
 

1 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[MS -RPCE]:  
Remote Procedure Call Protocol Extensions  

 

Intellectual Property Rights Notice for Open Specifications Documentation  

Á Technical Documentation.  Microsoft publishes Open Specifications documentation for 

protocols, file formats, languages, standards as well as overviews of the interaction among each 
of these technologies.  

Á Copyrights.  This documentation is covered by Microsoft copyrights. Regardles s of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 

documentation, you may make copies of it in order to develop implementations of the 
technologies described in the Open Specifications and may distribute p ortions of it in your 
implementations using these technologies or your documentation as necessary to properly 

document the implementation. You may also distribute in your implementation, with or without 
modification, any schema, IDLôs, or code samples that are included in the documentation. This 
permission also applies to any documents that are referenced in the Open Specifications.  

Á No Trade Secrets.  Microsoft does not claim any trade secret rights in this documentation.  

Á Patents.  Microsoft has patents that  may cover your implementations of the technologies 
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the 
documentation grants any licenses under those or any other Microsoft patents. However, a given 

Open Specification may be covered by Microsoft Open Specification Promise  or the Community 
Promise . If you would prefer a written license, or if the te chnologies described in the Open 
Specifications are not covered by the Open Specifications Promise or Community Promise, as 

applicable, patent licenses are available by contacting iplg@microsoft.com . 

Á Trademarks.  The names of companies and products contained in this documentation may be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 

licenses under those rights. For a list of Microsoft trademarks, visit 
www.microsoft.com/trademarks . 

Á Fictitious Names.  The example companies, organizations, products, domain names, email 
addresses, logos, people, places, and events depicted in this documentation are fictitious.  No 
associatio n with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred.  

Reservation of Rights.  All other rights are reserved, and this notice does not grant any rights 

other than specific ally described above, whether by implication, estoppel, or otherwise.  

Tools.  The Open Specifications do not require the use of Microsoft programming tools or 

programming environments in order for you to develop an implementation. If you have access to 
Micr osoft programming tools and environments you are free to take advantage of them. Certain 
Open Specifications are intended for use in conjunction with publicly available standard 
specifications and network programming art, and assumes that the reader either  is familiar with the 
aforementioned material or has immediate access to it.  

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks


 

2 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Revision Summary  

Date  

Revision 

History  

Revision 

Class  Comments  

10/22/2006  0.01    MCPP Milestone 1 Initial Availability  

01/19/2007  1.0    MCPP Milestone 1  

03/02/2007  1.1    Monthly release  

04/03/2007  1.2    Monthly release  

05/11/2007  1.3    Monthly release  

06/01/2007  1.3.1  Editorial  Revised and edited the technical content.  

07/03/2007  1.3.2  Editorial  Revised and edited the technical content.  

07/20/2007  1.3.3  Editorial  Revised and edited the technical content.  

08/10/2007  2.0  Major  Added new content.  

09/28/2007  2.0.1  Editorial  Revised and edited the technical content.  

10/23/2007  2.1  Minor  Added new content.  

11/30/2007  2.1.1  Editorial  Revised and edited the technical content.  

01/25/2008  2.1.2  Editorial  Revised and edited the technical content.  

03/14/2008  2.1.3  Editorial  Revised and edited the technical content.  

05/16/2008  2.1.4  Editorial  Revised and edited the technical content.  

06/ 20/2008  3.0  Major  Updated and revised the technical content.  

07/25/2008  3.1  Minor  Updated the technical content.  

08/29/2008  3.2  Minor  Updated the technical content.  

10/24/2008  4.0  Major  Updated and revised the technical content.  

12/05/2008  5.0  Major  Updated and revised the technical content.  

01/16/2009  6.0  Major  Updated and revised the technical content.  

02/27/2009  7.0  Major  Updated and revised the technical content.  

04/10/2009  8.0  Major  Updated and revised the technical content.  

05/22/2009  8.0.1  Editorial  Revised and edited the technical content.  

07/02/2009  9.0  Major  Updated and revised the technical content.  

08/14/2009  10.0  Major  Updated and revised the technical content.  



 

3 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Date  

Revision 

History  

Revision 

Class  Comments  

09/25/2009  11.0  Major  Updated and revised the technical content.  

11/06/2009  11.0.1  Editorial  Revised and edited the technical content.  

12/18/2009  12.0  Major  Updated and revised the technical content.  

01/29/2010  12.1  Minor  Updated the technical content.  

03/12/2010  13.0  Major  Updated and revised the technical content.  

04/23/2010  14.0  Major  Updated and revised the technical content.  

06/04/2010  15.0  Major  Updated and revised the technical content.  

07/16/2010  16.0  Major  Significantly changed the technical content.  

08/27/2010  17.0  Major  Significantly changed the technic al content.  

10/08/2010  18.0  Major  Significantly changed the technical content.  

11/19/2010  19.0  Major  Significantly changed the technical content.  

01/07/2011  20.0  Major  Significantly changed the technical content.  

02/11/2011  21.0  Major  Significantly changed the technical content.  

03/25/2011  22.0  Major  Significantly changed the technical content.  

05/06/2011  23.0  Major  Significantly changed the technical content.  

06/17/2011  23.1  Minor  Clarified the meaning of the technical content.  

09/23/2011  23.1  No change  No changes to the meaning, language, or formatting of 

the technical content.  

12/16/2011  24.0  Major  Significantly changed the technical content.  

03/30/2012  24.0  No change  No changes to the meaning, language, or formatting of 

the technical content.  

07/12/2012  24.1  Minor  Clarified the meaning of the technical content.  

10/25/2012  25.0  Major  Significantly changed the technical content.  

01/31/2013  25.0  No change  No changes to  the meaning, language, or formatting of 

the technical content.  

08/08/2013  26.0  Major  Significantly changed the technical content.  

 



 

4 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Contents  

1   Introduction  ................................ ................................ ................................ ...........  13  
1.1   Glossary  ................................ ................................ ................................ .............  13  
1.2   References  ................................ ................................ ................................ ..........  14  

1.2.1   Normative References  ................................ ................................ .....................  14  
1.2.2   Informative References  ................................ ................................ ...................  21  

1.3   Overview  ................................ ................................ ................................ ............  22  
1.4   Relationship to Other Protocols  ................................ ................................ ..............  23  
1.5   Prerequis ites/Preconditions  ................................ ................................ ...................  24  
1.6   Applicability Statement  ................................ ................................ .........................  24  
1.7   Versioning and Capability Negotiation  ................................ ................................ .....  24  
1.8   Vendor -Extensible Fields  ................................ ................................ .......................  25  
1.9   Standards Assignments  ................................ ................................ ........................  25  

2   Messages ................................ ................................ ................................ ................  26  
2.1   Transport  ................................ ................................ ................................ ............  26  

2.1.1   Connection -Oriented RPC Transports  ................................ ................................  26  
2.1.1.1   TCP/IP (NCACN_IP_TCP)  ................................ ................................ ...........  27  
2.1.1.2   SMB (NCACN_NP)  ................................ ................................ .....................  27  
2.1.1.3   SPX (NCACN_SPX)  ................................ ................................ ....................  28  
2.1.1.4   NetBIOS over IPX (NCACN_NB_IPX)  ................................ ...........................  28  
2.1.1.5   NetBIOS over TCP (NCACN_NB_TCP)  ................................ ..........................  29  
2.1.1.6   NetBIOS over NetBEUI (NCACN_NB_NB)  ................................ .....................  30  
2.1.1.7   AppleTalk (NCACN_AT_DSP)  ................................ ................................ ......  30  
2.1.1.8   RPC over HTTP (ncacn_http)  ................................ ................................ ......  31  

2.1.2   Connectionless RPC Transports  ................................ ................................ ........  31  
2.1.2.1   UDP (NCADG_IP_UDP)  ................................ ................................ ..............  31  
2.1.2.2   Internetwork Packet Exchange (IPX) (NCADG_IPX)  ................................ .......  31  

2.2   Message Syntax  ................................ ................................ ................................ ..  31  
2.2.1   Connection -Oriented and C onnectionless RPC Messages  ................................ ......  32  

2.2.1.1   Common Types and Constants  ................................ ................................ ...  32  
2.2.1.1.1   RPC_IF_ID Type  ................................ ................................ ..................  32  
2.2.1.1.2   Extended Error Information Signature Value  ................................ ...........  32  
2.2.1.1.3   UUID Format  ................................ ................................ ......................  32  
2.2.1.1.4   Mapping of a Cont ext Handle  ................................ ................................  32  
2.2.1.1.5   version_t  ................................ ................................ ...........................  32  
2.2.1.1.6   p_rt_versions_supported_t  ................................ ................................ ...  33  
2.2.1.1.7   Security Providers  ................................ ................................ ...............  33  
2.2.1.1.8   Authentication Levels  ................................ ................................ ...........  34  
2.2.1.1.9   Impersonation Level  ................................ ................................ ............  34  
2.2.1.1.10   Transport -Layer Impersonation Level  ................................ ...................  35  

2.2.1.2   Endpoint Mapper Interface Extensions  ................................ .........................  36  
2.2.1.2.1   EPT_S_CANT_PERFORM_OP  ................................ ................................ . 36  
2.2.1.2.2   twr_t Type  ................................ ................................ .........................  36  
2.2.1.2.3   error_status Type  ................................ ................................ ................  36 
2.2.1.2.4   ept_lookup Method  ................................ ................................ ..............  37  
2.2.1.2.5   ept_map Method  ................................ ................................ .................  38  
2.2.1.2.6   ept_insert Method  ................................ ................................ ...............  39  
2.2.1.2.7   ept_delete Method  ................................ ................................ ..............  39  
2.2.1.2.8   ept_lookup_handle_free Method  ................................ ...........................  40  
2.2.1.2.9   ept_inq_object Method  ................................ ................................ ........  40  



 

5 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.1.2.10   ept_mgmt_delete Method  ................................ ................................ ...  40  
2.2.1.2.11   ept_lookup_handle_t Type  ................................ ................................ ..  40  

2.2.1.3   Management Interface Extensions  ................................ ..............................  40  
2.2.1.3.1   rpc_if_id_vector_p_t Type  ................................ ................................ ....  40  
2.2.1 .3.2   StatisticsCount Type  ................................ ................................ ............  41  
2.2.1.3.3   rpc_mgmt_inq_stats Method  ................................ ................................  41  
2.2.1.3.4   rpc_mgmt_inq_princ_name Method  ................................ .......................  41  

2.2.2   Connection -Oriented RPC Messages  ................................ ................................ ..  42  
2.2.2.1   PDU  Segments  ................................ ................................ .........................  42  
2.2.2.2   PFC_MAYBE Flag  ................................ ................................ .......................  42  
2.2.2.3   PFC_SUPPORT_HEADER_SIGN Flag  ................................ .............................  42  
2.2.2.4   negotiate_ack Member of p_cont_def_result_t Enumerator  ............................  43  
2.2.2.5   New Reasons for Bind Rejection  ................................ ................................ . 43  
2.2.2.6   alloc_hint Interpretation  ................................ ................................ ............  43  
2.2.2.7   RPC_SYNTAX_IDENTIFIER  ................................ ................................ .........  44  
2.2.2.8   rpc_fault Packet  ................................ ................................ .......................  44  
2.2.2.9   bind_nak Packet  ................................ ................................ .......................  44  
2.2.2.10   rpc_auth_3 PDU  ................................ ................................ .....................  45  
2.2.2.11   sec_trailer Stru cture  ................................ ................................ ...............  46  
2.2.2.12   Authentication Tokens  ................................ ................................ .............  48  
2.2.2.13   Verification Trailer  ................................ ................................ ...................  48  

2.2.2.13.1   rpc_sec_verification_trailer  ................................ ................................ . 50  
2.2.2.13.2   rpc_sec_vt_bitmask  ................................ ................................ ...........  51  
2.2.2.13.3   rpc_sec_vt_header2  ................................ ................................ ..........  52  
2.2.2.13.4   rpc_sec_vt_pcontext  ................................ ................................ ..........  52  

2.2.2.14   BindTimeFeatureNegotiationBitmask  ................................ .........................  53  
2.2.2.15   BindTimeFeatureNegotiationResponseBitmask  ................................ ............  54  

2.2.3   Connectionless RPC Messages  ................................ ................................ ..........  55  
2.2.3.1   PDU Seg ments  ................................ ................................ .........................  55  
2.2.3.2   Fault Packet  ................................ ................................ .............................  55  
2.2.3.3   PF2_UNRELATED Flag  ................................ ................................ ................  55  
2.2.3.4   sec_trailer_cl Structure  ................................ ................................ .............  56  
2.2.3.5   Authentication Tokens  ................................ ................................ ...............  56  
2.2.3.6   fack Packet  ................................ ................................ ..............................  57  

2.2.4   IDL Syntax Extensions  ................................ ................................ ....................  57  
2.2.4.1   New Primitive Types  ................................ ................................ ..................  57  

2.2.4.1.1   wchar_t  ................................ ................................ .............................  57  
2.2.4.1.2   __int3264  ................................ ................................ ..........................  57  
2.2.4.1.3   __int8, __int16, __int32, __int64  ................................ ..........................  58  
2.2.4.1.4   int  ................................ ................................ ................................ .....  58  

2.2.4.2   Callback  ................................ ................................ ................................ ..  58  
2.2.4.3   Array of Context Handles  ................................ ................................ ...........  58  
2.2.4.4   Array of Strings  ................................ ................................ ........................  58  
2.2.4.5   ms_union  ................................ ................................ ................................  58  
2.2.4.6   v1_enum  ................................ ................................ ................................ . 59  
2.2.4.7   Expression in Conformant, Varying, and Union Description  .............................  59  
2.2.4.8   Unencapsulated Union  ................................ ................................ ...............  59  
2.2.4.9   pointer_default  ................................ ................................ .........................  59  
2.2.4.10   Pointer Attributes  ................................ ................................ ....................  59  
2.2.4.11   Extension to Enumerated Type  ................................ ................................ . 59  
2.2.4.12   NDR Transfer Syntax Identifier  ................................ ................................ . 60  
2.2.4.13   byte_count ................................ ................................ .............................  60  
2.2.4.14   range  ................................ ................................ ................................ ....  60  



 

6 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.4.14.1   range Attribute to Limit  the Scope of Integral Values and the Number of 
Elements in Pipe Chunks  ................................ ................................ .....  60  

2.2.4.14.2   range Attribute to Limit the Range of Maxi mum Count of Conformant 
Array and String Length  ................................ ................................ ......  60  

2.2.4.15   strict_context_handle  ................................ ................................ ..............  61  
2.2.4.16   type_strict_context_handle  ................................ ................................ ......  61  
2.2.4.17   disable_consistency_check  ................................ ................................ .......  61  
2.2.4.18   Identi fier Length  ................................ ................................ .....................  61  

2.2.5   64 -Bit Network Data Representation  ................................ ................................ . 61  
2.2.5.1   NDR64 Transfer Syntax Identifier  ................................ ...............................  62  
2.2.5.2   NDR64 Simple Data Types  ................................ ................................ .........  62  
2.2.5.3   NDR64 Constructed Data Types  ................................ ................................ ..  62  

2.2.5.3.1   Representation Conventions  ................................ ................................ . 62  
2.2.5.3.2   A rrays  ................................ ................................ ...............................  62  

2.2.5.3.2.1   Conformant Arrays  ................................ ................................ ........  62  
2.2.5.3.2.2   Varying Arrays  ................................ ................................ ..............  62  
2.2.5.3.2.3   Conformant Varying Arrays  ................................ .............................  63  
2.2.5.3.2.4   Multidimensional Arrays  ................................ ................................ . 63  

2.2.5.3.3   Strings  ................................ ................................ ...............................  63  
2.2.5.3.3.1   Varying Strings  ................................ ................................ .............  63  
2.2.5.3.3.2   Conformant Varying Strings  ................................ ............................  63  

2.2.5.3.4   Structures  ................................ ................................ ..........................  64  
2.2.5.3.4.1   Structure with Trailing Gap  ................................ .............................  64  
2.2.5.3.4.2   Structure Containing a Conformant Array  ................................ .........  64  
2.2.5.3.4.3   Structure Containing a Conformant Varying Array  ..............................  64  
2.2.5.3.4.4   Unions  ................................ ................................ .........................  65  
2.2.5.3.4.5   Pipes  ................................ ................................ ............................  65  

2.2.5.3.5   Pointers  ................................ ................................ .............................  65  
2.2.5.3.5.1   Embedded Reference Pointers  ................................ .........................  65  

2.2.6   Type Serialization Version 1  ................................ ................................ .............  66  
2.2.6.1   Common Type Header for the Serialization Stream  ................................ .......  66  
2.2.6.2   Private Header for Constructed Type  ................................ ...........................  67  
2.2.6.3   Primitive Type Serialization  ................................ ................................ ........  67  

2.2.7   Type Serialization Version 2  ................................ ................................ .............  67  
2.2.7.1   Common Type Header  ................................ ................................ ...............  67  
2.2.7.2   Private Header  ................................ ................................ .........................  69  

3   Protocol Details  ................................ ................................ ................................ ......  70  
3.1   Connectionless and Connecti on-Oriented RPC Protocol Details  ................................ ...  70  

3.1.1   Common Details  ................................ ................................ .............................  70  
3.1.1.1   Abstract Data Model  ................................ ................................ ..................  70  

3.1.1.1.1   Security Context Handle  ................................ ................................ .......  70  
3.1.1.1.2   Client Credential Handle  ................................ ................................ .......  71  
3.1.1.1.3   Authorization Policy  ................................ ................................ .............  71  

3.1.1.2   Timers  ................................ ................................ ................................ ....  72  
3.1.1.3   Initialization  ................................ ................................ .............................  72  
3.1.1.4   Higher -Layer Triggered Events  ................................ ................................ ...  72  

3.1.1.4.1   Causal Ordering  ................................ ................................ ..................  72  
3.1.1.4.2   Impersonate Client  ................................ ................................ ..............  73  

3.1.1.5   Message Process ing Events and Sequencing Rules  ................................ ........  73  
3.1.1.5.1   Processing Extensions Details  ................................ ...............................  73  

3.1.1.5.1.1   Extension in NDR Transfer Syntax  ................................ ...................  73  
3.1.1.5.1.1.1   __int3264  ................................ ................................ ...............  73  



 

7 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.1.5.1.1.2   Binding Han dle Extension  ................................ ..........................  73  
3.1.1.5.2   Indicating Octet Stream as Invalid  ................................ ........................  73  
3.1.1.5.3   Strict NDR/NDR64 Data Consistency Check  ................................ ............  73  

3.1.1.5.3.1   Correlation Validation  ................................ ................................ .....  74  
3.1.1.5.3.2   Target Level 5.0  ................................ ................................ ............  74  

3.1.1.5.3.2.1   Correlation Validation Checks  ................................ ....................  74  
3.1.1.5.3 .2.1.1   Maximum Count of a Conformant Array or Conformant 

Varying Array Is Dictated by Another Parameter or Field of a 
Structure  ................................ ................................ ..........  74  

3.1.1.5.3.2.1.2   Maximum Count of a Conformant Structure or Conformant 
Varying Structure Is Dictated by a Field of the Structure  ........  75  

3.1.1.5.3.2.1.3   Maximum Count of a Conformant Array or Conformant 
Varying Array Is a Constant Defined in IDL File  .....................  75  

3.1.1.5.3.2.1.4   Maximum Count of a Conformant Structure or Conformant 
Varying Structure Is a Constant  ................................ ..........  75  

3.1.1.5.3.2.1.5   first_is of a Varying Array or Conformant Varying Array Is 

Specified by Another Parameter or Field of a Structure  ...........  75  
3.1.1.5.3.2.1.6   first_is of a Conformant Varying Structure Is Specified by a 

Field in the Structure  ................................ .........................  75  
3.1.1.5.3.2.1.7   first_is of a Varying Array, Conformant Varying Array, or 

Conformant Varying Structure Is Not Present in IDL  ..............  75  
3.1.1.5.3.2.1.8   Actual Count of a Varying Array or Conformant Varying Array 

Is Dictated by Another Parameter or Field of a Structure  ........  75  
3.1.1.5.3.2.1.9   Actual Count of a Conformant Varying Structure Is Dictated 

by a Field in the Structure  ................................ ..................  76  
3.1.1.5.3.2.1.10   Maximum Count of a Conformant and Varying String Is 

Dictated by Another Parameter or Field of a Structure  ............  76  
3.1.1.5.3.2.1.11   Union Validation  ................................ ...............................  76  
3.1.1.5.3.2.1.12   General Conformant Var ying Validation  ...............................  76  

3.1.1.5.3.2.2   Additional Limitations  ................................ ...............................  76 
3.1.1.5.3.2.2.1   Limiting Maximum Count and Octet Stream Length  .................  76  
3.1.1.5.3.2.2.2   strict_context_handle  ................................ .........................  76  
3.1.1.5.3.2.2 .3   Rejecting Insufficient Octet Stream  ................................ .......  76  
3.1.1.5.3.2.2.4   range Attribute to Limit the Scope of Integral Values and the 

Numbe r of Elements in Pipe Chunks  ................................ .....  77  
3.1.1.5.3.2.2.5   auto_handle Deprecation  ................................ .....................  77  
3.1.1.5.3.2.2.6   Ignoring Alignment Gap  ................................ ......................  77  

3.1.1.5.3.3   Target Level 6.0  ................................ ................................ ............  77  
3.1.1.5.3.3.1   Additional Limitations  ................................ ...............................  77  

3.1.1.5.3.3.1.1   type_strict_context_handle  ................................ ..................  77  
3.1.1.5.3.3.1.2   Unique or Full Pointer to Conformant Array Consistency 

Check  ................................ ................................ ..............  77  
3.1.1.5.3.3.1.3   range Attribute to Limit the Range of Maximum Count of 

Conformant Array and String Length  ................................ ....  78  
3.1.1.5.4   Restriction on Remote Anonymous Calls  ................................ .................  78  
3.1.1.5.5   Returning Win32 Error Values  ................................ ...............................  78  

3.1.1.6   Timer Events  ................................ ................................ ............................  80  
3.1.1.7   Other Local Events  ................................ ................................ ....................  80  

3.1.2   Client Details  ................................ ................................ ................................ . 80  
3.1 .2.1   Abstract Data Model  ................................ ................................ ..................  80  

3.1.2.1.1   Server Binding Handle  ................................ ................................ .........  80  
3.1.2.2   Timers  ................................ ................................ ................................ ....  80  
3.1.2.3   Initialization  ................................ ................................ .............................  80  



 

8 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.2.4   Higher -Layer Triggered Events  ................................ ................................ ...  80  
3.1.2.4.1   Set Server Binding Handle Client Credentials  ................................ ..........  80  

3.1.2.5   Message Processing Events and Sequenc ing Rules  ................................ ........  81  
3.1.2.5.1   Indicating Invalid Octet Stream on Client  ................................ ...............  81  

3.1.2.6   Timer Events  ................................ ................................ ............................  81  
3.1.2.7   Other Local Events  ................................ ................................ ....................  81  

3.1.2.7.1   Client Confor mant Validation Processing for Response Data  ......................  81  
3.1.2.7.1.1   Maximum Count of a Conformant Array Is Dictated by Another 

Paramete r or Field of a Structure  ................................ ....................  81  
3.1.2.7.1.2   Offset and/or Actual Count of a Conformant Array Is Dictated by 

Another Parameter or Field of a Structure  ................................ ........  81  
3.1.2.7.1.3   Maximum Count of a Conformant and Varying String Is Dictated by 

Another Parameter  ................................ ................................ .......  81  
3.1.2.7.1.4   Maximum Count of Conformant Varying String Is Not Dictated by 

Other Parameters or Fields  ................................ ............................  82  
3.1.2.7.1.5   Conformant Structure  ................................ ................................ ....  82  
3.1.2.7.1.6   Conformant Varying Structure  ................................ .........................  82  

3.1.3   Server Details  ................................ ................................ ................................  82  
3.1.3.1   Abstract Data Model  ................................ ................................ ..................  82  

3.1.3.1.1   Table of Security Providers  ................................ ................................ ...  82  
3.1.3.2   Timers  ................................ ................................ ................................ ....  83  
3.1.3.3   Initialization  ................................ ................................ .............................  83  

3.1.3.3.1   Delay Use of Protocol Sequences on the Endpoint Mapper  ........................  83  
3.1.3.4   Higher -Layer Triggered Events  ................................ ................................ ...  83  

3.1.3.4.1   Retrieve Protocol Sequence  ................................ ................................ ..  83  
3.1.3.4.2   Adding Elements to the Table of Security Providers  ................................ . 83  

3.1.3.5   Message Processing Events and Sequencing Rules  ................................ ........  83  
3.1.3.5.1   Server Stub Memory Allocation Limit  ................................ .....................  83  
3.1.3.5.2   Indicating Invalid Octet Stream in Server  ................................ ...............  84  
3.1.3.5.3   Interpretation of Tower Encodings  ................................ .........................  84  

3.1.3.6    Timer Events  ................................ ................................ ............................  84  
3.1.3.7   Other Local Events  ................................ ................................ ....................  84  

3.2   Connectionless RPC Protocol Details  ................................ ................................ .......  84  
3.2.1   Common Details  ................................ ................................ .............................  84  

3.2.1.1   Abstract Data Model  ................................ ................................ ..................  84  
3.2.1.1.1   State Machines  ................................ ................................ ...................  84  
3.2.1.1.2   Send Window (Call)  ................................ ................................ .............  85  
3.2.1.1.3   Receive Window (Call)  ................................ ................................ .........  86  

3.2.1.2   Timers  ................................ ................................ ................................ ....  86  
3.2.1.3   Initialization  ................................ ................................ .............................  86  
3.2.1.4   Higher -Layer Triggered Events  ................................ ................................ ...  86  

3.2.1.4.1   Building and Using a Security Context  ................................ ....................  86  
3.2 .1.4.1.1   Using a Security Context  ................................ ................................  88  

3.2.1.4.2   Callbacks  ................................ ................................ ...........................  89  
3.2.1.5   Message Processing Events and Sequencing Rules  ................................ ........  89  

3.2.1.5.1   Authentication  ................................ ................................ ....................  89  
3.2.1.5.2   Overlapped Calls  ................................ ................................ .................  89  
3.2.1.5.3   Sliding Window Algorithm  ................................ ................................ .....  90  

3.2.1.6   Timer Events  ................................ ................................ ............................  91  
3.2.1.7   Other Local Events  ................................ ................................ ....................  91  

3.2.2   Client Details  ................................ ................................ ................................ . 91  
3.2.2.1   Abstract Data Model  ................................ ................................ ..................  91  

3.2.2.1.1   Supports PF2_Unrelated Flag  ................................ ................................  91  



 

9 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.2.1.2   Security Provider Identifier  ................................ ................................ ...  91  
3.2.2.1.3   Authentication Level  ................................ ................................ ............  91  
3.2.2.1.4   Activity  ................................ ................................ ..............................  92  
3.2.2.1.5   Collection of Act ivities  ................................ ................................ ..........  93  
3.2.2.1.6   Collection of Inactive Activities  ................................ ..............................  93  
3.2.2.1.7   Client Address Space  ................................ ................................ ...........  93  
3.2.2.1.8   Table of CASs  ................................ ................................ .....................  94  
3.2.2.1.9   Causal Ordering  Flag  ................................ ................................ ...........  94  
3.2.2.1.10   Call  ................................ ................................ ................................ ..  94  

3.2.2.2   Timers  ................................ ................................ ................................ ....  96  
3.2.2.2.1   Packet Retransmission Timer  ................................ ................................  96  
3.2.2.2.2   Cancel Time -Out Timer  ................................ ................................ ........  96  
3.2.2.2.3   Delayed -Ack Timer  ................................ ................................ ..............  96  
3.2.2.2.4   Context -Handle Keep -Alive Timer  ................................ ..........................  96  
3.2.2.2.5   Inactive Activity Timer  ................................ ................................ .........  96  

3.2.2.3   Initialization  ................................ ................................ .............................  97  
3.2.2.3.1   Create a Binding Handle  ................................ ................................ .......  97  
3.2.2.3.2   Specify Security Settings ................................ ................................ ......  97  

3.2.2.4   Higher -Layer Triggered Events  ................................ ................................ ...  97  
3.2.2.4.1   Make an RPC Method Call  ................................ ................................ .....  97  

3.2.2.4.1.1   Find a CAS  ................................ ................................ ....................  97  
3.2.2.4.1.2   Find an Activity  ................................ ................................ .............  97  
3.2.2.4.1.3   Find or C reate a Security Context  ................................ ....................  99  
3.2.2.4.1.4   Create a Call  ................................ ................................ .................  99  
3.2.2.4.1.5   Queuing Multiple Calls  ................................ ................................ ....  99  

3.2.2.4.2   Cancel Requested  ................................ ................................ ................  99  
3.2.2.5   Message Processing Events and Sequencing Rules  ................................ .......  100  

3.2.2.5.1   REQUEST  ................................ ................................ ..........................  100  
3.2.2.5.2   PING  ................................ ................................ ................................  100  
3.2.2.5.3   RESPONSE  ................................ ................................ ........................  100  
3.2.2.5.4   FAULT  ................................ ................................ ...............................  101  
3.2.2.5.5   WORKING  ................................ ................................ .........................  101  
3.2.2.5.6   NOCALL  ................................ ................................ ............................  101  
3.2.2.5.7   REJECT  ................................ ................................ .............................  101  
3.2.2.5.8   ACK  ................................ ................................ ................................ ..  101  
3.2.2.5.9   QUIT  ................................ ................................ ................................  101  
3.2.2.5.10   FACK  ................................ ................................ ..............................  101  
3.2.2.5.11   QUACK  ................................ ................................ ............................  101  

3.2.2.6   Timer Events  ................................ ................................ ...........................  102  
3.2.2.6.1   Inactive Activity Timer  ................................ ................................ ........  102  
3.2.2.6.2   Context -Handle Keep -Alive Timer  ................................ .........................  102  
3.2.2.6.3   Delayed -Ack Timer  ................................ ................................ .............  102  

3.2.2.7   Other Local Events  ................................ ................................ ...................  102  
3.2.3   Server Detail s ................................ ................................ ...............................  102  

3.2.3.1   Abstract Data Model  ................................ ................................ .................  102  
3.2.3.1.1   Lowest -Allowed -Sequence Counter  ................................ .......................  102  
3.2.3.1.2   CAS UUID  ................................ ................................ .........................  103  
3.2.3.1.3   Lowest -Unused -Sequenc e Counter  ................................ .......................  10 3 
3.2.3.1.4   Table of Security Contexts  ................................ ................................ ...  103  
3.2.3.1.5   Table of Activity IDs  ................................ ................................ ...........  103  
3.2.3.1.6   Table of Client Address Spaces  ................................ ............................  104  
3.2.3.1.7   Table of Active Calls per Activity  ................................ ..........................  104  
3.2.3.1.8   Call  ................................ ................................ ................................ ..  104  



 

10  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.3.1.9   CAS C ontext Handle List  ................................ ................................ .....  106  
3.2.3.1.10   Callback State  ................................ ................................ ..................  106  

3.2.3.2   Timers  ................................ ................................ ................................ ...  107  
3.2.3.2.1   Call Fragment Retransmission Timer  ................................ .....................  107  
3.2.3.2 .2   Idle Scavenger Timer  ................................ ................................ ..........  107  

3.2.3.3   Initialization  ................................ ................................ ............................  107  
3.2.3.4   Higher -Layer Triggered Events  ................................ ................................ ..  107  

3.2.3.4.1   Failure Semantics  ................................ ................................ ...............  107  
3.2.3.4.2   Retrieving Client Identity  ................................ ................................ ....  107  
3.2.3.4.3   Context Handle Generation  ................................ ................................ ..  108  

3.2.3.5   Message Processing Events and Sequencin g Rules  ................................ .......  108  
3.2.3.5.1   Failure Semantics  ................................ ................................ ...............  108  
3.2.3.5.2   Sequencing in Case of Errors  ................................ ...............................  109  
3.2.3.5.3   Packet Processing  ................................ ................................ ...............  109  
3.2.3.5.4   REQUEST  ................................ ................................ ..........................  109  

3.2.3.5.4.1   STATE_INIT  ................................ ................................ .................  110  
3.2.3.5.4.2   STATE_RECEIVE_FRAGS  ................................ ................................  110  
3.2.3.5.4.3   STATE_WORKING  ................................ ................................ .........  111  
3.2.3.5.4.4   STATE_SEND_FRAGS  ................................ ................................ ....  111  

3.2.3.5.5   PING  ................................ ................................ ................................  112  
3.2.3.5.5.1   STATE_INIT  ................................ ................................ .................  112  
3.2.3.5.5.2   STATE_RECEIVE_FRAGS  ................................ ................................  112  
3.2.3.5.5.3   STATE_WORKING  ................................ ................................ .........  112  
3.2.3.5.5.4   STATE_SEND_FRAGS  ................................ ................................ ....  112  

3.2.3.5.6   FACK  ................................ ................................ ................................  112  
3.2.3.5.7   QUIT  ................................ ................................ ................................  112  
3.2.3.5.8   ACK  ................................ ................................ ................................ ..  112  

3.2.3.6   Timer Events  ................................ ................................ ...........................  112  
3.2.3.6.1   Idle Scavenger Timer Expiry  ................................ ................................  113  

3.2.3.7   Other Local Events  ................................ ................................ ...................  113  
3.3   Connection -Oriented RPC Protocol Details  ................................ ..............................  113  

3.3.1   Common Details  ................................ ................................ ............................  113  
3.3.1.1   Abstract Data Model  ................................ ................................ .................  113  

3.3.1.1.1   Association  ................................ ................................ ........................  113  
3.3.1.1.2   Connection  ................................ ................................ ........................  114  
3.3.1.1.3   Connection Multiplex Flag  ................................ ................................ ....  115  
3.3.1.1.4   List of Connections  ................................ ................................ .............  115  
3.3.1.1.5   Table of Associations  ................................ ................................ ..........  115  
3.3.1.1.6   Table of Security Provider Info  ................................ .............................  115  

3.3.1.2   Timers  ................................ ................................ ................................ ...  115  
3.3.1.3   Initialization  ................................ ................................ ............................  115  
3.3.1.4   Higher -Layer Triggered Events  ................................ ................................ ..  115  

3.3.1.4.1   Context Handle Scope  ................................ ................................ .........  115  
3.3.1.5   Message Processing Events and Sequencing Rules  ................................ .......  116  

3.3.1.5.1   Protocol Version Number  ................................ ................................ .....  116  
3.3.1.5.2   Building and Using a Se curity Context  ................................ ...................  116  

3.3.1.5.2.1   Building a Security Context  ................................ ............................  116  
3.3.1.5.2.2   Using a Security Context  ................................ ...............................  118  

3.3.1.5.3   Bind Time Feature Negotiation  ................................ .............................  120  
3.3.1.5.4   Security Context Multiplexing  ................................ ..............................  121  
3.3.1.5.5   Primary and Secondary Endpoint Address  ................................ ..............  122  
3.3.1.5.6   Presentation Context and Transfer Syntax Negotiation  ............................  122  
3.3.1.5.7   Adding a New RPC Transport Connection to an Association  ......................  124  



 

11  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.3.1.5.8   Multiplexed Connections  ................................ ................................ ......  124  
3.3.1.5.9   Handl ing of Callbacks  ................................ ................................ ..........  124  
3.3.1.5.10   Keeping Connections Open After Client Sends an Orphaned PDU  ............  125  

3.3.1.6   Timer Events  ................................ ................................ ...........................  125  
3.3.1.7   Other Local Events  ................................ ................................ ...................  125  

3.3.2   Client Details  ................................ ................................ ................................  125  
3.3.2.1   Abstract Data Model  ................................ ................................ .................  126  

3.3.2.1.1   Idle Connection Cleanup Enabl ed ................................ .........................  126  
3.3.2.1.2   Association Active Context Handle Count  ................................ ...............  126  
3.3.2.1.3   Client Call  ................................ ................................ .........................  127  
3.3.2.1.4   Client Connection  ................................ ................................ ...............  129  
3.3.2.1.5   Server Bind ing Handle  ................................ ................................ ........  129  

3.3.2.2   Timers  ................................ ................................ ................................ ...  129  
3.3.2.2.1   Connection Time -Out Timer  ................................ ................................ . 129  
3.3.2.2.2   Communication Time -Out Timer  ................................ ...........................  129  
3.3.2.2.3   Idle Connection Cleanup Timer  ................................ ............................  130  

3.3.2.3   Initialization  ................................ ................................ ............................  130  
3.3.2.3.1   Create a Binding Handle  ................................ ................................ ......  130  
3.3.2.3.2   Specify Security Settings ................................ ................................ .....  130  

