log.

Main success scenario:

1. Trigger : The resource manager triggers this use case on startup if it has any in -doubt
transactions in its log, as described in [MS -DTCO] section 1.3.4.2.

2. The resource manager asks the transaction manager for the outcome of the transactions in
an in -doubt state in its log.

3. The system returns the state of each transaction if it has a record of the transaction in its
log. Otherwise, the transaction manager indicates to the resource manager that it does not
have a record of the transaction.

4. The resour ce manager either aborts or commits each transaction on the basis of the
outcome information received from the transaction manager. If the transaction manager

indicates that it does not have a record for a transaction, the resource manager assumes
that the transaction has been aborted.

Post condition: The transaction manager forgets the transaction and the resource manager
durably updates its records according to the outcome received from the transaction manager.

Extensions: None.

2.5.5 Transaction Recovery - Remote Transaction Manager

This use case shows how the transaction manager drives recovery where a connection to a
subordinate transaction manager breaks down during the two -phase commit protocol, as described
in [GRAY], when a participant has completed Phase One but has experienced a failure before
completing Phase Two. The participant uses this use case to recover the outcome of such

transactions.

Context of use: When there is a failure during the two -phase commit process and the
transaction is in an in -doubt state in the participant's log.

Figure 10: Use case for transaction Recovery by a transaction manager

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

31 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Goal: To r ecover the state of an in -doubt transaction in the participant's log.

Actors:

Remote transaction manager: The remote transaction manager is a primary actor. It is
a transaction manager that receives a request to perform some transaction depending

on its a vailability and enlists itself with the root transaction manager.

Root transaction manager: The root transaction manager is a supporting actor. It is a
service that coordinates the lifetime of transactions, enabling resource managers to
enlist in these tra nsactions and to enlist in transactions that are coordinated by remote
transaction managers. Here, a root transaction manager is a transaction manager that
creates and starts the transaction.

Stakeholders:

Architects: An architect is responsible for the o verall design of a system while managing
the technical risks associated with it. An architect can use transaction processing

services to provide proven, reusable support for distributed transactions.

IT operations personnel: If there are transactions in an in -doubt state in a resource
manager log, the resource manager must execute this use case to recover the affected
transactions. Similarly, if a transaction manager has any transactions in a failed - to -

notify state, a resource manager must execute this use case to receive the outcomes of
those transactions. Both of these operations may require manual intervention by the IT
operations personnel to trigger the recovery or to force the affected resource managers
and transaction managers to forget the transactio ns in the in -doubt and failed - to -notify
states.

Preconditions:

Á Transaction processing services are operational.

Á The resource manager can access a transaction manager in the system.

Á The resource manager has transactions in an in -doubt state in its log.

Mai n Success Scenario:

1. Trigger : The remote transaction manager triggers this use case on startup if it has any in -
doubt transactions in its log, as described in [MS -DTCO] section 1.3.4.2.

2. The remote transaction manager initiates a CheckAbort connection with the root
transaction manager, and sends a Check message to determine whether the transaction is
aborted.

3. The root transaction manager returns the state of the transaction if it has a record of the
transaction in its own log. Otherwise, the root transaction manager indicates to the
resource manager that it does not have a record for the transaction.

4. The remote transaction manager either aborts or commits each transaction on the basis of

the outcome information received from the root transaction manager. If the root
transaction manager indicated that it does not have a record for a transaction, remote
transaction manager assumes that the transaction has bee n aborted.

Post condition: The remote transaction manager durably updates its records, according to the
outcome received from the root transaction manager.

%5bMS-DTCO%5d.pdf

32 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Extensions: None.

2.5.6 Supporting Use Cases

2.5.6.1 Create a Transaction – Application

In this use case, the application triggers the root transaction manager to create a transaction.

Context of use: When a transaction is to be created before doing any transaction work.

Goal: To start a new transaction with a root transaction manager in the system.

Actors:

Application: The application is a primary actor that performs transaction work on a
number of resource managers. The application creates a transaction, and therefore, only

that application has the right to commit the transaction.

Root transaction manager: The root transaction manager is a supporting actor. The root
transaction manager coordinates the lifetime of transactions, providing functionality for
resource managers to e nlist in these transactions. The root transaction manager also
provides functionality to enlist in transactions that are coordinated by remote
transaction managers. Here, the root transaction manager is a transaction manager that

creates the transaction an d starts performing the transaction.

Stakeholders:

Application: The application is a program that creates and performs transactions in a
distributed computed network, and therefore, only that application has the right to
commit the transaction.

Preconditi ons:

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Main Success Scenario:

1. Trigger : The application triggers to cr eate a transaction.

2. The application requests that the root transaction manager create a transaction.

3. The root transaction manager creates a transaction.

4. The root transaction manager returns a reference for the transaction to the application.

Post - condition : A new transaction is created.

Extensions: None.

Variation – create a transaction – external application: All details are identical to the use
case described in this section except that the application is an external application that makes
use of optional protocols (see section 2.2).

33 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.5.6.2 Enlist in a Transaction – Resource Manager

In this use case, the resource manager enlists in a transaction with a respective transaction
manager.

Context of use: When a resource manager is enlisted in a transaction, the resource manager
can participate in the coordination of the transaction.

Goal: To enlist a resource manager in a transaction.

Actors:

Resource manager: The resource manager is a primary actor and c an be a remote
resource manager or an external resource manager.

Transaction manager: The transaction manager is a supporting actor. The transaction

manager can be a root transaction manager, a remote transaction manager, or an
external transaction manager .

Stakeholders:

Á Architects

Á Developers

Preconditions:

Á Transaction processing services are operational.

Á The resource manager can access the transaction manager it needs to contact to enlist in

the transaction.

Main Success Scenario:

1. Trigger : The application triggers the resource manager to update its resource in the

context of the transaction that was created in the Create a Trans action (section 2.5.6.1)
use case.

2. The resource manager asks the transaction manager to enlist in the transaction.

3. The transaction manager enlists the resource manager in the transaction and returns a
success message to the resource manager.

4. After successful enlistment in a transaction, the resource manager makes the requested
updates to its resource in accordance with the semantics of the two -phase com mit

protocol, such as isolation and durability.

Post - condition: The resource manager enlists in a transaction with the respective transaction
manager.

Extensions: None.

Variation: All details are identical to the use case described in this section except t hat the
application is an external application that makes use of optional protocols (see section 2.2).

2.5.6.3 Perform Transaction Work with Pull Propagation – Application

In this use case, the application performs transaction work with pull propagation.

34 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Context of use: To perform a set of operations in a transaction on a remote resource manager
that has a separate transaction manager.

Goal: To perform transaction work with pull propagation on a remote resource that has a
separate transaction manager.

Actors:

Application : The application is a primary actor that performs transaction work on a
number of resource managers. The application creates a transaction, and therefore, only
that application has the right to commit the transaction.

Application service: The application service is a supporting actor. It is a service that
accepts requests to perform transaction work on local resource managers. An application
service does not have the right to commit transactions.

Root transaction manager: The root transaction manager is a supporting actor. The root
transaction manager coordinates the lifetime of transactions, providing functionality for

resource managers to enlist in these transactions and functionality to enlist in
transactions that are coordinated by remote transaction ma nagers.

Remote transaction manager: The remote transaction manager is a supporting actor
that receives requests to perform transactions depending on its availability.

Remote resource manager: The remote resource manager is a supporting actor that
enlists w ith the remote transaction manager.

Stakeholders:

Á Architects

Á Developers

Preconditions:

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Á The resource manager of the resource and the applicati on service are on a remote

computer and can access a transaction manager in the system.

Á The two computers involved are networked together.

Á The two transaction managers are on separate computers and can access each other.

Á The transaction managers on each co mputer in the system are operational.

Main Success Scenario:

1. Trigger: The application triggers the resource manager to update its resource in the

context of the transaction that was created in the Create a Transaction (section 2.5.6.1)

use case.

2. The application sends the transa ction reference received during the Create a Transaction
use case, along with information about the work to be done to the application service.

35 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3. Upon receiving the information about the transaction reference and the work to be done,
the application service asks its remote transaction manager to pull the transaction, passing

the transaction reference provided by the application.

4. The remote transaction manager sends a transaction reference to the root transaction

manager asking to pull the transaction.

5. The roo t transaction manager enlists the remote transaction manager in the transaction,
and returns success.

6. The application service passes the information about the work to be done to the remote
resource manager along with a reference to the transaction.

7. The remote resource manager executes the Enlist in a Transaction (section 2.5.6.2) use
case, requesting that the remote transaction manager enlist it in the transaction.

8. The remote resource manager makes the requested updates to the resource in accordance
with the two -phase commit protocol semantics, such as isolation and durability.

9. The remote resource manager reports success to the application service, and in turn, the
application service reports success to the application.

Post - condition: Transaction work is done with pull propagation.

Extensions: None.

Variation – perform transaction work with pull propagation – external application: All
details are identical to the use case described in this section except that the application here is
an external application that makes use of optional protocols (see section 2.2).

2.5.6.4 Perform Transaction Work with Push Propagation – External Application

In this use case, the application performs transaction work with push propagation.

Context of use: To perform set of operations in a transaction on a remote resource manager

that has a separate transaction manager with push propagation.

Goal: To perform transaction work on a remote resource that has a separate transaction
manager with push propagation.

Actors:

External application: The external application is a primary actor that performs
transaction work on a number of resource managers. The application creates a
transaction, and therefore, only that application has the right to commit the transaction.

Root transaction manager: The root transaction manager is a supporting actor. It
coordinates the lifetime of transactions, providing functionality for resource managers to
enlist in these transactions, and functionality to enlist in transactions that are
coordinated by remote transaction managers.