3.3.2.4   Higher -Layer Triggered Events  ................................ ................................ ..  130  
3.3.2.4.1   Make a Remote Procedure Method Call  ................................ ..................  130  

3.3.2 .4.1.1   Resolve the Binding Handle ................................ ............................  130  
3.3.2.4.1.2   Find an Association and a Connection  ................................ ..............  130  
3.3.2.4.1.3   Build Security/Presentation Context  ................................ ................  131  
3.3.2.4.1.4   Enable Idle Connection Timeout  ................................ .....................  131  

3.3.2.4.2   Release Context Handle  ................................ ................................ ......  131  
3.3.2.5   Message P rocessing Events and Sequencing Rules  ................................ .......  132  

3.3.2.5.1   rpc_fault PDU Processing Rules  ................................ ............................  132  
3.3.2.5.2   Handling Responses ................................ ................................ ............  132  

3.3.2.6   Timer Events  ................................ ................................ ...........................  132  
3.3.2.6.1   Communication Time -Out Timer  ................................ ...........................  132  
3.3.2.6.2   Idle Connection Cleanup Timer Expiry  ................................ ...................  132  
3.3.2.6.3   Endpoint Mapper Requests Security Information  ................................ ....  132  

3.3.2.7   Other Local Events  ................................ ................................ ...................  133  
3.3.2.7.1   Transport Connection Time -Out  ................................ ...........................  133  

3.3.3   Server Details  ................................ ................................ ...............................  133  
3.3.3.1   Abstract Data Model  ................................ ................................ .................  134  

3.3.3.1.1   Server Connection  ................................ ................................ ..............  134  
3.3.3.1.2   Number of Registered Interfaces  ................................ ..........................  135  
3.3.3.1.3   Preferred Transfer Syntax  ................................ ................................ ...  135  
3.3.3.1.4   Supported Transfer Syntaxes  ................................ ...............................  135  
3.3.3.1.5   Server Call  ................................ ................................ ........................  135  

3.3.3.2   Timers  ................................ ................................ ................................ ...  137  
3.3.3.2.1   Connection Time -Out  ................................ ................................ ..........  137  

3.3.3.3   Initialization  ................................ ................................ ............................  137  
3.3.3.3.1   Server -Side Initialization  ................................ ................................ .....  137  

3.3.3.3.1.1   Registering a Protocol Sequence by a Higher -Level Protocol  ...............  137  
3.3.3.3.1.2   Registering an Interface by a Higher -Level Protocol  ..........................  137  
3.3.3.3.1.3   Registering a Security Provider b y a Higher -Level Protocol  .................  137  
3.3.3.3.1.4   Registering a Dynamic Endpoint with Endpoint Mapper  ......................  137  
3.3.3.3.1.5   Start Listening  ................................ ................................ .............  138  

3.3.3.4   Higher -Layer Triggered Events  ................................ ................................ ..  138  
3.3.3.4.1   F ailure Semantics  ................................ ................................ ...............  138  



 

12  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.3.3.4.2   shutdown PDUs  ................................ ................................ ..................  138  
3.3.3.4.3   Retrieve the Client Identity and Authorization Information .......................  138  

3.3.3.4.3.1   Abstract Interface GetRpcImpersonationAccessToken  ........................  138  
3.3.3.4.3.2   Abstract Interface RpcImpersonateClient  ................................ .........  139  
3.3.3.4.3.3   Abstract Interace RpcRevertToSelf  ................................ ..................  139  

3.3.3.5   Message Processing Events and Sequencing Rules  ................................ .......  140  
3.3.3.5.1   Failure Semantics  ................................ ................................ ...............  140  
3.3.3.5.2   call_id Field Must Increase Monotonically  ................................ ..............  140  
3.3.3.5.3   Unknown Security Provider  ................................ ................................ ..  140  
3.3.3.5.4   Maximum Server Input Data Size  ................................ .........................  141  
3.3.3.5.5   Limits of Presentation Contexts Negotiated  ................................ ............  141  
3.3.3.5.6   Dropping Packets for Old Calls  ................................ .............................  141  
3.3.3.5.7   Handling Protocol Errors  ................................ ................................ ......  141  
3.3.3.5.8   Seque ncing in Case of Errors  ................................ ...............................  141  

3.3.3.6   Timer Events  ................................ ................................ ...........................  141  
3.3.3.7   Other Local Events  ................................ ................................ ...................  141  

3.3.3.7.1   Transport Connection Shutdown  ................................ ...........................  141  
3.3.3.7.2   Initialize Server Call Object Reference  ................................ ..................  142  

4   Protocol Examples  ................................ ................................ ................................  143  
4.1   Packet Sequence for Secure, Connection -Oriented  RPC Using Kerberos as Security 

Provider  ................................ ................................ ................................ ............  143  
4.2   Packet Sequence for Secure, Connection -Oriented RPC Using NTLM as Security 

Prov ider  ................................ ................................ ................................ ............  145  
4.3   Packet Sequence of the First Non - Idempotent RPCs of a Connectionless Activity  .........  146  
4.4   Connectionless RPCs With and Without a Delayed ACK  ................................ ............  148  
4.5   Connectionless Client Communicating with a Dynamic Server Endpoint  .....................  148  
4.6   Correlation Examp le ................................ ................................ ............................  149  
4.7   UNICODE_STRING Representation  ................................ ................................ ........  150  
4.8   Example of Structure with Trailing Gap in NDR64  ................................ ....................  151  

5   Security  ................................ ................................ ................................ ................  152  
5.1   Security Considerations for Impleme nters  ................................ ..............................  152  

5.1.1   Authentication Levels  ................................ ................................ .....................  152  
5.1.2   Preferred Security Providers  ................................ ................................ ...........  152  
5.1.3   Impersonation Levels  ................................ ................................ .....................  152  

5.2   Index of Security Parameters  ................................ ................................ ...............  152  

6   Appendix A: Full Remote Procedure Call Extensions IDL  ................................ ......  153  

7   Appendix B: Product Behavior  ................................ ................................ ..............  154  

8   Appendix C: RPC Extensions Conformance to [C706] Requirements  ....................  167  
8.1   Local Interfaces  ................................ ................................ ................................ ..  169  
8.2   Implicit and NULL Binding Handles  ................................ ................................ ........  175  

9   Change Tr acking ................................ ................................ ................................ ...  176  

10   Index  ................................ ................................ ................................ .................  178  



 

13  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

1   Introduction  

The Remote Procedure Call Protocol Extensions define a set of extensions to the DCE 1.1: Remote 
Procedure Call (RPC), as specified in [C706] . This specification assumes that the reader has 
familiarity with the concepts and requirements specified in [C706] . Concepts and requirements 
specified in [C706]  are not repeated in this specification, except where required to specify how the 
definitions are extended. The reader may also find it helpful to be familiar with [C 441] , which 
describes the Generic Security Service API (GSS -API) Base.  

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD, 

MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also 
no rmative but cannot contain those terms. All other sections and examples in this specification are 
informative.  

  

1.1   Glossary  

The following terms are defined in [MS -GLOS] :  

64 - Bit Network Data Representation (NDR64)  
application configuration file (ACF)  
authentication level  
Authentication Service (AS)  
authentication type  
big - endian  

binary large object (BLOB)  
connection - oriented RPC  
connectionless RPC  
conversation callback  
correlation  
deserialize  
dynamic endpoint  

endpoint  
endpoint mapper  
execution context  
interface  
Interface Definition Language (IDL)  
listening state  
little - endian  

mars hal  
Microsoft Interface Definition Language (MIDL)  
named pipe  
NetBIOS  
NetBIOS host name  
Network Data Representation (NDR)  

object UUID  
opnum  

protocol data unit (PDU)  
protocol identifier  
protocol tower  
remote procedure call (RPC)  
RPC client  

RPC protocol sequ ence  
RPC server  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=210850
%5bMS-GLOS%5d.pdf


 

14  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

RPC transfer syntax  
RPC transport  

security context  
security provider  

Server Message Block (SMB)  
strict NDR/NDR64 data consistency check  
UUID or GUID  
unmarshal  
well - known endpoint  

The following terms are specific to this document:  

activity: Used as specified in [C706]  section 9.5.  

client address space (CAS): Used as specified in [C706]  section 9.5.  

opaque: This term refers  to data that the client does not use and data (or, more often, a handle) 
for use on the server on behalf of the client. Opaque  data is sent to the client and returned to 

the server and used to access data or state information needed to process client 
call s/requests.  

protocol variant: A protocol version that is distinct and noninteroperable from other protocol 

versions when all versions are from the same group of related protocols.  

serialize or serialization: See marshal .  

stub:  Used as specified in [C706]  section 2.1.2.2. A stub  that is used on the client is called a 
"client stub ", and a stub  that is used on the server is called a "server stub ".  

MAY, SHOULD, MUST, SHOU LD NOT, MUST NOT: These terms (in all caps) are used as 
described in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or 
SHOULD NOT.  

1.2   References  

References to Microsoft Open Specifications documentation do not include a publishing year because 
links are to the latest version of the documents, which are updated frequently. References to other 
documents include a publishing year when one is available . 

A reference marked "(Archived)" means that the reference document was either retired and is no 
longer being maintained or was replaced with a new document that provides current implementation 

details. We archive our documents online [Windows Protocol] . 

1.2.1   Normative References  

We conduct frequent surveys of the normative references to assure their continued availability. If 
you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We 
will assist you in finding the relevant information. Please check the archive site, 

http://msdn2.microsoft.com/en -us/library/E4BD6494 -06 AD-4aed -9823 -445E921C9624 , as an 

additional source.  

[AT] Sidhu, G., Andrews, R., and Oppenheimer, A., "Inside AppleTalk, Second Edition", New York: 
Addison Wesley, 1990, ISBN: 0201550210.  

If you have any trouble finding [AT], please check here . 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624


 

15  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[C311] The Open Group, "DCE 1.1: Authentication and Security Services -- Document Number C311", 
October 1997, http ://www.opengroup.org/onlinepubs/9668899/  

[C441] The Open Group, "Generic Security Service API (GSS -API) Base", C441, December 1995, 
https://www2.opengroup.org/ogsys/jsp/publications/PublicationD etails.jsp?catalogno=c441  

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997, 
http://www.opengroup.org/public/pubs/catalog/c706.htm  

[ISO/IEC/IEEE9945 -7] International Orga nization for Standardization, "Information technology --  
Portable Operating System Interface (POSIX®) Base Specifications" Issue 7", 2009, 
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catal ogue_detail.htm?csnumber=50516  

[MS -APDS] Microsoft Corporation, " Authentication Protocol Domain Support ".  

[MS -CIFS] Microsoft Corporation, " Common Internet File System (CIFS) Protocol ".  

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".  

[MS -EERR] Microsoft Corporation, " ExtendedError Remote Data Structure ".  

[MS -ERREF] Microsoft Corporation, " Windows Error  Codes ".  

[MS -KILE] Microsoft Corporation, " Kerberos Protocol Extensions ".  

[MS -NLMP] Microsoft Corporation, " NT LAN Manager (NTLM) Authentication Protocol ".  

[MS -NRPC] Microsoft Corporation, " Netlogon Remote Protocol ".  

[MS -RPCH] Microsoft Corporation, " Remote Procedure Call over HTTP Protocol ".  

[MS -RPCL] Microsoft Corporation, " Remote Procedure Call Location  Services Extensions ".  

[MS -SPNG] Microsoft Corporation, " Simple and Protected GSS -API Negotiation Mechanism (SPNEGO) 
Extension ".  

[MS -TLSP] Microsoft Corporation, " Transport Layer Security (TLS) Pr ofile ".  

[MSDN -QueryContextAttributes] Microsoft Corporation, "QueryContextAttributes (General) function", 
http://msdn.microsoft.com/en -us/library/aa379326%28v=vs.85%29.aspx  

[NETBEUI] IBM Corpora tion, "LAN Technical Reference: 802.2 and NetBIOS APIs", 1986, 
http://publibz.boulder.ibm.com/cgi -bin/bookmgr_OS390/BOOKS/BK8P7001/CCONTENTS  

If you have any trouble finding [NETBEUI], please chec k here . 

[PRA- I_RpcBindInqLocalCltPID] Microsoft Corporation, "I_RpcBindingInqLocalClientPID", 
http:/ /download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/I_RpcBindingInqLocalClientPID.pdf  

[PRA-MesBufferHandleReset] Microsoft Corporation, "MesBufferHandleReset function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/MesBufferHandleReset.pdf  

[PRA-MesDecodeBufHndleCreate] Microsoft Corporation, "MesDecodeBufferHandleCreate Function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/MesDecodeBufferHandleCreate.pdf  

http://go.microsoft.com/fwlink/?LinkId=89821
http://go.microsoft.com/fwlink/?LinkId=210850
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=213995
%5bMS-APDS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-EERR%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-RPCH%5d.pdf
%5bMS-RPCL%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-TLSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=215880
http://go.microsoft.com/fwlink/?LinkId=90224
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=215406
http://go.microsoft.com/fwlink/?LinkId=215406
http://go.microsoft.com/fwlink/?LinkId=215407
http://go.microsoft.com/fwlink/?LinkId=215407
http://go.microsoft.com/fwlink/?LinkId=215408
http://go.microsoft.com/fwlink/?LinkId=215408


 

16  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[PRA-MesDecodeIncrmHndCreate] Microsoft Corporation, "MesDecodeIncrementalHandleCreate 
Function", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/MesDecodeIncrementalHandleCreate.pdf  

[PRA-MesEncodDynBufHndCreate] Microsoft Corporation, "MesEncodeDynBufferHandleCreate 

Function", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/MesEncodeDynBufferHandleCreate.pdf  

[PRA-MesEncodFixBufHndCreate] Microsoft Corporation, "MesEncodeFixedBufferHandleCreate 
Function ", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/MesEncodeFixedBufferHandleCreate.pdf  

[PRA-MesEncodIncrmtHndCreate] Microsoft Corporation, "MesEncodeIncrementalHandleCreate 
Function", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/MesEncodeIncrementalHandleCreate.pdf  

[PRA-MesHandleFree] Microsoft Corporation, "MesHandleFree function", 
http:/ /download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/MesHandleFree.pdf  

[PRA-MesIncrementalHndReset] Microsoft Corporation, "MesIncrementalHandleReset Function", 
http://dow nload.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/MesIncrementalHandleReset.pdf  

[PRA-MesInqProcEncodingId] Microsoft Corporation, "MesInqProcEncodingId function", 
http://do wnload.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/MesInqProcEncodingId.pdf  

[PRA-RpcAsyncAbortCall] Microsoft Corporation, "RpcAsyncAbortCall function", 
http://download.mic rosoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcAsyncAbortCall.pdf  

[PRA-RpcAsyncCancelCall] Microsoft Corporation, "RpcAsyncCancelCall function", 
http://download.microsoft.com/ download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcAsyncCancelCalll.pdf  

[PRA-RpcAsyncCompleteCall] Microsoft Corporation, "RpcAsyncCompleteCall function", 
http://download.microsoft.com/downl oad/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcAsyncCompleteCall.pdf  

[PRA-RpcAsyncGetCallStatus] Microsoft Corporation, "RpcAsyncGetCallStatus function", 

http://download.microsoft.com/downloa d/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcAsyncGetCallStatus.pdf  

[PRA-RpcAsyncInitializeHandle] Microsoft Corporation, "RpcAsyncInitializeHandle function", 
http://download.microsoft.com/do wnload/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcAsyncInitializeHandle.pdf  

[PRA-RpcAsyncRegisterInfo] Microsoft Corporation, "RpcAsyncRegisterInfo", 

http://download.microsoft.com/download/5/ B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcAsyncRegisterInfo.pdf  

[PRA-RpcBindingBind] Microsoft Corporation, "RpcBindingBind function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -630 4-45AB -8C2D -
AE712526E7F7/RpcBindingBind.pdf  

http://go.microsoft.com/fwlink/?LinkId=215409
http://go.microsoft.com/fwlink/?LinkId=215409
http://go.microsoft.com/fwlink/?LinkId=215410
http://go.microsoft.com/fwlink/?LinkId=215410
http://go.microsoft.com/fwlink/?LinkId=215411
http://go.microsoft.com/fwlink/?LinkId=215411
http://go.microsoft.com/fwlink/?LinkId=215412
http://go.microsoft.com/fwlink/?LinkId=215412
http://go.microsoft.com/fwlink/?LinkId=215413
http://go.microsoft.com/fwlink/?LinkId=215413
http://go.microsoft.com/fwlink/?LinkId=215415
http://go.microsoft.com/fwlink/?LinkId=215415
http://go.microsoft.com/fwlink/?LinkId=215416
http://go.microsoft.com/fwlink/?LinkId=215416
http://go.microsoft.com/fwlink/?LinkId=215334
http://go.microsoft.com/fwlink/?LinkId=215334
http://go.microsoft.com/fwlink/?LinkId=215335
http://go.microsoft.com/fwlink/?LinkId=215335
http://go.microsoft.com/fwlink/?LinkId=215336
http://go.microsoft.com/fwlink/?LinkId=215336
http://go.microsoft.com/fwlink/?LinkId=215337
http://go.microsoft.com/fwlink/?LinkId=215337
http://go.microsoft.com/fwlink/?LinkId=215338
http://go.microsoft.com/fwlink/?LinkId=215338
http://go.microsoft.com/fwlink/?LinkId=215419
http://go.microsoft.com/fwlink/?LinkId=215419
http://go.microsoft.com/fwlink/?LinkId=215339
http://go.microsoft.com/fwlink/?LinkId=215339


 

17  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[PRA-RpcBindingCreate] Microsoft Corporation, "RpcBindingCreate function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE7125 26E7F7/RpcBindingCreate.pdf  

[PRA-RpcBindingInqAuthClientEx] Microsoft Corporation, "RpcBindingInqAuthClientEx function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE71 2526E7F7/RpcBindingInqAuthClientEx.pdf  

[PRA-RpcBindingInqAuthInfoEx] Microsoft Corporation, "RpcBindingInqAuthInfoEx function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D-
AE712526E7F7/RpcBindingInqAuthInfoEx.pdf  

[PRA-RpcBindingInqOption] Microsoft Corporation, "RpcBindingInqOption function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcBindingInqOption.pdf  

[PRA-RpcBindingSetAuthInfoEx] Microsoft Corporation, "RpcBindingSetAuthInfoEx function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcBindingSetAuthInfoEx.pdf  

[PRA-RpcBindingSetOption] Microsoft Corporation, "RpcBindingSetOption function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcBindingSetOption.pdf  

[PRA-RpcBindingUnbind] Microsoft Corporation, "RpcBindingUnbind function", 
http://downlo ad.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcBindingUnbind.pdf  

[PRA-RpcCancelThread] Microsoft Corporation, "RpcCancelThread function", 
http://download.microsoft.com/d ownload/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcCancelThread.pdf  

[PRA-RpcCancelThreadEx] Microsoft Corporation, "RpcCancelThreadEx function", 
http://download.microsoft.com/download/5/B/C/5 BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcCancelThreadEx.pdf  

[PRA-RpcCertGenPrincipalName] Microsoft Corporation, "RpcCertGeneratePrincipalName function", 
http://download.microsoft.com/download/5/B /C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcCertGeneratePrincipalName.pdf  

[PRA-RpcDiagnoseError] Microsoft Corporation, "RpcDiagnoseError function", 

http://download.microsoft.com/download/5/B/C/5 BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcDiagnoseError.pdf  

[PRA-RpcErrorAddRecord] Microsoft Corporation, "RpcErrorAddRecord function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB-8C2D -
AE712526E7F7/RpcErrorAddRecord.pdf  

[PRA-RpcErrorClearInformation] Microsoft Corporation, "RpcErrorClearInformation function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcErrorClearInformation.pdf  

[PRA-RpcErrorEndEnumeration] Microsoft Corporation, "RpcErrorEndEnumeration function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcErrorEndEnumeration.pdf  

http://go.microsoft.com/fwlink/?LinkId=215340
http://go.microsoft.com/fwlink/?LinkId=215340
http://go.microsoft.com/fwlink/?LinkId=215341
http://go.microsoft.com/fwlink/?LinkId=215341
http://go.microsoft.com/fwlink/?LinkId=215342
http://go.microsoft.com/fwlink/?LinkId=215342
http://go.microsoft.com/fwlink/?LinkId=215343
http://go.microsoft.com/fwlink/?LinkId=215343
http://go.microsoft.com/fwlink/?LinkId=215344
http://go.microsoft.com/fwlink/?LinkId=215344
http://go.microsoft.com/fwlink/?LinkId=215345
http://go.microsoft.com/fwlink/?LinkId=215345
http://go.microsoft.com/fwlink/?LinkId=215346
http://go.microsoft.com/fwlink/?LinkId=215346
http://go.microsoft.com/fwlink/?LinkId=215347
http://go.microsoft.com/fwlink/?LinkId=215347
http://go.microsoft.com/fwlink/?LinkId=215348
http://go.microsoft.com/fwlink/?LinkId=215348
http://go.microsoft.com/fwlink/?LinkId=215349
http://go.microsoft.com/fwlink/?LinkId=215349
http://go.microsoft.com/fwlink/?LinkId=215350
http://go.microsoft.com/fwlink/?LinkId=215350
http://go.microsoft.com/fwlink/?LinkId=215351
http://go.microsoft.com/fwlink/?LinkId=215351
http://go.microsoft.com/fwlink/?LinkId=215352
http://go.microsoft.com/fwlink/?LinkId=215352
http://go.microsoft.com/fwlink/?LinkId=215353
http://go.microsoft.com/fwlink/?LinkId=215353


 

18  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[PRA-RpcErrorGetNextRecord] Microsoft Corporation, "RpcErrorGetNextRecord function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcErrorGetNextRecord.pdf  

[PRA-RpcErrorGetNumberOfRecords] Microsoft Corporation, "RpcErrorGetNumberOfRecords 

function", http://download.microsoft.com/download/5/B/C/5 BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcErrorGetNumberOfRecords.pdf  

[PRA-RpcErrorLoadErrorInfo] Microsoft Corporation, "RpcErrorLoadErrorInfo function", 
http://download.microsoft.com/download/5/B /C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcErrorLoadErrorInfo.pdf  

[PRA-RpcErrorResetEnumeration] Microsoft Corporation, "RpcErrorResetEnumeration function", 
http://download.microsoft.com/downloa d/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcErrorResetEnumeration.pdf  

[PRA-RpcErrorSaveErrorInfo] Microsoft Corporation, "RpcErrorSaveErrorInfo function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcErrorSaveErrorInfo.pdf  

[PRA-RpcErrorStartEnumeration] Microsoft Corporation, "RpcErrorStartEnumeration function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcErrorStartEnumeration.pdf  

[PRA-RpcExceptionCode] Microsoft Corporation, "RpcExceptionCode function", 
htt p://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcExceptionCode.pdf  

[PRA-RpcFreeAuthorizeContext] Microsoft Corporation, "RpcFreeAuthorizationContext function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcFreeAuthorizationContext.pdf  

[PRA-RpcGtAuthCntxtForClient] Microsoft Corporation, "RpcGetAuthorizationContextForClient 
Function", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcGetAuthorizationContextForClient.pdf  

[PRA-RpcImpersonateClient] Microsoft Corporation, "RpcImpersonateClient function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcImpersonateClient.pdf  

[PRA-RpcMgmtEnableIdleCleanup] Microsoft Corporation, "RpcMgmtEnableIdleCleanup function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcMgmtEnableIdleCleanup.pdf  

[PRA-RpcMgmtInqDeftProtectLevel] Microsoft Corporation, "RpcMgmtInqDefaultProtectLevel 
function", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcMgmtInqDefaultProtectLevel.pdf  

[PRA-RpcMgmtWaitServerListen] Microsoft Corporation, "RpcMgmtWaitServerListen function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcMgmtWaitServerListen.pdf  

[PRA-RpcRaiseException] Microsoft Corporation, "RpcRaiseException function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcRaiseException.pdf  

http://go.microsoft.com/fwlink/?LinkId=215356
http://go.microsoft.com/fwlink/?LinkId=215356
http://go.microsoft.com/fwlink/?LinkId=215363
http://go.microsoft.com/fwlink/?LinkId=215363
http://go.microsoft.com/fwlink/?LinkId=215364
http://go.microsoft.com/fwlink/?LinkId=215364
http://go.microsoft.com/fwlink/?LinkId=215367
http://go.microsoft.com/fwlink/?LinkId=215367
http://go.microsoft.com/fwlink/?LinkId=215368
http://go.microsoft.com/fwlink/?LinkId=215368
http://go.microsoft.com/fwlink/?LinkId=215369
http://go.microsoft.com/fwlink/?LinkId=215369
http://go.microsoft.com/fwlink/?LinkId=215370
http://go.microsoft.com/fwlink/?LinkId=215370
http://go.microsoft.com/fwlink/?LinkId=215420
http://go.microsoft.com/fwlink/?LinkId=215420
http://go.microsoft.com/fwlink/?LinkId=215422
http://go.microsoft.com/fwlink/?LinkId=215422
http://go.microsoft.com/fwlink/?LinkId=215371
http://go.microsoft.com/fwlink/?LinkId=215371
http://go.microsoft.com/fwlink/?LinkId=215372
http://go.microsoft.com/fwlink/?LinkId=215372
http://go.microsoft.com/fwlink/?LinkId=215373
http://go.microsoft.com/fwlink/?LinkId=215373
http://go.microsoft.com/fwlink/?LinkId=215374
http://go.microsoft.com/fwlink/?LinkId=215374
http://go.microsoft.com/fwlink/?LinkId=215375
http://go.microsoft.com/fwlink/?LinkId=215375


 

19  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[PRA-RevertToSelf] Microsoft Corporation, "RevertToSelf Function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcRevertToSelf.pdf  

[PRA-RpcRevertToSelfEx] Microsoft Corporation, "RpcRevertToSelfEx function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcRevertToSelfEx.pdf  

[PRA-RpcServerInqBindingHandle] Microsoft Corporation, "RpcServerInqBindingHandle function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerInqBindingHandle.pdf  

[PRA-RpcServerInqCallAttributes] Microsoft Corporation, "RpcServerInqCallAttributes function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcServerInqCallAttributes.pdf  

[PRA-RpcServerInqDeftPrincName] Microsoft Corporation, "RpcServerInqDefaultPrincName 
function", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcServerInqDefaultPrincName.pdf  

[PRA-RpcServerRegisterIf2] Microsoft Corporation, "RpcServerRegisterIf2 function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcServerRegisterIf2.pdf  

[PRA-RpcServerRegisterIf] Microsoft Corporation, "RpcServerRegisterIf function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerRegisterIf.pdf  

[PRA-RpcServerRegisterIfEx] Microsoft Corporation, "RpcServerRegisterIfEx function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerRegisterIfEx.pdf  

[PRA-RpcServerTestCancel] Microsoft Corporation, "RpcServerTestCancel function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcServerUnregisterIf.pdf  

[PRA-RpcServerUnregisterIf] Microsoft Corporation, "RpcServerUnregisterIf function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerUnregisterIf.pdf  

[PRA-RpcServerUnregisterIfEx] Microsoft Corporation, "RpcServerUnregisterIfEx function",  

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerUnsubscribeForNotification.pdf  

[PRA-RpcServerUseAllProtseqsEx] Microsoft Corporation, "RpcServerUseAll ProtseqsEx function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerUseAllProtseqsEx.pdf  

[PRA-RpcServUseAllProtseqsIfEx] Microsoft Corporation, "RpcS erverUseAllProtseqsIfEx function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcServerUseAllProtseqsIfEx.pdf  

[PRA-RpcServerUseProtseqEpEx] Microsoft Corpo ration, "RpcServerUseProtseqEpEx function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerUseProtseqEpEx.pdf  

http://go.microsoft.com/fwlink/?LinkId=215423
http://go.microsoft.com/fwlink/?LinkId=215423
http://go.microsoft.com/fwlink/?LinkId=215376
http://go.microsoft.com/fwlink/?LinkId=215376
http://go.microsoft.com/fwlink/?LinkId=215378
http://go.microsoft.com/fwlink/?LinkId=215378
http://go.microsoft.com/fwlink/?LinkId=215379
http://go.microsoft.com/fwlink/?LinkId=215379
http://go.microsoft.com/fwlink/?LinkId=215380
http://go.microsoft.com/fwlink/?LinkId=215380
http://go.microsoft.com/fwlink/?LinkId=215383
http://go.microsoft.com/fwlink/?LinkId=215383
http://go.microsoft.com/fwlink/?LinkId=215381
http://go.microsoft.com/fwlink/?LinkId=215381
http://go.microsoft.com/fwlink/?LinkId=215424
http://go.microsoft.com/fwlink/?LinkId=215424
http://go.microsoft.com/fwlink/?LinkId=215385
http://go.microsoft.com/fwlink/?LinkId=215385
http://go.microsoft.com/fwlink/?LinkId=215386
http://go.microsoft.com/fwlink/?LinkId=215386
http://go.microsoft.com/fwlink/?LinkId=215426
http://go.microsoft.com/fwlink/?LinkId=215426
http://go.microsoft.com/fwlink/?LinkId=215387
http://go.microsoft.com/fwlink/?LinkId=215387
http://go.microsoft.com/fwlink/?LinkId=215388
http://go.microsoft.com/fwlink/?LinkId=215388
http://go.microsoft.com/fwlink/?LinkId=215389
http://go.microsoft.com/fwlink/?LinkId=215389


 

20  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[PRA-RpcServerUseProtseqEx] Microsoft Co rporation, "RpcServerUseProtseqEx function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcServerUseProtseqEx.pdf  

[PRA-RpcServerUseProtseqIfEx] Microsoft C orporation, "RpcServerUseProtseqIfEx function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerUseProtseqIfEx.pdf  

[PRA-RpcSsAllocate] Microsoft Corpor ation, "RpcSsAllocate function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcSsAllocate.pdf  

[PRA-RpcSsContxtLockExclusive] Microsoft Corporation, "RpcSsC ontextLockExclusive Function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcSsContextLockExclusive.pdf  

[PRA-RpcSsContxtLockShared] Microsoft Corporation, "RpcSsContextLockShared Function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcSsContextLockShared.pdf  

[PRA-RpcSsDestrClntContxt] Microsoft Corporation, "RpcSsDestroyClientContext Function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcSsDestroyClientContex t.pdf  

[PRA-RpcSsDisableAllocate] Microsoft Corporation, "RpcSsDisableAllocate function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcSsDestroyClientConte xt.pdf  

[PRA-RpcSsDontSerializeContext] Microsoft Corporation, "RpcSsDontSerializeContext function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcSsDontSer ializeContext.pdf  

[PRA-RpcSsEnableAllocate] Microsoft Corporation, "RpcSsEnableAllocate function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcSsEnableAl locate.pdf  

[PRA-RpcSsFree] Microsoft Corporation, "RpcSsFree function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcSsFree.pdf  

[PRA-RpcSsGetThreadHandle]  Microsoft Corporation, "RpcSsGetThreadHandle function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcSsGetThreadHandle.pdf  

[PRA-RpcSsSetClientAllocFree] Microsoft Corporation, "RpcSsSetClientAllocFree function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcSsSetClientAllocFree .pdf  

[PRA-RpcSsSetThreadHandle] Microsoft Corporation, "RpcSsSetThreadHandle function", 

http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcSsSetThreadHandle.pdf  

[PRA-RpcSsSwapClientAllocFree] Microsoft Corporation, "RpcSsSwapClientAllocFree function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcSsSwapClientAlloc Free.pdf  

http://go.microsoft.com/fwlink/?LinkId=215390
http://go.microsoft.com/fwlink/?LinkId=215390
http://go.microsoft.com/fwlink/?LinkId=215391
http://go.microsoft.com/fwlink/?LinkId=215391
http://go.microsoft.com/fwlink/?LinkId=215427
http://go.microsoft.com/fwlink/?LinkId=215427
http://go.microsoft.com/fwlink/?LinkId=215428
http://go.microsoft.com/fwlink/?LinkId=215428
http://go.microsoft.com/fwlink/?LinkId=215429
http://go.microsoft.com/fwlink/?LinkId=215429
http://go.microsoft.com/fwlink/?LinkId=215430
http://go.microsoft.com/fwlink/?LinkId=215430
http://go.microsoft.com/fwlink/?LinkId=215431
http://go.microsoft.com/fwlink/?LinkId=215431
http://go.microsoft.com/fwlink/?LinkId=215432
http://go.microsoft.com/fwlink/?LinkId=215432
http://go.microsoft.com/fwlink/?LinkId=215433
http://go.microsoft.com/fwlink/?LinkId=215433
http://go.microsoft.com/fwlink/?LinkId=215434
http://go.microsoft.com/fwlink/?LinkId=215434
http://go.microsoft.com/fwlink/?LinkId=215435
http://go.microsoft.com/fwlink/?LinkId=215435
http://go.microsoft.com/fwlink/?LinkId=215436
http://go.microsoft.com/fwlink/?LinkId=215436
http://go.microsoft.com/fwlink/?LinkId=215437
http://go.microsoft.com/fwlink/?LinkId=215437
http://go.microsoft.com/fwlink/?LinkId=215438
http://go.microsoft.com/fwlink/?LinkId=215438


 

21  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[PRA-RpcSvrSubsrbForNotif] Microsoft Corporation, "RpcServerSubscribeForNotification Function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526E7F7/RpcServ erSubscribeForNotification.pdf  

[PRA-RpcSvrUnsubsrbForNotif] Microsoft Corporation, "RpcServerUnsubscribeForNotification 

Function", http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -
AE712526E7F7/RpcServerUnsubscribeForNotification.pdf  

[PRA-RpcTestCancel] Microsoft Corporation, "RpcTestCancel function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D-
AE712526E7F7/RpcTestCancel.pdf  

[PRA-UUidCreateSequential] Microsoft Corporation, "UUidCreateSequential function", 
http://download.microsoft.com/download/5/B/C/5BC37A4E -6304 -45AB -8C2D -

AE712526 E7F7/UUidCreateSequential.pdf  

[RFC81.3] French, C., and Salz, R., "DCE Assigned Values", RFC 81.3, December 1998, 
http://www5.opengroup.org/rfc/rfc81.3.html  

[RFC1001] Network Working Group, "Prot ocol Standard for a NetBIOS Service on a TCP/UDP 
Transport: Concepts and Methods", STD 19, RFC 1001, March 1987, 
http://www.ietf.org/rfc/rfc1001.txt  

[RFC1002] Network Working Group, "Protocol Sta ndard for a NetBIOS Service on a TCP/UDP 
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, 
http://www.ietf.org/rfc/rfc1002.txt  

[RFC2119] Bradner, S., "Key words for use in RFCs t o Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt  

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Upda te 1", 
RFC 2743, January 2000, http://www.ietf.org/rfc/rfc2743.txt  

[RFC4121] Zhu, L., Jaganathan, K., and Hartman, S., "The Kerberos Version 5 Generic Security 

Service Application Program Interfa ce (GSS -API) Mechanism: Version 2", RFC 4121, July 2005, 
http://www.ietf.org/rfc/rfc4121.txt  

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN 
Namespace ", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt  

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4 -HMAC Kerberos Encryption Types 
Used by Microsoft Windows", RFC 4757, Decemb er 2006, http://www.ietf.org/rfc/rfc4757.txt  

[Tanenbaum] Tanenbaum, A.S., "Modern Operating Systems", Prentice Hall, 2001, ISBN 0 -13 -
092641 -8.  

1.2.2   Informative References  

[GSS] Piper, D., and Swander, B., "A GSS -API Authentication Method for IKE", Internet Draft, July 
2001, http://tools.ietf.org/html/draft - ietf - ipsec - isakmp -gss-auth -07  

If you have any trouble finding [GSS], please check here . 

[IPX] Microsoft Corporation, "Internetwor k Packet Exchange (IPX)", 
http://msdn.microsoft.com/library/en -us/randz/protocol/ipx.asp  

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Glossary ".  

http://go.microsoft.com/fwlink/?LinkId=215492
http://go.microsoft.com/fwlink/?LinkId=215492
http://go.microsoft.com/fwlink/?LinkId=215426
http://go.microsoft.com/fwlink/?LinkId=215426
http://go.microsoft.com/fwlink/?LinkId=215393
http://go.microsoft.com/fwlink/?LinkId=215393
http://go.microsoft.com/fwlink/?LinkId=215439
http://go.microsoft.com/fwlink/?LinkId=215439
http://go.microsoft.com/fwlink/?LinkId=90494
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90459
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=89876
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89914
%5bMS-GLOS%5d.pdf


 

22  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

[MS -NBTE] Microsoft Corporation, " NetBIOS over TCP (NetBT) Extensions ".  

[MSDN -MIDL] Microsoft Corporation, "Microsoft Interface Definition Language (MIDL)", 
http://msdn.mi crosoft.com/en -us/library/ms950375.aspx  

[MSFT -RPCIFRESTRICTION] Microsoft Corporation, "RPC Interface Restriction", 

http://technet2.microsoft.com/windowsserver/en/library/8836be57 -597b -4cda -bcf1 -
eb124ae5d49a1033.mspx?mfr=true  

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en -
us/library/aa365590.aspx  

[RFC1035] Mockapetris, P., "Domain Names -  Implementation and Sp ecification", STD 13, RFC 
1035, November 1987, http://www.ietf.org/rfc/rfc1035.txt  

[RFC2181] Elz, R., and Bush, R., "Clarifications to the DNS Specification", RFC 2181, July 1997, 

http://www.ietf.org/rfc/rfc2181.txt  

1.3   Overview  

This specification defines a set of extensions to the DCE 1.1: Remote Procedure Call (RPC) 
Specification, as specified in [C706] . These extensions add new capabilities to the DCE 1.1: RPC 
Specification, allow for more secure implementations to be built, and, in some cases, place 

additional restrictions on the DCE RPC Specification.  

This specification builds on and relies heavily on  the DCE 1.1: RPC Specification, as specified in 
[C706] . For details on the context in which each of these extensions is specified, see [C706] .  

The extensions are grouped into the following categories:  

Á Support for additional RPC transports , specified in section 2.1 . 

Á Extensions to the endpoint mapper  interface  designed to improve security, specified in section 

2.2.1.2 . 

Á Extensions to the remote management interface designed to improve security, sp ecified in 

section 2.2.1.3 . 

Á Extensions to improve diagnosis of errors returned from a remote node, specified in section 

2.2.2.9  and in [MS -EERR]. 

Á An additional RPC transfer syntax  (NDR64 ) to allow for better performance on 64 -bit systems, 

specified in section 2.2 .5 . 

Á An additional set of Network Data Representation (NDR)  data consistency checks and 

Interface Definition Language (IDL) / application configuration file (ACF)  attributes to 
allow for more secure processing on both the RPC client  and RPC server , specified in section 
3.1.1.5.2 . 

Á An additional set of mes sage protection conventions to allow for better and more efficient 

protection of messages transmitted on the network, specified in sections 2.2.2.11 , 2.2.2.12 , and 
2.2.2.13 . 

Á Additional capability negotiation mechanisms between clients and servers for backward 

compatibility, specified in sections 2.2 .2.14 , 2.2.2.15 , and 3.3.1.5.3 . 

%5bMS-NBTE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90041
http://go.microsoft.com/fwlink/?LinkId=101714
http://go.microsoft.com/fwlink/?LinkId=101714
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=127732
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-EERR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf


 

23  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Extensions to facilitate building more efficient client and server implementations, specified in 

sections 2.2.2.10  and 3.3.1.5.4 . 

Á Miscellaneous extensions and clarifications of the DCE 1.1: RPC Specification.  

1.4   Relationship to Other Protocols  

This document specifies a set of extensions built on the DCE 1.1: RPC Specification, as specified in 
[C706] . 

The extensions that require message authentication and security rely on the following protocols: 
Kerberos (as specified in [MS -KILE] ), Simple and Protected Generic Security Service Application 
Program Interface Negotiation Mec hanism (SPNEGO): Microsoft Extension (as specified in [MS -

SPNG] ), NT LAN Manager (NTLM) Authentication Protocol (as specified in [MS -NLMP] ), 
Authentication Protocol Domain Support (as specified in  [MS -APDS] ), Net Logon Remote Protocol (as 
specified in [MS -NRPC]), and Transport Layer Security (TLS) Profile (as specified in [MS -TLSP] ). 
These extensions use the s ecurity protocols, using the protocol primitives as specified in [RFC2743] . 

The ExtendedError Remote Data Structure  is built on top of these extensions and provides extended 
error information to an RPC client.  

Name services as described in [C706]  are specified in [MS -RPCL] (this is a legacy protocol that has 
been deprecated).  

The Remote Procedure Call over HTTP Protocol  is built below these extensions and enables the DCE 
1.1: RPC Specification, as specified in [C706] , with these extensions to be routed over an HTTP 
transport in a way that is friendly to firewalls and provides additional security. Details on the 
Remote Procedure Call over HTTP Protocol are as specified in [MS -RPCH] and are not part of this 
document.  

These extensions define ma pping of the DCE 1.1: RPC Specification over Server Message Block 
(SMB), TCP, User Datagram Protocol (UDP), Sequenced Packet Exchange (SPX), Internetwork 
Packet Exchange (IPX), NetBIOS over IPX, NetBIOS over TCP, NetBIOS over NetBEUI, and 
AppleTalk as RPC transports.  

The following diagram illustrates the layering of these extensions over various RPC transports.  

 

Figure 1: RPC extensions transports  

Protocols that require a secure request - reply message exchange can use an i mplementation of these 
extensions. Examples of protocols that use an implementation of these extensions include the 

Directory Services Setup Remote Protocol , Distributed Link Tracking: Central Manager Protocol , and 

Print System Asynchronous Notification Protocol . 

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-KILE%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-APDS%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-TLSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-EERR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCL%5d.pdf
%5bMS-RPCH%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DSSP%5d.pdf
%5bMS-DLTM%5d.pdf
%5bMS-PAN%5d.pdf


 

24  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

1.5   Prerequisites/Preconditions  

These extensions presume that the client and server stubs  for each RPC  being executed are 
available to the implementation on the RPC client and RPC server, respectively.  

The extensions do not impose other preconditions of their own, but they do inherit the preconditions 
required by the underlying RPC transport and security provider  being used for a given RPC 
exchange.  

1.6   Applicability Statement  

The extensions specified herein do not change the basic applicability of the DCE 1.1: RPC 
Specification, as specified in [C706] , but some extensions, as described in section 1.3 , improve 

security. The DCE 1.1: RPC Specification and the Remote Procedure Call Protocol are meta -protocols 
used to build application - level protocols. W ith its full set of extensions, the DCE 1.1: RPC 
Specification can be used in a wide range of scenarios.  

1.7   Versioning and Capability Negotiation  

Á Supported Transports:  These RPC extensions can be implemented on top of various RPC 

transports, as specified in section 2.1 . Higher - level protocols on the client should either discover 
the RPC transport supported by the server or know it in advance. Higher - level protocols on the 
client may also determine whether a server supports a given RPC transport by sending a 
message on t he RPC transport. If the server supports the RPC transport, the communication 
succeeds. If the server does not support the RPC transport, the RPC transport either returns a 
transport -dependent error or returns no reply, depending on the transport. For deta ils on client 
behavior in the case of no reply, see sections 3.2.2  and 3.3.2 . If the transport returns an error, 

an implementation -specific error is r eturned to the application or the higher - level protocols.  

Á Protocol Versions:  These RPC extensions do not introduce new protocol variants . The 

preexisting protocol variants are specified throughout this document. RPC extensions constr ain 
the DCE 1.1: RPC Specification, as specified in [C706] , to only support protocol version 5.0 for 
connection - oriented RPC , protocol version 4.0 for connectionless RPC , and protocol version 

2.0 for the NDR transfer syntax (UUID) . The DCE 1.1: RPC Specification uses and extends the 

transfer syntax negotiation mechanism, as specified in section 3.3.1.5.6  and in [C706]  chapter 
12. Version negotiation is performed separately for each RPC interface, as specified in [C706]  
chapter 12.  

Á Security and Authentication Methods:  RPC extensions use a model with a pluggable security 

provider module for the actual security and authentication work. Higher - level protocols on the 
client SHOULD discover the security provider supported by the server or know them in advance. 

Higher - level protocols on the client can negotiate the use of RPC security providers by sending a 
message by using a given RPC security provider. If the server supports the RPC security pro vider, 
as specified in sections 3.3.3.1 , 3.2.3.5.4 , and 3.3.3.5.3 , the communication succeeds. If  the 
server does not support the RPC security provider, the server returns an error, as specified in 
section 3.3.3.5.3  for connection -oriented RPC protocols, or as specified in section 3.2.3.5.4  for 
connectionless RPC protocols.  

Á Capability Negotiation:  For the capability negotiation specified in sections 2.2.2.3  and 2.2.3.3 , 

this protocol uses unused bits in the RPC protocol data unit (PDU)  header, as specified in 
sections 2.2.2.3  and 2.2.3.3 . This protocol also uses the bind time feature negotiation 
mechanism, as specified in section 3.3.1.5.3 .  

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90952
%5bMS-GLOS%5d.pdf


 

25  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

1.8   Vendor - Extensible Fields  

In addition to the error codes specified in [C706] , these extensions use Win32 error codes as 
defined in [MS -ERREF] section 2.2. Vendors SHOULD reuse those values with their indicated 

meanings. Choosing any other value runs the risk of a collision in the future.  

1.9   Standards Assignments  

These extensions do not introduce any standards assignments other than what is specified in [C706]  
and [RFC81.3] .  

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90494


 

26  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2   Messages  

This protocol references commonly use data types as defined in [MS -DTYP] . 

2.1   Transport  

[C706]  specifies two protocol variants within connection -oriented RPC and connectionless RPC. This 
specification maintains, as specified in [C706] , categorization for the descriptions of the RPC 
protocol variants.  

These extensions update the protocol identifiers  that are specified in [C706]  Appendix I. [C706]  

specifies that the protocol identifier can be one of three types:  

1.  An octet string derived from an interface UUID combined with a version number.  

2.  An octet string derived from OSI object identifiers (OIDs).  

3.  Single octet identifiers that are registered by the Open Software Foundation for commonly used 
protocols.  

The extensions specified in this document mandate that the third type MUST be used for all 
communications.  

Unless explicitly stated otherwise, the protocol identifier (used by each protocol sequence as 
specified in sections 2.1.1  and 2.1.2 ) is as specified in the table in [C706]  Appendix I.  

The RPC protocol sequen ce  strings for the RPC transports defined by these extensions are 
specified in the following table. <1>  

RPC transport  RPC protocol sequence string  

SMB ncacn_np (see section 2.1.1 .2 )  

TCP/IP (both IPv4 and IPv6)  ncacn_ip_tcp (see section 2.1.1.1 )  

UDP ncadg_ip_udp (see section 2.1.2.1 ) 

SPX ncacn_spx (see section 2.1.1.3 )  

IPX ncadg_ipx (see section 2.1.2.2 )  

NetBIOS over IPX  ncacn_nb_ipx (see section 2.1.1.4 )  

NetBIOS over TCP  ncacn_nb_tcp (see section 2.1.1.5 ) 

NetBIOS over NetBEUI  ncacn_nb_nb (see section 2.1.1.6 )  

AppleTalk  ncacn_at_dsp (see section 2.1.1.7 )  

RPC over HTTP  ncacn_http (see section 2.1.1.8 )  

2.1.1   Connection - Oriented RPC Transports  

All connection -oriented RPC protocols specified in this document are carried by transport protocols 
that MAY satisfy the following requirements:  

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=92782
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkID=92782
%5bMS-GLOS%5d.pdf


 

27  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á The transport protocol allows a client to establish a connection with a server given a network 

address, endpoint , and, optionally, one or more network options.  

Á Each transport protocol connection is a duplex communication sessi on that supports reliable, in 

order, at -most -once delivery semantics.  

Á Each connection can be established and can be terminated. Once established, a connection allows 

sending and receiving of unlimited amounts of data. Optionally, a transport can detect whe ther 
the other party to a connection has dropped off the connection and SHOULD indicate this to RPC 
runtime. The details of how and when this is handled are specified in sections 3.3.2.2.1  and 
3.3.2.7.1 . 

In sections 2.1.1.1  through 2.1.1.8 , for each transport protocol that supports these extensions,  this 
document specifies how the transport protocol fulfills the requirements given in this section and any 
other relevant transport -specific details.  

2.1.1.1   TCP/IP (NCACN_IP_TCP)  

This protocol sequence specifies RPC directly over TCP/IP. There are no intermediate protocols 
between TCP/IP and RPC.  

When extensions that are not specified in sections 2.1.1  through 2.1.2  are enabled over the TCP 
transport protocol, the network address MUST be an IPv4 or IPv6 address or a server name. <2>  
The server name MUST be a Unicode string t hat represents either a NetBIOS host name (see [MS -
NBTE]  section 2.2.1) or a fully qualified domain name (see [RFC1035]  section 3.1 and [RFC2181]  
section 11).  

The server name MUST resolve to an IPv4 or IPv6 address ( [RFC1001]  [RFC1002] ).  Server names 
are resolved by using GetAddrInfo  or equivalent Windows APIs, which return a list of IP addresses. 

The server MUST attempt to connect to each IP address returned in the list. Connections are 
attempted in sequential order, a single address at a time. If the connection fails, the server MUST 
attempt to connect to the next IP address in the list.  

IPv4 addresses MUST be supported and IPv6 addresses SHOULD be supported.  

The endpoint MUST be a 16 -bit unsigned integer port number. The network address  of the server 
and the endpoint are not transmitted over the network by these extensions but are used by lower -

layer protocols to set up the connection.  

RPC over TCP/IP MUST use endpoint mapper well - known endpoint  135, as spec ified in [C706]  
Appendix H.  

2.1.1.2   SMB (NCACN_NP)  

This protocol sequence specifies RPC directly over SMB. There are no intermediate protocols 
between RPC and SMB.  

When these extensions are enabled over the SMB transport protocol, the network address used by 
the client MUST be an IPv4 or IPv6 address or a server name. <3> The server name MUST be a 

Unicode string that represents either a NetBIOS h ost name (see [MS - NBTE]  section 2.2.1) or a 
fully qualified domain name (see [RFC1035]  section 3.1 and [RFC2181]  section 11).  

The endpoint MUST be a named pipe  name. The network address and endpoint are not transmitted 
on the network by these extensions but are used by lower - layer protocols to set up the connection.  

RPC over S MB MUST use an endpoint mapper well -known endpoint of \ pipe \ epmapper.  

%5bMS-GLOS%5d.pdf
%5bMS-NBTE%5d.pdf
%5bMS-NBTE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=127732
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-NBTE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=127732
%5bMS-GLOS%5d.pdf


 

28  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

RPC over SMB MUST use a protocol identifier of 0x0F instead of 0x10, as specified in [C706]  
Appendix I. <4>  

The tower encoding for RPC over SMB MUST be the same as what is specified in [C706]  Appendix L, 
for ncacn_ip_tcp. The port address MUST be the endpoint encoded into a NULL - terminated string  in 

ASCII character format. The length of the string MUST be less than 0xFFFF bytes. For changes in 
how these extensions interpret the tower encoding (as specified in [C706]  Appendix L), see sect ion 
3.1.3.5.3 . 

When an application is creating a binding handle for RPC over named pipes, the application will 
provide a server name, endpoint, and credentials. The server name, endpoint, and credentials  are 
provided to SMB  ( [MS -CIFS]  section 3.4.4.1) to uniquely identify the named pipe (SMB session) 
which the RPC binding handle will use.  

All PDUs sent over SMB MUST be sent as named pipe writes ( [MS -CIFS]  section 3.4.4.2), and PDUs 
to be received MUST be received as named pipe reads, as specified in [MS -CIFS]  section 3.4.4.3 . 
However, in the case of synchronous RPCs, an implementation of these extensions MAY require the 
Server Message Block (SMB) Protocol  implementation to execute a transaction encompassing the 

write of the last request PDU and th e read of the first response PDU on the client. The last request 
PDU MUST be a bind, an alter_context, or the last fragment of a request. The first response PDU 

MUST be a bind_ack or bind_nak, an alter_context_response, or the first fragment of a response.  
The transaction over a write and read is as specified in [MS -CIFS]. <5>  

2.1.1.3   SPX (NCACN_SPX)  

This protocol sequence specifies RPC directly over SPX. There are no intermediate protocols between 
RPC and SPX. An implementation MAY <6>  support this protocol sequence.  

When extensions that are not specified in sections 2.1.1  through 2.1.2  are enabled over the SPX 

transport protocol, the network address MUST be either  a Netware machine name or a network and 
node number. For more information, see [IPX] , IPX Addressing.  

The endpoint MUST be a 16 -bit unsigned integer port number. The network address of the serve r 

and the endpoint are not transmitted over the network by these extensions but are used by lower -
layer protocols to set up the connection.  

RPC over SPX MUST use an endpoint mapper well -known endpoint of 34280.  

2.1.1.4   NetBIOS over IPX (NCACN_NB_IPX)  

This protocol sequence specifies RPC directly over NetBIOS  over IPX, which MAY <7> <8>  be 
supported. There are no intermediate protocols between RPC and NetBIOS over IPX. These 
extensions define three NetBIOS mappings for RPC. The mappings are the same at the RPC level but 
use a different NetBIOS transport. Some implementations may offer hi gher - layer protocols the 
opportunity to choose the NetBIOS transport to be used. This section covers the mapping of RPC to 

NetBIOS over IPX. <9>   

When these extensions are enabled over the NetBIOS over IPX session service, as specifie d in [MS -
CIFS]  section 2.1.1.3, the network address MUST be a NetBIOS host name .  

The endpoint MUST be an 8 -bit unsigned integer socket number. The network address and endpoint 
are not transmitted on the network by these extensions but are used by lower - layer protocols to set 
up the connection.  

http://go.microsoft.com/fwlink/?LinkID=92782
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89914
%5bMS-GLOS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-GLOS%5d.pdf


 

29  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

RPC over NetBIOS over IPX MUST use an endpoint mapper well -known endpoint of 135. RPC over 
NetBIOS over IPX MUST use a protocol identifier of 0x12 instead of  the value of 0x11, as specified in 

[C706]  Appendix I.  

When communicating between a client and a server by using NetBIOS over IPX, each RPC PDU 

MUST be prefixed with a 4 -octet sequence number en coded with little - endian  byte ordering, as 
defined in the following diagram.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Sequence number  

PDU (variable)  

The sequence numbers SHOULD start at 0 and increase monotonically, wrapping if it exceeds 2 32 -1, 

for each sent PDU on a given NetBIOS connection. The server SHOULD ignore the sequence number 
values.  

2.1.1.5   NetBIOS over TCP (NCACN_NB_TCP)  

This protocol sequence specifies RPC directly over NetBIOS over TCP. There are no intermediate 
protocols between RPC and NetBIOS over TCP. These extensions define three NetBIOS  mappings for 
RPC. The mappings are the same at the RPC level but use a different NetBIOS transport. Some 
implementations may offer higher - layer protocols the opportunity to choose the NetBIOS transport 
to be used. This section covers the mapping of RPC to  NetBIOS over TCP, which MAY <10> <11>
<12>  be supported.  

When these extensions are enabled over the NetBIOS over TCP session service, the network address 
MUST be a NetBIOS machine name, a s specified in [RFC1001]  and [RFC1002] . 

The endpoint MUST be an 8 -bit unsigned integer port number. The network address and endpoint 

are not transmitted on the network by these extensions but are used by lower - layer protocols to set 
up the connection.  

RPC over NetBIOS over TCP MUST use an endpoint mapper well -known endpoint of 135.  

RPC over NetBIOS over TCP MUST use a protocol identifier  of 0x12 instead of the value of 0x11, as 

specified in [C706]  Appendix I.  

When communicating between a client and a server by using NetBIOS over TCP, each RPC PDU 
MUST be prefixed with a 4 -octet  sequence number encoded with little -endian byte ordering, as 
defined in the following diagram.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Sequence number  

PDU (variable)  

http://go.microsoft.com/fwlink/?LinkID=92782
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkID=92782


 

30  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The sequence numbers SHOULD start at 0 and increase monotonically, wrapping if it exceeds 2 32 -1, 
for each sent PDU on a given NetBIOS connection. The server SHOULD ignore the sequence number 

values.  

2.1.1.6   NetBIOS over NetBEUI (NCACN_NB_NB)  

This protocol sequence specifies RPC directly over NetBIOS over NetBEUI. There are no intermediate 
protocols between RPC and NetBIOS over NetBEUI. These extensions define three NetBIOS  
mappings for RPC. The mappings are the same at the RPC level but use a different NetBIOS 
transport. Some implementations may offer higher - layer protocols the opportunity to choose the 
NetBIOS transport to be used. This section covers the mapping of RPC to  NetBIOS over NetBEUI, 
which MAY <13> <14>  be supported.  

When these extensions are enabled over the NetBIOS over NetBEUI session service, as specified in 
[NETBEUI] , the network address MUST be a NetBIOS machine name, as specified in [NETBEUI] .  

The endpoint MUST be an 8 -bit unsigned integer port number. The network address and endpoint 
are not transmitted on the network by these extensions but are used by lower - layer protocols to set 

up the connection.  

RPC over NetBIOS over NetBEUI MUST use an endpoint mapper well -known endpoint of 135.  

RPC over NetBIOS over NetBEUI MUST use a protocol identifie r of 0x12 instead of the value of 0x11, 
as specified in [C706]  Appendix I.  

When communicating between a client and a server by using NetBIOS over NetBEUI, each RPC PDU 
MUST be prefixed with a 4 -octet sequence number encoded with little -endian byte ordering, as 
defined in the following diagram.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Sequence number  

PDU (variable)  

The sequence numbers SHOULD start at 0 and increase monotonically, wrapping if it exceeds 2 32 -1, 
for each sent PDU on a given NetBIOS connection. The server SHOULD ignore the sequence number 

values.  

2.1.1.7   AppleTalk (NCACN_AT_DSP)  

This protocol sequence specifies RPC directly over AppleTalk. There are no intermediate protocols 
between RPC and AppleTalk. This protocol sequence MAY <15>  be supported.  

RPC over AppleTalk MUST use a well -known endpoint. The endpoint MUST be an AppleTalk Data 
Stream Protocol (ADSP) socket number, as specified in [AT]  section 12. When extensions that are 

not speci fied in sections 2.1.1  through 2.1.2  are enabled over ADSP as specified in [AT] , the 
netw ork address MUST be an AppleTalk name or in the format machinename@zonename. If no zone 
is provided, the protocol MUST default to the client's zone. The network address and endpoint are 
not transmitted on the network by these extensions but are used by low er - layer protocols to set up 
the connection.  

http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkID=92782
http://go.microsoft.com/fwlink/?LinkId=95675
http://go.microsoft.com/fwlink/?LinkId=95675


 

31  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.1.1.8   RPC over HTTP (ncacn_http)  

This protocol sequence specifies RPC over HTTP. The Remote Procedure Call over HTTP Protocol, 
which is specified in [MS -RPCH], is the intermediate protocol between RPC and HTTP. RPC over HTTP 

v1 deviates from the requirements specified in section 2.1.1  (as specified in [MS -RPCH] section 
1.6).  

Tran sport details are as specified in [MS -RPCH] section 2.1.  

2.1.2   Connectionless RPC Transports  

Earlier versions of [C706]  refer to the CL_CANCEL packet as a QUIT packet and to a CANCEL_ACK 
packet as a QUACK packet. The latter forms are used in this document. Connectionless RPC 

transports and RPC exchanges MAY <16>  be supported.  

2.1.2.1   UDP (NCADG_IP_UDP)  

This protocol sequence specifies RPC directly over UDP. There are no intermediate protocols 
between RPC and UDP. <17>   

When these extensions are enabled over the UDP transport protocol, the network address MUST be 
an IP address. The endpoint MUST be a UDP port number. The network address and endpoint are 

not transmitted on the network by these extensions but are used by UD P or any lower - layer 
protocols to communicate with the server.  

RPC over UDP MUST use endpoint mapper well -known endpoint 135, as specified in [C706]  
Appendix H. It MUST use protocol identifier 0x 08, as specified in [C706]  Appendix I.  

2.1.2.2   Internetwork Packet Exchange (IPX) (NCADG_IPX)  

This protocol sequence specifies RPC directly over IPX. There are no intermediate protocols between 
RPC and IPX. <18> This protocol sequence MAY <19>  be supported  

When these extensions are enabled over the IPX datagram service, the network address MUST be 
either a Netware machine name or a network and node number. For more information, see [ IPX] .  

The endpoint MUST be a 16 -bit unsigned integer socket number. The network address and endpoint 
are not transmitted on the network by these extensions but are used by lower - layer protocols to 
communicate with the server.  

RPC over IPX MUST use an endp oint mapper well -known endpoint of 34280. It MUST use protocol 
identifier 0x14, as specified in [C706]  Appendix I.  

2.2   Message Syntax  

For all non - IDL packet definitions in this section, this specification uses both [C706]  definition style 
and a packet diagram to facilitate understanding of how the [C706]  specification is extended. In all 
non - IDL packet definitions in this section, bit ordering rules are the same as what is specified in 

[C706] , unless explicitly stated otherwise.  

Unless otherwise specified, all padding octets can be set to any arbitrary value when sent and MUST 
be ignored by the receiver.  

%5bMS-RPCH%5d.pdf
%5bMS-RPCH%5d.pdf
%5bMS-RPCH%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89914
http://go.microsoft.com/fwlink/?LinkID=92782
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

32  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.1   Connection - Oriented and Connectionless RPC Messages  

This section defines the messages that are common to connection -oriented RPC and connectionless 
RPC protocol variants . The messages that are specific to connection -oriented RPC and 

connectionless RPC are specified in their respective sections, 2.2.2  and 2.2.3 . 

2.2.1.1   Common Types and Constants  

2.2.1.1.1   RPC_IF_ID Type  

This extension introduces a new type defined as follows.  

typedef struct {  

  UUID Uuid;  

  unsigned short VersMajor;  

  unsigned short VersMinor;  

} RPC_IF_ID;  

 

Use, meaning, and the layout of these fields are the same as the rpc_if_id_t  type, as specified in 
[C706]  Appendix N.  

2.2.1.1.2   Extended Error Information Signature Value  

The value for the Signature field that specifies the presence of extended error information in a 
bind_nak  PDU MUST be 90740320 - fad0 -11d3 -82d7 -009027b130ab. The bind_nak  PDU is as 
specified in [C706]  section 12.6.4, and is extended as specified in section 2.2.2.9 . 

2.2.1.1.3   UUID Format  

Implementations of these extensions MUST NOT enforce the restrictions on the UUID format, as 
specified in [C706]  Appendix A. A UUID MUST be treated as an opaque  128 -bit number. 

Implementations can choose any algorithm to generate a UUID as long as the generated UUIDs are 
unique in space and time, as specified in [C706]  Appendix  A.<20>  

2.2.1.1.4   Mapping of a Context Handle  

For an active context handle, implementations of these extensions SHOULD treat all the fields of the 

ndr_context_handle , as specified in [C706]  Appendix N, as a single opaque token. There MUST be 
a 1:1 relationship between this token and the context handle on the server. <21>  

2.2.1.1.5   version_t  

The version_t  structure specifies the major and minor version numbers of the run - time protocols 
supported by the server, as specified in [C706] . 

typedef struct _version_t {  

  unsigned char major;  

  unsigned char minor;  

} version_t,  

 *Pversion_t;  

 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89825
http://go.microsoft.com/fwlink/?LinkId=89825
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

33  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.1.1.6   p_rt_versions_supported_t  

The p_rt_versions_supported_t  structure contains a list of the run - time protocol versions 
supported by the server, as specified in [C706] . 

typedef struct _p_rt_versions_supported_t {  

  unsigned char n_protocols;  

  [size_is(n_protocols)] version_t p_protocols[];  

} p_rt_versions_supported_t,  

 *Pp_rt_versions_supported_t;  

 

n_protocols:  The number of protocols.  

p_protocols:  An array of version_t  structures specifying major and minor protocol versions.  

2.2.1.1.7   Security Providers  

These extensions do not require support for the dce_c_rpc_authn_protocol_krb5 security provider, 
as specified in [C706]  section 13. All of the requirements specified in [C706]  section 13 are removed 
by these extensions. <22>  

These extensions specify the following values for the security prov ider.  

Name  Value  Security provider  

RPC_C_AUTHN_NONE  0x00  No Authentication  

RPC_C_AUTHN_GSS_NEGOTIATE  0x09  SPNEGO 

RPC_C_AUTHN_WINNT  0x0A  NTLM 

RPC_C_AUTHN_GSS_SCHANNEL  0x0E  TLS 

RPC_C_AUTHN_GSS_KERBEROS  0x10  Kerberos  

RPC_C_AUTHN_NETLOGON  0x44  Netlogon  

RPC_C_AUTHN_DEFAULT  0xFF Same as RPC_C_AUTHN_WINNT  

On the client side, if the higher level protocol requests RPC_C_AUTHN_DEFAULT, the 
implementation MUST use RPC_C_AUTHN_WINNT instead.  

The security provider underlying protocol and implementation defines t he number of legs and 
whether the number of legs is odd or even that are used in the token exchange process that builds a 

security context. This information MAY be used for the processing of PDUs during that process.   

These extensions specify the followin g number (if known) or even/oddness of the legs needed to 
build a security context.  

Name  # of or Even # of Token Exchange Legs  

RPC_C_AUTHN_NONE  even  

RPC_C_AUTHN_GSS_NEGOTIATE  even  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89826
http://go.microsoft.com/fwlink/?LinkId=89826


 

34  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Name  # of or Even # of Token Exchange Legs  

RPC_C_AUTHN_WINNT  3 

RPC_C_AUTHN_GSS_SCHANNEL  even  

RPC_C_AUTHN_GSS_KERBEROS  even  

RPC_C_AUTHN_NETLOGON  3 

RPC_C_AUTHN_DEFAULT  unknown  

2.2.1.1.8   Authentication Levels  

These extensions specify the following values for the authentication levels . 

Name  Value  Meaning  

RPC_C_AUTHN_LEVEL_DEFAULT  0x00  Same as RPC_C_AUTHN_LEVEL_CONNECT  

RPC_C_AUTHN_LEVEL_NONE  0x01  No authentication.  

RPC_C_AUTHN_LEVEL_CONNECT  0x02  Authenticates the credentials of the client and server.  

RPC_C_AUTHN_LEVEL_CALL  0x03  Same as RPC_C_AUTHN_LEVEL_PKT.  

RPC_C_AUTHN_LEVEL_PKT  0x04  Same as RPC_C_AUTHN_LEVEL_CONNECT but also 

prevents replay attacks.  

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY  0x05  Same as RPC_C_AUTHN_LEVEL_PKT but also verifies 

that none of the data transferred between the client 

and server has been modified.  

RPC_C_AUTHN_LEVEL_ PKT_PRIVACY 0x06  Same as RPC_C_AUTHN_LEVEL_PKT_INTEGRITY but 

also ensures that the data transferred can only be 

seen unencrypted by the client and the server.  

If the higher - level application or protocol requests an authentication level that the implementa tion 
or security provider does not support, it MUST upgrade the request to the next highest supported 
level. RPC_C_AUTHN_LEVEL_PKT_PRIVACY MUST be supported.  

On the client side, if the higher - level protocol requests RPC_C_AUTHN_LEVEL_CALL, the 
implementati on MUST upgrade it to RPC_C_AUTHN_LEVEL_PKT. Similarly, on the server side, if the 
auth_level field of the sec_trailer structure as specified in sections 2.2.2.11  and 2.2.3.4  is 

RPC_C_AUTHN_LEVEL_CALL, the implementation MUST process it in the same manner as a packet 
with auth_level RPC_C_AUTHN_LEVEL_PKT.  

Also, on the client side, if the higher - level protocol requests RPC_C_AUTHN_LEVEL_DEFAULT, the 
imp lementation MUST use RPC_C_AUTHN_LEVEL_CONNECT instead.  

2.2.1.1.9   Impersonation Level  

For secure calls, the higher - level layer protocols often specify the impersonation level. Various 
impersonation levels, listed in the following table, allow the higher - layer protocols to control the 
capabilities of the client's identity that are available to the server. While building the security 
context  (section 3.1.1.1.1 ), the client implementation passes this to the security provider on the 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf


 

35  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

first call to the implementatio n-specific equivalent of the abstract GSS_Init_sec_context call, as 
specified in [RFC2743] . 

Client implementations of this extension MUST support the following impersonation levels. Note that 
the  impersonation level does not itself appear in any RPC message and, hence, the numeric values 

of the following constants are implementation -specific. However, the values affect the token 
returned by the implementation -specific equivalent of the abstract GS S_Init_sec_context_call, as 
specified in [RFC2743] . 

Value  Meaning  

RPC_C_IMPL_LEVEL_IDENTITY  The server can obtain information about the security context of the 

client but cannot impersonate the client's security context.  

The client MUST pass the GSS_C_IDENTITY_FLAG (defined in 

[RFC4757]  section 7.1, which extends [RFC2743] ) to  the 

implementation -specific equivalent of the abstract 

GSS_Init_sec_context_call.  

RPC_C_IMPL_LEVEL_IMPERSONATE  The server can impersonate the client's security context on the 

server system but cannot make requests to remote machines using 

the client secu rity context.  

This is the default behavior, as specified in [RFC2743] . 

RPC_C_IMPL_LEVEL_DELEGATE  The server can impersonate the client's security context on the 

server system and can make reques ts to remote machines using 

the client's security context.  

The client MUST pass the implementation -specific equivalent of the 

deleg_req_flag, as specified in [RFC2743]  section 2.2.1.  

If the higher - level protocol does not specify an impersonation level, 
RPC_C_IMPL_LEVEL_IMPERSONATE MUST be used as the default.  

2.2.1.1.10   Transport - Layer Impersonation Level  

Some RPC transports have the capability to send the identity of the client with the request to the 

server. For details on how this information is used by the RPC transport, see the documentation for 
the RPC transport.  

Client implementations of these extens ions MUST support the following impersonation levels. These 
impersonation levels allow protocols above RPC to control which capabilities of the client's identity 
are made available to the server. If the higher - level protocol does not provide any value for this 
impersonation level, implementation of these extensions MUST allow the underlying RPC transport 

to choose the default value.  

Currently the only RPC transport listed in section 2.1  that is capable of  sending the impersonation 
level to the server is SMB (ncacn_np). For more on how this information is used by SMB, see the 
description of impersonation level in [MS -CIFS]  section 2.2.4.64.  

Value  Meaning  

SECURITY_ANONYMOUS  The server cannot obtain identification information about the client, and it 

cannot impersonate the client.  

SECURITY_IDENTIFICATION  The server can obtain information about the security context of the client 

but cannot impersonate the client's security contex t.  

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-CIFS%5d.pdf


 

36  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Value  Meaning  

SECURITY_IMPERSONATION  The server can impersonate the client's security context on the server 

system but cannot make requests to remote machines using the client 

security context.  

SECURITY_DELEGATION  The server can impersonate the client's security context on the server 

system and can make requests to remote machines using the client's 

security context.  

Although SECURITY_IMPERSONATION and SECURITY_DELEGATION are permitted values and MAY 

be specified o n either the client or server when the authentication context is negotiated, it is up to 
the higher - level protocol to interpret the resultant impersonation level (which can be different than 
what the client or server specified) and perform impersonation or  delegation as needed. <23>  

Note   These transport - layer impersonation levels are separate from the ones specified in section 
2.2.1.1.9  in the sense that they are specified separatel y by an application. Although the security 
meanings are the same (except that an anonymous level is not supported in section 2.2.1.1.9 ), the 

security is applied at different layers; for example, by the t ransport provider versus the security 
provider chosen by the application.  

2.2.1.2   Endpoint Mapper Interface Extensions  

An endpoint mapper interface is specified in [C706]  Appendix O. These extensions update the 
definition in [C706] , as specified in the following sections. All parts of the definition that are not 
mentioned in the following sections MUST be the same as what is specified in [C706] . 

2.2.1.2.1   EPT_S_CANT_PERFORM_OP  

This extension defines the EPT_S_CANT_PERFORM_OP constant to be equivalent to 0x6D8. 
EPT_S_CANT_PERFORM_OP signifies general failure to perform the requested operation (method 
call) on the endpoint mapper interface.  

2.2.1.2.2   twr_t Type  

This extension redefines the twr_t  type, as specified in [C706]  Appendix L, by adding a range 
attribute to the tower_length  field. The redefined type is specified as follows. <24>  

typedef struct {  

  [range(0,2000)] unsigned long tower_length;  

  [size_is(tower_length)] BYTE tower_octet_string[];  

} twr_t,  

 *twr_p_t;  

 

The purpose and use of this structure r emains unchanged with an exception related to processing, 

as specified in section 3.1.3.5.3 . 

2.2.1.2.3   error_status Type  

The error_status  type is used to communicate method -specific error status to a caller.  