External transaction manager: The external transaction manager is a supporting actor
that receives requests to perform transactions depending on its availability.

External resource manager: The external resource manager is a supporting actor that
enlists with the remote transaction manager.

Note An external actor is one that uses optional protocols as well as core protocols.

36 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Stakeholders:

Á Architects

Á Developers

Preconditions:

Á Transaction processing services are operational.

Á The external application and the external transaction manager can both access a

transaction manager in the system.

Á The external application and the external transaction manager are both on separate

computers.

Á The two computers involved are net worked together.

Main Success Scenario:

1. Trigger : The application triggers the resource manager to update its resource in the
context of the transaction that was created in the Create a Transaction (section 2.5.6.1)
use case.

2. The external application asks the external resource manager for the location of the external
transaction manager.

3. The external application asks the transaction manager to push the transaction to the
external transaction manager.

4. The transaction manager initiates a push transaction to push the transaction to the external
transaction manager. As a result, the external transaction manager is enlisted in the
transaction.

5. The external application asks the external resource manager to update the context of the

transaction.

6. The external resource manager makes the r equested updates to its resource in accordance
with the two -phase commit protocol semantics, such as isolation and durability.

7. The external resource manager reports success to the external application.

Post - condition: Transaction work is done with push pro pagation.

Extensions: None.

2.5.6.5 Drive Completion of a Transaction – Root Transaction Manager

In this use case, root transaction manager drives the completion of the transaction on all transaction
participants.

Context of use: When a transaction needs to be completed on all its participants.

Goal: To drive completion of the transaction on all transaction participants.

Actor:

37 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Root transaction manager: The root transaction manager is a supporting actor. The root
transaction manag er coordinates the lifetime of transactions, providing functionality for

resource managers to enlist in these transactions and functionality to enlist in
transactions that are coordinated by remote transaction managers. Here, the root

transaction manager c reates the transaction and starts performing the transaction.

Transaction managers that are subordinate to the transaction manager executing this
use case are supporting actors for this use case. Supporting actors execute a new
instance of this use case on resource managers and transaction managers that are
enlisted in the transaction through them.

Stakeholders:

Á Architects

Á Developers

Preconditions:

Á Transaction processing services are operational.

Á The transaction manager can access the participants in the transaction.

Main Success Scenario:

1. Trigger : The root transaction manager triggers its subordinate transaction managers.

2. The root transaction manager drives the two -phase commit not ifications on each
participant enlisted in the transaction.

3. Each transaction manager that is subordinate to this root transaction manager initiates a
new use case for the participants.

4. The root transaction manager returns success after the transaction is c ompleted.

Post - condition: The transaction is completed successfully.

Extensions: None.

2.6 Versioning, Capability Negotiation, and Extensibility

The system does not define any versioning and capability negotiation beyond those described in the
specifications of the protocols supported by the system, as listed in section 2.2 .

2.7 Error Handling

This section describes the common failure scenarios and specifies the system behavior in such
conditions.

2.7.1 Connection Disconnected

A common failure scenario is an unexpected connection breakdown between the system and
external entities, or between transaction managers within the system. A disconnection can be

caused by the network not being available, or by one of the communicating pa rticipants becoming
unavailable. In the case where the network is not available, both participants remain active and
expect the other party to continue the communication pattern specified by the protocol being
executed at the time of the failure. Similarly , in the case where one of the participants is not

38 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

available, the active participant expects the communication to proceed as specified by the protocol
being executed.

Generally, a protocol detects a connection break down by either of the following methods :

Á By using a timer object that generates an event if the corresponding participant has not

responded within a reasonable time span.

Á By being notified by the underlying protocol that the connection is disconnected.

When a connection disconnected event is de tected the protocol shut downs all related
communications and updates any necessary data structures to maintain the system state.

Details about how each protocol detects a connection disconnected event and how it behaves under
this scenario are provided in the specifications of the member protocols, as listed in section 2.2 .

2.7.2 Internal Failures

The system or a transaction participant may detect an unrecoverable internal state at any point
during the lifetime of a transaction. In such a scenario, if the system or the participant experiencing
the internal failure cannot continue the transaction for any reason, it can abort the existing
transactions that are not yet in the second phase of the two -phase commit protocol. The two -phase

commit protocol is designed to handle unilateral termination of transactions so that all participants
are rolled back t o their states before the transaction started. For the transactions that are in the
second phase, the transaction information is persisted, which in return means that it is recoverable.
When the participant returns to a state where it can resume its operat ions, it can recover the
transaction. Detailed descriptions of unilateral abort and recovery scenarios are provided in [MS -
DTCO] sections 1.3.2.1 and 1.3.4 , respectiv ely.

2.7.3 System Configuration Corruption or Unavailability

The system relies on the availability and consistency of its configuration data. Configuration consists
of the data that determines the behavior of the system under specific conditions or for specific

functionality. For example, the configuration can be us ed to enable or disable certain protocols, or
determine whether the system can span across a network of computers.

If the configuration data is not available, the protocol that needs the configuration data may assume
a default value. [MS -CMOM] section 3.3.1 describes the system configuration data and how it maps

to the abstract data models in [MS -CMPO] section 3.2.1 , [MS -DTCO] section 3.2.1, and [MC -DTCXA]
section 3.1.1 .

2.7.4 Log Corruption or Unavailability

The log is where the system keeps the transaction state information. Availability and consistency of
the log is crucial to guaranteeing atomicity in transaction processing. The system may use
implementation -specific mechanisms to make sure the data in the log is reliable. If the log is

corrupt, or if it is not available at all, the system cannot process any new durable transactions or
respond to recovery requests.

If the log is not recoverable or if it is lost, a new log must be created, which means that an y
transaction information that was in the previous log is lost. This means that the data or application
state that was dependent on the transaction information from the lost log may become corrupt.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191386
%5bMS-CMPO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMC-DTCXA%5d.pdf

39 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.8 Coherency Requirements

Transactions are used by applications and other systems to maintain data coherency in the event of
transient failures. To satisfy this requirement, the system guarantees atomicity through

transactions. Transactions require the use of a log in a durable storage s ystem. The log is used to
hold important state information. Following a transient failure, the system can access the log to
recall the last known state and continue its processing from that point.

2.9 Security

This section documents the system wide security issues that are not otherwise described in the
specifications for the member protocols. It does not duplicate what is already in the member

protocol specifications unless there is a unique aspect that applies to the system as a whole.

Transaction processing services are designed to protect the following assets:

Á Transaction information, see Transaction Information Security (section 2.9.1)

Á System configuration, see System Configuration Security (section 2.9.2)

Á Messages, see Message Security (section 2.9.3)

Á Events, see Event Security (section 2.9.4)

This is illustrated in the following figure , where the system is shown communicating with a resource
manager and an application service.

%5bMS-DTCLU%5d.pdf

40 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 11: Transaction processing services assets

2.9.1 Transaction Information Security

The transaction information asset consists of the state of the transaction, the identity, and the

locations of the participants, and other data about the transaction, such as the transaction
description. The Transaction Information is held in memory, and a lso in a log supported by a durable
storage system.

The system relies on the durable storage system to maintain the integrity of this log and to restrict
access to it.

The system accesses and modifies its transaction information as a result of events and m essages
that it receives. Therefore, the security and integrity of the transaction information is also

dependent on the system's ability to secure these events and messages, which is described in
sections 2.9.3 and 2.9.4 .

2.9.2 System Configuration Security

The system configuration asset consists of all the configuration data required by the system.
Examples are security identities and associated credentials used by the system, and feature

enablement settings such as the setting that allows a transaction to s pan multiple computers.

41 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

System configuration data is kept in a durable storage system. The system relies on the durable
storage system to enforce the access restrictions specified by the system.

The system accesses and modifies its system configuration dat a as a result of messages that it
receives; for example, from a management tool, as described in [MS -CMOM] . Therefore, the

security and integrity of the system configuration is also dependent on the system's ability to secure
these messages, which is described in section 2.9.3 .

2.9.3 Message Security

The messages asset consists of the messages received and sent by the system, and messages
received and sent within the system. The system protects the privacy and integrity of these
messages, and ensures that they are sent to and received from an authorize d party.

The messages that the system receives and sends are specified by the system protocols (see section
2.2). Most of these protocols, in turn, depend on CMPO, specified in [MS -CMPO], which requires that
an RPC session must be established before exchanging any messages. CMPO uses the security
provider security model, as specified in [MS -RPCE] section 2.2.1.1.7, and an authentication level,

as specified in [MS -RPCE] section 2.2.1.1.8 , to configure protection of messages; for example, full
encryption fo r privacy and integrity, or by requiring mutual authentication for authorization. See

[MS -CMPO] section 2.1.3 for more details. Some system protocols do not depend on CMPO, but they
may use, depend on, or extend other industry standard protocols, as described in section 2.1.7 .
When communicating over protocols that do not depend on CMPO, the system adopts the secur ity
requirements and semantics specified by the industry standard protocol.

When communicating over the WS -AtomicTransaction protocol, the system fully adheres to the
security requirements and semantics specified by the WS -AtomicTransaction protocol. Addit ionally,
the system requires that all WS -AtomicTransaction communication is done over an HTTPS

connection. All entities that participate in transaction coordination with the system via the WS -
AtomicTransaction protocol must use a valid X.509 security certi ficate (see [X509]), when
communicating with the system. The system keeps a list of X.509 security certificate thumbprints in
its system configuration to authorize whether an entity can participa te in transaction coordination
with the system by using the WS -AT protocol.