This type is declared as follows:  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

37  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

typedef unsigned int error_status;  

 

 

2.2.1.2.4   ept_lookup Method  

These extensions redefine the ept_lookup  method, as specified in [C706]  Appendix O, by way of 
the following:  

Á Adding the ptr  attribute to the object  and Ifid  parameters.  

Á Adding the range  attribute to the max_ents  parameter.  

Á Removing the [idempotent]  method attribute.  

The redefined method is specified as follows.  

void ept_lookup(  

  [in] handle_t hEpMapper,  

  [in] unsigned long inquiry_type,  

  [in, ptr] UUID* ob ject,  

  [in, ptr] RPC_IF_ID* Ifid,  

  [in] unsigned long vers_option,  

  [in, out] ept_lookup_handle_t* entry_handle,  

  [in, range(0,500)] unsigned long max_ents,  

  [out] unsigned long* num_ents,  

  [out, length_is(*num_ents), size_is(max_ents)]  

    ept_entr y_t entries[],  

  [out] error_status* status  

);  

hEpMapper: An RPC binding handle as specified in [C706]  section 2.  

inquiry_type: The type of inquiry to perform. It SHOULD be one of the following v alues. <25>  

Value  Meaning  

RPC_C_EP_ALL_ELTS 

0x00000000  

Return all elements from the endpoint map. The Ifid, vers_option, 

and object parameters MUST be ignored.  

RPC_C_EP_MATCH_BY_IF  

0x00000001  

Return endpoint map elements that contain the interface identifier 

specified by the Ifid and vers_option values.  

RPC_C_EP_MATCH_BY_OBJ  

0x00000002  

Return endpoint map elements that contain the object UUID  

specified by object.  

RPC_C_EP_MATCH_BY_BOTH  

0x00000003  

Return endpoint map elements that contain the interface identifier 

and object UUID specified by Ifid, vers_option, and object.  

object: Optionally specifies an object UUID. A value of NULL indicates that no object UUID is  
specified.  

Ifid: Optionally specifies an interface UUID. A value of NULL indicates that no interface UUID is 
specified.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf


 

38  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

vers_option: The interface version constraint. MUST be one of the following values.  

Value  Meaning  

RPC_C_VERS_ALL 

0x00000001  

Return endpoint map elements that contain the specified interface 

UUID, regardless of the version numbers.  

RPC_C_VERS_COMPATIBLE  

0x00000002  

Return the endpoint map elements that contain the same major 

versions of the specified interface UUID and a minor v ersion greater 

than or equal to the minor version of the specified UUID.  

RPC_C_VERS_EXACT 

0x00000003  

Return endpoint map elements that contain the specified version of 

the specified interface UUID.  

RPC_C_VERS_MAJOR_ONLY 

0x00000004  

Return endpoint map ele ments that contain the same version of the 

specified interface UUID and ignore the minor version.  

RPC_C_VERS_UPTO 

0x00000005  

Return endpoint map elements that contain a version of the 

specified interface UUID less than or equal to the specified major 

and minor version.  

entry_handle: On the first call, the client MUST set this to NULL. On successful completion of 
this method, returns a context handle that the client MUST use on subsequent calls to this 
method. In between calls if the client wishes to termi nate the search, it MUST close the 
context handle by calling ept_lookup_handle_free.  

max_ents: The maximum number of elements to be returned.  

num_ents: The actual number of elements being returned.  

entries: The elements that satisfy the specified search criteria.  

status: MUST be a Win32 error code as specified in [MS -ERREF], 0x16c9a0cd or 0x16c9a0d6. All 
values other than the ones specified in the following table MUST be treated  as a failure.  

Value  Meaning  

0x00000000  The method call returned at least one element that matched the search criteria.  

0x16c9a0d6  There are no elements that satisfy the specified search criteria.  

This method has no return values.  

Everything else about this method remains as specified in [C706]  Appendix O. <26>  

2.2.1.2.5   ept_map Method  

These extensions redefine the ept_map  method, as specified in [C706]  Appendix O, by way of the 
following:  

Á Adding the ptr  attribute to the obj  and map_tower  parameters.  

Á Adding the range  attribute to the max_towers  parameter.  

Á Removing the [idempotent]  method attribute.  

The resulting method definition is specified as follows.  

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

39  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

void ept_map(  

  [in] handle_t hEpMapper,  

  [in, ptr] UUID* obj,  

  [in, ptr] twr_p_t map_tower,  

  [ in, out] ept_lookup_handle_t* entry_handle,  

  [in, range(0,500)] unsigned long max_towers,  

  [out] unsigned long* num_towers,  

  [out, ptr, size_is(max_towers), length_is(*num_towers)]  

    twr_p_t* ITowers,  

  [out] error_status* status  

);  

hEpMapper: An RPC binding handle as specified in [C706]  section 2.  

obj: Optionally specifies an object UUID. A value of NULL indicates that no object UUID is 
specified.  

map_tower: The tower encoding to search for , as specified in [C706]  Appendix L.  

entry_handle: On the first call, the client MUST set this to NULL. On successful completion of 
this method, returns a context handle that the client MUST use on subsequent calls to this 
method. In between calls if the client wants to terminate the search, it MUST close the context 
handle by calling ept_lookup_handle_free.  

max_towers: The maximum number of elements to be returned.  

num_towers: The actual number o f elements being returned.  

ITowers: The tower encoding, as specified in [C706]  Appendix L, of the elements found in the 
endpoint map.  

status: MUST be a Win32 error code, as specified in [MS -ERREF], 0x16c9a0cd or 0x16c9a0d6. 
All values besides the following ones MUST be treated as failure.  

Value  Meaning  

0x00000000  The method call returned at least one element that matched the search criteria.  

0x16c9a0d6  There are no elements that satisfy the specified search criteria.  

This method has no return values.  

Everything else about this method remains as specified in [C706]  Appendix O. For more details,  see 
section 2.3.3.3 in [C706] . Note that this redefinition has no wire impact and, therefore, it is 
interoperable with the [C706]  imp lementation, as long as the max_towers value is less than 

501. <27>   

2.2.1.2.6   ept_insert Method  

These extensions do not require support for the ept_insert method. These extensions do not provide 
an alternative method. <28>  

2.2.1.2.7   ept_delete Method  

These extensions remove support for the ept_delete method. A client implementation SHOULD NOT 
call this method. <29>   

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

40  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.1.2.8   ept_lookup_handle_free Method  

The syntax of ept_lookup_handle_free  method is as specified in [C706]  Appendix O, but [C706]  
Appendix O does not describe the meaning of the arguments. As such, the meaning of the 

arguments is given as follows.  

void ept_lookup_handle_free(  

  [in] handle_t hEpMapper,  

  [in, out] ept_lookup_handle_t* entry_handle,  

  [out] error_status* statu s 

);  

hEpMapper: An RPC binding handle as specified in [C706]  section 2.  

entry_handle: The context handle to free, which was received from a previous call to either 
ept_lookup or ept_map.  

status: On return, this MUST be set to 0x00000000.  

This method has no return values.  

2.2.1.2.9   ept_inq_object Method  

These extensions remove support for the ept_inq_object method. A client implementation SHOULD 
NOT call this method. These extensions do not provide an alternative method. <30>   

2.2.1.2.10   ept_mgmt_delete Method  

These extensions remove support for the ept_mgmt_delete method. A client implementation 
SHOULD NOT call this method. These extensions do not provide an alternative method. <31>   

2.2.1.2.11   ept_lookup_handle_t Type  

The ept_lookup_handle_t  type defines an opaque pointer that is used to represent a context 
handle, as specified in [C706] . It is returned from the server to the client.  

This type is declared as follows:  

typedef [context_handle] void* ept_lookup_handle_t;  

 

 

2.2.1.3   Management Interface Extensions  

Remote Management Interface ( [C706]  Appendix Q) defines a management interface. These 
extensions update the definition specified in [C706] , as specified in the following sections. All parts 
of the definition that are not mentioned in the following sections MUST be the same as specified in 

[C706] . 

2.2.1.3.1   rpc_if_id_vector_p_t Type  

These extensions redefine the rpc_if_id_vector_p_t  type, as specified in [C706]  Appendix N, by 
changing the type of the IfId  field from rpc_if_id_p_t  to RPC_IF_ID . This change does not affect 
the compatibility with the type defined in [C706] . 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

41  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The redefined structure is specified as follows.  

typedef struct {  

  unsigned long Count;  

  [size_is(Count )] RPC_IF_ID* IfId[];  

} rpc_if_id_vector_t,  

 *rpc_if_id_vector_p_t;  

 

2.2.1.3.2   StatisticsCount Type  

These extensions introduce a new type, StatisticsCount .<32>  

This type is declared as follows:  

typedef [range(0,50)] unsigned long StatisticsCount;  

 

 

It is used as the count of statistics elements for various methods.  

2.2.1.3.3   rpc_mgmt_inq_stats Method  

These extensions redefine the rpc_mgmt_inq_stats  method, as specified in [C706]  Appendix Q, 
by changing the type of the count  parameter from unsigned long to StatisticsCount . 
StatisticsCount  (section 2.2.1.3.2) has a range attribute that affects compatibility with the 

definition in [C706] , as specified in section 3.3.1.3 . The redefined method is specified as 
follows. <33>  

void rpc_mgmt_inq_stats(  

  [in] handle_t binding_handle,  

  [in, out] Sta tisticsCount* count,  

  [out, size_is(*count)] unsigned long statistics[],  

  [out] error_status_t* status  

);  

This method has no return values.  

Everything else about this method remains as specified in [C706]  Appendix Q.  

2.2.1.3.4   rpc_mgmt_inq_princ_name Method  

These extensions redefine the rpc_mgmt_inq_princ_name  method, as specified in [C706]  
Appendix Q, by adding a range attribute to the princ_name_size  parameter. This change affects 

compatibility with the definition in [C706] . 

The redefined method is specified as follows. <34>   

void rpc_mgmt_inq_princ_name(  

  [in] handle _t binding_handle,  

  [in] unsigned long authn_proto,  

  [in, range(0, 4096)] unsigned long princ_name_size,  

  [out, string, size_is(princ_name_size)]  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

42  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

    char princ_name[],  

  [out] error_status_t* status  

);  

This method has no return values.  

Everything else  about this method remains as specified in [C706]  Appendix Q.  

2.2.2   Connection - Oriented RPC Messages  

2.2.2.1   PDU Segments  

A PDU can be viewed as having several different segments. These segments are as follows:  

Á PDU Header:  The header section of the PDU, as specified in [C706]  section 12.6.  

Á PDU Body:  The body section of the PDU, as specified in [C706]  section 12.6. It also includes the 

padding octets specified in section 2.2.2.11 . 

Á sec_trailer Structure:  The structure specified in section 2.2.2.11 . 

Á Authentication Token:  The authentication token binary large object (BLOB)  of the PDU, as 

specified in se ction 2.2.2.12 . 

 

Figure 2: PDU structure  

2.2.2.2   PFC_MAYBE Flag  

Implementations of these extensions MAY <35>  ignore this flag. This flag is specified in [C706]  
section 12.6.  

2.2.2.3   PFC_SUPPORT_HEADER_SIGN Flag  

These extensions define a new PDU flag for the pfc_flags  in the common header fields that are 
specified in [C706]  section 12.6, with the numeric value of 0x04. The new flag, 
PFC_SUPPORT_HEADER_SIGN, has the same numeric value as the existing PFC_PENDING_CANCEL 
flag.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

43  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The PDU type MUST be examined to determine how to interpret this flag. (The PDU types are 
specified in  [C706]  section 12.6.) For PDU types bind, bind_ack, alter_context, and 

alter_context_resp, this flag MUST be interpreted as PFC_SUPPORT_HEADER_SIGN. For the 
remaining PDU types, this flag MUST b e interpreted as PFC_PENDING_CANCEL.  

2.2.2.4   negotiate_ack Member of p_cont_def_result_t Enumerator  

These extensions specify a new member, negotiate_ack, which is added to the p_cont_def_result_t 
enumeration (specified in [C706]  section 12.6), with the numeric value of 3. The enumeration 
SHOULD be as follows.  

typedef  short enum {  

acceptance, user_rejection, provider_rejection, negotiate_ack  

         } p_cont_def_result_t;  

For details on how this enumerator is used, see section 3.3.1.5.3 . 

2.2.2.5   New Reasons for Bind Rejection  

The following table briefly describes the reject reasons used by these extensions. These reasons are 
defined in [C706]  section 12.6.3.1.  

Reject reason  Value  Meaning  

REASON_NOT_SPECIFIED  0x00  If the reason for the error does not fit any of the other 

reasons specified in this section, then this rejection 

code SHOULD be used.  

TEMPORARY_CONGESTION 0x01  Not Used.  

Client implementations of these extensions  SHOULD 

treat this rejection code in the same manner as 

LOCAL_LIMIT_EXCEEDED.  

LOCAL_LIMIT_EXCEEDED  0x02  The server could not complete the request due to lack 

of resources.  

PROTOCOL_VERSION_NOT_SPECIFIED  0x04  The server detected a protocol error while processing 

an rpc_bind  or rpc_alter_context  PDU. 

These extensions add two new reasons for rejection in the bind_nak  packet that is specified in 
[C706]  section 12.6. The reasons are defined as follows.  

Reject reason  Value  Meaning  

authentication_type_not_recognized  0x08  Authentication type  requested by client is not 

reco gnized by server.  

invalid_checksum  0x09  This rejection code is used when an unrecoverable error 

is detected by the underlying security package.  

2.2.2.6   alloc_hint Interpretation  

These extensions impose additional restrictions on the alloc_hint  field specified in [C706]  section 
12.6. Implementations MUST allow for 0 to be specified, as specified in [C706] ; implementations 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

44  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

SHOULD reject calls when the alloc_hint  is nonzero but exceeds the combined stub data leng th of 
all fragments from a fragmented request or response.  

If alloc_hint  is set to a nonzero value and a request or a response is fragmented into multiple 
PDUs, implementations of these extensions SHOULD set the alloc_hint  field in every PDU to be the 

comb ined stub data length of all remaining fragment PDUs.  

An implementation that does not follow these rules might not be able to interoperate successfully 
with an implementation of these extensions.  

2.2.2.7   RPC_SYNTAX_IDENTIFIER  

This type is equivalent in syntax and semantics to the p_syntax_id_t type, as specified in [C706]  
section 12.6.  

2.2.2.8   rpc_fault Packet  

Connection -Oriented RPC PDUs ( [C706]  section 12.6) allows for stub  data to be present in rpc_fault 
PDUs. Clients implementing these extensions MUST ignore any stub data in an rpc_fault PDU, and 
servers MUST NOT generate stub data in an rpc_fault PDU. [C706]  also prescribes that if the status 
in the rpc_fault PDU is 0, the actual error is in the stub data. These extensions always retrieve the 

actual error from the status field in the rpc_fault PDU. A server implementation MUST NOT send any 
of the error codes spec ified in section 3.3.3.5 . 

An implementation that does not follow these rules might not be able to interoperate successfully 
with an implementation of these extensions.  

Connection -oriented RPC PDUs ( [C706]  section 12.6) set aside a reserved field. These extensions 
specify the least significant bit of the reserved field to be a flag indicating the presence of RPC 
extended error information. Detai ls on RPC extended error information are specified in [MS -EERR]. 

If RPC extended error information is present, it is specified as a variable length BLOB, and its length 
MUST be calculated as alloc_hint -  0x20.  

2.2.2.9   bind_nak Packet  

These extensions update the bind_nak  packet, as specified in [C706]  section 12.6.4.5, to have the 
following definition.  

typedef struct {  

  unsigned char rpc_vers;  

  unsigned char rpc_vers_minor;  

  unsigned char PTYPE;  

  unsigned char pfc_flags;  

  unsigned char drep[4];  

  unsigned short frag_length;  

  unsigned short auth_length;  

  unsigned long call_id;  

  unsigned short provider_reject_reason;  

  p_rt_versions_support ed_t versions;  

  UUID Signature;  

} bind_nak;  

 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-EERR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824


 

45  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

rpc_vers  rpc_vers_minor  PTYPE  pfc_flags  

drep  

frag_length  auth_length  

call_id  

provider_reject_reason  versions  

(versions continued with padding)  

Signature  (optional)  

(Signature continued for 3 rows)  

These extensions add the Signature field at the end as an optional field. The presence or absence of 
the Signature field MUST be determined as follows.  

Assume that the client calculates the length of the PDU until the Signature field as L.  

Á If the frag_length field is greater than or equal to L plus the size of the Signature field, the client 

SHOULD assume that the Signature field is present.  

Á Otherwise, t he client SHOULD assume that the Signature field is not present.  

The Signature field MUST be interpreted as a UUID.  

If the Signature field is equal to the extended error information signature value, as specified in 
section 2.2.1.1.2 , the client MUST assume that the bind_nak  PDU contains RPC extended error 
information appended as a BLOB, as specified in [MS -EERR], immediately following the Signature 

field that continues until  the end of the PDU. If RPC extended error information is present, the 
length of the BLOB containing it MUST be calculated as frag_length ï 0x1c.  

Clients MAY <36>  ignore the RPC extended error information BLOB. Clients that interpret  the BLOB 
MUST do so as specified in [MS -EERR].  

If the Signature field is not equal to the extended error information Signature value, as specified in 
section 2.2.1.1.2 , the client SHOULD ignore the Sign ature field and all information that follows it in 

this PDU.  

2.2.2.10   rpc_auth_3 PDU  

These extensions specify a new PDU type: rpc_auth_3 . It is defined as follows.  

%5bMS-EERR%5d.pdf


 

46  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

rpc_vers  rpc_vers_minor  PTYPE pfc_flags  

drep  

frag_length  auth_length  

call_id  

pad  

rpc_vers (1 byte):  As specified by rpc_vers  field in rpc_bind PDU in [C706]  section 12.6.  

rpc_vers_minor (1 byte):  As specified by rpc_vers_minor  field in rpc_bind PDU in [C706]  
section 12.6.  

PTYPE (1 byte):  MUST be set to 0x10.  

pfc_flags (1 byte):  As specified by pfc_flags  field in rpc_bind PDU in [C706]  section 12.6.  

drep (4 bytes):  As specified by drep  field in rpc_bind PDU in [C706]  section 12.6.  

frag_length (2 bytes):  As specified by frag_length  field in rpc_bi nd PDU in [C706]  section 

12.6.  

auth_length (2 bytes):  As specified by auth_length  field in rpc_bind PDU in [C706]  section 
12.6. It MU ST be greater than zero for this PDU type.  

call_id (4 bytes):  As specified by call_id  field in rpc_bind PDU in [C706]  section 12.6.  

pad (4 bytes):  Can be set to any arbitrary value when set and  MUST be ignored on receipt. The 
pad  field MUST be immediately followed by a sec_trailer  structure whose layout, location, and 
alignment are as specified in section 2.2.2.11 . 

All the rules for processing PDUs specified in [C706]  section 12.6, including but not limited to data 
representation, pfc_flags , and protocol version numbers, MUST be app lied to this PDU as well. For 
more information, see section 3.3.1.5.2 . 

2.2.2.11   sec_trailer Structure  

These extensions define the sec_trailer structure to have syntax equivalent to the 
auth_verifier_co_t  structure as specified in [C706]  section 12.6. The two structures have the 

same layout when sent on the network, but they name their fields differently and, in some cases, 
interpret their fields differently.  

A nonzero value for the auth_length  field indicates the presence of authenticati on information 
provided by the security provider. When the auth_length  field is nonzero, the sec_trailer structure 
MUST be present.  

For request and response PDUs, where the request and response PDUs are part of a fragmented 

request or response and authenti cation is requested (nonzero auth_length ), the sec_trailer 
structure MUST be present in every fragment of the request or response.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

47  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The sec_trailer structure MUST be placed at the end of the PDU, including past stub data, when 
present. The sec_trailer stru cture MUST be 4 -byte aligned with respect to the beginning of the PDU. 

Padding octets MUST be used to align the sec_trailer structure if its natural beginning is not already 
4-byte aligned.  

All PDUs that carry sec_trailer information share certain common f ields: frag_length  and 
auth_length . The beginning of the sec_trailer structure for each PDU MUST be calculated to start 
from offset ( frag_length  ï auth_length  ï 8) from the beginning of the PDU.  

The structure is defined as follows.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

auth_type  auth_level  auth_pad_length  auth_reserved  

auth_context_id  

auth_type (1 byte):  MUST contain an authentication type. For information on how this is used, 
see sections 3.1.1.1.1 , 3.3.1.5.2 , and 3.1.3.1.1 . If a request or response is fragmented, all 
PDUs from that req uest or response MUST have the same auth_type .  

auth_level (1 byte):  MUST contain one of the authentication levels as specified in section 
2.2.1.1.8 . The value serves a dual purpose. The first purpose is  to specify what security 
protection is applied to what segment of the PDU, as specified in section 3.3.1.5.2 . The second 
purpose is to serve as a parameter to the security provider that it SHOULD use to  determine 
how to provide protection for the respective PDU segment. For information on how security 
providers use that, see the documentation for the respective security provider. If a request or 

response is fragmented, all PDUs from that request or respo nse MUST have the same 
auth_level . 

auth_pad_length (1 byte):  The number of padding octets, used to 4 -byte align the sec_trailer 

structure, as specified earlier in this section. In the figure "PDU structure with verification 
trailer" in section 2.2.2.13 , these octets are referred to as the Authentication Padding Octets.  

auth_reserved (1 byte):  SHOULD be 0 on store, and SHOULD be ignored on read.  

auth_context_id (4 bytes):  Numeric identifier that uniquel y identifies the security context 

that MUST be used for this PDU within the context of the current RPC connection. For 
information on security contexts, see section 3.3.1.5.4 . An implementation MUST exam ine the 
drep  field from the RPC PDU header to determine if this field is little -endian or big - endian , as 
specified in [C706]  section 14.2.5. If a request or response  is fragmented, all PDUs from that 
request or response MUST have the same auth_context_id .  

Immediately after the sec_trailer structure, there MUST be a BLOB carrying the authentication 
information produced by the security provider. This BLOB is called the authentication token and 

MUST be of size auth_length . The size MUST also be equal to the length from the first octet 
immediately after the sec_trailer structure all the way to the end of the fragment; the two values 

MUST be the same. For more information o n what the authentication token contains, see section 
2.2.2.12 . 

A client or a server that (during composing of a PDU) has allocated more space for the 
authentication token than the security provider fills in SHOULD <37>  fill in the rest of the allocated 

space with zero octets. These zero octets a re still considered to belong to the authentication token 
part of the PDU.  

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824


 

48  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.2.12   Authentication Tokens  

These extensions require the conceptual model specified in [RFC2743]  for all interactions with all 
security providers . An implementation instructs the Generic Security Services (GSS) -APIïcompatible 

security providers to operate in a distributed computing environment (DCE) ïcompatible manner by 
setting the DCE Style protocol variable. The following table details what PDU t ype MUST carry (in its 
auth_ token segment) the output of what GSS [GSS]  call during processing, as specified in section 
3.3.1.5.2.2 . 

RPC PDU name  GSS call producing auth_value  

Bind  First call to GSS_Init_sec_context, as specified in [RFC2743]  section 2.2.1.  

bind_ack  First call to GSS_Accept_sec_context, as specified in [RFC2743]  section 2.2.2.  

alter_context, 

rpc_auth_3  

Second and subsequent calls to GSS_Init_sec_context, as specified in [RFC2743]  

section 2.2.1 . 

alter_context_resp  Second and subsequent calls to GSS_Accept_sec_context, as specified in 

[RFC2743]  section 2.2.2.  

Request  If the auth_level (as specified in section 2.2.2.11 ) is 

RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_WrapEx; else call to 

GSS_GetMICEx. See section 3.3.1.5.2.2  for details.  

Response  If the auth_le vel (as specified in section 2.2.2.11 ) is 

RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_UnwrapEx; else call to 

GSS_VerifyMICEx. See section 3.3.1.5.2.2  for details.  

2.2.2.13   Verification Trailer  

Within exchanges in which the security provider in use does not provide integrity protection, as 
specified in [C706]  section 13.2.5, these extensions specify an additional provision for providing 

integrity protection for certain portions of PDUs. The verification trailer encompasses several data 

structures. The data structures MUST only appear in a request PDU, and they  SHOULD be placed in 
the PDU immediately after the stub data but before the authentication padding octets. Therefore, for 
security purposes, the verification trailer is considered part of the PDU body. For a fragmented 
request, only the last PDU of the req uest MUST have a verification trailer. As a general rule, 
implementations SHOULD <38>  add the verification trailer on request PDUs that have portions of the 
PDU that cannot be protected by the security provider while in transit on th e network.  

The following diagram shows a PDU body within a PDU structure, with stub data, verification trailer, 
and authentication padding octets.  

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=89876
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=89824


 

49  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

Figure 3: PDU structure with verification trailer  

Client implementation s MAY<39>  send stub padding octets after the stub data. To maximize 
interoperability, server implementations SHOULD NOT assume that the verification trailer 
immediately follows the stub data but instead SHOULD search for a sequence of octets that matches 
the value of the signature, as specified in section 2.2.2.13.1 , starting immediately after the end of 

the stub data and continuing until the end of the PDU. <40>  

The verification trailer consists of a header and a body. The header MUST always contain an 

instance of the rpc_sec_verification_trailer  structure that is specified in section 2.2.2.13.1 . The 
beginn ing of the header MUST be 4 -byte aligned with respect to the beginning of the PDU. If the 
stub data does not end on a 4 -byte aligned boundary, padding octets MUST be added after the stub 
data. The padding bytes SHOULD be set to 0.  

The verification trailer header MUST be immediately followed by the verification trailer body. The 
verification trailer body MUST consist of, at most, one instance from each of several data structures 
called verification trailer commands, which are specified in sections 2.2.2.13.2 , 2.2.2.13.3 , and 

2.2.2.13.4 .  

 

Figure 4: Verification traile r header and commands  



 

50  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The verification trailer commands may come in any order after the header. If more than one 
command is present, the next command MUST be placed immediately after the previous one. Each 

command MUST start with a common command header de fined as the following.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

command  length  

typedef struct {  

  USHORT command; 

  USHORT length;  

} SEC_VT;  

 

command:  The commands MUST be encoded by using little -endian encoding for all fields.  

Valid combinations are defined immediately after the table.  

Value  Meaning  

SEC_VT_COMMAND_BITMASK_1  

0x0001  

This is an rpc_sec_vt_bitmask  command, as specified in 

section 2.2.2.13.2 . 

SEC_VT_COMMAND_PCONTEXT  

0x0002  

This is an rpc_sec_vt_pcontext  command, as specified in 

section 2.2.2.13.4 . 

SEC_VT_COMMAND_HEADER2  

0x0003  

This is an rpc_sec_vt_header2  command, as specified in 

section 2.2.2.13.3 .  

SEC_VT_COMMAND_END  

0x4000  

This flag MUST be present in the last command in the 

verification trailer body.  

SEC_VT_MUST_PROCESS_COMMAND  

0x8000  

Indicates that the server MUST process this command. If 

the server does not support the command, it MUST reject 

the request.  

Least significant bits 0 through 13 (including 0 and 13) are used to hold the command type 
and MUST be considered a single field. Bits 14 and 15 are used to indicate command 
processing rules. If a server does not understand a command, it MUST ignore it unless the 
SEC_VT_MUST_PROCESS_COMMAND bit is set. If the server does not understand the 
command and the SEC_VT_MUST_PROCESS_COMMAND bit is set, it MUST treat the request 
as invalid, as if unmarshaling  failure occurred, as specified in section 3.1.3.5.2 , except that 
a status code of 5 SHOULD be used inste ad of the status code specified in section 3.1.3.5.2 . 

Any combination of a value for the command type (bits 0 through 13) and command 
processing rules (bits 14 and 15) is valid.  

length:  The length field  is in octets, MUST be a multiple of 4, and MUST NOT include the length 

of the command header. For fixed -size commands, the length field MUST be equal to the 
length of the fixed -size command.  

2.2.2.13.1   rpc_sec_verification_trailer  

The definition for this structure is as follows.  

%5bMS-GLOS%5d.pdf


 

51  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

typedef struct {  

  unsigned char signature[8];  

} rpc_sec_verification_trailer;  

 

Whenever the verification trailer is present, the signature field MUST contain the following series of 

octets {0x8a, 0xe3, 0x13, 0x71, 0x02, 0xf4, 0x36, 0x71}. These values have no special protocol 
significance and only serve as a signature for this struct ure.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

signature (ox8a, 0xe3, 0x13, 0x71)  

signature (0x02, 0xf4, 0x36, 0x71)  

Client sends the verification trailer header whenever it needs to send a verification trailer body. For 
details on when a verification trailer body is sent, see the verification trailer commands that follow.  

2.2.2.13.2   rpc_sec_vt_bitmask  

This command is defined as follows.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

command  length  (0x004)  

bits  (0x00000001)  

typedef struct {  

  USHORT command; 

  USHORT length;  

  ULONG bits;  

} rpc_sec_vt_bitmask;  

 

command:  Least significant bits 0 through 13 MUST be SEC_VT_COMMAND_BITMASK_1. Bits 

14 and 15 are as specified in section 2.2.2.13 . 

Note   SEC_VT_COMMAND_BITMASK_1 has a value of 0x0001.  

length:  MUST be 0x0004.  

bits:  The bits field is a bitmask. A server MUST ignore bits it does not understand. Currently, 

there is only one bit defined: CLIENT_SUPPORT_HEADER_SIGNING (bitmask of 0x00000001). 
If this bit is set, the PFC_SUPPORT_HEADER_SIGN  bit, as specified in section 2.2.2.3 , MUST 
be present in the PDU header for the bind PDU on this conne ction. For information on how 
PFC_SUPPORT_HEADER_SIGN is used, see section 3.3.1.5.2.2 .<41>  



 

52  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.2.13.3   rpc_sec_vt_header2  

This command is defined as follows. <42>   

typedef struct {  

  USHORT command; 

  USHORT length;  

  unsigned char PTYPE;  

  unsigned char Reserved1;  

  unsigned short Reserved2;  

  unsigned char drep[4];  

  unsigned long call_id;  

  USHORT p_context_id_t;  

  unsigned SHORT opnum;  

} rpc_sec_vt_header2;  

 

command:  Least significant bits 0 through 13 MUST be SEC_VT_COMMAND_HEADER2 
(0x0003). Bits 14 and 15 are as specified in section 2.2.2.13 . 

length:  MUST be 0x0010.  

PTYPE:  MUST be the same as the PTYPE  field in the request PDU header.  

Reserved1:  MUST be set to 0 when sent and MUST be ignored on receipt.  

Reserved2:  MUST be set to 0 when sent and MUST be igno red on receipt.  

drep:  MUST be the same as the drep  field in the request PDU header.  

call_id:  MUST be the same as the call_id  field in the request PDU header.  

p_context_id_t:  MUST be the same as the p_cont_id  field in the request PDU header.  

opnum:  MUST be the same as the opnum  field in the request PDU header.  

The following table shows the format of rpc_sec_vt_header2 .  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

command  length  (0x0010)  

PTYPE   Reserved1  (0)  Reserved2  (0)  

drep   

call_id   

p_cont_id   opnum  

2.2.2.13.4   rpc_sec_vt_pcontext  

This command is defined as follows. <43>  



 

53  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

typedef struct {  

  USHORT command; 

  USHORT length;  

  RPC_SYNTAX_IDENTIFIER InterfaceId;  

  RPC_SYNTAX_IDENTIFIER TransferSyntax;  

} rpc_sec_vt_pcontext;  

 

command:  Least significant bits 0 through 13 MUST be 0x0002. Bits 14 and 15 are as specified 

in section 2.2.2.13 . 

length:  MUST be set to 0x28.  

InterfaceId:  The interface identifier for the presentatio n context of the request PDU in which 
this verification trailer appears. This MUST match the chosen abstract_syntax field from the 
bind or alter_context PDU where the presentation context was negotiated. For information on 

how a presentation context is neg otiated, see section 3.3.1.5.6 . 

TransferSyntax:  The transfer syntax identifier for the presentation context of the request PDU 
in which this verification trailer appears. This MUST match the chosen tran sfer_syntax from 
the bind or alter_context PDU where the presentation context was negotiated. For information 
on how a presentation context is negotiated, see section 3.3.1.5.6 . 

The following table shows  the format of the rpc_sec_vt_pcontext  command.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

command  length (0x28)  

InterfaceId  

(InterfaceId cont'd for 4 rows)  

TransferSyntax  

(TransferSyntax cont'd for 4 rows)  

2.2.2.14   BindTimeFeatureNegotiationBitmask  

The bind time feature negotiation bitmask is an array of eight octets, each of which is interpreted as 
a bitmask. The format of the structure is as follows.  

typedef struct {  

  unsigned char Bitmask[8];  

} BindTimeFeatureNegotiationBitmask;  

 

Bitmask:  Currently, only the two least significant bits in the first element of the array are 

defined by the following table.  



 

54  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The rest SHOULD be reserved for future extensibility. For information on how this structure  
and the bits inside it are used, see section 3.3.1.5.3 . 

Value  Meaning  

SecurityContextMultiplexingSupported  

0x01  

Client supports security context multiplexing, as specified 

in section 3.3.1.5.4 . 

KeepConnectionOnOrphanSupported  

0x02  

Client supports keeping the connection open after sending 

the orphaned PDU, as specified in section 3.3.1.5.10 . 

The following table shows the format of BindTimeFeatureNegotiationBitmask .  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Bitmask  

Bitmask  

2.2.2.15   BindTimeFeatureNegotiationResponseBitmask  

The bind time feature negotiation response bitmask is an array of two octets, each of which is 
interpreted as a bitmask. The format of the structure is as follows.  

typedef struct {  

  unsigned char Bitmask[2];  

} BindTimeFeatureNegotiationResponseBitmask;  

 

Bitmask:  Currently, only the two least significant bits in the first element of the array are 

defined by the following table. The rest SHOULD be reserved for future extensibility. F or 
information on how this structure and the bits inside it are used, see section 3.3.1.5.3 . 

Value  Meaning  

SecurityContextMultiplexingSupported  

0x01  

Server supports security context multiplexing, as spe cified 

in section 3.3.1.5.4 . 

KeepConnectionOnOrphanSupported  

0x02  

Server supports keeping the connection open after 

sending the orphaned PDU, as specified in section 

3.3.1.5.10 . 

The following table shows the format of BindTimeFeatureNegotiationResponseBitmask .  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

BitMask  Unused  



 

55  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.3   Connectionless RPC Messages  

The format of each PDU is as specified in [C706]  section 12. Connectionless RPC messages 
MAY<44>  be supported.  

2.2.3.1   PDU Segments  

A PDU can be viewed as having several different segments. These segments are as follows:  

Á PDU Header: This is the header section of the PDU, as specified in [C706]  section 12.  

Á PDU Body: This is the body section of the PDU, as specified in [C706]  section 12.  

Á sec_trailer_cl Structure : The structure specif ied in section 2.2.3.4 . 

Á Authentication Token: The authentication token BLOB of the PDU, as specified in section 2.2.3.5 . 

 

Figure 5: PDU structure  

2.2.3.2   Fault Packet  

A fault PDU MUST NOT contain any of the error codes specified in section 3.2.3.5 . 

2.2.3.3   PF2_UNRELATED Flag  

These extensions extend the PDU format by defining the reserved_04  bit of the second set of PDU 
flags (flags2), as specified in [C706]  section 12, as PF2_UNRELATED. This flag has meaning only in 
a REQUEST packet.  

The server SHOULD <45> set the PF2_UNRELATED flag in all conv_who_are_you2 and 

conv_who_are_you_auth requests to indicate to the client that the server ca n correctly interpret 

client requests with the flag set.  

The client MUST set the PF2_UNRELATED flag in a REQUEST packet if the packet should not cancel 
the activity's  previous call  sequence numbers. For usage information, see section 3. 

http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90952


 

56  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.3.4   sec_trailer_cl Structure  

When a PDU header's auth_proto field is nonzero, [C706]  section 12.3, and section 13.3.4, specify 
that the stub  data of the packet is padded to the next 8 -byte boundary and MUST be followed by an 

auth_trailer_cl_t structure. These extensions divide the auth_trailer_cl_t type into a fixed - length 
security header and a variable - length token following the security head er. For information on the 
authentication token, including determination of its length, see section 2.2.3.5 . 

For request and response PDUs, where the request and response PDUs are part of a fragmented 
request or where response and authentication are requested, the sec_trailer_cl  structure is 
present in every fragment of the request or response.  

typedef struct {  

  unsigned char auth_level;  

  unsigned char key_vers_num;  

} sec_trailer_cl;  

 

auth_level:  This field MUST be one of the authentication levels specified in section 2.2.1.1.8 . 