2.9.4 Event Security

The Events asset consists of the events raised and handled by the system. These are limited to
events received from the network system reporting a change of connection state and events
received from the operating environment of the system when the system i s initialized. Both of these
event sources and their connection to the system are trusted by the system, and no additional
protections are applied.

2.9.5 Connection Type and Feature Restriction

The system also restricts access to certain features to specified groups of security identities. This
restriction is applied at the level of connection type. A connection type specifies a set of messages.
The system protocols specify these connection types and the related messages. The system
protocols use connection types to group messages by functionality, and most messages are

members of exactly one connection type. Therefore, the functionality associated with a message can
be restricted by restricting a ccess to the connection type, and by sending or receiving a message

only if the communicating party has access to the connection type.

Connection types related to transaction state changes are restricted to sessions authenticated as
administrator, and conn ection types related to transaction manager communication are restricted to
parties known to be transaction managers, as described in [MS -DTCO] section 5.

http://go.microsoft.com/fwlink/?LinkId=191384
http://go.microsoft.com/fwlink/?LinkId=191386
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191386
%5bMS-CMPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90590
%5bMS-DTCO%5d.pdf

42 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The system also restricts the set of supported connection types through configuration, as described
in [MS -DTCO] section 5. For example, the system can be configured to not allow connection types

related to network transactions.

When using the protocol described in [MS -TIPP] , the system can be configured to restrict the use of

specific functionalities related to that protocol through configuration, as described in [MS -TIPP]
section 5.

The system can be configured to restrict the use of the protocol specified in [MC -DTCXA] . Further
details of this configuration are described in [MS -CMOM] .

The system can also be configured to restrict the use of the WS -AtomicTransaction protocol.

2.9.6 Internal Security

Transaction processing services apply the security mechanisms described in sections 2.9.1 , 2.9.2 ,
2.9.3 , 2.9.4 , and 2.9.5 to ensure internal security.

Other systems interacting with transaction pro cessing services should take the following steps to
ensure the security of this system:

Á Support the mutual authentication feature of the protocol specified in [MS -CMPO].

Á Correctly execute the tw o-phase commit protocol so that other transaction participants

experience well - regulated progress towards a common transaction outcome.

Á Always complete transactions after creating them, to avoid filling up the system log and requiring

administrative interv ention.

Á Do not allow transactions to stay in an in -doubt state for a longer period than the higher - layer

business logic allows.

2.9.7 External Security

Transaction processing services apply the following security measures to ensure the security of
other entities with which it interacts:

Á Support the mutual authentication feature of the protocol specified in [MS -CMPO] when

communicating over that protocol.

Á When using WS -AT, establish all communication over HTTPS connections.

Á Correctly execute the Two -Phase Commit protocol, so that all transaction part icipants experience

well - regulated progress towards a common transaction outcome.

Á Do not allow transactions to stay in in -doubt state for a longer period than the higher layer

business logic allows.

The other entities that interact with this system SHOULD apply the following security measures to

ensure their own security during interactions with this system:

Á If the other entity is a resource manager or a transaction manager, it takes security measures

similar to those described in Transaction Information Security (section 2.9.1) , System
Configuration Security (section 2.9.2) , Message Security (section 2.9.3) , and Event Security
(section 2.9.4) .

%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
%5bMC-DTCXA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
http://go.microsoft.com/fwlink/?LinkId=191386
http://go.microsoft.com/fwlink/?LinkId=191386

43 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Á Support the mutual authentication feature of the protocol specified in [MS -CMPO] where

applicable, when communicating with transaction processing Services.

Á When using WS -AT, establish a ll communication over HTTPS connections.

Á Correctly execute the Two -Phase Commit protocol so that other transaction participants

experience well - regulated progress towards a common transaction outcome.

Á Do not allow transactions to stay in an in -doubt state for longer than the higher - layer business

logic allows.

2.10 Additional Considerations

None.

http://go.microsoft.com/fwlink/?LinkId=191386

44 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Examples

3.1 Example 1: Perform Transaction Work

This example demonstrates performing a transaction that involves two transaction managers as
described in Perform Transaction Work ï Application (section 2.5.1) .

Prerequisites

Á Transaction processing services should meet all of the preconditions specified in section 2.4 .

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Initial System State

No transaction has been performed by an application.

Final System State

The application performs a trans action that involves two transaction managers.

Sequence of Events

45 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 12: Example of performing a transaction with two transaction managers

The following steps describe the sequence:

1. The resource manager connects to the root transaction manager by initiating a

CONNTYPE_TXUSER_RESOURCEMANAGER connection on a DTCO session with the root
transaction manager and sends a TXUSER_RESOURCEMANAGER_MTAG_CR EATE message to the
root transaction manager, as described in [MS -DTCO] section 4.4.1 to register with it.

2. The root transaction manager sends a
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message, as described in [MS -DTCO]
section 4.4.1 , to the resource manager to acknowledge that the resource manager is registered

with the r oot transaction manager as a resource manager.

http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf

46 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3. The remote resource manager connects to the remote transaction manager by initiating a
CONNTYPE_TXUSER_RESOURCEMANAGER connection on a DTCO session with the remote

transaction manager and sends a TXUSER_RESOU RCEMANAGER_MTAG_CREATE message to the
remote transaction manager, as described in [MS -DTCO] section 4.4.1 , to register with it.

4. The remote transaction manager sends a
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message, as described in [MS -DTCO]
section 4.4.1 to the remote resource manager to acknowledge that the remote resource manager
is registered with the remote transaction manager as a resource manager. The management tool
performs a Subscribe for transaction information action against the root transactio n manager to
monitor the progress of the two -phase commit protocol and to resolve the transaction if it
reaches an error state.

5. The application sends a TXUSER_BEGINNER_MTAG_PROMOTE message to the root transaction
manager over a CONNTYPE_TXUSER_PROMOTE conn ection on a DTCO session specifying the
isolation level, timeout, transaction description, isolation flag, and transaction identifier or sends
a TXUSER_BEGIN2_MTAG_BEGIN message to the root transaction manager over a
CONNTYPE_TXUSER_BEGIN2 connection on a DTCO session specifying the isolation level,

timeout, transaction description, and isolation flag to create a Transaction action against the root

transaction manager, as specified in [MS -DTCO] section 3.3.4.1 .

6. The root transaction manager creates the transaction object with a globally unique identifier
(guidTx), sends a TXUSER_BEGIN2_MTAG_SINK_BEGUN message to the application, and adds
the transaction to its list of known transaction objects, as described in [MS -DTCO] section 4.1.1
to complete the Create Transaction action initiated in step 5.

7. The application initiates a Perform Transaction Work action against the resource manager.

8. The resource manager initiates a CONNTYPE_TXUSER_ENLISTMENT connection on a DTCO

session with the root transaction manager and sends a TXUSER_ENLISTMENT_MTAG_ENLIST
mess age to the root transaction manager specifying the transaction GUID (guidTx), and the
GUID that uniquely identifies itself (guidRm), as described in [MS -DTCO] section 4.4.2 to initiate
an Enlist action against the root transaction manager.

9. The root transaction manager enlists the resource manager in the requested transaction, adds
the resource manager to its list of subordinates for the transaction, and sends a
TXUSER_ENLISTMENT_MTAG_ENLISTED message to the resource manager to acknowledge that

the resource manager is enlisted in the transaction, as described in [MS -DTCO] section 4.4.2 .

10. The resource manager reports successful completion of transacted work, completing the Perform
Transaction Work action initiated in step 7.

11. The application initiates a Perform Transaction Work action against the application service,
passing a seria lized transaction identifier that includes the transaction propagation information.

12. The application service initiates a CONNTYPE_TXUSER_ASSOCIATE connection on a DTCO

session with the remote transaction manager, and sends a
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message to the remote transaction manager using the
transaction information and propagation information, as described in [MS -DTCO section 4.2.2 .

13. The remote transact ion manager initiates a CONNTYPE_PARTNERTM_BRANCH connection on a
DTCO session with the root transaction manager and sends a
PARTNERTM_BRANCH_MTAG_BRANCHING message to the root transaction manager, specifying
the serialized transaction identifier, as descr ibed in [MS -DTCO] section 4.2.3 .

14. The root transaction manager creates a subordinate branch and sends a
PARTNERTM_BRANCH_MTAG_BRANCHED message to the remote transaction manager, as

http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf

47 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

described in [MS -DTCO] section 4.2.3 to acknowledge that the remote transaction manager is
now enlisted in the transaction, completing the Pull Transaction action initiated in step 13.

15. The remote transaction manager sends a TXUSER_ASSOCIATE_MTAG_ASSOCIATED message to
the applic ation service on the CONNTYPE_TXUSER_ASSOCIATE connection, as described in [MS -

DTCO] section 4.2.2, completing the Request Pull Transaction action initiated in step 12.

16. The application service initiates a Perform Transaction W ork action against the remote resource
manager.

17. The remote resource manager connects to the remote transaction manager by initiating a
CONNTYPE_TXUSER_ENLISTMENT connection on a DTCO session with the remote transaction
manager and sends a TXUSER_ENLISTMENT _MTAG_ENLIST message to the remote transaction
manager specifying the transaction identifier (guidTx), the resource manager identifier (guidRm),

and the resource manager session identifier (guidSession), as described in [MS -DTCO] section
4.4.2, to initiate an Enlist action against the remote transaction manager.

18. The remote transaction manager adds the resource manager to its list of subordinate enlistments

and replies to the remote resource manager with a TXUSER_ENLISTMENT_MTAG _ENLISTED
message to acknowledge that the remote resource manager is enlisted in the transaction, as
described in [MS -DTCO] section 4.4.2 .

19. The remote resource manag er reports successful completion of transacted work, completing the
Perform Transaction Work action initiated in step 16.

20. The application service responds to the application, completing the Perform Transaction Work
action initiated in step 11.

21. The applicat ion completes the transaction by sending a TXUSER_BEGIN2_MTAG_COMMIT user
message to the root transaction manager transaction, as described in [MS -DTCO] section
4.1 .2.1 .

3.2 Example 2: Commit a Transaction

This example demonstrates how a transaction is committed as described in the use case Complete a
Transaction ï Application (section 2.5.2) . A transaction is committed if all of the subordinate
participants involved in the transaction are prepared to commit the changes.

Prerequisites

Á Transaction processing services protocols meet all of the preconditions specified in section 2.4 .

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Á Transaction work is performed.

Initial System State

A transaction is performed by resource managers and their respective transaction managers.

Final System State

The two - phase commit has been done to complete the transaction.

Sequence of Events

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf

48 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 13: Example of committing a transaction

The messages exchanged in this example are contained within the two -phase commit Notifications
action between the system and participating roles.

The following steps describe this sequence.

1. The root transaction manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQ message to

the resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as described in
[MS -DTCO] section 4.5.1.1, indicating that this is a two -phase commit.

2. The root transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message to
the remote transaction manager over the CONNTYPE_PARTNERTM_BRANCH conne ction as
described in [MS -DTCO] section 4.5.1.2, indicating that this is a two -phase commit.

3. The resource manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message to the
root transaction manager indicating that the prepar e request finished successfully

(TXUSER_ENLISTMENT_PREPAREREQDONE_OK), as described in [MS -DTCO] section 4.5.1.1,
completing step 1.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

49 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4. The remote transaction manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQ message to
the remot e resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as

described in [MS -DTCO] section 4.5.1.1, indicating that this is a two -phase commit.

5. The remote resource manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

message to the remote transaction manager indicating that the prepare request was finished
successfully (TXUSER_ENLISTMENT_PREPAREREQDONE_OK) as described in [MS -DTCO] section
4.5.1.1, completing step 4.

6. The remote transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE to
the root transaction manager indicating that the prepare request was finished successfully (OK)
as described in [MS -DTCO] section 4.5.1.2, compl eting step 2.

7. The root transaction manager sends a TXUSER_BEGIN2_MTAG_SINK_ERROR message to the

application over the CONNTYPE_TXUSER_BEGIN2 connection as described in [MS -DTCO] section
4.1.2.1, specifying that the transaction has committed
(TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED), completing step 21 in Example 1: Perform
Transaction Work (section 3.1) .

8. The root transaction manager sends a TXUSER_ENLISTMENT_MTAG_COMMITREQ message to the
resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as described in [MS -

DTCO] section 4.4.3.2.

9. The r oot transaction manager sends a PARTNERTM_PROPAGATE_MTAG_COMMITREQ message to
the remote transaction manager over the CONNTYPE_PARTNERTM_BRANCH connection as
described in [MS -DTCO] section 4.5.2.2.

10. The remote transaction manag er sends a TXUSER_ENLISTMENT_MTAG_COMMITREQ message to
the remote resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as
described in [MS -DTCO] section 4.4.3.2.

11. The resource manager sends a TXUSER_ENLISTMENT_MTAG_C OMMITREQDONE message to the
root transaction manager, completing step 8, and initiates the disconnect sequence on the
CONNTYPE_TXUSER_ENLISTMENT connection with the root transaction manager as described in

[MS -DTCO] section 4. 4.3.2.

12. The remote resource manager sends a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE message
to the remote transaction manager, completing step 8, and initiates the disconnect sequence on
the CONNTYPE_TXUSER_ENLISTMENT connection with the remote transaction manager as

described in [MS -DTCO] section 4.4.3.2.

13. The remote transaction manager sends a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE
message to the root transaction manager, completing step 9, and initiates the disconnect
sequence as descri bed in [MS -DTCO] section 4.5.2.2.

14. The remote transaction manager sends a Success message to the Application Service, notifying it
of the completion of the two -phase commit sequence.

3.3 Example 3: Abort a Transaction

This example demonstrates how a transaction is aborted as described in use case Complete a
Transaction ï Application (section 2.5.2) . A transaction is aborted if at least one of the subordinate
participants involved in the transaction is prepared to abort the changes.

The trans action tree for this example is illustrated in Example 1 described in section 3.1 .

Prerequisites

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

50 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Á Transaction processing services protocols meets all of the preconditions specified in section 2.4 .

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Á Transaction work is performed.

Initial System State

A transaction is performed by an application .

Final System State

The two -phase sequence is completed and the transaction is aborted.

Sequence of Events

Figure 14: Example of aborting a transaction

The messages exchanged in this example are contained within the tw o-phase commit notifications
action between the system and participating roles.

The following steps describe this sequence:

1. The root transaction manager sends a TXUSER_ENLISTMENT_MTA G_PREPAREREQ message to

the resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as described in
[MS -DTCO] section 4.5.1.1, indicating that this is a two -phase commit.

2. The root transaction manager sends a PARTNERTM_ PROPAGATE_MTAG_PREPAREREQ message to
the remote transaction manager over the CONNTYPE_PARTNERTM_BRANCH connection as
described in [MS -DTCO] section 4.5.1.2, indicating that this is a two -phase commit.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

51 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3. The resource manager send s a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message to the
root transaction manager indicating that the prepare request was finished successfully (OK)

(TXUSER_ENLISTMENT_PREPAREREQDONE_OK as described in [MS -DTCO] section 4.5.1. 1),
completing step 1.

4. The remote transaction manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQ message to
the remote resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as
described in [MS -DTCO] section 4.5.1.1, i ndicating that this is a two -phase commit.

5. The remote resource manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE
message to the remote transaction manager indicating that the prepare request was finished
unsuccessfully (Abort) (TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT as described in [MS -
DTCO] section 4.5.1.1), completing step 4.

6. The remote transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE
message to the root transaction manager indicating that the prepare request was unsuccessful
(Abort), as describ ed in [MS -DTCO] section 4.5.1.2, completing step 2.

7. The root transaction manager sends a TXUSER_BEGIN2_MTAG_SINK_ERROR message to the
application over the CONNTYPE_TXUSER_BEGIN2 connection as described in [MS -DTCO] section
4.1.2.1, specifying that the transaction has committed

(TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED), completing step 21 in Example 1: Perform
Transaction Work (section 3.1).

8. The root tr ansaction manager sends a TXUSER_ENLISTMENT_MTAG_ABORTREQ message to the
resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as specified in [MS -
DTCO] section 2.2.10.2.2.1.

9. The resource manager sends a TXUSER_ENLIS TMENT_MTAG_ABORTREQDONE message to the
root transaction manager, completing step 8 as specified in [MS -DTCO] section 2.2.10.2.2.2.

3.4 Example 4: Transaction Manager Recovers after a Connection Resource

Manager Failure

This example demonstrates how a transaction is recovered when a remote transaction manager
breaks down as described in use case Transaction Recovery - Remote Transaction Manager (section
2.5.5) .

Prerequisites

Á Transaction proce ssing services protocols should meet all of the preconditions specified in section

2.4 .

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Á Transaction work is performed.

Initial System State

A transaction is performed by an application.

Final System State

Recovers the transaction after the break down of the remote transaction manager.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

52 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Sequence of Events

Figu re 15: Example of transaction recovery when a remote transaction manager breaks

down

The PrepareRequest, PrepareRequestDone, CommitRequest, and CommitRequestDone messages
exchanged in this example are contained within the two -phase commit notification acti on between
the system and participating roles.

The following steps describe this sequence:

1. The root transaction manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQ message to

the resou rce manager over the CONNTYPE_TXUSER_ENLISTMENT connection as described in

[MS -DTCO] section 4.5.1.1, indicating that this is a two -phase commit.

2. The root transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message to
the remote transaction manager over the CONNTYPE_PARTNERTM_BRANCH connection as
described in [MS -DTCO] section 4.5.1.2, indicating that this is a two -phase commit.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

53 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3. The resource manager sends a TXUSER_ENLISTMENT_MTAG_PREPAR EREQDONE message to the
root transaction manager indicating that the prepare request finished successfully

(TXUSER_ENLISTMENT_PREPAREREQDONE_OK), as described in [MS -DTCO] section 4.5.1.1,
completing step 1.

4. The remote transac tion manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQ message to
the remote resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as
described in [MS -DTCO] section 4.5.1.1, indicating that this is a two -phase commit .

5. The remote resource manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE
message to the remote transaction manager indicating that the prepare request finished
successfully (TXUSER_ENLISTMENT_PREPAREREQDONE_OK), as described in [MS -DTCO] section
4.5.1.1, completing step 4.

6. The remote transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE
message to the root transaction manager indicating that the prepare request finished successfully
(OK), as described in [MS -DTCO] section 4.5.1.2, completing step 2.

7. The root transaction manager sends a TXUSER_BEGIN2_MTAG_SINK_ERROR message to the
application over the CONNTYPE_TXUSER_BEGIN2 connection as described in [MS -DTCO] section
4.1.2.1, specifying that the transaction is committed

(TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED), completing step 21 in Example 1: Perform
Transaction Work (section 3.1) .

8. The root transaction manager sends a TXUSER_ENLISTMENT_MTAG_COMMITREQ message to the
resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection as described in [MS -
DTCO] section 4.4.3.2.

9. The connection from the root transaction manager to the remote transaction manager breaks
down. As a result, the root transaction manager cannot send a CommitRequest message to the

remote transaction ma nager.