The values serve a dual purpose. The first purpose is to specify how security has to be applied 
to the PDU, as specified in section 3.3.1.5.2 . The second purpose is to serve as a parameter to 
the security provider that it SHOULD use to determine how to provide protection for the PDU; 
for details on how security providers use that, see the documentation for the respective 
security provider. If a request or response is fragmented, all PDUs from that request or 
response MUST have the same auth_level . 

key_vers_num:  This field is a numeric identifier that identifies the security c ontext within the 

activity that MUST be used for this PDU.  

Immediately after the sec_trailer_cl  structure, there MUST be a sequence of padding bytes 
followed by a BLOB carrying the authentication information produced by the security provider. 
This BLOB is called the authentication token.  

If the auth_level  is RPC_C_AUTHN_LEVEL_PKT_PRIVACY , the number of padding bytes 
is calculated as follows.  

Number of padding bytes = MBSR4 -  2 

where  

Á MBSR4: MessageBlockSize  of the security context rounded up to a multiple of 4.  

See the documentation for the respective security provider for the value of the 
MessageBlockSize . MessageBlockSize  MUST be a power of 2.  

For other auth_level  values, the number of padding bytes is two.  

2.2.3.5   Authentication Tokens  

The token length is not transmitted explicitly. A recipient infers the length of the token by 
subtracting the combined length of the connectionless RPC header, stub data, sec_trailer_cl , and 
padding bytes from the length of the received packet, as reported by the underlying transport.  

A client or a server (that, during processing, has allocated more space for the authentication token 
than the security provider fills in) S HOULD <46> fill in the rest of the allocated space with zero 

http://go.microsoft.com/fwlink/?LinkId=89824


 

57  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

octets. These zero octets are still considered to belong to the authentication token part of the 
PDU.<47>  

RPC PDU  GSS call producing auth_value   

Conv_who_are_you_auth's 

in_data parameter  

First call to GSS_Accept_sec_context, as specified in [RFC2743]  section 

2.2.2.  

Conv_who_are_you_auth's 

out_data parameter  

Second call to GSS_Init_sec_ context, as specified in [RFC2743]  section 

2.2.1. If the data cannot be returned in a single PDU, the server queries 

the remainder with calls to conv_who_are_you_auth_more().  

Request PDU  If the  auth_level (as specified in section 2.2.3.4 ) is 

RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_Wrap (as specified in 

[RFC2743]  section 2.3.3); el se call to GSS_GetMIC (as specified in 

[RFC2743]  section 2.3.1).  

Response PDU  If the auth_level (as specified in section 2.2.3.4 ) is 

RPC_C_AUTHN_LEVEL_PKT_PRIVACY, call to GSS_Unwrap (as specified 

in [RFC2743]  section 2.3.4); else call to GSS_VerifyMIC (as specified in 

[RFC2743]  section 2.3.2).  

2.2.3.6   fack Packet  

Implementation of these extensions MUST send or receive fack packets with the vers  field set to 0 
or 1. For either version, the definition of the fack PDU remains the same as defined in [C706]  
section 12.5.3.4. <48>   

2.2.4   IDL Syntax Extensions  

Extensions specified in sections 2.2.4.1  through 2.2.4.11  affect the syntax of the message, while 
extensions specified in sections 2.2.4.13  through 2.2.4.17  affect the processing of the message 
without direc tly changing the messages. Extensions specified in section 2.2.4.18  affects neither the 

syntax nor the processing of the message.  

2.2.4.1   New Primitive Types  

2.2.4.1.1   wchar_t  

wchar_t designates a wide character type. It is treated as an unsigned short by using the rules for 
an unsigned short, as specified in [C706]  section 14.2.5.  

A string  attribute can be applied to a pointer or array of type wchar_t. This indicates a string of 
wide characters, as specified in [C706]  section 14.3.4. The terminator for a wide character string is 

two octets of zero (0).  

2.2.4.1.2   __int3264  

In NDR transfer syntax, __int3264, as specified in [MS -DTYP]  section 2.2.1, is represented as four 

octets in the octet stream by using the same format as a long integer.  

In 64 -Bit Network Data Representation (NDR64) transfer syntax, __int3264 is treated as hyper, as 
specified in [C706]  section 14.2.5.  

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824


 

58  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.4.1.3   __int8, __int16, __int32, __int64  

Sized integer types are supported in these extensions. Applications can declare 8 -bit, 16 -bit, 32 -bit, 
or 64 -bit integer variables by using the __intn type specifier, where n is 8, 16, 32, or 64. __int8, 

__int16, __int32, __int64 MUST be synonymous to smal l, short, long, and hyper, respectively, as 
specified in [C706]  section 14.2.5.  

2.2.4.1.4   int  

int  MUST be treated as synonymous to long  as specified in [C706]  section 14.2.5.  

2.2.4.2   Callback  

These extensions allow static callback functions to be declared in the client side of a distributed 
application. This functionality provides a way for the server to make an RPC  method call to the 
client. During a callback, the original client that initiates the call is defined as a callback server.  

Callback routines are declared by using a callback  keyword in an IDL file.  

These extensions use operation numbers ( opnums ) to inform a callback server of the operation it 
should call. Callback operations and noncallback operations use overlapping ranges of opnums 
starting at zero to identify the operation by using the following rules: Operation numbers for  

callback operations MUST be generated consecutively, counting callback operations only, beginning 
with 0 (zero), in the order in which callback operations appear in the IDL source. Callback 
operations MUST be excluded in calculating the operation numbers for noncallback operations. If an 
operation is called in the context of a callback (for information on handling callbacks, see section 
3.3.1.5.9 ), an implementation of this extension MUST use the callbac k opnum range for calling the 
method. If an operation is not called in the context of a callback, an implementation of this 

extension MUST use the opnum range, as specified in [C706]  section 5.2. 1.  

2.2.4.3   Array of Context Handles  

These extensions extend the use of context handles (as specified in [C706]  section 4.2.16.6), by 

allowing arrays of context handles.  

Context handles MUST be parameters, as specified in [C706]  section 4.2.16.6. They are valid as an 
array element but MUST NOT be structure or union members and MUST NOT be the base type of a 

pipe. <49>   

2.2.4.4   Array of Strings  

As specified in [C706]  section 14.3.5, an array of strings is treated uniquely by requiring a common 
string length. These extensions override this base specification as follows: An array of strings MUST 
be represented as an ordered sequence of representations of the array eleme nts.  

2.2.4.5   ms_union  

As an extension to the NDR definition of union alignment (as specified in [C706]  section 14.3.8), 

these extensions dictate that the discriminant MUST be aligned per the alignment rules of the data 
type of the discriminant, and the selected arm MUST be aligned to the largest alignment of all the 
arms, when ms_union is enabled. Also, in  case of an array, each element of the array MUST be 
aligned to the largest alignment of all the arms. ms_union MUST be ignored in NDR64 transfer 
syntax. ms_union MUST be ignored for encapsulated unions.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

59  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

ms_union is enabled for a union by applying the ms_u nion  type attribute to that union in its IDL 
file, or for all unions in the IDL file, by using an implementation -specific compiler option. <50>   

2.2.4.6   v1_enum  

Enumerated types MUST be treated as signed 32 -bit integers when the v1_enum  attribute is 
applied. v1_enum MUST be ignored in NDR64 transfer syntax.  

v1_enum  can be enabled by specifying v1_enum when defining enumerated types in Microsoft 
Interface Definition Language (MIDL)  [MSDN -MIDL] . 

2.2.4.7   Expression in Conformant, Varying, and Union Description  

In these extensions, first_is , last_is , length_is , size_is , max_is , and union switch attributes 

SHOULD accept C - language expressions that evaluate to an integer that represents the runtime 
value of each specific attribute. <51>   

For more information, see the example in section 4.7 , UNICODE_STRING Representation.  

2.2.4.8   Unencapsulated Union  

These extensions extend the specification for marshaling unions to allow [in]  or [in,out]  parameters 
to be used as the discriminant for [out] or [in,out] unencapsulated unions. As specified in [C706]  

section 14.3.8, the discriminant of an unencapsulated union MUST be marshaled  both as the 
parameter specified in the switch_is construct and as the first part o f the union representation. This 
custom -marshaling is extended as follows: The discriminant of the unencapsulated union MUST be 
marshaled as the parameter specified in the switch_is construct in the input or output octet 
stream(s) specified by the directio nal attribute(s) of the parameter. In addition, the discriminant 
MUST be marshaled as the first part of the union representation as specified in [C706]  section 

14.3.8, in the input or output octe t stream(s) specified by the directional attribute(s) of the union.  

2.2.4.9   pointer_default  

With these extensions, the pointer_default attribute, as specified in [C706]  section 4.2.4, is not 
required. Its default value MUST be pointer_default (unique) when the attribute is absent.  

2.2.4.10   Pointer Attributes  

These extensions make the following changes to the pointer attributes as defined in [C706]  section 
4.2.20.3.  

Á These extensions MUST allow a pointer attribute, of the first pointer, specified at the reference 

site (directly in the syntax of an operation declaration) to override the pointer attribute specified 
at the declared site.  

Á With these extensions, if a method  returns a pointer to a type, both [unique] and [ptr] types of 

pointers MUST be permitted.  

2.2.4.11   Extension to Enumerated Type  

These extensions extend the syntax of Enumerated Types as specified in [C706]  section 4.2.13.  

 

<enumeration_type> ::=enum { <Identifier_tag> [ , < Identifier_tag> é } 

<Identifier_tag> ::= <Identifier> [ = <Identifier_literal> ]  

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90041
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

60  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

An <Identifier_literal> used in an <Identifier_tag> MUST be in the range of 0 to 32,767.  

2.2.4.12   NDR Transfer Syntax Identifier  

[C706]  Appendix I, specifies the NDR transfer syntax identifier. These extensions augment the 
version number of the same NDR transfer syntax UUID  to be 2.0, as specified in the following table.  

UUID  Version  Comments  

8a885d04 -1ceb -11c9 -9fe8 -08002b104860  02  Version 2.0 data representation protocol  

2.2.4.13   byte_count  

These extensions allow a higher - level protocol to specify the memory size in bytes of a given 

parameter as the value of another parameter. This MUST be specified by the byte_count 
parameter <52>  attribute in an ACF, which the implementation MUST interpret as calling this 
extension.  

[function - attribute - list ] function - name(  

    [byte_count(length - variable - name)] parameter - name,  

    ...);  

2.2.4.14   range  

The range attribute is only applicable in strict NDR/NDR64 data consistency checking , as 
specified in section 3.1.1.5.3 . 

2.2.4.14.1   range Attribute to Limit the Scope of Integral Values and the Number 

of Elements in Pipe Chunks  

The range is specified by the [range] attribute accepted by MIDL.  

[range(low - val, high - val)] type - specifier declarator.  

low -val and high -val are integer constant expressions as specified in [C706]  "P 14.01" in section 

4.4.1.  

2.2.4.14.2   range Attribute to Limit the Range of Maximum Count of Conformant 

Array and String Length  

MIDL extends the productions of IDL syntax with the following range definition.  

[range(low - val, high - val), <conf_range_attr>] type - specifier  

  declarator  

conf_range_attr::=size_is<var_attr_list>|  

max_is<var_attr_list>|  

string  

 

http://go.microsoft.com/fwlink/?LinkID=92782
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824


 

61  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

low -val and high -val are integer constant expressions as specified in [C706]  "P 14.01" section 4.4.1.  

2.2.4.15   strict_context_handle  

A strict context handle is activated by a strict_context_handle attribute in an interface definition 

block in an ACF. This attribute is only applicable in the strict NDR/NDR64 data consistency checking  
extension specified in section 3.1.1.5.3 . 

2.2.4.16   type_strict_context_handle  

Type strict context handle is activated by specifying the type_strict_context_handle attribute in an 
interface definition block in an ACF . This attribute is only applicable in target level 6.0 of strict 
NDR/NDR64 data consistency checking, as specified in section 3.1.1.5.3 . 

2.2.4.17   disable_consistency_check  

The Pointer attribute [disable_consistency_check] disables the check specified in section 

3.1.1.5.3.3.1.2 . This attribute is only applicable in the strict NDR/NDR64 data consistency checking 
extension specified in section 3.1.1.5.3 . 

2.2.4.18   Identifier Length  

These extensions allow the user supplied identifiers in an IDL file to have a maximum length of 255 
characters. The following table of allowed lengths replaces the table specified in [C706]  section 4.5.  

Class of ID  Maximum Length (in characters)  

Interface name  255  

Type with transmit_as  attribute  255  

Type with handle  attribute  255  

Type with context_handle  attribute  255  

Type with represent_as  attribute  255  

Note that the constructed identifiers will hence correspondingly longer than 255. For example, since 
the major and minor version numbers can have upto five digits, since they are unsigned 16 -bit 
integers as specified i n [C706]  section 6.2.3.3, the constructed identifier <interface>_v<major 

version>_<minor version>_c_ifspec can have a length upto 277 characters. This is a change from 
[C706]  section 4.2.1.2 which limits all identifiers to 31 characters.  

2.2.5   64 - Bit Network Data Representation  

The 64 -Bit Network Data Representation transfer syntax is a set of modifications to the NDR transfer 
syntax, as specified in [C706]  chapter 14. NDR64  MAY<53>  be supported.  

All PDUs encoded with the NDR64 transfer syntax MUST use a value of 0x10 for the data 

representation format label, as specified in [C706]  section 14 .1. This value indicates little -endian 
integer and floating -pointer byte order, IEEE floating -point format representation, and ASCII 
character format, as specified in [C706]  section 14.1.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90712
http://go.microsoft.com/fwlink/?LinkId=90712
http://go.microsoft.com/fwlink/?LinkId=90712
http://go.microsoft.com/fwlink/?LinkId=90712
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

62  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.5.1   NDR64 Transfer Syntax Identifier  

UUID  Version  Comments  

71710533 -BEBA-4937 -8319 -B5DBEF9CCC36  01  NDR64 data representation protocol  

2.2.5.2   NDR64 Simple Data Types  

NDR64 supports all simple types defined by NDR (as specified in [C706]  section 14.2) with the same 
alignment requirements except for enumerated types, which MUST be represented as signed long 
integers (4 octets) in NDR64.  

2.2.5.3   NDR64 Constructed Data Types  

NDR64 supports constructed data types defined for NDR (as specified in [C706]  section 14.3) with 
some exceptions. The following sections specify differences between the NDR64 data representation 
and the NDR data representation.  

2.2.5.3.1   Representation Conventions  

To be consistent with what is specified in [C706] , diagrams describing data representation in 
NDR/NDR64  extensions follow representation conventions as specified in [C706]  section 14.2.1.  

2.2.5.3.2   Arrays  

2.2.5.3.2.1   Conformant Arrays  

NDR64  represents a conformant array as an ordered sequence of representations of the array 

elements preceded by an unsigned 64 -bit integer. The 64 -bit integer MUST specify the number of 
array elements transmitted, including empty elements, as shown in the follo wing figure. <54>  

 

Figure 6: Conformant arrays  

2.2.5.3.2.2   Varying Arrays  

NDR64  represents a varying array as an ordered sequence of representations of the array elements 
preceded by two unsigned 64 -bit integers. The first 64 -bit integer MUST specify the offset from the 

first index of the array to the first index of the actual subset  being passed. The second 64 -bit integer 
MUST specify the actual number of elements being passed, as shown in the following figure. <55>   

 

Figure 7: Varying arrays  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

63  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.2.5.3.2.3   Conformant Varying Arrays  

NDR64  represents a conformant varying array as an ordered sequence of representations of the 
array elements preceded by three unsigned 64 -bit integers. The first 64 -bit integer MUST specify the 

maximum number of elements in the array. The second 64 -bit integer MUST specify the offset from 
the first index of the array to the first index of the actual subset being passed. The third 64 -bit 
integer MUST specify the actual number of elements being passed. The 64 -bit integers that indicate 
the offset and the actual co unt MUST always be present, even if the maximum count is 0 (zero). See 
the following figure. <56>  

 

Figure 8: Conformant varying arrays  

2.2.5.3.2.4   Multidimensional Arrays  

NDR64 follows the same NDR representation for multidimensional arrays, as specified in [C706]  
sections 14.3.3.6 through 14.3.3.9, except for the maximum count, offset, and actual count. In 
NDR64, these MUST be specified as 64 -bit unsigned integers rather than 32 -bit long integers.  

2.2.5.3.3   Strings  

In NDR64, the elements in a string MUST be characters, wide characters (16 -bit characters specified 
by wchar_t ), octets, or structures, all of whose elements are octets.  

2.2.5.3.3.1   Varying Strings  

NDR64  represents a varying string as an ordered sequence of representations of the string elements 

preceded by two unsigned 64 -bit integers. The first 64 -bit integer MUST specify the offset from the 

first index of the string to the first index of the actual sub set being passed. The second 64 -bit 
integer MUST specify the actual number of elements being passed, including the terminator.  

The first 64 -bit integer (offset) MUST be 0 (zero). See the following figure.  

 

Figure 9: Var ying strings  

2.2.5.3.3.2   Conformant Varying Strings  

NDR64  represents a conformant varying string as an ordered sequence of representations of the 
string elements preceded by three unsigned 64 -bit integers. The first 64 -bit integer MUST specify 
the maximum number of elements in the string, including the terminato r. The second 64 -bit integer 
MUST specify the offset from the first index of the string to the first index of the actual subset being 
passed. The third 64 -bit integer MUST specify the actual number of elements being passed, 

including the terminator.  

http://go.microsoft.com/fwlink/?LinkId=89824


 

64  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The se cond 64 -bit integer (offset) MUST be 0 (zero). See the following figure.  

 

Figure 10: Conformant varying strings  

2.2.5.3.4   Structures  

2.2.5.3.4.1   Structure with Trailing Gap  

NDR64  represents a structure as an ordered sequence of representations of the structure members. 
The trailing gap from the last nonconformant and nonvarying field to the alignment of the structure 
MUST be represented as a trailing pad . The size of the structure  MUST be a multiple of its 

alignment. See the following figure.  

 

Figure 11: Structure with trailing gap  

For more information, see the example in section 4.8 . 

2.2.5.3.4.2   Structure Containing a Conformant Array  

In the NDR64  representation of a structure that contains a conformant array, the unsigned 64 -bit 

long integers that specify maximum element counts for the dimensions of the array MUST appear at 
the beginning of the structure, and the array elements MUST appear in plac e at the end of the 
structure. The diagram in the following figure shows the representation of a structure containing a 
unidimensional conformant array.  

 

Figure 12: Structure containing a unidimensional conformant array  

2.2.5.3.4.3   Structure Containing a Conformant Varying Array  

In the NDR64  representation of a structure that contains a conformant varying array, the 64 -bit 

maximum counts for dimensions of the array MUST appear at the beginning of the structure. The 
64 -bit offsets and the 64 -bit actual counts MUST remain in place at the end of  the structure 
immediately preceding the array elements. The diagram in the following figure shows the 
representation of a structure containing a unidimensional conformant varying array.  



 

65  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

Figure 13: Structure containing a unidimensional conformant varying array  

2.2.5.3.4.4   Unions  

NDR64  represents a union as a representation of the tag followed by a representation of the 
selected member. Unions are aligned according to the largest of the union arms. The selected 

member is aligned to the largest alignment of all the arms.  

2.2.5.3.4.5   Pipes  

In NDR64, a pipe element can be of any NDR primitive or constructed type except the following:  

Á Pipes 

Á Pointers  

Á Either conformant or varying arrays or both conformant and varying arrays  

Á Structures that contain either conformant or varying arrays or that contain both conformant and 

varying arrays  

NDR64 represents a pipe as a sequence of chunks. Each chunk is represented as an ordered 
sequence of representations of the elements in the chunk . The sequence MUST be preceded by a 

64 -bit unsigned integer that specifies the number of elements in the chunk and MUST be followed by 
a 64 -bit unsigned integer that specifies the arithmetic negate of the value of the number of 
elements in the chunk, trea ted as a signed 64 -bit integer. The final chunk MUST contain no 
elements and MUST consist only of two unsigned 64 -bit integers with the value 0 (zero). A chunk 

MUST contain, at most 2 31 -1 elements of the pipe (as opposed to 2 32 -1, as supported in NDR as 
specified in [C706] ).  

 

Figure 14: A pipe as a sequence of chunks  

2.2.5.3.5   Pointers  

A pointer representation MUST be 8 bytes. Pointer representations MUST be aligned on 8 -byte 
boundaries in the octet stream.  

2.2.5.3.5.1   Embedded Reference Pointers  

An embedded reference pointer MUST be represented in two parts: an 8 -octet value in place that 
MUST NOT be NULL and a possibly deferred representation of the referent. The algorithm for 
deferral of referent is as specified by NDR in [C706]  section 14.3.12.3. NDR64 MUST NOT implement 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

66  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

the special case specified by NDR for arrays of reference pointers, and the 8 -octet non -NULL value 
MUST always be transmitted in place.  

2.2.6   Type Serialization Version 1  

Type serialization version 1 is a set of extensions to the IDL/+ pickle, as specified in [C311]  Part 2, 
IDL/NDR  Pickle. Implementations of these extensions allow marshaling/unmarshaling according to 
the NDR transfer syntax of application -specified types by using an application -provided octet 
stream.  

Type serialization version 1 can use either a little -endian or bi g-endian integer and floating -pointer 
byte order but MUST use the IEEE floating -point format representation and ASCII character format. 
See the following figure.  

 

Figure 15: Type serialization version 1  

Multiple top - leve l data types can be serialized  into the same type serialization stream in the same 
way multiple parameters in a procedure are marshaling into an octet stream. A top - level data type 
is the data type an application provides to the imple mentation of these extensions to be serialized or 
de - serialized . A top - level data type MUST be either an NDR -constructed type or a primitive type. 

Each top - level data type is serialized/de -serialized as a whole, according to t he rules that follow.  

2.2.6.1   Common Type Header for the Serialization Stream  

One common type header is created per serialization octet stream. The common header applies to 
all of the typed data in the octet stream. This common type header MUST be presented by using 
little -endian format in the octet stream. The first byte of the common type header MUST be equal to 

1 to indicate this level of type serialization.  

The common type header alignment MUST be aligned on an 8 -byte boundary.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Version  Endianness  CommonHeaderLength  

Filler  

Version (1 byte):  MUST be set to 1 to indicate type serialization version 1.  

Endianness (1 byte):  Specifies the endianness of types serialized in the octet stream as 
follows. <57>   

Value  Meaning  

0x10  Little -endian  

0x00  Big -endian  

http://go.microsoft.com/fwlink/?LinkId=89821
%5bMS-GLOS%5d.pdf


 

67  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

CommonHeaderLength (2 bytes):  The length in bytes of this common type header. MUST be 
set to 8.  

Filler (4 bytes):  Reserved field. MUST be set to 0xcccccccc on marshaling, and SHOULD be 
ignored during unmarshaling.  

2.2.6.2   Private Header for Constructed Type  

A top - level NDR constructed type MUST be preceded by a private header, as specified in this 
section.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

ObjectBufferLength  

Filler  

ObjectBufferLength (4 bytes):  Indicates the length of a serialized top - level type in the octet 
stream. It MUST include the padding length and exclude the header itself.  

Filler (4 bytes):  Reserved field. MUST be set to 0 (zero)  during marshaling, and SHOULD be 

ignored during unmarshaling.  

The private type header MUST be aligned on an 8 -byte boundary in the octet stream. If the length 
of the serialized top - level constructed type in the octet stream is not a multiple of 8 octets, the data 
MUST be padded at the end to ensure its total length is an integral multiple of 8 bytes in length.  

Like a parameter in a procedure, the top - level constructed type MUST be represented in NDR format 
in the octet stream following the private header.  

2.2.6.3   Primitive Type Serialization  

For any top - level NDR  primitive type, there MUST NOT be any private header preceding the actual 
type. The type MUST be aligned on an 8 -byte boundary. If the size of the primitive type is not an 
integral multiple of 8 bytes, the data MUST be padded at the end to ensure that its  total length is an 
integral multiple of 8 bytes.  

2.2.7   Type Serialization Version 2  

Version 2 of type serialization is a set of modifications to type serialization version 1, as specified in 
section 2.2.6 . Implementations of these extensions allow marshaling/unmarshaling of application -
specified data types by using an application -provided serialization stream, according to either NDR 
or NDR64 transfer syntax.  

Type serialization version 2 MUST use little -endian integer and floating -pointer byte order , IEEE 
floating -point format representation, and ASCII character format. The first byte in the octet stream 

MUST be 2 to indicate this level of type serialization.  

2.2.7.1   Common Type Header  

One common type header is created per serialization octet stream. The common header applies to 
all of the typed data in the octet stream. The common type header MUST be aligned on a 16 -byte 
boundary.  



 

68  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Version  Endianness  CommonHeaderLength  

endianInfo  

Reserved  

...  

...  

...  

TransferSyntax  

...  

...  

...  

...  

InterfaceID  

...  

...  

...  

...  

Version (1 byte):  MUST be set to 2 to indicate type serialization version 2.  

Endianness (1 byte):  MUST be set to little -endian (0x10).  

CommonHeaderLength (2 bytes):  Indicates the length in bytes of the common header. MUST 
be 0x40.  

endianInfo (4 bytes):  Reserved field. MU ST be set to 0xcccccccc during marshaling, and 
SHOULD be ignored during unmarshaling.  

Reserved (16 bytes):  Reserved fields. MUST be set to 0xcccccccc during marshaling, and 
SHOULD be ignored during unmarshaling.  



 

69  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

TransferSyntax (20 bytes):  RPC transfer sy ntax identifier used to encode data in the octet 
stream. It MUST use RPC_SYNTAX_IDENTIFIER  format, as specified in section 2.2.2.7 . It 

MUST be either the NDR transfer syntax identifier or the NDR64 transfer syntax identifier.  

InterfaceID (20 bytes):  Interface identifier, as specified in the IDL file. It MUST use the 

interface identifier format, as specified in [C706]  section 3.1.9. Implementations MAY ignore 
the value of this field. <58>  

Similar to Type Serialization Version 1 (section 2.2.6 ) , multiple top - level data types can be serialized 
into the same type serialization stream, in the same way that multiple parameters in a procedure 
are marshaled into an octet st ream. All top - level data types in the same octet stream MUST be 
serialized by using the same transfer syntax as specified in the Common Type Header.  

2.2.7.2   Private Header  

In type serialization version 2, the private header MUST precede all top - level data types in the octet 
stream.  

The private type header MUST be aligned on a 16 -byte boundary. If the length of the serialized top -
level data type in the octet stream is not a multiple of 16 octets, the data must be padded at the 
end to ensure that its total length is an integral multipl e of 16 octets in length.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

ObjectBufferLength  

Filler  

...  

...  

ObjectBufferLength (4 bytes):  Indicates the length of a serialized top - level data type in the 
octet stream. It MUST include the padding length and exclude the header itself.  

Filler (12 bytes):  Reserved field. MUST be set to 0 (zero).  

http://go.microsoft.com/fwlink/?LinkId=89824


 

70  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3   Protocol Details  

RPC extensions preserve the DCE 1.1: RPC Specification [C706]  model of operation between an 
initiator (or client) and a responder (or server). RPC has two protocol variants : connection -oriented 
and connectionless. The following sections first specify protocol details that are common between 
connectionless RPC and connection -oriented RPC protocol variants and then specify details particular 
to each.  

3.1   Connectionless and Connection - Oriented RPC Protocol Details  

This section defines the protocol details that are common between connectionless RPC and 
connection -oriented RPC protocol variants.  

3.1.1   Common Details  

This section defines the protocol details that are common between the client and server roles.  

3.1.1.1   Abstract Data Model  

3.1.1.1.1   Security Context Handle  

Security Context Handle : A security context handle is created and populated by the security 
provider but is used by the RPC runtime and higher - level protocols, as specified in sections 3.2.1.4.1  
and 3.3.1.5.2 . The security context handle  is obtained by calling an implementation -specific 
equivalent of the abstract GSS_Accept_sec_context  on the server or GSS_Init_sec_context  on 
the client, as specified in [RFC2743] . The handle and associated resources are released by calling 

the implementation -specific GSS_Delete_sec_context  equ ivalent.  

The security context handle can be queried using the implementation -specific equivalent of 
GSS_Inquire_context  as specified in [RFC2743] . The information obtained from the context MUST 
include the following:  

Á Context Identifier : A value generated by cryptographic hash (and therefore reliably unique), 

which can be used as a cross -process identifier of the security context negotiated between the 

client and server during packet protected conn ectionless RPC. This value is communicated 
through the key_vers_num  described previously in section 2.2.3.4  and in [C706] . 

Á Error Value : The er ror value returned by the security provider if an error results during the 

construction of the security context.  

Á Security Provider Identifier  

Á Client Credential Identity , as specified in section 3.2.1.4.1 . 

Á Authentication Level  

Á Impersonation Level , as specified in section 2.2.1.1.9 . 

Á Token/Authorization Context , as specified in [MS -DTYP]  section  2.5.2 . This token is created 

by the authentication protocols when the RPC client and server authenticate, as specified in 

[C706]  section 13.1 "The Generic RPC Security Model". When the Kerberos authentication 
protocol is used the token is constructed as in [MS -KILE]  section 3.4.5.3 "Processing 
Authorization Data". When the NTLM authentication protocol is used the token is constructed as 
in [MS -APDS]  section 3.1.5  "Processing Events and Sequencing Rules". This token may be used 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=157390
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-KILE%5d.pdf
%5bMS-APDS%5d.pdf


 

71 /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

for impersonation or obtaining the user SID o r a group SID related to the RPC caller, as specified 
in Abstract Interface GetRpcImpersonationAccessToken (section 3.3.3.4.3.1 ) . 

3.1.1.1.2   Client Credential Handle  

Client Credential Handle : A client credential handle  is a reference to a specific set of client 
identity credentials. A client credential handle  is a parameter used when creating a security 
context handle . The client credential handle  is obtained by calling an implementation -specific 
equivalent of the abstract GSS_Acquire_cred  call as specified in [RFC2743] . The handle and 
associated resources are rele ased by calling the implementation -specific GSS_Release_cred 
equivalent.  

The value of the client credential handle MAY be used to match client identities. In those 

implementations, if two handle value matches, then the client identities (and credentials) M UST be 
guaranteed to be the same.  

3.1.1.1.3   Authorization Policy  

This extension introduces authorization policies that an administrator on the server machine can 
deploy that restrict access to all RPC interfaces on the server.  

RestrictRemoteClients : A 32 -bit value that forces RPC to perform an additional security checks for 
all interfaces. The scope of this ADM element is global to the RPC server. <59> The possible values 
are the following:  

Flag  Value  Description  

RPC_RESTRICT_REMOTE_CLIENT_NONE  0 Causes the server to bypass the RPC interface 

restriction.  

RPC_RESTRICT_REMOTE_CLIENT_DEFAULT  1 All remote anonymous calls are rejected by the 

RPC runtime except calls coming in through 

named pipes (ncacn_np). If an interface is 

regis tered with the 

RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH 

flag, then the interface is not restricted.  

RPC_RESTRICT_REMOTE_CLIENT_HIGH  2 All remote anonymous calls are rejected by the 

RPC runtime with no exemptions.  

EnableAuthEpResolution : A Boolean value global to the RPC client runtime that enables 
authenticated calls to the Endpoint Mapper. If the server's RestrictRemoteClients  value is set to 
RPC_RESTRICT_REMOTE_CLIENT_DEFAULT or RPC_RESTRICT_REMOTE_CLIENT_HIGH, the RPC 

Endpoint Mapper  interface MUST not be accessible anonymously. Typically, an RPC client that 
attempts to make a call using a dynamic endpoint  will first query the RPC Endpoint Mapper on the 
server to determine what endpoint it SHOULD connect to. This query is performed anonymously, 
even if the RPC client call itself is performed using RPC security. The RPC client runtime SHOULD be 
configurable to perform an authenticated query to the Endpoint Mapper. This authenticated query 
MUST only be perfo rmed if the actual RPC client call uses RPC authentication. <60>  

There is no way for a client to discover if the EndPoint Mapper requires authenticated calls. As 

described in [C706]  section 2.12.4, a client can explicitly resolve a partially bound server binding 
handle by calling the equivalent of rpc_ep_resolve_binding . A partially bound server binding 
handle will also be automatically resolved by the RPC runtime when doing  an RPC call using a 
partially bound server binding handle. In both cases, there is no way for a client to force an 
authenticated query to the end point mapper. The query to the end point mapper will use the 

http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824


 

72  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

partially bound server binding handle security i nformation to interact with the EndPoint Mapper. As a 
consequence, if the client is not doing a secure call to the server, it won't be able to interact with an 

EndPoint mapper if the EnableAuthEpResolution  flag is set.  

RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH : A Boolean value maintained in the scope of an 

RPC interface that overrides the behavior of RestrictRemoteClients  when it is set to 
RPC_RESTRICT_REMOTE_CLIENT_DEFAULT, and allows the interface to process unauthenticated 
calls. <61>  

When processing a receive Server Call, an implementation of this protocol must perform one of the 
following actions depending on the value of the RestrictRemoteClients  ADM element:  

Á 0 : Perform no additional checks and consider this check as successful.  

Á 1 :  Examine the Server Call  ADM element to determine if there is a Security Context ADM 

element associated with this call. If a Security Context exists, then this check is considered as 
successful. If there is no Security Context, then examine the RPC Interfac e ADM element for this 
Call to determine if the RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH  flag is set. If this 

flag is set, then consider this check as successful. If this flag is not set, then examine the Server 
Connection  ADM element to determine if the transp ort protocol is ncanc_np. If this transport 

protocol is ncacn_np, then this check is considered as successful; otherwise, consider this check 
as failed  

Á 2 :  Examine the Server Call  ADM element to determine if there is a Security Context ADM 

element associa ted with this call. If a Security Context exists, then this check is considered as 
successful; otherwise, consider this check as failed.  

The RestrictRemoteClients  ADM element has no default value and implementations of this 

protocol MUST determine the value through an implementation manner. <62>  A higher - layer 
protocol MAY provide additional authorization checks that are enforced on the Serve r Call. If any of 
the checks fail, then an implementation of this protocol MUST respond to the client with a 
RPC_FAULT PDU and terminate the connection.  

3.1.1.2   Timers  

There are no timers that are common between connectionless RPC and connection -oriented RPC 

protocol variants.  

3.1.1.3   Initialization  

There is no initialization that is common between connectionless RPC and connection -oriented RPC 
protocol variants.  

3.1.1.4   Higher - Layer Triggered Events  

3.1.1.4.1   Causal Ordering  

These extensions allow for higher - level protocols to issue method calls that are said to be causally 
ordered. If any two method calls N and N+1 are specified to be causally ordered on the client, these 

extensions MUST ensure that N is dispatched before N+1  on the server. On the client, the exact way 
in which method calls are specified to be causally ordered is implementation -specific. On the server, 
the exact way in which dispatch of N is determined to be complete so that N+1 can be dispatched is 

also imple mentation -specific.  



 

73  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.1.4.2   Impersonate Client  

These extensions allow higher - layer protocols to use a security context  to make runtime 
authorization decisions on the server. When a higher - layer protocol requests the RPC runtime to 

impersonate the client on the server, the RPC local server interface retrieves the security context 
(section 3.3.1.5.2.2 ) and makes it available to the higher - layer protocol in an implementation -
specific manner for the higher - layer protocol's use in future authorization decisions. If a security 
context is not available for the connection, the a ttempt to impersonate the client fails. See section 
3.3.3.4.3  for details on the higher - level trigger event associated with retrieving the client's identity.  

3.1.1.5   Message Processing Events and Sequencing Rules  

3.1.1.5.1   Processing Extensions Details  

3.1.1.5.1.1   Extension in NDR Transfer Syntax  

Section 2.2.4  specifies the IDL extensions that affect the syntax and processing of the messages.  

3.1.1.5.1.1.1   __int3264  

__int3264, as specified in [MS -DTYP]  section , is represented in the octet stream as 4 octets in NDR  
transfer syntax. On 32 -bit platforms, it is represented as a 4 -byte integer in memory. On 64 -bit 
platforms, it is represented as an 8 -byte integer, and the higher 4 bytes are truncated on the sender 
side during marshaling and extended appropriately (signe d or unsigned) on the receiving side during 
unmarshaling.  