10. The resource manager sends a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE message to the
root transaction manager as described in [MS -DTCO] section 4.4.3.2, completing step 8.

11. The connection from the root transaction manager to the remote transaction manager is
reestablished.

12. The remote transaction manager initiates a CONNTYPE_PARTNERTM_CHECKABORT connection
with the root transaction manager and sends a PARTNERTM_CHECKABORT_MTAG_CHECK

message to the root transaction manager in that session as specified in [MS -DTCO] section
3.8.7.8, to determine whether the transaction is aborted.

13. The root transaction manager sends a PARTNERTM_CHECKABORT_MTAG_RETRY message to the
remote transaction manager over the CONNTYPE_PARTNERTM_CHECKABORT connection as
specifie d in [MS -DTCO] section 3.7.5.2.1.1.1, indicating that the transaction is not aborted. The
remote transaction manager waits for a commit request.

14. The root transaction manager sends a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ
mes sage to the remote transaction manager over the

CONNTYPE_PARTNERTM_REDELIVERCOMMIT connection as specified in [MS -DTCO] section
3.7.7.1, indicating that the committed request is redelivered.

15. The remote transaction manager send s a
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE message to the root transaction
manager as specified in [MS -DTCO] section 3.8.7.3, completing step 14.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

54 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This sequence causes the remote transaction manager to record this transac tion as committed. The
remote resource manager will drive its own recovery sequence later. As described in [MS -DTCO]

section 1.3.4.2, the resource manager is responsible for initiating recovery with its transaction
manager.

3.5 Example 5: Connection to a Resource Manager Breaks Down

This example demonstrates how the resource manager drives recovery where connection to a
resource manager breaks as described in use case Recover In -doubt Transaction State ï resource
manager (section 2.5.4) .

Prerequisites

Á Transaction processing services protocols should meet all the pre conditions specified in section

2.4 .

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Á Transaction work is performed.

Initial System State

A transaction is performed by an application.

Final System State

Complete the transaction after recovering from a resource manager breakdown.

Sequence of Events

%5bMS-DTCO%5d.pdf

55 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 16: Example of a resource manager connection break d own during two - phase
commit protocol

The PrepareRequest, PrepareRequestDone, CommitRequest, and CommitRequestDone messages
exchanged in this example are contained within the two -phase commit Notifications action between
the system and participating roles.

The message flow shown in this example is as follows:

1. The root transaction manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQ message to
the resource manager over the CONNTYPE_TXUSER_ ENLISTMENT connection (as specified in

[MS -DTCO] section 4.5.1.1), indicating that this is a two -phase commit.

2. The root transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message to
the remote transaction manager over the CONNTYPE_PARTNERTM_BRANCH connection (as
specified in [MS -DTCO] section 4.5.1.2), indicating that this is a two -phase commit.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

56 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3. The resource manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message to the
root tran saction manager indicating that the prepare request finished successfully (OK)

TXUSER_ENLISTMENT_PREPAREREQDONE_OK (as specified in [MS -DTCO] section 4.5.1.1),
completing step 1.

4. The remote transaction manager sends a TXUSER_E NLISTMENT_MTAG_PREPAREREQ message to
the remote resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection (as
specified in [MS -DTCO] section 4.5.1.1), indicating that this is a two -phase commit.

5. The remote resource manag er sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE
message to the remote transaction manager indicating that the prepare request finished
successfully (OK) TXUSER_ENLISTMENT_PREPAREREQDONE_OK (as specified in [MS -DTCO]
section 4 .5.1.1), completing step 4.

6. The remote transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE to
the root transaction manager indicating that the prepare request finished successfully (OK) (as
specified in [MS -DTCO] section 4.5.1.2), completing step 2.

7. The root transaction manager sends TXUSER_BEGIN2_MTAG_SINK_ERROR message to the
application over the CONNTYPE_TXUSER_BEGIN2 connection (as specified in [MS -DTCO] section
4.1.2.1), specifying that the transaction has committed

(TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED), completing step 21 in Example 1 described in
section 3.1 .

8. The root transaction manager sends a TXUSER_ENLISTMENT_MTAG _COMMITREQ message to the
resource manager over the CONNTYPE_TXUSER_ENLISTMENT connection (as specified in [MS -
DTCO] section 4.4.3.2).

9. The root transaction manager sends a PARTNERTM_PROPAGATE_MTAG_COMMITREQ message to
the remo te transaction manager over the CONNTYPE_PARTNERTM_BRANCH connection (as

specified in [MS -DTCO] section 4.5.2.2).

10. The connection from remote transaction manager to the remote resource manager breaks. As a
result, the remote tr ansaction manager cannot send a CommitRequest message to the remote

resource manager.

11. The resource manager sends a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE message to the
root transaction manager (as specified in [MS -DTCO] section 4.4.3.2), completing step 8.

12. The remote transaction manager sends a PARTNERTM_PROPAGATE_COMMITREQDONE message

to the root transaction manager (as specified in [MS -DTCO] section 4.5.2.2), completing step 9.

13. The remote resource manager comes back up and finds the transaction in the in -doubt state

14. Remote resource manager sends a TXUSER_RESOURCEMANAGER_MTAG_CREATE message to
the remote transaction manager over the CONNTYPE_TXUSER_RESOURCEMANAGER connection
(as s pecified in [MS -DTCO] section 3.5.4.10.1) to perform a Register action against the remote
transaction manager.

15. The remote resource manager sends a TXUSER_REENLIST_MTAG_REENLIST message to the

remote transaction manager over th e CONNTYPE_TXUSER_REENLIST connection (as specified in
[MS -DTCO] section 4.6.2) to perform a Query Transaction Outcome action against the remote
transaction manager.

16. The remote transaction manager sends a TXUSER_REENLIST_MTAG_ REENLIST_COMMITTED
message to the remote resource manager (as specified in [MS -DTCO] section 4.6.2) to indicate
the outcome of the transaction is committed.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

57 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

17. The remote resource manager sends a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE message to the remote

transaction manager over the CONNTYPE_TXUSER_RESOURCEMANAGER connection (as specified
in [MS -DTCO] section 4.6.3), to indicate it has recovered its transactions.

18. The remote transaction man ager sends a
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message to the remote resource
manager (as specified in [MS -DTCO] section 4.6.3), to confirm the completion of recovery.

3.6 Example 6: Distributed Transaction Coordination with External Components

This example demonstrates how a transaction is completed and committed with external
components by making use of optional protocols as described in the following use cases:

Á Transaction Management ï Management Tool (section 2.5.3)

Á Create a Transaction ï Application (section 2.5.6.1)

Á Enlist in a Transaction ï Resourc e Manager (section 2.5.6.2)

Á Perform Transaction Work with Pull Propagation ï Application (section 2.5.6.3)

Á Perform Transaction Work with Push Propagation ï External Application (section 2.5.6.4)

Á Drive Completion of a Transaction ï Root Transaction Manager (section 2.5.6.5)

Prerequisites

Á Transaction processing services protocols meet all the preconditions specified in section 2.4 .

Á Transaction processing services are operational.

Á The application can access a transaction manager in the system.

Á The resource manager can access the transaction manager that it needs to contact to enlist in

the transaction.

Á The computers involved are netwo rked together.

Á The two transaction managers are on separate computers and can access each other.

Á The transaction managers in the system on each of the computers are operational.

Á Both the external application and the external transaction manager can access a transaction

manager in the system.

Á The external application and the external transaction manager are on separate computers.

Á The transaction manager can access the participants in the transaction.

Initial System State

No transaction has been performed by the external application.

Final System State

A two -phase commit has been done to complete the transaction which involves an external
application.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf

58 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Sequence of Events

Á Precursory Message Exchange (section 3.6.1)

Á Application -Driven Transactional Message Exchange (section 3.6.2)

Á Two -Phase Commit Transactional Message Exchange (section 3.6.3)

3.6.1 Precursory Message Exchange

Figure 17: Precursory message exchange in a distributed transaction with external
components

59 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1. Connect(DtcUic) [C1.0]: The Management Tool initiates a CONNTYPE_TXUSER_DTCUIC
connection on an MSDTC Connection Manager: OleTx Management Protocol session with the root

transaction manager (as specified in [MS -CMOM] section 3.2.1.1).

2. Hello [C1.1]: The Management Tool sends an MTAG_HELLO message to the root transaction

manager (as specified in [MS -CMOM] section 3.2.1.1).

3. Stats [C1.2]: The root transaction manager receives the connection request. It starts a timer (if
one does not exist), and adds the Management Tool to its list of Management Client Role
connections. Each time t he timer expires, the root transaction manager sends an
MSG_DTCUIC_STATS message to the Management Tool (as specified in [MS -CMOM] section
3.2.1.1). If the root tra nsaction manager is tracking any active transactions, the root transaction
manager also sends an MSG_DTCUIC_TRANLIST message (as specified in [MS -CMOM] section

3.2. 1.1). In this example, no MSG_DTCUIC_TRANLIST message is sent. The Management Tool
continues to receive these messages from the root transaction manager until it closes the
connection by initiating the disconnect sequence [C1.3; C1.4].

4. Connect (ResMgr) [C2 .0]: The resource manager initiates a

CONNTYPE_TXUSER_RESOURCEMANAGER connection on a DTCO session (as specified in [MS -
DTCO] section 4.4.1) with the root transacti on manager.

5. Create(guidRm) [C2.1]: The resource manager sends a
TXUSER_RESOURCEMANAGER_MTAG_CREATE message specifying a GUID that uniquely
identifies the resource manager (guidRm) to the root transaction manager (as specified in [MS -
DTCO] section 4.4.1).

6. RequestComplete [C2.2]: The root transaction manager adds the resource manager to its list of
registered resource managers and sends a
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message to the resource manager

protocol (as specified in [MS -DTCO] section 4.4.1). The resource manager continues to maintain
this connection to enable the creation of new enlistments in transactions and its participation in
two -phase commit processing.

7. Connect(LuConfigure) [C3.0]: The external resource manager initiates a

CONNTYPE_TXUSER_DTCLUCONFIGURE connection on a DTCLU session with the external
transaction manager (as specified in [MS -DTCLU] section 4.1.1).

8. Add(LuPair) [C3.1]: The externa l resource manager sends a

TXUSER_DTCLURMCONFIGURE_MTAG_ADD message specifying the LU name pair (LuPair) to
the external transaction manager (as specified in [MS -DTCLU] section 4.1.1).

9. RequestComplete [C3.2]: The external transaction manager adds the LU name pair to its table of
LU name pairs, and sends a TXUSER_DTCLURMCONFIGURE_MTAG_REQUEST_COMPLETED
message to the external resource m anager (as specified in [MS -DTCLU] section 4.1.1). When the
external resource manager receives the

TXUSER_DTCLURMCONFIGURE_MTAG_REQUEST_COMPLETED response from the external
transaction manager, the external resource manager initiates the disconnect sequence.

10. Connect(LuRecovery) [C4.0]: The external resource manager initiates a

CONNTYPE_TXUSER_DTCLURECOVERY connection on a DTCLU session with the external
transaction manager (as specified in [MS -DTCLU] section 4.2.1).

11. Attach(LuPair) [C4.1]: The external resource manager sends a
TXUSER_DTCLURMRECOVERY_MTAG_ATTACH message to the external transaction manager

specifying an LuPair which was previously configured with the external transaction manager (as
specified in [MS -DTCLU] section 4.2.1).

http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf

60 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

12. RequestComplete [C4.2]: The external transaction manager registers the connection's CMPO
session (as specified in [MS -CMPO]) for all Recovery Processing associated with the LU name

pair, and se nds a TXUSER_DTCLURMRECOVERY_MTAG_REQUEST_COMPLETED message to the
external resource manager (as specified in [MS -DTCLU] section 4.2.1). The external resource

mana ger continues to maintain the connection to enable recovery processes to be initiated and to
enable the creation of new enlistments in the transactional work associated with the LU name
pair.

13. Connect(LuRecoveryByDtc) [C5.0]: The external resource manager i nitiates a
CONNTYPE_TXUSER_DTCLURECOVERYINITIATEDBYDTC connection a DTCLU session with the
external transaction manager (as specified in [MS -DTCLU] section 4.3.1).

14. GetWork (LuPair) [C5.1]: The external resource manager sends a

TXUSER_DTCLURECOVERYINITIATEDBYDTC_MTAG_GETWORK message to the external
transaction manager specifying the LuPair for which the external resource manager registered as
the recovery process (as specified in [MS -DTCLU] section 4.3.1).

15. WorkTrans (Cold) [C5.2]: The external transaction manager determines that it needs to perform

a cold recovery (Cold) for the LU name pair, and sends a
TXUSER_DTCLURECOVERYINITIATEDBYDTC_MTAG_WORK_TRANS message to the external

resource manager (as specified in [MS -DTCLU] section 4.3.1).

16. TheirXlnResponse (LogName) [C5.3]: The external resource manager exchanges log names with
the remote LU , and sends a
TXUSER_DTCLURECOVERYINITIATEDBYDTC_MTAG_THEIR_XLN_RESPONSE message specifyi ng
the remote LU log name (LogName) to the external transaction manager (as specified in [MS -
DTCLU] section 4.3.1).

17. ConfirmationForTheirXln [C5.4]: The external tr ansaction manager verifies that the reported

state of the remote LU is consistent with the external transaction manager's state, and sends a
TXUSER_DTCLURECOVERYINITIATEDBYDTC_MTAG_CONFIRMATION_FOR_THEIR_XLN message
to the external resource manager (as spe cified in [MS -DTCLU] section 4.3.1).

18. CheckForCompareStates [C5.5]: The external resource manager sends a

TXUSER_DTCLURECOVERYINITIATEDBYDTC_MTAG_CHECK_FOR_COMPARES TATES message to
the external transaction manager to query whether recovery work is required for any LU 6.2
transactional work involving the LU name pair (as specified in [MS -DTCLU] section 4.3.1).

19. NoCompareStates [C5.6]: The external transaction manager checks the local and remote
transactional state, and sends a
TXUSER_DTCLURECOVERYINITIATEDBYDTC_MTAG_NO_COMPARESTATES message to the
external resource manager (as s pecified in [MS -DTCLU] section 4.3.1). When the external
resource manager has received the
TXUSER_DTCLURECOVERYINITIATEDBYDTC_MTAG_NO_COMPARESTATES message, no fur ther

messages are sent using this connection, and the external resource manager initiates the
disconnect sequence.

http://go.microsoft.com/fwlink/?LinkId=191386
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf

61 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.6.2 Application - Driven Transactional Message Exchange

Figure 18: Transactional message exchange before a two - phase commit in a distributed

transaction

1. Connect(Begin2) [C6.0]: The application initiates a CONNTYPE_TXUSER_BEGIN2 connection on a
DTCO session with the root transaction manager (as specified in [MS -DTCO] section 4.1.1).

2. Begin [C6.1]: The application sends a TXUSER_BEGIN2_MTAG_BEGIN message to the root

transaction manager specifying the isolation level, timeout, transaction description, and isolation
flag (as specified in [MS -DTCO] section 4.1.1).

3. SinkBegun(guidTx) [C6.2]: The root transaction manager creates a transaction object with a

globally unique identifier (g uidTx) and sends a TXUSER_BEGIN2_MTAG_SINK_BEGUN message
to the application, and adds the transaction to its list of known transaction objects (as specified
in [MS -DTCO] section 4.1.1). When the application receives the TXUSER_BEGIN2_MTAG_BEGUN

http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf

62 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

message from the root transaction manager, the transaction (guidTx) has begun. The application
is now free to propagate this transaction to transaction managers, resource mana gers, and

Application Services to perform work as part of the transaction, as long as it maintains the
CONNTYPE_TXUSER_BEGIN2 connection. Eventually, the application determines whether to

commit or abort the transaction. If the application disconnects the connection before committing
or aborting the transaction, then the root transaction manager will abort the transaction.

4. Connect(Enlistment) [C7.0]: The resource manager initiates a CONNTYPE_TXUSER_ENLISTMENT
connection on a DTCO session with the root trans action manager (as specified in [MS -DTCO]
section 4.4.2).

5. Enlist(guidTx, guidRM) [C7.1]: The resource manager sends a
TXUSER_ENLISTMENT_MTAG_ENLIST message to the r oot transaction manager specifying the

transaction GUID (guidTx), and the GUID that uniquely identifies itself (guidRm) (as specified in
[MS -DTCO] section 4.4.2).

6. Enlisted [C7.2]: The root transaction manager enlists the resource manager in the requested
transaction, adds the resource manager to its list of subordinates for the transaction, and sends a

TXUSER_ENLISTMENT_MTAG_ENLISTED message to the resource manager (as specified in [MS -
DTCO] section 4.4.2). The resource manager continues to maintain the connection and waits for

two -phase commit notifications from the root trans action manager.

7. Connect(TipProxyGateway) [C8.0]: The application initiates a
CONNTYPE_TXUSER_TIPPROXYGATEWAY connection on an MSDTC Connection Manager: OleTx
Transaction Internet Protocol session with the root transaction manager (as specified in [MS -
DTCM] section 4.1.1).

8. Push2(guidTx,TM2) [C8.1]: The application sends a TXUSER_TIPPROXYGATEWAY_MTAG_PUSH
user message (as specified in [MS -DTCM] section 2.2.5.1.3.6) or

TXUSER_TIPPROXYGATEWAY_MTAG_PUSH2 user message (as specified in [MS -DTCM] section
2.2.5.1.3.7) specifying the transaction GUID (guidTx), and the TIP URL of the remote transaction
manager.

9. Identify(TM1,TM2) [T1.0]: The root transaction manager locates the transaction and creates a

new TIP connect ion with the remote transaction manager in the INITIAL state. the root
transaction manager uses the TIP URL specified in the message to create the TIP connection over
the TCP transport session established with the remote transaction manager, and sends an

IDENTIFY command to the remote transaction manager specifying the root transaction manager's
primary transaction manager address and the remote transaction manager's secondary
transaction manager address (as specified in [MS -TIPP] section 4.1.1).

10. Identified [T1.1]: When the remote transaction manager receives the IDENTIFY command, the
remote transaction manager sends an IDENTIFIED command to the root transaction manag er,
and the state of the TIP connection is changed to IDLE (as specified in [MS -TIPP] section 4.1.1).

11. Push(guidTx) [T1.2]: When the root transaction manager receive s the IDENTIFIED command,
the root transaction manager sends a PUSH command to the remote transaction manager
specifying the primary's transaction identifier (guidTx) (as specified in [MS -TIPP] section
4.1.2.2).