3.1.1.5.1.1.2   Binding Handle Extension  

[C706]  section 4.3.5 specifies requirements for binding handle usage. In the Remote Procedure Call 
Protocol, a binding handle MAY appear anywhere in a method's list of parameters. <63>  

3.1.1.5.2   Indicating Octet Stream as Invalid  

The RPC runtime MUST indicate to higher - layer protocols on the client about invalid octet streams, 
including different data consistency check failures, as specified in section 3.1.2.5.1 . On the server 
side, the RPC runtime MUST handle an invalid octet stream, as specified in section 3.1.3.5.2 . 

3.1.1.5.3   Strict NDR/NDR64 Data Consistency Check  

These extensions update the DCE 1.1: RPC Specification [C706]  by specifying that, during 
unmarshaling , invalid octet streams SHOULD be rejected by enforcing a set of rules referred to as 
strict data consistency checks. All the consistency check rules specified in the following sections are 
also applicable to NDR64 transfer syntax. This is often referred t o as robust check.  

The consistency checks are grouped into categories called target levels. The two target levels are 
target level 5.0 (as specified in section 3.1.1.5.3.2 ) and target level 6.0 (as spec ified in section 
3.1.1.5.3.3 ). Target level 6.0 is a strict superset of target level 5.0.  

A consistency check is the act of ascertaining a certain relation between two or more values in the 
octet stream inside an implementation of these extensions. If the relation is true, the consistency 
check MUST be regarded as passing. If the relation is not true, the consistency check MUST be 
regarded as failing. The set of consistency check rules follow, and correlation  validation is the most 

important one.  

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf


 

74  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.1.5.3.1   Correlation Validation  

Correlation validation is performed between two fields or two parameters during unmarshaling. The 
fields/parameters that can be correlated are defined using the productions specified in [C706]  

section 4.4.1. In the productions that specify IDL syntax, in production 67 -69, the field with a 
specific <field_attribute> is defined as being correlated to the argument specified by <Ident ifier>. 
The argument identified by <Identifier> is defined as dictating the correlation.  

The correlation validation process MUST validate the consistency between the two correlated values 
in the octet stream according to the rules that follow. Correlation validation MUST be regarded as 
succeeding if the two values are evaluated to be equal to each other; otherwise, the validation 
MUST be regarded as failing. There are several basic types of correlation validation:  

Á Conformance correlation validation: Succeed s if the maximum count is equal to the evaluation 

result for the correlated argument where the correlated argument is determined via the 
production rules given earlier in this section.  

Á Varying correlation validation: Succeeds if the actual count is equal to the evaluation result for 

the correlated argument where the correlated argument is determined via the production rules 

given earlier in this section.  

Á Offset correlation validation: Succeeds if the offset count is equal to the evaluation result for the 

correlated argument where the correlated argument is determined via the production rules given 
earlier in this section.  

Á Union correlation validation: Succeeds if the union tag is equal to the evaluation result for the 

correlated argument where the correlate d argument is determined via the production rules given 

earlier in this section.  

In these extensions, an expression is allowed in conformance, varying, or union, as specified in 
section 2.2.4.7 . Correla tion validation SHOULD check the correlation between the correlated values 
after the expression is evaluated, and MUST succeed if the correlated values are equal after 
evaluating the expression.  

For correlation validation usage, see the example in section 4.6 . 

3.1.1.5.3.2   Target Level 5.0  

This section specifies target level 5.0 strict NDR/NDR64 data consistency check correlation validation 
checks. Target level 5.0 SHOULD <64>  be supported.  

3.1.1.5.3.2.1   Correlation Validation Checks  

These extensions clarify the interpretation as specified in [C706]  for the cases that follow with 
regard to different correlation  validation scenarios.  

3.1.1.5.3.2.1.1   Maximum Count of a Conformant Array or Conformant Varying 

Array Is Dictated by Another Parameter or Field of a Structure  

This target level implementation of these extensions SHOULD validate the conformance correlation  
between the maximum count of the conformant array  and the parameter or field dictating the 
conformance. If the conformant correlation validation fails, the implementation MUST indicate the 

octet stream as invalid.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

75  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.1.5.3.2.1.2   Maximum Count of a Conformant Structure or Conformant Varying 

Structure Is Dictated by a Field of the Structure  

This target level implementation of these extensions SHOULD validate the conformance correlation  
between the maximum count of the conformant array  and the field dictating the conformance. If the 
conformance correlation validation fails, the implementation MUST indicate the octet stream as 
invalid.  

3.1.1.5.3.2.1.3   Maximum Count of a Conformant Array or Conformant Varying 

Array Is a Constant Defined in IDL File  

This target level implementation of these extensions SHOULD validate the conformance correlation 
between the maximum count of the conformant array  and the constant. If the conformance 
correlation validation fails, the implementation MUST indicate the octet stream as invalid.  

3.1.1.5.3.2.1.4   Maximum Count of a Conformant Structure or Conformant Varying 

Structure Is a Constant  

This target level implementation of these extensions SHOULD validate the conformance correlation 
between the maximum count of the conformant array  and the constant. If the conformance 
correlation validation fails, the implementation MUST indicate the octet stream as invalid.  

3.1.1.5.3.2.1.5   first_is of a Varying Array or Conformant Varying Array Is 

Specified by Another Parameter or Field of a Structure  

This target level implementation of these extensions SHOULD validate the offset correlation between 
the offset of the varying array  and the parameter or field dictating the offset. If the offset 
correlation validation fails, the implementation MUST indicate the octet stream as invalid.  

3.1.1.5.3.2.1.6   first_is of a Conformant Varying Structure Is Specified by a Field 

in the Structure  

This target level implementation of these extensions SHOULD validate the offset correlation between 
the offset of the varying array  and the field dictating the offset. If the offset correlation validation 
fails, the implementation MUST indicate the octet stream as invalid.  

3.1.1.5.3.2.1.7   first_is of a Varying Array, Conformant Varying Array, or 

Conformant Varying Structure Is Not Present in IDL  

This target - level implementation of these extensions SHOULD validate that the offset of the varying 
array  equals 0 (zero). If the offset value is not 0 (zero), the implementation MUST indicate the octet 
stream as invalid.  

3.1.1.5.3.2.1.8   Actual Count of a Varying Array or Conformant Varying Array Is 

Dictated by Another Parameter or Field of a Structure  

This target level implementation of these extensions SHOULD validate the varying correlation  

between the actual count of the varying array  and the parameter or field dictating the actual count. 
If the varying correlation validation fails, the implementation MUST indicate the octet stream as 
inv alid.  



 

76  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.1.5.3.2.1.9   Actual Count of a Conformant Varying Structure Is Dictated by a 

Field in the Structure  

This target level implementation of these extensions SHOULD validate the varying correlation 
between the actual count of the varying array  and the field dictating the actual count. If the varying 
correlation validation fails, the implementation MUST indicate the octet stream as invalid.  

3.1.1.5.3.2.1.10   Maximum Count of a Conformant and Varying String Is Dictated 

by Another Parameter or Field of a Structure  

This target level implementation of these extensions SHOULD validate the conformance correlation  
between the maximum count of the conformant and varying string against the parameter or field 
dictating the conformance, and it SHOULD also validate that the offset of the string is equal to 0 
(zero). If either validation fails, the implementation MUST in dicate the octet stream as invalid.  

3.1.1.5.3.2.1.11   Union Validation  

Similar to conformant validation, this target - level implementation of these extensions SHOULD 

validate the discriminant of the union against the representation of the union tag, as specified in 
[C706]  section 14.3.8. If the union correlation validation fails, the implementation MUST indicate the 
octet stream as invalid.  

3.1.1.5.3.2.1.12   General Conformant Varying Validation  

In all conformant varying cases, the maximum count MUST be equal to or greater than the sum of 
actual count and offset. If this validation fails, the implementation MUST treat the octet stream as 

invalid.  

3.1.1.5.3.2.2   Additional Limitations  

These extensions add the following limitations to those as specified in [C706] . 

3.1.1.5.3.2.2.1   Limiting Maximum Count and Octet Stream Length  

These extensions specify that a conformant array or conformant and varying string SHOULD have, 

at most, 2 31 -1 elements in each dimension. <65>   

3.1.1.5.3.2.2.2   strict_context_handle  

A context handle created by a method belonging to one interface  SHOULD NOT be accepted by a 
method belonging to another interface when a strict_context_handle consistency check is activated. 
For more information on syntax details, see section 2.2.4.15 . 

3.1.1.5.3.2.2.3   Rejecting Insufficient Octet Stream  

An octet stream MUST contain sufficient data to unmarshal all the required parameters. 
Implementation of these extensions SHOULD indicate the octet stream as invalid if there is 

insufficient data.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

77  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.1.5.3.2.2.4   range Attribute to Limit the Scope of Integral Values and the 

Number of Elements in Pipe Chunks  

In target level 5.0  of strict NDR/NDR64 data consistency checking , implementation of these 
extensions can limit the allowed scope for integral types and pipes. If the integral data value is out 
of the specified range scope, the implementation SHOULD indicate the octet stream as invalid.  

Implementation of these extension s can also limit the acceptable range of elements in a pipe chunk. 
The implementation SHOULD indicate the octet stream as invalid if the number of elements in a pipe 
chunk is out of the specific range scope. For syntax information, see section 2.2.4.14.1 . 

3.1.1.5.3.2.2.5   auto_handle Deprecation  

Implementation of this level of the extensions SHOULD NOT accept the auto_handle attribute if 
specified on an interface. <66>   

3.1.1.5.3.2.2.6   Ignoring Alignment Gap  

The content of alignment gaps, either within a structure or before an item in the octet stream, 
SHOULD be ignored.  

3.1.1.5.3.3   Target Level 6.0  

This section specifies target level 6.0 strict NDR/NDR64 data consistency check limitations. <67>  

3.1.1.5.3.3.1   Additional Limitations  

3.1.1.5.3.3.1.1   type_strict_context_handle  

An implementation of these extensions at this target level can activate the type strict context 
handle. When it is activated, the implementation SHOULD reject the use of context handles as an 
argument if the argument type on the method being called is diff erent from the argument type on 

the method that created the context handle.  

Context handles defined with unique type names are treated as being of different types for the 
purpose of the type_strict_context_handle check. For example, the following two cont ext handles 
are two different types.  

typedef [context_handle] void * PCTXT1;  

typedef [context_handle] void * PCTXT2;  

For syntax information, see section 2.2.4.16 . 

3.1.1.5.3.3.1.2   Unique or Full Pointer to Conformant Array Consistency Check  

A conformant array or conformant and varying string correlated with another parameter or field can 

be referred by a unique pointer or full pointer. While it is allowed to have a nonzero correlated value 

with a NULL pointer (as specified in [C706]  section 14.3.10), implementations of these extensions 
SHOULD indicate the octet stream as invalid if all of the following conditions are met:  

Á Correlated value evaluates to be nonzero.  

Á The unique or full pointer referring the conformant array or conformant and varying string is 

NULL (0).  

http://go.microsoft.com/fwlink/?LinkId=89824


 

78  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á The conformant array or conformant and varying string does not have the 

disable_consistency_check attribute as specified in section 2.2.4.17 .<68>  

3.1.1.5.3.3.1.3   range Attribute to Limit the Range of Maximum Count of 

Conformant Array and String Length  

In target level 6.0  of strict NDR/NDR64 data consistency check, in addition to the target level 5.0  
range checks, implementations of these extensions can also limit the acceptable range for 
conformant array and string. Implementations can indicate the acceptable value range for the 
maxim um count of the conformant array when a range is applied to the conformance. The 

implementation SHOULD indicate the octet stream as invalid if the maximum count of a conformant 
array is not in the specified acceptable range.  

When a range is applied to a co nformant and varying string without correlation, it indicates the 
acceptable length, including the NULL terminator, of the string. The implementation SHOULD 
indicate the octet stream as invalid if the string length, including terminator, is outside the 
acceptable range. For syntax information, see section 2.2.4.14.2 . 

3.1.1.5.4   Restriction on Remote Anonymous Calls  

For security reasons, an implementation of these extensions MAY choose to reject remote 
anonymous calls. <69>  

3.1.1.5.5   Returning Win32 Error Values  

Whenever a server implementation returns an error code in the fault or reject PDU , the client 
implementation MUST use the following conversion table and return the corresponding Win32 error 

code to the client application. The term "not mapped" indicates that the error code value returned to 
the client application is the same as in the fault or reject PDU. Otherwise, the name of the value 
defined in [MS -ERREF] that is to be returned is shown. The Status Codes are defined in [C706]  
section N.2.  

Sta tus Code  Win32 Error Code  

nca_s_comm_failure  RPC_S_COMM_FAILURE  

nca_op_rng_error  RPC_S_PROCNUM_OUT_OF_RANGE  

nca_unk_if  RPC_S_UNKNOWN_IF  

nca_wrong_boot_time  Not mapped.  

nca_s_you_crashed  RPC_S_CALL_FAILED  

nca_proto_error  RPC_S_PROTOCOL_ERROR 

nca_out_args_too_big  RPC_S_SERVER_OUT_OF_MEMORY 

nca_server_too_busy  RPC_S_SERVER_TOO_BUSY  

nca_unsupported_type  RPC_S_UNSUPPORTED_TYPE 

nca_s_fault_int_div_by_zero  RPC_S_ZERO_DIVIDE  

nca_s_fault_addr_error  RPC_S_ADDRESS_ERROR 

nca_s_fault_fp_div_zero  RPC_S_FP_DIV_ZERO  

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824


 

79  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Sta tus Code  Win32 Error Code  

nca_s_fault_fp_underflow  RPC_S_FP_UNDERFLOW 

nca_s_fault_fp_overflow  RPC_S_FP_OVERFLOW 

nca_s_fault_invalid_tag  RPC_S_INVALID_TAG  

nca_s_fault_invalid_bound  RPC_S_INVALID_BOUND  

nca_rpc_version_mismatch  RPC_S_PROTOCOL_ERROR 

nca_unspec_reject  RPC_S_CALL_FAILED  

nca_s_bad_actid  RPC_S_CALL_FAILED_DNE  

nca_who_are_you_failed  RPC_S_CALL_FAILED  

nca_manager_not_entered  RPC_S_CALL_FAILED_DNE  

nca_s_fault_cancel  RPC_S_CALL_CANCELLED 

nca_s_fault_ill_inst  RPC_S_ADDRESS_ERROR 

nca_s_fault_fp_error  RPC_S_FP_OVERFLOW 

nca_s_fault_int_overflow  RPC_S_ADDRESS_ERROR 

nca_s_fault_unspec  RPC_S_CALL_FAILED  

nca_s_fault_remote_comm_failure  Not mapped.  

nca_s_fault_pipe_empty  RPC_X_PIPE_EMPTY 

nca_s_fault_pipe_closed  RPC_X_PIPE_CLOSED 

nca_s_fault_pipe_order  RPC_X_WRONG_PIPE_ORDER  

nca_s_fault_pipe_discipline  RPC_X_PIPE_DISCIPLINE_ERROR  

nca_s_fault_pipe_comm_error  RPC_S_COMM_FAILURE  

nca_s_fault_pipe_memory  RPC_S_OUT_OF_MEMORY 

nca_s_fault_context_mismatch  RPC_X_SS_CONTEXT_MISMATCH  

nca _s_fault_remote_no_memory  RPC_S_SERVER_OUT_OF_MEMORY 

nca_invalid_pres_context_id  RPC_S_PROTOCOL_ERROR 

nca_unsupported_authn_level  RPC_S_UNSUPPORTED_AUTHN_LEVEL  

nca_invalid_checksum  RPC_S_CALL_FAILED_DNE  

nca_invalid_crc  RPC_S_CALL_FAILED_DNE  

nca_s_fault_user_defined  Not mapped.  

nca_s_fault_tx_open_failed  Not mapped.  

nca_s_fault_codeset_conv_error  Not mapped.  



 

80  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Sta tus Code  Win32 Error Code  

nca_s_fault_object_not_found  Not mapped.  

nca_s_fault_no_client_stub  Not mapped.  

3.1.1.6   Timer Events  

There are no timer events that are common between connectionless RPC and connection -oriented 

RPC protocol variants.  

3.1.1.7   Other Local Events  

There are no other local events that are common between connectionless RPC and connection -
oriented RPC protocol variants.  

3.1.2   Client Details  

3.1.2.1   Abstract Data Model  

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document.  

3.1.2.1.1   Server Binding Handle  

This document extends the definition of a server binding handle in the following way:  

Á AuthIdentity : [C706]  describes the auth_identity handle as a handle to a data structure that 

contains the client's authentication and authorization credentials. To be compliant with this 

extension, AuthIdentity  replaces the generic auth_identity handle and MUST store a Client  

Credential Handle . See section 3.1.2.4.1  for details on setting the AuthIdentity  by the higher -
layer protocol.  

3.1.2.2   Timers  

There are no timers that are common between clients for connectionless RPC and connection -
oriented RPC protocol variants.  

3.1.2.3   Initialization  

There is no initialization that is common between clients for connectionless RPC and connection -
oriented RPC protocol variants.  

3.1.2.4   Higher - Layer Triggered Events  

3.1.2.4.1   Set Server Binding Handle Client Credentials  

The higher layer protocol MAY optionally set security information for the server binding handle using 
the equivalent of rpc_binding_set_auth_info() . Implementations of these extensions MUST set 
the server binding handle's AuthIdentity  using the output handle from calling an implementation -
specific equivalent of the abstract GSS_Acquire_cred  call as specified in [RFC2743] . 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90378


 

81  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

If the auth_identity  parameter to rpc_binding_set_auth_info  is NULL, the client MUST use the 
default credentials of the current execution context by specifying GSS_C_NO_CREDENTIAL.  

If the auth_identity  parameter to rpc_bind ing_set_auth_info  includes credentials, the client 
MUST use the supplied credentials when calling GSS_Acquire_cred .  

3.1.2.5   Message Processing Events and Sequencing Rules  

3.1.2.5.1   Indicating Invalid Octet Stream on Client  

Implementations of these extensions MUST notify higher layers of invalid octet streams, including 
data consistency check failures, in an implementation -specific way. This may be through returning a 
status code, throwing an exception, or in some other imple mentation -specific way that is not 

defined by this specification. Details on Win32 error codes are specified in [MS -ERREF]. 

3.1.2.6   Timer Events  

None.  

3.1.2.7   Other Local Events  

3.1.2.7.1   Client Conformant Validation Processing for Response Data  

In target level 5.0  of strict NDR/NDR64 data consistency check, as specified in section 3.1.1.5.3.2 , 
implementations of these extensions SHOULD perform the following correlation validation in the 
client stub if the RPC runtime writes into client -provided memory during unmarshaling.  

3.1.2.7.1.1   Maximum Count of a Conformant Array Is Dictated by Another 

Parameter or Field of a Structure  

This target level of implementation for these extensions MUST:  

Á Capture the evaluation result of the parameter dictating the conformance before unmarshaling 

for later use during unmarshaling.  

Á Indicate the octet stream as invalid during unmarshaling if the maximum count of the 

conformant array of the response data exceeds the evaluation result of the parameter dictating 

the conformance that was pr eviously captured.  

3.1.2.7.1.2   Offset and/or Actual Count of a Conformant Array Is Dictated by 

Another Parameter or Field of a Structure  

This target level of implementation for these extensions MUST:  

Á Capture the evaluation result of the parameter dictating the conformance before unmarshaling 

for later use during unmarshaling.  

Á Indicate the octet stream as invalid during unmarshaling if the sum of offset and actual count of 

the conformant varying array of the response data exceeds the evaluation result of the 
parameter dictating the conformance that was previously captured.  

3.1.2.7.1.3   Maximum Count of a Conformant and Varying String Is Dictated by 

Another Parameter  

This target level of implementation for these extensions MUST:  

%5bMS-ERREF%5d.pdf


 

82  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Capture the evaluation result of the parameter dictating the conformance before unmarshaling  

for later use during unmarshaling.  

Á Indicate the octet stream as invalid during unmarshaling if the string length, including 

terminator, of the response data exceeds the evaluation result of the parameter dictating the 
conformance that was previously capt ured.  

3.1.2.7.1.4   Maximum Count of Conformant Varying String Is Not Dictated by 

Other Parameters or Fields  

This target level of implementation for these extensions MUST:  

Á Capture the string length, including terminator, before unmarshaling  for later use during 

unmarshaling.  

Á Indicate the octet stream as invalid during unmarshaling if the string length, including 

terminator, of the response data exceeds the evaluation result of the parameter dictating the 
conformance that was previously capt ured.  

3.1.2.7.1.5   Conformant Structure  

This target level of implementation for these extensions MUST:  

Á Capture the evaluation result of the field dictating the conformance before unmarshaling for later 

use during unmarshaling.  

Á Indicate the octet stream as invalid during unmarshaling if the maximum count of the 

conformant structure of the response data exceeds the evaluation result of the field dictating the 
conformance that was previously captured.  

3.1.2.7.1.6   Conformant Varying Structure  

This target level of implementation for these extensions MUST:  

Á Capture the evaluation result of the field dictating the conformance before unmarshaling for later 

use during unmarshaling.  

Á Indicate the octet stream as invalid during unmarshaling if the sum of offset and actual count of 

the conformant varying structure from the response data exceeds the evaluation result of the 
field dictating the conformance that was previously captured. <70>  

3.1.3   Server Details  

3.1.3.1   Abstract Data Model  

This section specifies the elements of the abstract data model that are common between servers for 
connectionless RPC and connection -oriented RPC protocol variants.  

3.1.3.1.1   Table of Security Providers  

Table of Security Providers : A server implementation MUST maintain an abstraction of a Table 
of Security Providers  indexed by Security Provider value as defined in section 2.2.1.1.7 . The table 

MUST have fields for security provider and principal name.  



 

83  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Higher - level protocols indicate to the RPC runtime when to add rows to the Table of Security 
Providers  using implementation -specific APIs. Once a row has been added to the Table of Security 

Providers it cannot be removed or modified.  

Many PDUs that arrive at a server have a field that selects a Security Provider (also called an 

authentication type). These extensions MUST use the  Security Provider in the PDU as a selector in 
the Table of Security Providers  to route the PDU for processing to the correct security provider.  

3.1.3.2   Timers  

There are no timers that are common between servers for connectionless RPC and connection -
oriented RPC protocol variants.  

3.1.3.3   Initialization  

3.1.3.3.1   Delay Use of Protocol Sequences on the Endpoint Mapper  

On a system that supports a given protocol sequence, these extensions explicitly allow an endpoint 
mapper  instance to delay listening on that protocol sequence until at least one server using dynamic 
endpoints on the system is listening on that protocol sequence.  

Even though a system is fully capable of using a protocol sequence, it MAY choose not to listen on a 

particular protocol sequence when no server is using it. Therefore, a client implementation of these 
extensions MUST NOT assume that a system that is not listening on a particular protocol sequence is 
necessarily incapable of supporting that protocol sequence. <71>  

3.1.3.4   Higher - Layer Triggered Events  

3.1.3.4.1   Retrieve Protocol Sequence  

Implementations of these extensions MUST export to higher - layer protocols the capability to retrieve 
the protocol sequence used for a particular remote procedure call (RPC) . This information is 

available using a binding handle as specified in [C706]  section 6.2.1. Section 2.1  specifies the 
protocol sequence strin gs corresponding to RPC transports.  

3.1.3.4.2   Adding Elements to the Table of Security Providers  

A higher - level protocol on the server can modify the Table of Security Providers to specify the 
security providers that can be used to provide security for the context.  

1.  The higher - layer protocol MUST specify a valid Security Provider value.  

2.  The higher - layer protocol MAY specify a server principal name depending on the requirements of 
the security provider being added.  

3.  I f the Security Provider value specified is valid, return RPC_S_OK (0x00000000). Otherwise, 
return RPC_S_UNKNOWN_AUTHN_SERVICE  (0x000006D3).  

3.1.3.5   Message Processing Events and Sequencing Rules  

3.1.3.5.1   Server Stub Memory Allocation Limit  

An implementation MAY <72>  choose to limit the size of server stub memory allocation.  

http://go.microsoft.com/fwlink/?LinkId=89824


 

84  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.1.3.5.2   Indicating Invalid Octet Stream in Server  

When the RPC runtime determines that a network octet stream is invalid, it MUST indicate the 
failure to the client. The form of the indication is dependent on whether the RPC protocol variant  

used is connection -oriented or connectionless. For information about how a connection -oriented 
protocol variant returns a server unmarshaling failure to the client, see section 3.3.3.4.1 . For 
informatio n about how a connectionless protocol variant returns a server unmarshaling failure to the 
client, see section 3.2.3.5.1 . In either case, the status code returned MUST be 0x6f7.  

Details about Win32 error  codes are specified in [MS -ERREF]. 

3.1.3.5.3   Interpretation of Tower Encodings  

These extensions change some details on how the tower encodings, as specified in [C706]  Appendix 
L, are interpreted. All provisions specified in [C706]  that are not specifically overridden here are 
assumed to be the same as specified in [C706] .  

Á Implementations of these extensions  MUST ignore the network address portion of the tower. 

Therefore, the endpoint mapper MUST only accept interface registration of interfaces that are 
running locally on the machine.  

Á As specified, [C706]  allows for any number of floors in the tower encoding. Implementations of 

these extensions SHOULD reject towers with more than six floors.  

3.1.3.6   Timer Events  

There are no timer events that are common between servers for connectionless RPC and 
connection -oriented RPC protocol variants.  

3.1.3.7   Other Local Events  

There are no other local events that are common between servers for connectionless RPC and 
connection -oriented RPC protocol variants.  

3.2   Connectionless RPC Protocol Details  

Connectionless RPC MAY <73>  be supported; an implementation SHOULD instead fail connectionless 

requests with an RPC_S_CANNOT_SUPPORT (0x000006e4) error.  

3.2.1   Common Details  

3.2.1.1   Abstract Data Model  

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 

explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document.  

3.2.1.1.1   State Machines  

Connectionless Protocol Machines ( [C706]  section 9.6) contains state machines for the client and 
server roles. These extensions replace the state machines, as specified in [C706] , with the state 

machines specified in sections 3.2.2.1 ,  3.2.3.1  and 3.2.1.5.3 . 

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

85  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.1.1.2   Send Window (Call)  

Send Window: The client and server SHOULD implement an abstraction of a send window  in its 
call  object to support an implementation of a sliding window algorithm. The Windows -based client 

and server call objects share a common packet -windowing implementation that maintains separate 
windows for the data to be sent and received. For a particular call,  the send window  contains the 
following properties:  

Á Sent Fragment List : For every call, the client and server MUST maintain a Sent Fragment List  

of fragment descriptors that represents the set of fragments that have been sent to the client or 
server but fo r which a FACK has not yet been received.  

The Sent Fragment List  is maintained as a ring buffer containing a number of fragment 
descriptors. The maximum number of elements in the Sent Fragment List  is limited by the 
greater of the Outbound Fragment Window and Maximum_window_size .  

Fragments are added to the Sent Fragment List  when they are sent, and are removed when a 
FACK PDU is received for the corresponding fragment. Removing a fragment from the Sent 

Fragment List  enables further fragments to be sent.  

Á Fra gment_final : An unsigned 32 -bit integer representing the final fragment to be sent. It is 

calculated using the size of the call to be sent divided by the Maximum_fragment_length .  

Á Fragment_base : An unsigned 32 -bit integer representing the first unacknowledg ed fragment of 

the call to be sent. It is zero initially and advanced when the receiver acknowledges one or more 
additional fragments.  

Á Outbound Fragment Window : The client and server maintain an unsigned 32 -bit integer 

containing the window size that indic ates the maximum number of unacknowledged fragments 
that the remote client and server are ready to receive.  

The value is initialized from the current value of the activity's Maximum_window_size .  

Á Burst_length : The number of fragments to transmit at one time . Initially one; limited by the 

Outbound Fragment Window . It is incremented when a FACK is received and halved when a 
receive times out as detected by the Packet Retransmission Timer . The minimum value is 0. 

For details, see the discussion of Packet Transm ission Behavior in section 3.2.1.5.3 . 

Á Send_serial_number : The serial number of the next packet to be sent. Initially zero; 

incremented after every sent fragment and, for client implementations, every PIN G packet.  

Á Fack_serial_number : The latest serial number acknowledged by the recipient. Initially zero; 

updated when a received FACK or NOCALL carries a higher value in its serial_num  field.  

Á Maximum PDU Length : The size of the largest packet that can be sent  and received by the 

transport. Set to 1,024 bytes for the first call of an activity. At the end of the call, the current 
value is stored in the activity, and the next call begins with the stored value. When a FACK or 
NOCALL is received, the value is updat ed to the lower of the local transport limit and the value in 
the packet's max_tsdu  field.  

Á Maximum_fragment_length : The largest amount of stub data that fits in a single PDU. It is 

equal to the Maximum PDU Length  minus 0x80 bytes for the RPC header and the  number of 

bytes required for the security trailer. It is updated whenever Maximum PDU Length  is 
updated.  



 

86  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.1.1.3   Receive Window (Call)  

Receive Window : The client and server SHOULD implement an abstraction of a receive window  
in its call  object to support an implementation of a sliding window algorithm. The Windows -based 

client and server call objects share a common packet -windowing implementation that maintains 
separate windows for the data to be sent and received. For a particular call,  the receive window  
contains the following properties:  

Á Received Fragment List : For every call, the client and server MUST maintain a list of received 

fragments indexed by fragment number, as defined in [C706]  section 12.5.2.16, and also 
containing the fragment's serial number. The list is used to collect fragments until all fragments 

for the call have been received. All fragments have been received when the receiver has received 
a fragment with th e flag value lastfrag , as defined in [C706]  section 12.5.2.3, and all fragments 
are present from fragment number zero up to and including the fragment number of the 
fragment with lastfrag  set.  

The Received Fragment List  is initially empty at the beginning of a call. The Received 
Fragment List  is deleted when a call is completed.  

Á Receive Fragment Base : For a call, an integer variable that indicates the lowest fragment 

number which can be received a nd added to the Received Fragment List . A fragment with a 
fragment number greater than or equal to the Receive Fragment Base  value is added to the 
Received Fragment List .  

Á Receive serial number : The latest fragment serial number received in this call.  

3.2.1.2   Timers  

There are no timers that are common between the client and server.  

3.2.1.3   Initialization  

There is no initialization that is common between the client and server.  

3.2.1.4   Higher - Layer Triggered Events  

3.2.1.4.1   Building and Using a Security Context  

To make a secure call, a security context needs to be created before it can be used. The process of 
creation involves exchanging one or more messages between the client and server implementations 
of a security provider. This process is also called building a security context. During the process of 
building a security context, a security provider may optionally exchange messages with an entity 
other than the client or server (for example, a Key Distribut ion Center (KDC)), but this exchange is 

not addressed in this document. The scope of a built security context is the activity. If a client wants 
to use a security context on a different activity, it MUST totally rebuild it for that different activity.  

Upon receiving and processing an authentication token at any point in the authentication on either 
the client or server, the security provider MUST indicate to RPC runtime one of three abstract results 

from the processing: an error, a success, or a request fo r further security legs, as specified in 
[RFC2743] . If the security provider indicates an error, the RPC runtime takes recovery action that is 
dependent on the location of the error.  

The process  of building a security context MUST start on the client. The client begins the process by 
using the server binding handle's AuthIdentity  to create an authentication token using the server 
binding handle's specified security provider identifier  by invoking  an implementation -specific 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90378


 

87  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

equivalent of the abstract GSS_Init_sec_context call, as specified in [RFC2743] . The client MUST 
choose a value for the key_vers_num  field of the sec_trailer_cl  structure such that it is unique 

within the scope of the given activity. The client then MUST use the token to sign or seal one or 
more request PDUs and then sends them to the server. If any of these steps enc ounters a failure, 

the client RPC runtime MUST set the activity's Discard  flag to TRUE and discard the activity unless it 
is expecting responses to other calls belonging to the activity. For details on multiple calls on the 
same activity, see section 3.2.1.5.2  

When the server receives a PDU containing a nonzero auth_proto  field, it checks the 
key_vers_num  field of the PDUs sec_trailer_cl  structure. If the server does not already have a 
security context in  the Table of Security Contexts  matching the key_vers_num , it MUST do the 
following:  

Á Locate a Security Provider from the Table of Security Providers  using the value in the 

auth_proto  field.  

Á Request that it create a new security context.  

Á Create a token through an implementation -specific equivalent of the abstract 

GSS_Accept_sec_context  call, as specified in [RFC2743] .  

The server MUST send the token to the client by creating a binding handle to the client and calling 
conv_who_are_you_auth  with the token in the in_data  parameter. If the token is large enough 
to require calls to conv_who_are_you_a uth_more , the server MUST preserve the token in the 
server's security buffer  in the activity entry in the Table of Activity IDs  until it has sent the 
entire token to the client. If the security provider returns success from processing the authentication 
to ken, the security context is successfully created. If any of these steps encounters an error, the 

server SHOULD send a fault or reject PDU, as appropriate, and discard the security context.  

The client MUST provide the token to its security provider by usin g an implementation -specific 
equivalent of the abstract GSS_Init_sec_context  call, as specified in [RFC2743] , and MUST send 
the response token to the server in the out_data  parameter of the conv_who_are_you_auth . If 
the response token is large enough to require calls to conv_who_are_you_auth_more , the client 
MUST preserve the token in the client activity's security buffer , until it has returned all of the 

token to the server. If the security provider returns success from processing the authentication 

token, the security context is successfully created. If any of these steps encounters an error, the 
client SHOULD send a fault or reject PDU, as appropriate, and discard the security context.  

If t he security provider indicates a request for further security legs, the server should send a nocall 
PDU to the client and discard the security context.  

For information on client and server state machines, see sections 3.2.2.1  and 3.2.3.1 .  

Once negotiated, a security context SHOULD be maintained by both client and server 
implementations for the lifetime of the activity it is negotiated on, unless the se curity provider 

indicates that the context has expired by returning the SEC_E_CONTEXT_EXPIRED error when the 
RPC runtime attempts to use the security context.  

If security contexts are maintained, then the client SHOULD store the resultant security context 
handle  in the client activities security context handle  property. The client SHOULD store the 

client credential handle  used to create the security context handle  in the client activity's client 
credential handle  property. The server SHOULD store the result ant security context handle  in 

the appropriate Table of Activity IDs Table of Security Contexts .  

If the client received an error using the security context, it MUST attempt to build another security 
context as described previously in this section.  

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378


 

88  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

If the s erver receives an error using the security context, the packet that it is currently being 
processed is discarded.  

3.2.1.4.1.1   Using a Security Context  

After a security context is built, the security context (referenced by the security context handle ) 
can be used by the RPC  runtime and higher - level protocols to perform authorization decisions. 
Besides using the security context for authorization decisions, the RPC runtime can also use the 
security context to create a logical stream of data that is protected from tampering an d information 
disclosure on the network.  

The amount of protection applied depends on the authentication level for the security context 
requested by the client when the security context is created. The authentication level is applied in 

two dimensions:  

Á In the first dimension, the authentication level controls what capabilities the RPC runtime MUST 

request from the security provider when the security context is being built, as detailed in the first 
table that follows in this section. It is possible for a sec urity provider to not be able to provide a 

certain capability. In this case, the lack of the capability MUST be considered by the RPC runtime 
as equivalent to the security provider returning an error and is handled as specified in the 

previous section.  

Á In  the second dimension, the authentication level controls how the RPC runtime MUST perform 

PDU protection for the different PDU segments using the security context as detailed in the 
second table that follows in this section.  

The following table specifies t he abstract capability that the RPC runtime MUST request from the 
security provider when the security context is being created. The capabilities are further specified in 

[RFC2743]  section 1.2.1.2 . The capabilities requested at each level include the ones requested at 
the previous level.  

Authentication level  Capability requested  

RPC_C_AUTHN_LEVEL_CONNECT  None  

RPC_C_AUTHN_LEVEL_PKT  Replay Detect  

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY  Sequence Detect, Integrity  

RPC_C_AUTHN_LEVEL_PKT_PRIVACY  Confidentiality  

As specified earlier in this section, once the security context is built, the RPC runtime MUST also use 

the authentication level to determine how the different PDU segments are protected.  

Header signing is not supported in connectionless RPC.  

Authentication level  PDU header  PDU body  sec_trailer  

RPC_C_AUTHN_LEVEL_CONNECT  None  None  None  

RPC_C_AUTHN_LEVEL_PKT  None  None  None  

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY  None  Integrity  None  

RPC_C_AUTHN_LEVEL_PKT_PRIVACY  None  Confidentiality  None  

http://go.microsoft.com/fwlink/?LinkId=90378


 

89  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

In the preceding table, "None" means no protection, "Integrity" means an integrity check per 
[RFC2743]  section 2.3.1 MUST be applied, and "Confidentiality" means that the segment MUST be 

encrypted ( conf_req_flag  is TRUE per [RFC2743]  section 2.3.3).  