12. Pushed(subTx) [T1.3]: When the remote transaction manager receives the PUSH command, the
remote transaction manager adds the transaction to its list of transaction objects with a newly
created transaction ide ntifier (subTx), sends a PUSHED command to the root transaction

manager, and the state of the TIP connection changes to ENLISTED (as specified in [MS -TIPP]
section 4.1.2.2).

http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191391
http://go.microsoft.com/fwlink/?LinkId=191391
%5bMS-DTCM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191391
%5bMS-DTCM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191391
%5bMS-DTCM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf

63 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

13. Pushed(subTx) [C8.2]: When the root transaction manager receives the PUSHED command, the
root transaction manager sends a TXUSER_TIPPROXYGATEWAY_MTAG_PUSHED message to the

application specifying the remote transaction manager 's transaction ident ifier (subTx) (as
specified in [MS -DTCM] section 4.2.3). When the application receives the

TXUSER_TIPPROXYGATEWAY_MTAG_PUSHED message, the application initiates the disconnect
sequence on the CONNTYPE_TXUSER_TIPPROXYGATEWAY connection.

14. Connect(Associate) [C9.0]: The external resource manager initiates a
CONNTYPE_TXUSER_ASSOCIATE connection on a DTCO session with the external transaction
manager (as specified in [MS -DTCO] section 4.2.2).

15. Associate(guidTx,TM1) [C9.1]: The external resource manager sends a
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message to the external transaction manager specifying

the transaction identifier (guidTx) and sufficient information (the root transaction manager's
machin e name, endpoint GUID) to establish a DTCO session with the root transaction manager
(as specified in [MS -DTCO] section 4.2.2).

16. Connect(Branch) [C10.0]: The externa l transaction manager attempts to locate the transaction in

its list of transaction objects by using the transaction identifier (guidTx). Because the transaction
object is not located, the external transaction manager attempts to pull the transaction from the

root transaction manager by using information contained in the message, and therefore the
external transaction manager initiates a CONNTYPE_PARTNERTM_BRANCH connection on a DTCO
session with the root transaction manager (as specified in [MS -DTCO] section 4.2.3).

17. Branching(guidTx) [C10.1]: The external transaction manager sends a
PARTNERTM_BRANCH_MTAG_BRANCHING message with the transaction identifier (guidTx) of t he
requested transaction to the root transaction manager (as specified in [MS -DTCO] section 4.2.3).

18. Branched [C10.2]: The root transaction manager creates a subordi nate branch and sends a

PARTNERTM_BRANCH_MTAG_BRANCHED message to the external transaction manager (as
specified in [MS -DTCO] section 4.2.3).

19. Associated [C9.2]: The external transaction manager keeps the connection open in order to
process two -phase commit notifications from the root transaction manager, and sends a

TXUSER_ASSOCIATE_MTAG_ASSOCIATED message to the external resource manager on the
CONNTYPE_TXUSER_ASSOCIATE connection to inform the external resource manager that the
pull operation was successful (as specified in [MS -DTCO] section 4.2.2). The external transaction

m anager continues to maintain the CONNTYPE_PARTNERTM_BRANCH connection with the root
transaction manager, and waits for two -phase commit processing. When the external resource
manager receives the TXUSER_ASSOCIATE_MTAG_ASSOCIATED message, the external resou rce
manager initiates the disconnect sequence on the CONNTYPE_TXUSER_ASSOCIATE connection.

20. Connect(LuRmEnlistment) [C11.0]: The external resource manager initiates a
CONNTYPE_TXUSER_DTCLURMENLISTMENT connection on a DTCLU session with the external

transact ion manager (as specified in [MS -DTCLU] section 4.4.1).

21. Create(guidTx,LuPair) [C11.1]: The external resource manager sends a
TXUSER_DTCLURMENLISTMENT_MTAG_CREATE m essage to the external transaction manager
specifying the transaction identifier (guidTx) and the LU Name Pair (LuPair) (as specified in [MS -

DTCLU] section 4.4.1).

22. RequestComplete [C11.2]: The external transaction manager creates an LU enlistment on the
transaction, and sends a TXUSER_DTCLURMENLISTMENT_MTAG_REQUEST_COMPLETED message

to the external resource manager (as specified in [MS -DTCLU] section 4.4.1). When the external
resource manager receives the TXUSER_DTCLURMENLISTMENT_MTAG_REQUEST_COMPLETED

http://go.microsoft.com/fwlink/?LinkId=191391
%5bMS-DTCM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf

64 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

message, the external resource manager continues to maintain the connection and waits for two -
phase commit processing.

23. Stats(open++) [C1.5]: Because the tran saction (guidTx) is active but not yet committing or
aborting, the root transaction manager sends an MSG_DTCUIC_STATS message to the

Management Tool with the number of open transactions incremented by one (open++) (as
specified in [MS -CMOM] section 3.2.1.1).

24. TranList(guidTx:Open) [C1.6]: The root transaction manager sends an MSG_DTCUIC_TRANLIST
message to the Management Tool listing the transaction (guidTx) in the op en state
(XACTSACT_OPEN) (as specified in [MS -CMOM] section 3.2.1.1).

3.6.3 Two - Phase Commit Transactional Message Exchange

http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf

65 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 19: Two - phase commit protocol message exchange in a distributed transaction

1. Commit [C6.3]: The application sends a TXUSER_BEGIN2_MTAG_COMMIT message to the root
transaction manager over its existing CONNTYPE_TXUSER_BEGIN2 connection (as specified in
[MS -DTCO] section 4.5.1). The application maintains the connection and waits for the outcome of

the transaction from to the root transaction manager.

2. PrepareReq (2PC) [C7.3]: The root transaction manager sends a
TXUSER_ENLISTMENT_MTAG_PREPAREREQ message to the resource manager over the
CONNTYPE_TXUSER_ENLISTMENT connection, indicating that this is a two -phase commit (2PC)
(as specified in [MS -DTCO] section 4.5.1.1).

3. Prepare [T1.4]: The root transaction manager sends a PREPARE command over the TIP
connection associated with the transaction to the remote transaction manager (as specified in

[MS -TIPP] section 4.1.3.1.1).

4. PrepareReqDoneOK [C7.4]: When the resource manager has successfully completed its Phase
One work, it sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message to the root

transaction manager specifying TXUSER _ENLISTMENT_PREPAREREQDONE_OK (as specified in
[MS -DTCO] section 4.5.1.1). The resource manager maintains the connection and waits for the
transaction outcome from the root transaction manager.

5. Prepared [T1.5]: When the remote transaction manager has successfully completed its Phase
One processing, it sends a PREPARED command to the root transaction manager over the TIP
connection (as specified in [MS -TIPP] section 4.1.3.1.2). The state of the TIP connection is now
PREPARED and the remote transaction manager waits for the transaction outcome from the root
transaction manager.

6. PrepareReq (2PC) [C10.3]: The root transaction manager sends a
PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message to the external transaction manager

over the CONNTYPE_PARTNERTM_BRANCH connection, indicating that this is a two -phase commit
(2PC) (as specified in [MS -DTCO] section 4.5.1.2).

7. ToLuPrepare [C11.3]: The external transaction manager iterates through each of its subordinate

branches to send out Phase One notificatio ns and sends a
TXUSER_DTCLURMENLISTMENT_MTAG_TO_LU_PREPARE message to the external resource
manager over the CONNTYPE_TXUSER_DTCLURMENLISTMENT connection (as specified in [MS -
DTCLU] section 4.4. 2).

8. ToDtcRequestCommit [C11.4]: The external resource manager completes its Phase One work,
sends a TXUSER_DTCLURMENLISTMENT_MTAG_TO_DTC_REQUESTCOMMIT message to the
external transaction manager, and waits for the transaction outcome from the external
tran saction manager (as specified in [MS -DTCO] section 4.4.2).

9. PrepareReqDoneOK [C10.4]: The external transaction manager sends a
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE message to the root transaction manager

(as specified in [MS -DTCLU] section 4.5.1.2). T he external transaction manager maintains the
connection and waits for transaction outcome from the root transaction manager.

10. Stats [C1.7]: Because the transaction's outcome is not yet known, the root transaction manager

sends a MSG_DTCUIC_STATS message to the Management Tool with no changes from its
previous message [T1.5] related to this transaction (as specified in [MS -CMOM] section 3.2.1.1).

11. TranList (guidTx:Prep aring) [C1.8]: The root transaction manager sends a
MSG_DTCUIC_TRANLIST message to the Management Tool listing the transaction (guidTx) in the

preparing state (XACTSACT_PREPARING) (as specified in [MS -CMOM] section 3.2.1.1).

http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf

66 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

12. SinkError(Committed) [C6.4]: The root transaction manager sends a
TXUSER_BEGIN2_MTAG_SINK_ERROR message to the application over the

CONNTYPE_TXUSER_BEGIN2 connection, specifying that the transact ion has been committed
(TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED) (as specified in [MS -DTCO] section 4.5.1.3).

When the application receives the TXUSER_BEGIN2_MTAG_SINK_ ERROR message, it initiates the
disconnect sequence.

13. Commit [T1.6]: The root transaction manager sends a COMMIT command over the TIP
connection associated with the transaction to the remote transaction manager (as specified in
[MS -TIPP] section 4.1.3.1.4).

14. CommitReq [C7.5]: The root transaction manager sends a
TXUSER_ENLISTMENT_MTAG_COMMITREQ message to the resource manager over the

CONNTYPE_TXUSER_ENLISTMENT connect ion (as specified in [MS -DTCO] section 4.5.2.1).

15. CommitReqDone [C7.6]: When the resource manager has completed its commit work, it sends a
TXUSER_ENLISTMENT_MTAG_CO MMITREQDONE message to the root transaction manager and
initiates the disconnect sequence on the CONNTYPE_TXUSER_ENLISTMENT connection with the

root transaction manager (as specified in [MS -DTCO] section 4.5.2.1).

16. Committed [T1.7]: When the remote transaction manager has successfully completed its Phase

Two processing, it sends a COMMITTED command to the root transaction manager over the TIP
connection (as specified in [MS -TIPP] section 4.1.3.1.4).