The above levels of protection may be applied through an implementation -specific equivalent of the 

abstract GSS_Wrap  call, as specified in [RFC2743] . The receiver of a protected packed may verify  
the integrity of the packet or decrypted using an implementation -specific equivalent of the abstract 
GSS_Unwrap .  

This protocol does not specify whether the authentication token itself is protected from tampering by 
the security provider. It also does not specify how the security provider applies integrity or 
confidentiality protection to a PDU segment. The algorithms for doing so are specific to the security 
provider. For information about a security provider, see the documentation for that security 

provid er.  

3.2.1.4.2   Callbacks  

Connectionless RPC protocols do not have support for application - level callback calls.  

3.2.1.5   Message Processing Events and Sequencing Rules  

3.2.1.5.1   Authentication  

The marshaled stub data of a client's conv_who_are_you_auth  response SHOULD fit into a single 
unfragmented RESPONSE packet for maximum interoperability. <74>  

These extensions do not require support for the Authentication Service  rpc_c_authn_dce_secret, 
as specified in [C706]  section 13.1.2.2. It  supports authentication by using the NTLM Authentication 
Protocol and Kerberos Protocol, using authentication type constants as specified in section 2.2.1.1.7 . 

The authentication tokens present in each PDU are specified in section 2.2.3.5 .<75>  

3.2.1.5.2   Overlapped Calls  

These extensions extend the connectionless protocol, as specified in [C706] , to allow multiple 
simultaneously active calls in a single activity . This reduces the overhead of asynchronous calls, 
which ordinarily require a separate activity and security context for each overlapping call. Use of the 
new feature requires that both the client and server support the extension.  

The processing order for calls on the server is specified in [C706]  section 6.1. That definition is 
preserved in these extensions. These extensions deviate from what is specified in [C706]  by 
allowing the [in] and [out] buffers of multiple calls to overlap in transmission.  

The server conv_who_are_you2  and conv_who_are_you_auth  conversation callbacks  
SHOULD set the PF2_UNRELATED  bit ; this indicates to the client that the server is capable of 
handling overlapped calls correctly.  

After the client has successfully processed a conversation callback with the PF2_UNRELATED  flag 

set, it SHOULD set the client's Supports PF2_Unrelated Flag  and overlap calls on any activity in 
the Client Address Space  for that particular RPC server if the implementation -specific methods for 

call invocation allow the specification of simultaneous or asynchronous call invocations, and the 
higher - layer protocol re quests simultaneous or asynchronous calls.. <76> All calls where the higher -
layer protocol requests simultaneous or asynchronous behavior MUST set the Overlapping  ADM 
element of the call to TRUE. If Overlapping  is set to TRUE, the cli ent MUST set the 

PF2_UNRELATED  flag in each REQUEST packet that is sent before a call with a lower sequence 

http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GLOS%5d.pdf


 

90  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

number has completed. This informs the server not to cancel or complete other active calls with  
lower sequence numbers. <77>  

When the client has not successfully processed a conversation callback with the PF2_UNRELATED  
flag set, it MUST NOT overlap multiple calls of an activity. In particular, the client MUST NOT send a 

REQUEST for a call until all calls with lower sequence numbers have entered 
STATE_ACK_PENDING , STATE_COMPLETE , or STATE_FAULT . The client MUST NOT set the 
PF2_UNRELATED  flag in any REQUEST packet.  

Overlapped calls all use the same Security Context Handle  associ ated to their parent activity. If 
the activity's security context (identified by the activity's Security Context Handle ) is renegotiated 
while calls are overlapped, it might happen that certain PDUs will be handled with the wrong 
security context and thus will fail the security verification. In such a case, the packets are dropped 

and the protocol relies on the Communication Time - Out Timer  to resend the packet using the 
new security context.  

The client and server MUST NOT set the PF2_UNRELATED  flag in the h eader of any other packet 
type.  

See section 3.2.2.4.1.5  for details of how overlapped calls are processed on the client.  

3.2.1.5.3   Sliding Window Algorithm  

[C706]  sections 9.5.5, 10.1, and 10.2 allow conforming implementations broad latitude in 
implementing the sliding window algorithm for REQUEST and RESPONSE fragments. The Windows 
behavior is compatible with clients and servers that use other windowing implementations 
conforming to [C706] . The following section specifies the implementation of the sliding window 
algorithm.  

Packet Transmission Behavior. A client call sends fragments in the following three cases:  

1.  When the call is first instantiated, the Send Window (Call)  and its properties are initialized and 
the client sends a burst of fragments.  

2.  When a FA CK or NOCALL -with -body is received from the server. The Send Window (Call) is 
updated and the client sends a burst of fragments.  

3.  When the Packet Retransmission Timer  is triggered (for more information, see section 
3.2.2.2.1 ). The client halves the Send Window (Call) Burst_length  property and sends a burst 
of fragments.  

When the client or server must send a burst of fragments, it attempts to send a number of 
fragments equal to the Burst_length  property of the Send Window (Call) ADM element. The sender 
first attempts to extend the window by sending never -before -sent fragments. All fragments except 
the last are sent with the PF_NOFACK  flag set. The last fragment sent clears the PF_NOFACK  flag 
unless (a) it is  the final fragment of the call data, or (b) it is overlapping a previous async call of the 
activity (that is, the PF2_UNRELATED  flag is set). Otherwise, it too is sent with the PF_NOFACK  

flag. If fewer than Burst_length  are sent because the call data is t oo short or the Outbound 
Fragment Window property of the Send Window (Call) ADM element limit is reached, the 

Burst_length  is halved. If no fragments at all are sent, the lowest unacknowledged fragment is 
resent with the PF_NOFACK  flag cleared.  

Response t o Packets:  

When a packet with PF_NOFACK  cleared is received, the recipient sends a FACK with a version -
zero body. The max_tdsu  field is set to the maximum PDU length for the transport (for more 

information, see section 2.1.2 ). The max_frag_size  field is set to the maximum unfragmented 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

91  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

packet length for the transport (for more information, see section 2.1.2 ). The window_size  field is 
calculated by dividi ng a version -specific constant by the number of calls currently using the 

port. <78>  For client ports, the number of calls is typically one, but may be higher if multiple 
asynchronous calls are in progress. If the resulting window size is less than one, it is set to one. If 

the resulting window size is greater than 32, it is set to 32. Th e serial_num  field is set to the 
current value of the Send Window (Call) ADM element's Receive serial number  property. The 
selack_num , selack , and header  fragnum fields are set based on the fragments received, as 
specified in [C706]  section 12. When an RPC receives a fragment with a length signifying a 
Maximum PDU Length  larger than the current value in the Send Window , the implied length is 
calculated by rounding the total packet length down to t he nearest multiple of 8. The activity's 
Maximum PDU Length  is then set to the lower of this rounded value and the local transport limit. 

Therefore, the new value takes effect with the next call of the activity.  

3.2.1.6   Timer Events  

There are no common timers between the client and server.  

3.2.1.7   Other Local Events  

There are no other local events that are common between the client and server.  

3.2.2   Client Details  

3.2.2.1   Abstract Data Model  

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 

explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document.  

3.2.2.1.1   Supports PF2_Unrelated Flag  

Supports PF2_Unrelated Flag : The flag is a Boolean value that indicates whether the server 
supports overlapping calls for a single activity. See section 4.3  for a description of the packet 

exchange happening between a client and a server.  

The flag is initialized to FALSE.  

It is updated when a conv_who_are_you2  conversation callback is performed by the server on 
any activity between the client and the server.  

3.2.2.1.2   Security Provider Identifier  

Security Provider Identifier  : A value from the list of available security providers, as defined in 

section 2.2.1.1.7 . 

3.2.2.1.3   Authentication Level  

Authentication Level : A value from the list of authentication levels, as defined in section 
2.2.1.1.8 . 

http://go.microsoft.com/fwlink/?LinkId=90952


 

92  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.2.1.4   Activity  

Activity : A structure that contains the following information related to an activity. The elements of 
the structure are:  

Á Activity UUID : A unique identifier for the activity. Section 2.2.1.1.3  specifies UUID format 

requirements.  

Á Sequence Number : An unsigned 32 -bit integer, as specified in [C706]  section 12.5.2.11. There 

is no provision for overflow of sequence numbers. <79>  

Á Security Context Handle  

Á Client Credential Handle : The Client Credential Handle  used to create the activity's 

Security Content Handle . 

Á Active Call Reference  counter: Counter indicating the number of active calls associated with 

the ac tivity.  

Á Current Call : A reference to a Call  element in the List of Active Calls. The Current Call  is the 

call for which the client is actively sending fragments and, possibly, waiting for a response from 
the server. The Current Call  is initialized for a ne w Activity  to NULL but will be updated to a 
new Call  element as soon as it is created in the new activity. See section 3.2.2.4.1.5  for details 
of the relationship between Current Call  and the List of Act ive Calls .  

Á Delayed - Ack Timer : The client MUST store a reference to an instance of a Delayed - Ack Timer  

for the current call  of this activity.  

Á List of Active Calls : A list of active call  elements. The list is ordered such that the most recent 

call on the ac tivity (the Call with the highest call_id ) is always last on the list and the active call 
with the lowest call_id  is at the front of the list. The client MUST remove calls from the list when 
they transition to STATE_COMPLETE or STATE_FAULT.  

Á Context -Handle Keep -Alive Timer  

Á Context Handle Count : Each activity maintains a list of active context handles as a 32 -bit 

unsigned integer. Context handles are defined in [C706]  section 4.2.16.6. The processing rules 
for creating and releasing context handles are found in [C706]  section 6.1.6. Context Handle 
Count  is initialized to zero when a new activity is created. Context Handle Count  is 
incremented when a new context handle is created and decremented when one is released.   

Á Maximum_window_size : An unsigned 32 -bit integer representing the maximum number of 

unac knowledged fragments that can be sent to the server. This value is set to one for the first 

call of an activity. The maximum supported value is 32. This value is continuously updated by the 
window_size  field of a FACK or NOCALL.  

Á Maximum PDU Length : Each ac tivity tracks the size of the largest packet that can be sent and 

received by the transport. This value is set to 1,024 bytes for the first call of an activity. At the 
end of each call, the current value is stored in the activity, and the next call begins with the 
stored value. When a FACK or NOCALL is received, the value is updated to the lower of the local 

transport limit and the value in the packet's max_tsdu  field.  

Á Last Use Timestamp : The last use timestamp is updated whenever a PDU is sent or received 

for any Call  associated with the activity.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

93  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Security Buffer : A buffer to preserve the security token that needs to be sent in a 

conv_who_are_you_auth_more , as described in section 3.2.1.4.1 . The entire se curity token 

MAY be stored here and sent using repeated calls to conv_who_are_you_auth_more .  

Á Discard : A Boolean flag indicating that the activity will be discarded as soon as all Calls on the 

activity complete. This flag is set to FALSE when the activity i s allocated. It is set to TRUE to 
prevent new calls from using the activity.  

3.2.2.1.5   Collection of Activities  

Collection of Activities : The CAS  also maintains a list of currently active Activity  elements with 
the corresponding server that represent the currently active asynchronous connections established 

with the server.  

A Collection of Activities  is initially empty and gets a new element added when a new activity is 
created. There is no limit on the number of activities that can be added to an activity collection.  

When the Active Call Reference counter  for an Activity reaches zero, the Activity is removed from 

the Collection of Activities  and added to the Collection of Inactive Activities .  

3.2.2.1.6   Collection of Inactive Activities  

Collection of Inactive Activities : The CAS also maintains a list of currently inactive activity 
elements with the corresponding server that represents currently inactive asynchronous connections 
established with the server.  

A Collection of Inactive Activities  is initially empty and gets a  new element added to it when the 
Active Call Reference counter for an activity goes to zero.  

Activity  elements are removed from the Collection of Inactive Activities  by the Inactive Activity 

Timer . 

3.2.2.1.7   Client Address Space  

Definitions of the CAS identifier are specified in [C706]  section 9.5.4.  

The CAS holds data relevant to the client's view of a particular RPC server:  

Á Server's transport.  

Á Server's host name or address.  

Á Server's endpoint, or the transport's endpoint mapper endpoint if the server endpoint is 

unknown.  

Á Binding handle as specified in [C706]  section 6.2.1.  

The client also caches several parameters of the server instance to improve the speed and latency of 
future calls:  

Á Collection of Activities  

Á Collection of Inactive Activities  

Á Supports PF2_Unrelated Flag   

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

94  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The CAS caches the values from one connection to the other and uses the cached value to start a 
new connection, thus providing the last seen va lues exposed by the server.  

3.2.2.1.8   Table of CASs  

Table of CASs:  The client MUST maintain a Table of CASs  which contains all CAS elements for the 
client.  

3.2.2.1.9   Causal Ordering Flag  

Causal Ordering Flag : A Boolean value that indicates whether causal ordering semantics, as 
described in section 3.1.1.4.1 , should apply.  

The default value for the causal ordering  flag is FALSE  

3.2.2.1.10   Call  

The call is a data element that encapsulates the state associated with a client call. The client call is 
specified by a state machine with the following states.  

State  Description  

STATE_QUEUED The call is queued by the client and will transition to STATE_SEND_FRAGS 

when possible. This is the call's initial state.  

STATE_SEND_FRAGS  The client is sending fragments of the call's [in] parameters to the server.  

STATE_DISPATCHED  The server has calle d the server application stub.  

STATE_RECEIVE_FRAGS The server is sending fragments of the call's [out] parameters to the client.  

STATE_ACK_PENDING  [out] parameters are received, and the call is waiting to send an ACK packet.  

STATE_COMPLETE The call completed successfully. This is a terminal state.  

STATE_FAULT The call failed. This is a terminal state.  

When a call reaches STATE_COMPLETE  or STATE_FAULT , the client MUST decrement the 
associated Active Call Reference  counter. See section 3.2.2.4.1.2  for more information on how a 
call is associated with an activity.  

The call maintains several properties:  

Á Call State : an implementation -specific value that represents the call state from the prec eding 

table.  

Á A flag F_CANCELED that is true when the client application cancels the call.  

Á A counter CANCEL_EVENT_ID that identifies a particular cancellation attempt. It is an unsigned 

long counter, initialized to a value of 0. The CANCEL_EVENT_ID is incre mented each time before 

sending QUIT message (so that the first CANCEL_EVENT_ID is 1). Sending a QUIT message 
happens every time a call is being canceled and is always initiated by the client.  

Á Status : A 32 -bit unsigned integer that contains the status code  for the call as described in 

[C706]  section 2.9. See section 3.1.1.5.5  for information on processing rules related to returning 
status codes to a higher - layer protocol.  

http://go.microsoft.com/fwlink/?LinkId=89824


 

95  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Causal Ordering Flag  

Á Send Window (Call)  

Á Receive Window (Call)  

Á Sequenc e Number : An unsigned 32 -bit integer, as specified in [C706]  section 12.5.2.11, that 

identifies this Call . 

Á Overlapping : A Boolean flag that indicates whether the call SHOULD use overlapped behavior as 

described in section 3.2.1.5.2 . The client SHOULD set this flag to TRUE if the activity's Client 
Address Space  Supports PF2_Unrelated Flag  is set to TRUE. When the flag is set, each call 

from the client MUST set the PF2_UNRELATED flag  in each REQUEST packet.  

Á Activity UUID : The UUID of the activity associated with the Call  as specified in [C706]  section 

9.5.3. Initialization of the Activity UUID for a call is specified in section 3.2.2.4.1.2 . 

Á Packet Retransmission Timer : The Packet Retransmission Timer for the ca ll. See section 

3.2.2.2.1  for a description of the timer.  

When the call reaches a terminal state (STATE_COMPLETE or STATE_FAULT), all the call properties 

listed in the preceding list are invalidated and SHOULD be freed.  

The following diagram illustrates the state transitions.  

 

Figure 16: State transitions  

Note   The preceding conceptual data can be implemented by using a variety of techniques.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

96  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.2.2   Timers  

3.2.2.2.1   Packet Retransmission Timer  

The packet retransmission timer is started when the client call transmits a REQUEST, FACK, PING, 
or QUIT  packet. The timer is canceled when the client receives a response from the server. If the 
timer expires, the previously transmitted packet  SHOULD be considered lost, and the client SHOULD 
send new packets following the procedure specified in section 3.2.1.5.3 . If the call's F_CANCELED  
flag is set, a QUIT packet is sent; otherwise, the pack et type depends on the Call State :  

Á STATE_SEND_FRAGS -> REQUEST  

Á STATE_DISPATCHED -> PING  

Á STATE_RECEIVE_FRAGS ->FACK  

The timer interval SHOULD be initially 1 second. When a call in STATE_DISPATCHED  receives a 
WORKING  packet or a NOCALL packet with a body that specifies a window size of zero, the timer 

interval SHOULD be doubled. The interval SHOULD be limited to a maximum of 32 seconds. In 
addition, when a call's F_CANCELED  flag is set, the timer interval SHOULD be limited to the max of 

2 seconds or the cancel time -out. If the timer expires, the previously transmitted packet SHOULD be 
considered as lost, and the client SHOULD send new packets following the  procedure specified in 
section 3.2.1.5.3 . 

3.2.2.2.2   Cancel Time - Out Timer  

The cancel time -out timer MUST be started when the client call's F_CANCELED  flag is set by an 
external entity in an implementation -specific manner <80> . The timer MUST be canceled when the 

client receives a QUACK packet whose event ID matches the call's CANCEL_EVENT_ID . If the 
timer expires, the Call State  MUST move into STATE_FAULT . 

The default value of the timer SHOULD be infinite. A client application SHOULD be able to specify a 
value in an implementation -specific way.  

3.2.2.2.3   Delayed - Ack Timer  

As described in [C706]  section 12.5.3.1, a client can implicitly acknowledge receipt of response by 

sending a new request to the server. The Delayed - Ack Timer  creates a window where a higher -
layer protocol can submit a new call, which will be sent instead of an ACK PDU. The new call may be 
already queued in the activity's List of Active Calls (see section 3.2 .2.4.1.5 ) or may be initiated 
during the timer's window. The activity's Delayed - Ack Timer  MUST be started when the activity's 
current call  enters Call State  STATE_ACK_PENDING . The timer MUST be canceled when the 
client initiates another call by using the s ame Activity .  

3.2.2.2.4   Context - Handle Keep - Alive Timer  

This timer SHOULD be kept per activity (not per call). <81>  It SHOULD be started with an interval of 
20 seconds when the client increments the activity's Context Handle Count , as long as the timer is 

not already started. It SHOULD be canceled when the activity's Context Handle Count  reaches 
zero.  

3.2.2.2.5   Inactive Activity Timer  

Inactive Activity Timer : The Inactive Activity Timer  is responsible for monitoring inactive 
activities that should be removed. The timer is global and monitors the entirety of inactive activities 

http://go.microsoft.com/fwlink/?LinkId=89824


 

97  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

using the Collection of Inactive Activities  in each Client Address Space  for each entry in the 
Table of CASs . The timer is started when the RPC client runtime is started and initialized to 30 

seconds.  

3.2.2.3   Initialization  

A client is initialized when a higher - level protocol supplies to the client -side implementation of the 
RPC runtime sufficient information to start making RPCs, including the information required to create 
a binding handle (see section 3.2.2.3.1 ) and, optionally, security setting preferences (see section 
3.2.2.3.2 ).  

3.2.2.3.1   Create a Binding Handle  

Information about creating a binding handle is specified in [C706]  section 2.3.  

3.2.2.3.2   Specify Security Settings  

If a higher - level protocol requires security for its remote procedure method calls, it MUST supply to 
the client -side implementation of the RPC the following runtime information:  

Á What security provider  it wants to use.  

Á What authentication level it wants to use.  

Á Optionally what impersonation level it wants to use.  

Á A Client Credential Handle  

Á Any other security provider ïspecific information necessary for the security provider to function.  

Higher - level prot ocols can specify security settings using the abstract interfaces as described in 

Appendix C . Higher - level protocols on the Windows runtime can use the RpcBindingSetAuthInfo and 
RpcBindingSetAuthInfoEx A PIs.  

3.2.2.4   Higher - Layer Triggered Events  

3.2.2.4.1   Make an RPC Method Call  

3.2.2.4.1.1   Find a CAS  

The client MUST find or create a CAS contained in the Table of CASs wherein the CAS binding handle 
values for host address, protocol sequence, and endpoint  match the client's desired values for host 
address, protocol sequence, and endpoint. A client SHOULD choose an existing CAS if a matching 
one exists.  

If a new CAS is created, and the server is using a dynamic endpoint, the CAS initially points to the 
dyna mic endpoint for the RPC protocol sequence being used. Otherwise, the CAS refers to the 

server's well -known endpoint.  

3.2.2.4.1.2   Find an Activity  

If the client has chosen an existing CAS , the client SHOULD use an existing compatible activity if 
possible. Selection of a compatible activity within the scope of existing CAS  is performed according 
to the following algorithm:  

http://go.microsoft.com/fwlink/?LinkId=89824


 

98  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Search the CAS's Collection of Activities and choose an Activity that satisfies the following 
conditions:  

Á The Activity 's  Discard  flag MUST be set to FALSE.  

Á If the Activity 's Current CallOverlapping  flag is set to TRUE, and the Activity 's Current Call  

Causal Ordering Flag  is TRUE, and the Activity  has one or more call elements in the List of 
Active Calls , it MUST use that activity. If the server does not support the PF2_UNRELATED flag 
(from the Client Addr ess Space  Supports PF2_UNRELATED Flag  element) of the selected 
activity, the client cannot begin the call until the Activity 's Current Call has completed.  

Á If the Activity 's Current Call  Overlapping  flag is set to FALSE or the Activity 's Current Call  

Casual  Ordering Flag is FALSE, and the Activity  has one or more call elements in the List of 
Active Calls  in the state STATE_ACK_PENDING, it SHOULD use that activity.  

Á If a compatible activity is not found in the Collection of Activities , the client MUST search the 

Collection of Inactive Activities  and SHOULD use an activity from that collection if one exists.  

If the client finds a compatible activity during the algorithmic search just described, a second order 
check is made to verify compatibility of security se ttings of the considered activity and the server 

binding handle provided for the new RPC method calls is made. The following settings are 
compared:  

From the Activity's Security Context Handle and the server binding handle for the call:  

Á Security Provider Id entifier  

Á Authentication Level  

Á Impersonation Level  

Security Provider Identifier, Authentication Level and Impersonation Level elements of the call's 
server binding handle security settings are as defined in [C706]  section 2.7.  

In addition to the above, the activity's Client Credential Handle  and the server binding handle 
AuthIdentity  (see section 3.1.1.1.2 ) MUST be equal. The implication of this check is that the new 
call and the existing activity use the same Client Credential Handle . 

All elements MUST match exactly. If the security settings check fails, the algorithm continues.  

If the compatible activity is found in the Collection of Activities , then increment the activity's 
Active Call Reference  counter.  

If the compatible activity is found in the Collection of Inactive Activities , then increment the 
activity's Active Call Reference  counter and move the activity to the Collection of Activities . If 
the compatible activity has a prior call (from the activity's <List of Active Calls>) in either the 
STATE_COMPLETED or STATE_ACK_PENDING state, the activity's sequence number MUST be 
incremented, and the activity's delayed -ack timer MUST be canceled.  

If  the new call  is assigned to an existing, compatible activity , set the call 's Activity UUID  element 

to the Activity UUID  of the existing element.  

If a compatible activity is not available, the client MUST create a new one. Its sequence number 
MUST be initi alized to zero and the Active Call Reference  counter MUST be set to one. Set the 
call 's Activity UUID  element to the Activity UUID  of the new activity.  

http://go.microsoft.com/fwlink/?LinkId=89824


 

99  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.2.4.1.3   Find or Create a Security Context  

The client SHOULD use the activity's current security context, represented by the activity's security 
context handle , unless the context has expired. <82> If the client chooses to create a new security 

context for any reason, then it will set the activity's current security context handle  equal to the 
handle value for the new security context created. See section 3.2.1.4.1.1  for information on 
creating a security context. Each security context MUST have a unique Context Identifier  
(transmitted as key_vers_num ), which is specified in the sec_trailer  struct ure, to allow the server 
to identify which security context is used for a given PDU.  

3.2.2.4.1.4   Create a Call  

A new call MUST be created by using the current activity ID and sequence number. The new call 
MUST have Call State  set to  STATE_QUEUED, F_CANCELED MUST be set to false, 
CANCEL_EVENT_ID MUST be set to zero, the Sent Fragment List  and Received Fragment List  
MUST be cleared, and the Receive Fragment Base  MUST be set to zero.  

The new call  is added to the activity's List of Active Calls . 

If the Activity's Current Call  is NULL, the Activity's Current Call  is set to t he call just created. The 

Call State  (for this new call) is set to STATE_SEND_FRAGMENTS , and the client MUST send one 
or more request fragments.  

3.2.2.4.1.5   Queuing Multiple Calls  

When a higher - layer protocol makes multiple calls on the same activity, they are queued in the 
activity's List of Active Calls . Only one call may be in STATE_SEND_FRAGMENTS at any given 
time. The call that is in this state is the Activity's Current Call .  

If calls on the activity are not being overlapped (call's Overlapping  element is set to FALSE) as 
described in section 3.2.1.5.2 , the client MUST receive the server's response before the next call in 
the queue can be processed (meaning transition to STATE_SEND_FRAGMENTS). This behavior is in 
accordance with [C706] . The presence of a next queued call affects the next state of the Current 

Call after it has received the server's response: if there is no next queued call, the Current Call will 
transition to STATE_ACK_PENDI NG. The transition to STATE_ACK_PENDING triggers the 
initialization of the Delayed -Ack Tmer. If there is a next queued call, the Current Call transitions 

immediately to STATE_COMPLETE and Current Call  is set to the next queued call.  

If overlapping calls a re being made on the activity (call's Overlapping  element is set to FALSE and 
call's activity's Client Address Space  Supports PF2_Unrelated Flag is set to true), the client does 
not have to wait for the client to reach STATE_COMPLETE or STATE_FAULT before beginning the 
next call. When overlapping calls are being made, the client will set the Activity's Current Call  to 
the next call in the List of Active Calls (if there is a next call) whenever the Current Call  transitions 
to STATE_DISPATCHED.  

In all cases, calls MUST still be sent in order of their call_id  and all fragments of one call MUST be 
sent ( Call  transitions to STATE_DISPATCHED) before fragments of another call can be sent.  

3.2.2.4.2   Cancel Requested  

If the client application cancels the call, the call's F_CANCELED flag is set and CANCEL_EVENT_ID is 
incremented. For details, see section 3.2.2.2.2 . 

http://go.microsoft.com/fwlink/?LinkId=89824


 

100  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.2.5   Message Processing Events and Sequencing Rules  

The packet semantics are the same as what is specified in [C706]  sections 6 and 12.5.  

The packet type MUST be one of the connectionless packet types specified in [C706] ; otherwise, the 

packet is discarded. Incoming packets MUST be processed while the Call State  is set to 
STATE_SEND_FRAGS, STATE_DISPATCHED, or STATE_RECEIVE_FRAGS; in other states, they MUST 
be discarded.  

For a non -REQUEST packet, the activity ID and the sequence number in the packet MUST match 
those of the call i tself. If the auth_proto  field is nonzero, the implementation MUST compare the 
auth_proto  to the authentication level of the activity's Security Context Handle  and then the 
packet MUST be verified by using the activity's Security Context Handle , as describ ed in section 

3.2.1.4.1.1 . Otherwise, the packet MUST be discarded silently.  

A packet that has not been discarded by one of the preceding rules MUST cancel the call packet 
retransmission timer, as specif ied in section 3.2.2.2.1 . If the server uses a dynamic endpoint and 
the CAS points to the endpoint mapper endpoint for the protocol, the CAS SHOULD be updated to 

point to the server endpoint that sent th e packet. For more information, see the protocol example in 
section 4.5 .  

The following sections define handling of specific packet types.  

3.2.2.5.1   REQUEST  

A REQUEST packet MUST have auth_type  equal to zero, and its interface ID MUST match the 
conversation manager interface as specified in [C706]  Appendix P. The packet's Header.Flags.frag 
bit MUST be zero. Otherwise, the packet MUST be discarded.  

If the packet is accepted, it is processed as specified in [C706]  Appendix P. Implementatio ns of this 

protocol SHOULD serialize execution of conversation manager callback calls.  

3.2.2.5.2   PING  

When processing a PING PDU, an implementation MUST examine the Callback State (section 
3.2.3.1.10 ).  If a conversation manager callback in progress, the client MAY respond with a 
WORKING packet. <83>  If a conversation manager callback is not in progress, then the packet 
SHOULD be discarded.  

3.2.2.5.3   RESPONSE  

The response fragment number is compared to the Receive Fragment Base . If the fragment 
number is less than the Receive Fragment Base , then the fragment MUST be discarded. If the 
fragment number is greater than or equal to the Receive Fragment Base , then the fragment is 
added to the Received Fragment List , and a FACK MUST be sent unless the packet's 
Header.Flags.Nofack flag is set. If the Call State  is STATE_SEND_FRAGS or STAT E_DISPATCHED, 

the Call State  MUST change to STATE_RECEIVE_FRAGS. If the fragment number indicates that all 
inbound fragments are received, RPC MUST deliver the data to the client application, and the call 
MUST set Call State  to STATE_ACK_PENDING if there i s no next queued call in the activity's List of 

Active Calls . If there is a next queued call, the call's Call State  is set to STATE_COMPLETE.  

All fragments related to a packet are removed from the Received Fragment List  when a full 
packet can be formed.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

101  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.2.5.4   FAULT  

The Call State  MUST change to STATE_FAULT and Status set to the status code in the fault packet.  

3.2.2.5.5   WORKING  

All outbound fragments MUST have been received. All outbound fragments have been received when 
the client's Send Window (Call) 's Fragment_base  value is greater than its Fragment_final  value. 
If the Call State  is STATE_SEND_FRAGS, the Call State  MUST change to STATE_DISPATCHED. 
When the Call State  changes to STATE_DISPATCHED, this MAY trigger a call queuing operation as 
specified in section 3.2.2.4.1.5 . 

3.2.2.5.6   NOCALL  

The Outbound Fragment Window  SHOULD be updated, and the client SHOULD send a burst of 
REQUEST fragments. <84>  

3.2.2.5.7   REJECT  

The Call State  MUST change to STATE_FAULT with STATUS set to the status code in the packet.  

3.2.2.5.8   ACK  

The Call State  SHOULD change to STATE_FAULT with STATUS set to 0x6c0.  

3.2.2.5.9   QUIT  

The Call State  SHOULD change to STATE_FAULT with STATUS set to 0x6c0.  

3.2.2.5.10   FACK  

The Outbound Fragment Window  MUST be updated, and the client SHOULD send a burst of 

REQUEST fragments. When a FACK PDU is received, the corresponding fragment MUST be removed 
from the Sent Fragment List .  

If a FACK PDU is received for a fragment number that is higher than the fragment number for any 
other fragments in the Sent Fragment List  then those fragments are retransmitted.  

If the server has received all request fragments, the Cal l State  SHOULD change to 
STATE_DISPATCHED. When the Call State  changes to STATE_DISPATCHED, this MAY trigger a call 

queuing operation as described in section 3.2.2.4.1.5 .  

3.2.2.5.11   QUACK  

The client SHOULD check the following conditions before taking prescribed actions:  

Á If the F_CANCELED flag is false, the packet MUST be discarded. No further processing is 

necessary.  

Á If the packet has body data of length 0, this indicates that the server has orphaned the Current 

Call . F_CANCELED  flag MUST be set to false and the call MUST be transitioned to 
STATE_FAULT .  

Á The following conditions indicate protocol errors; the packet MUST  be discarded with no 

additional processing:  



 

102  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á If the packet has body data, and the length of the body data is less than 9 bytes.  

Á The body version is not zero.  

Á The packet's event ID does not match the call's CANCEL_EVENT_ID .  

Á Having received a valid QUACK whe re the packet's event ID matches the call's 

CANCEL_EVENT_ID , F_CANCELED  flag MUST be set to false and the call MUST be transitioned 
to STATE_FAULT .  

3.2.2.6   Timer Events  

For information on timers, see section 3.2.2.2 . 

3.2.2.6.1   Inactive Activity Timer  

When the timer expires, the client MUST scan all activities in the Collection of Inactive Activities  
in each Client Address Space  for each entry in the Table of CASs , examine the activity's Last 

Use Timestamp , and remove those that have been inactive for an interval that is longer than an 
implementation -specific value. <85>  

If the activity meets the previously described criteria, it is deleted.  

After processing, the inactive activity tim er is reset to an implementation -specific interval. <86>  

3.2.2.6.2   Context - Handle Keep - Alive Timer  

When the timer expires, the client SHOULD make a call to convc_indy  specifying the activity's 
UUID as the cas_uuid  parameter.  

3.2.2.6.3   Delayed - Ack Timer  

When the timer expires, the client MUST send an ACK packet to the server and enter Call State  

STATE_COMPLETE . The timer interval SHOULD be 2 seconds.  

3.2.2.7   Other Local Events  

None.  

3.2.3   Server Details  

3.2.3.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 

document.  

3.2.3.1.1   Lowest - Allowed - Sequence Counter  

Lowest - Allowed - Sequence Counter : A server implementation MUST maintain an abstraction of a 
Lowest - Allowed - Sequence Counter  for each activity which represents the sequence number  of 
the oldest active call initiated by the client. The initial value MUST be zero. When processing 
packets, the server MUST reference the Table of Activity IDs  by using the current activity ID, 



 

103  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

consider  packets with sequence numbers less than the Lowest - Allowed - Sequence Counter  as 
retired, and discard the packet.  

3.2.3.1.2   CAS UUID  

CAS UUID : A server implementation MUST maintain an abstraction of a client address space ( CAS ) 
universally unique identifier ( UUID ) that is an index into the CAS table.  

3.2.3.1.3   Lowest - Unused - Sequence Counter  

Lowest - Unused - Sequence Counter:  A server implementation MUST maintain an abstraction of a 
Lowest - Unused - Sequence Counter  for each activity, which represents the sequence number  
(as defined in [C706]  section 12.5.2.11) of the next call that will be initiated by the client. The data 

type is an unsigned integer and permitted values are 0 to UINT_MAX. The initial value MUST be 
zero.  When p rocessing packets, the server MUST reference the Table of Activity IDs  using the 
current activity ID and consider packets with sequence numbers:  

Á Greater than the Lowest - Allowed - Sequence Counter , but less  than the Lowest - Unused -

Sequence Counter  as active and to be processed.  

Á Greater than or equal to the Lowest - Unused - Sequence Counter  as new packets to be 

processed in the future.  

3.2.3.1.4   Table of Security Contexts  

Table of Security Contexts : The server maintains a list of security contexts, indexed by the 
security context identifiers currently in use and containing a security context handle . Lookups in 
the table are permitted using the auth_context_id  field in the sec_trailer (section 2.2.2.11 )  data 

structure of the incoming PDU.  

Packet integrity verification and/or encryption/decryption is performed, as described in section 
3.2.1.4.1.1 , using the security context handle value.  

A new row is added to the table when a new security context is built.  

3.2.3.1.5   Table of Activity IDs  

Table of Activity IDs : The server maintains a table of activities indexed by the Activity UUID . For 

each activity, it maintains the following:  

Á A Lowest -Allowed -Sequence Counter . 

Á A Lowest -Unused -Sequence Counter . 

Á A CAS UUID . 

Á If the activity is secure, a Table of Security Contexts . 

Á Last Use Timestamp : The last use timestamp is updated whenever a PDU is sent or received 

for any Call  associated with the activity.  

Á Maximum PDU Length : An unsigned short integer (max value 64KB). Each activity tracks the 

size of the largest packet that can be sent and received by the transport. This value is set to 
1,024 bytes for the first call of an activity. When a FACK or NOCALL is received, the value is 
updated to the lower of the local transport limit and the val ue in the packet's max_tsdu  field.  

http://go.microsoft.com/fwlink/?LinkId=89824


 

104  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Binding handle : Binding handle as specified in [C706]  section 6.2.1.  

Á Security Buffer : A buffer to preserve the security token that needs to be sent in a 

conv_wh o_are_you_auth_more , as described in section 3.2.1.4.1 . The entire security token 

MAY be stored here and sent using repeated calls to conv_who_are_you_auth_more .  

Á Table of Active Calls per Activity : Conta ins a table of all of the active calls for this activity.  

When an activity is created, its CAS UUID  is NULL; when a conv_who_are_you2 or 
conv_who_are_you_auth call for the activity completes successfully, the activity's CAS UUID  is set 
to the returned valu e.  