17. CommitReq [C10.5]: The root transaction manager sends a
PARTNERTM_PROPAGATE_MTAG_COMMITREQ message to the remote transaction manager over
the CONNTYPE_PARTNERTM_BRANCH connection (as specified in [MS -DTCO] section 4.5.2.2).

18. ToLuCommitted [C11.5]: When the external transaction manager receives the
PARTNERTM_PROPAGATE_MTAG_COMMITREQ message, it iterates through each of its

subordinate branches to send out commit notifi cations and sends a
TXUSER_DTCLURMENLISTMENT_MTAG_TO_LU_COMMITTED message to the external resource
manager over the CONNTYPE_TXUSER_DTCLURMENLISTMENT connection (as specified in [MS -
DTCLU] secti on 4.4.2).

19. ToDtcForget [C11.6]: When the external resource manager receives the
TXUSER_DTCLURMENLISTMENT_MTAG_TO_LU_COMMITTED message, it completes its Phase -Two
processing, sends a TXUSER_DTCLURMENLISTMENT_MTAG_TO_DTC_FORGET message to the

external transaction manager, and initiates the disconnect sequence (as specified in [MS -DTCLU]
section 4.4.2).

20. CommitReqDone [C10.6]: When the ext ernal transaction manager receives the
TXUSER_DTCLURMENLISTMENT_MTAG_TO_DTC_FORGET message, it sends a
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE user message to the root transaction
manager and initiates the disconnect sequence (as specified in [MS -DTCO] section 4.5.2.2).

21. Stats(open -- ,committed++) [C1.9]: Because the transaction is now committed, the root
transaction manager sends a MSG_DTCUIC_STATS message to the Manag ement Tool (as
specified in [MS -CMOM] section 3.2.1.1) with the number of open transactions decremented by

one (open --) and the number of committed transactions inc remented by one (committed++).

22. TranList(guidTx:NotifyingCommitted) [C1.10]: The root transaction manager sends a
MSG_DTCUIC_TRANLIST message to the Management Tool (as specified in [MS -CMOM] section
3.2.1.1) listing the transaction (guidTx) in the notifying committed state

(XACTSACT_NOTIFYING_COMMITTED).

http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191430
%5bMS-TIPP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191390
%5bMS-DTCLU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191392
%5bMS-DTCO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf

67 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

23. Stats [C1.11]: the root transaction manager sends an MSG_DTCUIC_STATS message to the
Management Tool (as specified in [MS -CMOM] section 3.2.1.1) with no changes from its previous

message [C1.9] related to this transaction.

24. TranList(guidTx:Forget) [C1.12]: The root transaction m anager sends an

MSG_DTCUIC_TRANLIST message to the Management Tool (as specified in [MS -CMOM] section
3.2.1.1) listing the transaction (guidTx) in the forget state (XACTSACT_FORGET). Any future
MSG_DTCUIC_TRANLIST messages do not include this transaction.

25. Stats [C1.13]: The root transaction manager sends an MSG_DTCUIC_STATS message to the
Management Tool (as specified in [MS -CMOM] section 3.2.1.1) with no changes fro m its previous
message [C1.11] related to this transaction. Because there are no active transactions that the
root transaction manager is tracking, no MSG_DTCUIC_TRANLIST message is sent.

Note The sequence of the messages in this example may not always be the same. It may slightly
vary.

http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=191384
%5bMS-CMOM%5d.pdf

68 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Microsoft Implementations

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Á Windows 2000 operating system

Á Windows XP operating system

Á Windows XP operating system Service Pack 1 (SP1)

Á Windows Server 2003 operating system

Á Windows Server 2003 operating system with Service Pack 1 (SP1)

Á Windows Server 2003 R2 operating system

Á Windows Vista operating system

Á Windows Vista operating system with Service Pack 1 (SP1)

Á Windows Server 2008 operating system

Á Windows 7 operating system

Á Windows Server 2008 R2 operating system

Á Windows 8 operating system

Á Windows Server 2012 operating system

Á Windows 8.1 operating system

Á Windows Se rver 2012 R2 operating system

4.1 Product Behavior

None.

69 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Change Tracking

This section identifies changes that were made to the [MS -TPSOD] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

Á A document r evision that incorporates changes to interoperability requirements or functionality.

Á An extensive rewrite, addition, or deletion of major portions of content.

Á The removal of a document from the documentation set.

Á Changes made for template compliance.

The r evision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table leve l.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

Á New content added.

Á Content updated.

Á Content removed.

Á New product behavior note added.

Á Product behavior note updated.

Á Product behavior note removed.

Á New protocol syntax added.

Á Prot ocol syntax updated.

Á Protocol syntax removed.

Á New content added due to protocol revision.

Á Content updated due to protocol revision.

Á Content removed due to protocol revision.

Á New protocol syntax added due to protocol revision.

70 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Á Protocol syntax updated due to protocol revision.

Á Protocol syntax removed due to protocol revision.

Á New content added for template compliance.

Á Content updated for template compliance.

Á Content removed for template compliance.

Á Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Á Protocol syntax refers to data elements (such as packets, structures, enumerations, and

meth ods) as well as interfaces.

Á Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com .

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

4

Microsoft

Implementations

Modified this section to include references to Windows

8.1 operating system and Windows Server 2012 R2

operating system.

N Content

updated.

mailto:protocol@microsoft.com

71 / 71

[MS -TPSOD] ð v20130722
 Transaction Processing Services Protocols Overview

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 INDEX

A

Additional considerations 43
Applicable protocols 19
Architecture 12
Assumptions 23

C

Capability negotiation 37
Change tracking 69
Coherency requirement 39
Communications 22
Component dependencies 22
Concepts 12
Conceptual overview 5
Considerations

additional 43
security 39

D

Dependencies
with other systems 22
within the system 22

E

Environment 22
Error handling 37
Examples

how a transaction is aborted 49
how a transaction is committed 47
how a transaction is completed and comm itted

with external components 57
how a transaction is recovered when a remote

transaction manager breaks down 51
how the resource manager drives recovery 54
how to perform a transaction that involves two

transaction managers 44
Extensibility

Microsoft implementations 68
Extensibility - overview 37
External dependencies 22

F

Functional architecture 12

G

Glossary 8

I

Implementations - Microsoft 68
Implementer - security considerations 39
Informative references 10

Initial state 23
Introduction 5

M

Microsoft implementations 68

O

Overview
summary of protocols 19

Overview (synopsis) 12

P

Preconditions 23
Product behavior 68

R

References 10
Requirements

coherency 39
error handling 37

S

Security considerations 39
System architecture 12
System dependencies 22
System errors 37
System overview - introduction 5
System protocols 19

T

Table of protocols 19
Tracking changes 69

U

Use cases
complete a transaction 26
perform transactional work 23
transaction management 27
transaction recovery by a remote manager 30
transaction recovery by a resour ce manager 28

V

Versioning
Microsoft implementations 68
overview 37

	Contents
	1 Introduction
	1.1 Conceptual Overview
	1.1.1 Transaction Trees
	1.1.2 The Two-Phase Commit Protocol
	1.1.3 Phase Zero
	1.1.4 Single-Phase Commit
	1.1.5 Core and Optional Protocols

	1.2 Glossary
	1.3 References

	2 Functional Architecture
	2.1 Overview
	2.1.1 Purpose
	2.1.2 Interaction with External Components
	2.1.3 System Components
	2.1.4 System Communication
	2.1.5 Member Protocol Functional Relationships
	2.1.6 System Applicability
	2.1.7 Relevant Standards

	2.2 Protocol Summary
	2.3 Environment
	2.3.1 Dependencies on This System
	2.3.2 Dependencies on Other Systems/Components

	2.4 Assumptions and Preconditions
	2.5 Use Cases
	2.5.1 Perform Transaction Work – Application
	2.5.2 Complete a Transaction – Application
	2.5.3 Transaction Management – Management Tool
	2.5.4 Recover In-doubt Transaction State – Resource Manager
	2.5.5 Transaction Recovery - Remote Transaction Manager
	2.5.6 Supporting Use Cases
	2.5.6.1 Create a Transaction – Application
	2.5.6.2 Enlist in a Transaction – Resource Manager
	2.5.6.3 Perform Transaction Work with Pull Propagation – Application
	2.5.6.4 Perform Transaction Work with Push Propagation – External Application
	2.5.6.5 Drive Completion of a Transaction – Root Transaction Manager

	2.6 Versioning, Capability Negotiation, and Extensibility
	2.7 Error Handling
	2.7.1 Connection Disconnected
	2.7.2 Internal Failures
	2.7.3 System Configuration Corruption or Unavailability
	2.7.4 Log Corruption or Unavailability

	2.8 Coherency Requirements
	2.9 Security
	2.9.1 Transaction Information Security
	2.9.2 System Configuration Security
	2.9.3 Message Security
	2.9.4 Event Security
	2.9.5 Connection Type and Feature Restriction
	2.9.6 Internal Security
	2.9.7 External Security

	2.10 Additional Considerations

	3 Examples
	3.1 Example 1: Perform Transaction Work
	3.2 Example 2: Commit a Transaction
	3.3 Example 3: Abort a Transaction
	3.4 Example 4: Transaction Manager Recovers after a Connection Resource Manager Failure
	3.5 Example 5: Connection to a Resource Manager Breaks Down
	3.6 Example 6: Distributed Transaction Coordination with External Components
	3.6.1 Precursory Message Exchange
	3.6.2 Application-Driven Transactional Message Exchange
	3.6.3 Two-Phase Commit Transactional Message Exchange

	4 Microsoft Implementations
	4.1 Product Behavior

	5 Change Tracking
	6 INDEX