An incoming request PDU with a given security context identifier MUST be routed to the security 

context retrieved from the Table of Security Contexts row with the same security context identifier.  

The Idle scavenger Timer  event specifies the processing rules for removing rows from the Table of 
Activity IDs.  

3.2.3.1.6   Table of Client Address Spaces  

Table of Client Address Spaces : The server maintains a Table of CASs  indexed by CAS UUID , 
as specified in [C706]  Appendix P. For each CAS , the server maintains a CAS Context Handle List  

associated with the client address space. Whenever a call on an activity instantiates a context 
handle, the context handle is added to the CAS Context Handle List  for the activity's CAS.  

The server deletes a  CAS UUID  and its associated context handles and activities if none of the CAS 
UUIDs  activities receive any packets over a 5 -minute period. This follows TIMEOUT_IDLE, as 
specified in [C706]  Appen dix K. <87>  

3.2.3.1.7   Table of Active Calls per Activity  

Table of Active Calls per Activity : The server maintains a table of active calls per activity. Each 
call is indexed by the call sequence number, as specified in [C706]  section 9.5.3. In general, calls 
are removed from the table when the call transitions to STATE_COMPLETE . Calls are also removed 

from the Table of Active Calls per Activity  if they have been idle for more than an 
implementation -specific period of time. See Idle Scavenger Timer for details on idle call removal. A 
new entry is added to the table when a new call arrives with a sequence number greater than or 

equal to the Lowest -Unused -Sequence Co unter for the activity.  

There is no provision for overflow of sequence numbers sent by the client. If the sequence number 
wraps around, the server will not create a new entry and in such a case will result in discarded 
packets as described in section 3.2.3.5.4 . A client interacting with a server MUST NOT wrap around 
the sequence number on a specific activity.  

3.2.3.1.8   Call  

Call : The server call (see the following figure) is defined by a state machine with the following 
states.  

State  Description  

STATE_INIT  The call has not received a packet. This is the initial state.  

STATE_RECEIVE_FRAGS The server is still expecting fragments to form a full packet. A server registers 

that it has received enough fragments when it has received all the fragments of 

a packet, including the one indicating that it is the last fragment of the packet.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

105  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

State  Description  

STATE_WORKING  The server has dispatched the call to the application stub.  

STATE_SEND_FRAGS  The server is sending the reply to the client.  

STATE_COMPLETE The call is no longer active. This is a terminal state.  

The call maintains the following state elements:  

Á Last Fragment Received Timestamp: This timestamp value is updated whenever a fragment is 

received by the server.  

Contrary to what is specified in [C706]  Appendix P, implementations of these exten sions MUST NOT 

call conv_who_are_you. Instead, they MUST call conv_who_are_you2.  

These extensions also MUST NOT call conv_are_you_there.  

The server call  element maintains the several properties:  

Á Call State : an implementation -specific value that represents the call state from the preceding 

table. At call creation, Call State  is set to STATE_INIT.  

Á Send Window (Call)  

Á Receive Window (Call)  

Á Callback State  

Á Activity UUID : The UUID of the activity associated with the Call . This value is extracted from 

the header of the call as specified in [C706]  section 12.5.2.  

Á CANCEL_EVENT_ID : An unsigned 32 -bit counter that identifies a particular cancellation 

attempt. Initialized to a value of 0.  

Á Sequence Number : An unsigned 32 -bit integer, as specified in [C706]  section 12.5.2.11, that 

identifies this Call .  

Á Overlapped : Set when the client REQUEST_PDU has the PF2_UNRELATED flag set.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

106  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

Figure 17: State diagram for server call  

Note   The preceding conceptual data can be implemented by using a variety of techniques. Any 
data structure that stores the preceding conceptual data can be used in the implementation.  

3.2.3.1.9   CAS Context Handle List  

CAS Context Handle List : The server maintains a list of active context handles (as specified in 
[C706]  section 4.2.16.6) for each CAS. Whenever a call on an activity instantiates a context handle, 

the context handle is added to the list for the activity's CAS. This list is deleted when the CAS is 
deleted. The call's Activity UUID  links a call with an Activ ity .  

3.2.3.1.10   Callback State  

Callback State : A server conversation can only have a single outstanding conversation callback in 
progress at a time. Callback State  is a boolean value that indicates if a conversation callback is in 
progress. See section 3.2.3.5.4.2  for more information on when a conversation callback is needed.  

Callback State  is set to true when a conversation callback is started and reset to false when it is 
completed.  

http://go.microsoft.com/fwlink/?LinkId=89824


 

107  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.3.2   Timers  

3.2.3.2.1   Call Fragment Retransmission Timer  

The call fragment retransmission timer MUST be set when a burst of fragments (one or more) is 
sent to the client. It MUST be canceled when the fragments are acknowledged by the client explicitly 
via FACK  or implicitly by ACK  or a higher -sequence REQUEST . When the timer expires, the server 
SHOULD resend the burst of fragments. <88>  

3.2.3.2.2   Idle Scavenger Timer  

idle scavenger timer : The idle scavenger timer  is a global timer responsible for monitoring calls 

and activities to detect idle state. When the RPC server initializes, the timer is initialized and the 
initial timer expiration is set to an implementation -specific value. <89>  

3.2.3.3   Initialization  

These extensions make no changes to initialization other than what is specified in section 3.2.3.1 . 

3.2.3.4   Higher - Layer Triggered Events  

3.2.3.4.1   Failure Semantics  

A server protocol built on top of these extensions can encounter a failure while executing a method 
call. It may handle the failure at the application protocol layer, it may expose the failure to the RPC  
protocol layer, or it may choose application -specific handling not specified in this document.  

If it handles the error at the application protocol layer, the interaction appears to be successful from 
the point of view of the RPC runtime. The [out] paramet ers are filled, and the RPC implementation 

on the server sends a response PDU with the stub data (as specified in [C706]  section 14.4). In this 
case, the [out] parameters SHOULD indicate the occu rrence of an error, although the exact 
mechanism for doing so is left to the application protocol layer.  

If the server implementation of the application protocol layer exposes the error to the RPC protocol 
layer, it SHOULD indicate to the RPC runtime (usua lly through calling an API) that the method call 
has failed, and, if so, it also SHOULD supply a single unsigned long number that indicates the failure 

code.  

In this case, the server SHOULD send back to the client a fault PDU (as specified in [C706]  section 
12.5.3.5) where the status field of the fault PDU is set to the failure code received from the 
application protocol layer. The call then enters STATE_COMPLETE .<90>   

3.2.3.4.2   Retrieving Client Identity  

During the authorization process, a higher - level protocol on the server often needs to retrieve the 

identity of the client making a given request. A server implementation MUST try to retrieve the 
client identity by executing the following steps in this ord er:  

1.  If the auth_proto  field of the client request is nonzero, the server MUST lookup the security 
context handle  from the activity's Table of Security Contexts  using the key_vers_nu m  in 
the sec_trailer_cl  of the request and MUST request that the security provider that created the 
security context retrieve the client identity. For details on how a security provider determines the 
client identity, see the documentation for the respective security provider.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

108  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

2.  If the auth_proto  field of the client request is zero, the server MUST report this to the higher -
level protocol in an implementation -specific way.  

3.2.3.4.3   Context Handle Generation  

If a server stub needs to create a context handle and the activity of the call has a NULL CAS UUID , 
the server SHOULD generate a conv_who_are_you2 conversation callback to determine the correct 
CAS UUID . If the conversation callback fails, the stub SHOULD raise an exception with the status 
code of the conversation callback. The CAS UUID  is used to find the CAS in the Table of Client 
Address Spaces . The context handle is added to the CAS Context Handle Li st  for the CAS.  

3.2.3.5   Message Processing Events and Sequencing Rules  

The packet semantics are as specified in [C706]  section 6 and [C706]  section 12.  

3.2.3.5.1   Failure Semantics  

If, during the processing of a method call on the server, the server encounters an error, it SHOULD 
send back to the client a fault PDU (as specified in [C706]  section 12.5.3.5) where the status field of 
the fault PDU is set to a descriptive status code. If an authorization policy (as specified in section 
3.1.1.1.3 ), restricting the access to the server is dep loyed, and server MUST set the status field to 

0x00000005 in the fault PDU being sent back to the client. If the server is unable to send a fault 
PDU, as specified here, it MUST ignore further packets with the same activity ID and sequence 
number.  

Servers  can send any status code in the status field of a fault PDU except the following status codes, 
which a server MUST NOT send to the client. These status codes have special significance, and their 
presence in the status field may be flagged as a protocol er ror by the client.  

Status codes that MUST NOT be sent by RPC servers  

ERROR_SUCCESS (0x00000000)  

STATUS_GUARD_PAGE_VIOLATION (0x80000001)  

STATUS_DATATYPE_MISALIGNMENT (0x80000002)  

STATUS_BREAKPOINT (0x80000003)  

STATUS_ACCESS_VIOLATION (0xC0000005)  

STATUS_IN_PAGE_ERROR (0xC0000006)  

STATUS_ILLEGAL_INSTRUCTION (0xC000001D)  

STATUS_PRIVILEGED_INSTRUCTION (0xC0000096)  

STATUS_INSTRUCTION_MISALIGNMENT (0xC00000AA)  

STATUS_STACK_OVERFLOW (0xC00000FD)  

STATUS_POSSIBLE_DEADLOCK (0xC0000194)  

STATUS_HANDLE_NOT_CLOSABLE (0xC0000235)  

STATUS_STACK_BUFFER_OVERRUN (0xC0000409)  

http://go.microsoft.com/fwlink/?LinkId=89831
http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=89824


 

109  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Status codes that MUST NOT be sent by RPC servers  

STATUS_ASSERTION_FAILURE (0xC0000420)  

3.2.3.5.2   Sequencing in Case of Errors  

If a fragmented request with multiple PDUs  includes a PDU with an error, implementations of these 
extensions SHOULD return a fault PDU as soon as they have processed the PDU with the error. They 
SHOULD NOT wait to receive all PDUs of a fragmented request before sending the fault PDU.  

3.2.3.5.3   Packet Processing  

Received packets MUST have a valid RPC header, and the packet type MUST be one of the following: 
REQUEST, PING, FACK, QUIT , or ACK. Other packet types MUST be discarded.  

If the PDU's activity ID matches an exis ting activity on the server, but the PDU's 
dc_rpc_cl_pkt_hdr_t.auth_proto  or sec_trailer_cl.auth_level  fields do not match those in the 

activity, the server SHOULD ignore the packet. <91>  

Handling of specific packet types follows.  

3.2.3.5.4   REQUEST  

When a packet of type REQUEST is received, the server MUST execute the following steps:  

1.  Set a 32 -bit integer N to the sequence number in the packet header.  

2.  Using the activity ID in the message header, find the activity in the Table of Activity IDs . If the 
activity is found in the Table of Activity IDs , then process the packet according to the following 
rules:  

Á If N is less than the activity ID  element's lowest -allowed -sequence number, the server MUST 

discard the packet. <92>  

Á If N is greater than or equal to the activity ID  element's lowest -allowed -sequence and N is 

less than the activity ID  element's lowest -unused -sequence, the server MUS T search for an 
existing call object with Sequence Number  equal to N in the Table of Active Calls per 
Activity . If no call was found, the server MUST discard the message.  

Á If N is greater than or equal to the activity ID  element's lowest -unused -sequence, th e server 

MUST create a new call  object with Sequence Number  equal to N and add it to the Table of 
Active Calls per Activity  for the activity. The server MUST set the activity ID  element's 
lowest -unused -sequence to N+1. If the packet's PF2_UNRELATED flag is  false, the server 
MUST discard all call objects with lesser sequence from the Table of Active Calls per 
Activity  for the activity and set the activity ID  element's lowest -allowed -sequence to N. The 
server MUST set the new call's Call State  to STATE_INIT.  

3.  If the activity ID  is not found in the Table of Activity IDs , create a new entry in the Table of 
Activity IDs  and perform the following actions on the new entry:  

Á Set the lowest -allowed -sequence counter to N.  

Á Set the lowest -unused -sequence counter to N.  

Á Ini tialize the CAS UUID to NULL.  



 

110  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Set the Last Use Timestamp  to the current machine time.  

Á Create a new call  object with Sequence Number  equal to N and add it to the Table of 

Active Calls per Activity  for the activity. The server MUST set the activity ID  elemen t's 

lowest -unused -sequence to N+1. If the packet's PF2_UNRELATED flag is set, the server MUST 
set the activity ID  element's lowest -allowed -sequence to N. The server MUST set the new 
Call State  to STATE_INIT.  

4.  If the message was not discarded, the server MUS T process the message according to the 
current state of the call object kept in Call State , as described in sections 3.2.3.5.4.1  through 
3.2.3.5.4.4 . 

3.2.3.5.4.1   STATE_INIT  

The server MUST clear the Sent Fragment List  and Received Fragment List  and reset the 
Receive Fragment Base  to zero. The server MUST set the Call State  to STATE_RECEIVE_FRAGS 
and continue with processing for that state.  

3.2.3.5.4.2   STATE_RECEIVE_FRAGS  

The server MUST take the following actions for every fragment received:  

1.  If the packet is undersized (less than the size of the Connectionless PDU header as defined in 
[C706]  section 12.5.1), the server MUST drop it. No further processing is required.  

2.  If the packet is  oversized, the server MUST drop it and send a FACK -with -body PDU indicating to 
the client the current limit of the server buffer (implementation specific) using the window_size  
field of the FACK PDU body as described in section 12.5.3.4 of [C706] . No further processing is 
required.  

3.  Update the Received Fragment List .  

4.  Update the Last Fragment Received Timestamp  of the call.  

5.  If a Callback State is false, check whether a conversation callback is req uired. If the call is not 
secure, is non - idempotent, and has an unknown CAS UUID  (determined by searching the Table 
of Client Address Spaces ), begin a conv_who_are_you2 . When the callback completes, set 
the Table of Activity IDs  entry CAS UUID  to the value  returned by the client. If the CAS UUID  
is not represented in the Table of Client Address Spaces , create a new entry in the Table of 

Client Address Spaces  and set the new entry's CAS Context Handle List  to NULL  

6.  If the call is secure and the server does no t have a security context in the activity's Table of 
Security Contexts  that matches the key_vers_num in the packet's security trailer, begin a 
conv_who_are_you_auth  and set Callback State to true. See section 3.2.1.4.1  for more 
information on how the callback generates a security context. If the server has no credentials 
matching the packet's auth_proto  field, fail the conversation callback with status 0x000006D3.  

Á If the conversation callback fails, send  a REJECT to the client, change the call state to 

STATE_COMPLETE, remove the call from the Table of Active Calls per Activity , and update 

the Lowest - Allowed - Sequence Counter  of the activity. End Processi ng.  

Á If the conversation callback (for the purpose of establishing a security context) succeeds, add 

the resulting Security Context Handle  to the activity's Table of Security Contexts .  

7.  Send a FACK PDU with a body (as specified in [C706]  section 12.5.3.4) and version field value 

set to 1, to the client.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

111  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

8.  Update the Last Use Timestamp  value in the Table of Activity IDs  activity entry.  

9.  If all receive fragments are present in the Received Fragment List , or if the call uses DCE 
pipes, and the server has received all the [in] arguments that are not marked with the [PIPE]  
attribute in the IDL file, set Call State  to STATE_WORKING and dispatch to the application stub. 

For information about how the [in] arguments that are marked with the [PIPE]  attribute in the 
IDL file are received in an application stub through the pull procedure, refer to [C706]  section 
5.1.4.  

10. If the received packet has the PF2_UNRELATED flag set, set Overlapped  in the server call to 
TRUE, otherwise, set it to FALSE.  

3.2.3.5.4.3   STATE_WORKING  

If all request fragments are received, the server MUST reply with a WORKING  packet. No further 
processing is required.  

When a call is dispatched:  

1.  If the call is secure, ask the security provider to verify or decrypt the received packets, as 
appropriate, follow the processing information specified in section 3.2.1.4.1.1 . If an error occurs, 
send a REJECT to the client, change the call state to STATE_COMPLETE, remove the call from the 

activity, and update the lowest -allowed -sequence of the activit y. The call is finished.  

2.  Dispatch to the application stub.  

3.  After the application stub completes successfully, check whether a later call sequence has already 
been dispatched on this activity. If so, and Overlapped  in the server call is false, skip further  
processing of this sequence.  

4.  If the [maybe] flag (as defined in [C706]  sections 12.5.2 and 12.5.3.9) is set, no reply is needed. 
Change the Call State  to STATE_COMPLETE, remove the call from the  activity, and update the 

lowest -allowed -sequence of the activity. The call is finished.  

5.  Set the Call State  to STATE_SEND_FRAGS, and send one or more response fragments to the 
client.  

3.2.3.5.4.4   STATE_SEND_FRAGS  

The server MUST send a burst of RESPONSE fragments and update the Sent Fragment List. The 
sliding window algorithm for RESPONSE fragments is implementation -specific. For more information, 

see section 3.2.1.1.1 . 

The Call State  changes to STATE_ COMPLETE  (see section 3.2.2.1.10 ) in one of the following 
conditions:  

Á If a request is received with the PF2_UNRELATED flag cleared and a sequence number greater 

than the activity's previous call.  

Á If the response fragments are acknowledged by the client, with respect to the packet's 

Header.Flags.Nofack flag, as specified in section 3.2.2.5.3 . 

http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

112  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.3.5.5   PING  

If the packet sequence is higher than all of the activity's active calls, the server MUST reply with a 
NOCALL without body data. Otherwise, if the activity contains no active call for the packet sequence, 

discard the packet.  

Otherwise, the packet matches an active call. Because client packets may be duplicated and 
reordered in transit, the server MAY ignore the packet using implementation -specific criteria in order 
to avoid redundant responses. <93>  If not, the server MUST check the Call State , as specified in 
the sections that follow.  

3.2.3.5.5.1   STATE_INIT  

The server MUST reply with NOCALL - with - body .  

3.2.3.5.5.2   STATE_RECEIVE_FRAGS  

If all request fragments for the call have been received and the state is in transition to 
STATE_WORKING, the server MUST reply with WORKING . Otherwise, the server MUST reply with 
FACK - with - body .  

3.2.3.5.5.3   STATE_WORKING  

The server MUST reply with WORKING . 

3.2.3.5.5.4   STATE_SEND_FRAGS  

The server MUST send a burst of RESPONSE fragments.  

3.2.3.5.6   FACK  

If the Call State  is not STATE_SEND_FRAGS , discard the packet. Otherwise, update the Sent 
Fragment List  and send a burst of RESPONSE fragments.  

3.2.3.5.7   QUIT  

If the packet's event ID is greater than the call's CANCEL_EVENT_ID  field, set the call's 
CANCEL_EVENT_ID  to the packet's event ID, remove the call from the Table of Active Calls per 
Activity  and send a QUACK. 

If the packet's event ID is equal to the call's CANCEL_EVENT_ID , reply with a QUACK.  

If the packet's event ID is less than the call's CANCEL_EVENT_ID , discard the packet.  

3.2.3.5.8   ACK  

If the Call State  is not STATE_SEND_FRAGS , discard the packet. Otherwise, change the Call State  
to STATE_COMPLETE, remove the call from the Table of Active Calls per Activity , and update the 

lowest -allowed -sequence of the activity. The call is finished.  

3.2.3.6   Timer Events  

For more information on timers, see section 3.2.3.2 . 



 

113  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.2.3.6.1   Idle Scavenger Timer Expiry  

When the Idle Scavenger Timer expires, the server MUST scan all activities and remove idle calls 
and activities. After processing the following rules, the idle scavenger timer  is reset to an 

implementation -specific interval. <94>  

See product behavior note <95> for additional information.  

Idle Call Processing : For each call in the Table of Active Calls per Activity , the server 
examin es the Last Fragment Received  timestamp value and compares it with the current time. If 
the interval is longer than an implementation specific value <96> , the call is determined to be idle 
and is removed from the Table of Active Cal ls per Activity . 

Idle Activity Processing : For each activity in the Table of Activity IDs , the server examines the 

activities Last Use Timestamp  and compares it with the current time. If the interval is longer than 
a period of TIMEOUT_IDLE as specified in [C706]  Section 10.2.6, the activity is determined to be 
idle and is deleted from the Table of Activity IDs . 

When an activity is deleted, the server MUST perform the following:  

Á Delete all security  contexts associated with the activity's Table of Security Contexts .  

Á Using the activity's CAS UUID, lookup the appropriate CAS in the Table of Client Address 

Spaces , delete the Client Address Space and its CAS Context Handle List . 

3.2.3.7   Other Local Events  

No local events are specified for implementations of connectionless RPC servers.  

3.3   Connection - Oriented RPC Protocol Details  

3.3.1   Common Details  

This section defines the protocol details that are common between a connection -oriented RPC server 
and a connection -oriented RPC client.  

3.3.1.1   Abstract Data Model  

This section specifies a conceptual model of possible data organization that an implementation 

maintains to participate in this protocol. The specified organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document.  

3.3.1.1.1   Association  

Association : An association  is a set of RPC transport connections between a client process and a 

server endpoint. On the abstract level, the association  can have any number of connections in it, 
although memory constraints and limitations of the RPC transport that establishes these connections 

mean that, in practice, the number of connections in an association  is much more limited. All RPC 
transport conne ctions in a given association  are explicitly joined to an association , as specified in 
section 3.3.1.5.7 . Both the client and server have an abstraction for association .  

[C706]  uses the phrase association group for what this specification refers to as an association .  

Each association  contains the following properties:  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

114  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Binding handle as specified in [C706]  section 6.2.1  

Á List of Connections : All connection  elements bound to this association .  

Á Bind Features Bitmask : An octet bitmask that stores the result of Bind Time Feature 

Negotiation as defined in section 3.3.1.5.3 . When features are successfully negotiated, the bits 
are set as defined in BindTimeFeatureNegotiationBitmask section 2.2.2.14 . When these bits are 
set in the client and s erver, they indicate that the corresponding features are supported for this 
association.  

Á List of Supported Transfer Syntaxes : The list of all transfer syntaxes supported by the 

association.  The content of this list is implementation -specific, and is disc ussed in [C706]  

Appendix I.  

Á Table of Presentation Contexts : A table of presentation contexts that have been negotiated by 

one or more connections  bound to this association . 

3.3.1.1.2   Connection  

Connection : A connection  is an RPC - level abstraction that denotes the data structures associated 

with a given RPC transport  connection. There is a 1:1 relationship between an RPC transport 
connection and an RPC connection. The RPC runtime on both the client and server maintains an 
abstract data handle that is a reference for each TCP/IP connection if the RPC transport is TCP/I P. 
Each connection MUST belong to exactly one association. Once a connection  is tied to an 
association , a connection  cannot change the association that it belongs to. If the transport is 
NCACN_NP the server maintains a reference to an RPCServerGenericNamed PipeOpen  (see [MS -
CIFS]  section 3.5.4.1)  

[C706]  uses the term association for what this document refers to as a connection.  

The connection  ADM element contains the f ollowing properties:  

Á A list of associated Server Call  or Client Call  elements.  

Á Table of Security Context Handles : A table that contains all of the security context handles   

that have been negotiated with the remote client or server and indexed by the secur ity context 

identifiers currently in use. Lookups in the table are permitted using the auth_context_id  field 
in the sec_trailer (section 2.2.2.11 ) data structure of the incoming PDU. If Security Context 
Multiplexing has not been negotiated, as described in section 3.3.1.5.4 , the list will contain only a 
single security context handle .  

Packet integrity verification and/or encryption/decryption is perform ed, as described in section 
3.3.1.5.2.2 , using the security context handle value that is contained in each security context 
row.  

A new row is added to the table when a new security context is built.  

Á Conn ection Multiplex Flag  

Á Supports Header Signing Flag : Both the client and server maintain a Boolean value flag that 

indicates whether the remote party supports header signing as described in section 3.3.1. 5.2.2 . 
The default value is FALSE.  

Á Transport Handle : The client and server MUST maintain an abstract reference to an underlying 

transport mechanism instance.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824


 

115  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Á Association : The client and server MUST maintain a reference to the association  to which the 

conn ection  is tied.  

Á List of Negotiated Presentation Contexts : The list of presentation contexts that have been 

negotiated for this connection. See sections 3.3.1.5.6  and 3.3.2.4.1.3  for how elements are 
added to this list.  

Á NamedPipe : An RPCServerGenericNamedPipeOpen  structure, see [MS -CIFS]  section 

3.5.4.1.  

3.3.1.1.3   Connection Multiplex Flag  

Connection Multiplex Flag:  A value that SHOULD be maintained for each connection on both the 
client and server that indicates whether the connection supports concurrent multiplexing. The flag 
has 3 possible values: Unknown, Yes, and No. The default value is Unknown. The mechanism u sed 
to express these values is implementation -specific.  

3.3.1.1.4   List of Connections  

List of Connections : The client and server MUST implement an abstraction of a list of connection  

elements which are bound to a given association . The list need not be ordered or indexed by any 
value specific to a particular connection  

3.3.1.1.5   Table of Associations  

Table of Associations : The client and server SHOULD maintain a list of all associations. The Table 
of Associations  is initialized when the client and server applications are started and are initially 
empty. Whenever a new association  is created (as specified in [C706]  section 9.3.3), it is added to 

the table . Whenever the last connection in an association is closed, the association is removed from 
the table and destroyed.  

3.3.1.1.6   Table of Security Provider Info  

Table of Security Provider Info : The client and server SHOULD maintain a table indexed by the 
Security Provider ID value (for example,  RPC_C_AUTHN_GSS_KERBEROS ) that defines the 
number of legs required to negotiate a security context. See section 2.2.1.1.7  for more information 

on security providers and section 3.3.1.5.2.1  for usage details.  

3.3.1.2   Timers  

There are no timers that are common between a connection -oriented client and a connection -
oriented server.  

3.3.1.3   Initialization  

There is no initialization that is common between a connection -oriented client and a connection -
oriented server.  

3.3.1.4   Higher - Layer Triggered Events  

3.3.1.4.1   Context Handle Scope  

The operations on a context handle are as specified in [C706]  section 5.1.6. This section clarifies the 

scope of the context handle as interpreted by these extensions. As specified in [C706]  section 5.1.6, 
the context handle is created by the client sendin g a null context handle in a method call, and by the 

%5bMS-CIFS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

116  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

server returning a nonnull context handle in the stub data in the response to the same method call. 
The RPC transport connection on which the request and response are transmitted belongs to an 

associatio n, as specified in sections 3.3.1.1.1  and 3.3.1.1.2 . The scope of a context handle is this 
association. If a request/response exchange on one associat ion leads to the creation of a context 

handle, and this context handle is passed to a different association, the server SHOULD reject the 
request.  

3.3.1.5   Message Processing Events and Sequencing Rules  

3.3.1.5.1   Protocol Version Number  

These extensions constrain the protocol version numbers that are used in PDUs, as specified in 

[C706]  section 12. These extensions recognize only major version 5 and minor version 0. If a PDU 
with a different major or minor version is sent to a client or server, the client or server SHOULD 
return an error. <97>   

3.3.1.5.2   Building and Using a Security Context  

3.3.1.5.2.1   Building a Security Context  

To make a secure call, a security context needs to be created before it can be used. The process of 
creation involves exchanging one or more messages between the client and server implementations 
of a security provider. This process is also called building a security context.  

During the process of building a security context, a security provider may optionally exchange 
messages with an entity other than the client or server (for example, a KDC).  

The sco pe of a built security context is the connection. If a client wants to use a security context on 

a different connection, it MUST totally rebuild it for that different connection.  

To build a security context, an RPC client and an RPC server exchange a seri es of bind/bind_ack or 
alter_context/alter_context_resp PDUs with authentication information. The process MUST start on 
the client, as follows:  

Á If the client has already sent a bind PDU on the connection it wants to build the security context 

on, it MUST s tart the sequence of building a security context with an alter_context PDU.  

Á If the client has not already sent a bind PDU on that connection, it MUST start the sequence of 

building a security context with a bind PDU.  

The process continues on the server as follows:  

Á If the server receives a bind PDU, it MUST respond with a bind_ack or bind_nak PDU.  

Á If a server receives an alter_context PDU, it MUST respond with an alter_context_resp PDU or, in 

the case of error, with a fault PDU.  

In case of catastrophic error s (such as an out of memory condition or buffer overrun), a server MAY 
send a fault PDU or just close the connection. For information on client and server state machines, 

see sections 3.3.2  and 3.3.3 .  

Once a client decides on the type of PDU, it MUST start the sequence by requesting the security 
provider for an authentication token using an implementation -specific equivalent of the abstract 
GSS_Init_se c_context call, as specified in [RFC2743] . See [MS -APDS]  section 3.1.5 for NTLM details 

and see [RFC4121 ]  and [MS -KILE]  section 3.2.5.2  for Kerberos details. This PDU MUST be sent to 
the server with authentication information added, as specified in section 2.2.2.11 .  

http://go.microsoft.com/fwlink/?LinkId=90952
http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-APDS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90459
%5bMS-KILE%5d.pdf


 

117  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

When authentication information is associated with a connection as specified in section 2.2.2.11  and 
auth_length  is nonzero as specified in [C706]  section 13.2.6, the Security Context contains a token 

that represents the client identity populated by the security provider. See [MS -APDS]  section 3.1.5 
"Processing Events and Sequencing Rules" and [MS -KILE]  section 3.4.5.3  "Processing Authorization 

Data" for details of population of the token. See [MS -DTYP]  section 2.5.2  "Token/Authorization 
Context" for details of the members of tokens.  

If no authentication information is obtainable as specified in section 2.2.2. 11  and the transport 
protocol is NCACN_NP, the security context is obtained as described in [MS -CIFS]  section 3.5.4.3 
supplying the Connection NamedPipe  ADM element as a parameter.  

The client MUST choose a value for the auth_c ontext_id  of the sec_trailer structure such that it is 
unique within the scope of the given connection. Each message with an authentication token sent to 

the other party is also called a security leg. Thus, the first message from the client to the server i s 
also called the first leg of the security context creation. The server MUST retrieve the authentication 
token and hand it off to the security provider indicated by the auth_type  field.  

The interaction between these extensions and the security provider o n the server MUST happen 

through an implementation -specific equivalent of the abstract GSS_Accept_sec_context call, as 
specified in [RFC2743] . Upon receiving and processing an authentication toke n at any leg of the 

authentication on either the client or server, the security provider MUST indicate to RPC runtime one 
of three abstract results from the processing: an error, a success, or a request for further security 
legs, as specified in [RFC2743] :  

Á If the security provider indicates an error, the RPC runtime MUST take recovery action depending 

on whether this is the client or server.  

Á If this is the client, the RPC runtime discards the se curity context and MUST NOT send any 

further PDUs on that connection. It SHOULD close the connection unless it is expecting 
responses on a multiplexed connection, as specified in section 3.3.1.5.8 , in wh ich case it 
SHOULD set the Activity's Discard  flag to TRUE. If it does not wait for all responses on a 
multiplexed connection, it MUST provide indication in an implementation -specific way to upper 
layers that the outstanding calls have failed.  

Á If the secu rity provider returns an error on the server, the server MUST respond with a 

bind_nak or a fault PDU, depending on the PDU that the client sent, as specified earlier. The 
server SHOULD also discard the security context in this case.  

Á If the security provide r returns a success from processing the authentication token, the security 

context is successfully created. If the security provider returns a success on the client, the client 
is ready to use this security context. If the security provider on the server r eturns a success, the 
server MUST still respond with a bind_ack or alter_context_resp PDU, as specified earlier. In this 

case, it SHOULD return an empty (zero - length) authentication token to the client.  

Á If the security provider indicates to the RPC runtim e a request for further security legs, it MUST 

always produce another authentication token along with the request for further security legs. In 
this case, the RPC runtime MUST send another leg of the security context creation by using that 
authentication t oken. If this happens on the client, the client MUST send an alter_context PDU. 
The p_context_elem structure of the alter_context PDU SHOULD be the same as the content of 

the PDU sent in the previous leg from the client. If this happens on the server, it M UST respond 
with a bind_ack or an alter_context_resp PDU, except when a security provider has an odd 
number of legs as specified in the following section, using the authentication token produced by 
the security provider.  

If a client has implemented a Tabl e of Security Provider Info, then it has the knowledge of how 
many legs different security providers use . If the client determines during lookup in this table that a 

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-APDS%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-CIFS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90378


 

118  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

given security provider has an odd number of legs, the client SHOULD use an rpc_auth_3 PDU  
instead of an alter_context PDU for the last leg. The client MUST NOT use an rpc_auth_3 PDU  

unless it is certain that the current leg is the last leg of exchange. The server MUST NOT respond to 
an rpc_ auth_3 PDU . If the processing of the authentication token from an rpc_auth_3 PDU  

results in an error, the RPC runtime on the server SHOULD return a fault PDU on the first request 
that uses this security context with the status field set to the security con text handle  Error 
Value .  

If a client is not sure how many legs a given security provider uses, it MUST assume that the 
number of legs is even. <98>  

Once negotiated, the client and server add the resultant security context handle  to t he 
connection's  Table of Security Context Handles .  

3.3.1.5.2.2   Using a Security Context  

After a security context is built, the security context can be used by the RPC  runtime and higher -
level protocols to perform authorization decisions. Besides using the security context for 

authorization decisions, the RPC runtime can also use the security context to create a logical stream 
of data that is protected from tampering an d information disclosure on the network.  

The amount of protection applied depends on the authentication level for the security context 
requested by the client when the security context is created. The authentication level is applied in 
two dimensions:  

Á In  the first dimension, it controls what capabilities the RPC runtime MUST request from the 

security provider when the security context is being built, as detailed in the first table that 
follows. It is possible for a security provider to not be able to prov ide a certain capability. In this 
case, the lack of the capability MUST be considered by the RPC runtime as equivalent to the 

security provider returning an error and MUST be handled as specified in the previous section.  

Á In the second dimension, the authe ntication level controls how the security provider runtime 

MUST perform PDU protection on the different PDU segments using the security context, as 

detailed in the second table that follows.  

The following table specifies the abstract capability that the RP C runtime MUST request from the 
security provider when the security context is being created. The capabilities in the following table 

are further specified in [RFC2743]  section 1.2.1.2. The capab ilities requested at each level include 
the ones requested at the previous level.  

Authentication level  Capability requested  

RPC_C_AUTHN_LEVEL_CONNECT  None  

RPC_C_AUTHN_LEVEL_PKT  Replay Detect  

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY  Sequence Detect, integrity  

RPC_C_AUTHN_LEVEL_PKT_PRIVACY  Confidentiality  

As specified earlier, once the security context is built, the RPC runtime MUST also use the 

authentication level to control how the security context is used to protect request and response 
PDUs sent to the oth er side.  

One of the first decisions that needs to be negotiated is whether the security provider on each side 
supports what this specification calls header signing. Header signing is an operation in which a 

http://go.microsoft.com/fwlink/?LinkId=90378


 

119  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

security provider can provide integrity protectio n to a segment of the PDU such that the integrity 
protection does not modify the content of that segment. The segments of the PDU are specified in 

section 2.2.2.1 . The RPC runtime on the client determine s in an implementation -specific way if the 
security provider on the client supports header signing. If it does, the first bind or alter_context PDU 

that the client sends on a connection that carries authentication information and whose 
authentication level  is integrity or higher MUST have its PFC_SUPPORT_HEADER_SIGN bit set. The 
RPC runtime on the server also determines in an implementation -specific way whether the security 
provider on the server supports header signing, and, if it does not, it MUST respond  to the client 
with a PDU whose PFC_SUPPORT_HEADER_SIGN bit is cleared. If it does support header signing, it 
MUST respond to the client with a PDU whose PFC_SUPPORT_HEADER_SIGN bit is set.  

Using this mechanism, the client and server agree if header signi ng should be done for this 

connection. If both the client and server support header signing, both set the connection's 
Supports Header Signing Flag  to TRUE. Once agreed, the client and server apply protection to 
request and response PDUs in the same way.  

I f the client and server Supports Header Signing Flag  is TRUE, the party that sends the PDU asks 
the security provider to apply the following protection to the different PDU segments.  

Authentication level  PDU header  PDU body  sec_trailer  

RPC_C_AUTHN_LEV EL_CONNECT None  None  None  

RPC_C_AUTHN_LEVEL_PKT  None  None  None  

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY  Integrity  Integrity  Integrity  

RPC_C_AUTHN_LEVEL_PKT_PRIVACY  Integrity  Confidentiality  Integrity  

If either the client or server Supports Header Signing Flag  is FALSE, the RPC runtime on the 
sending side asks the security provider to apply the following protection to the different PDU 
segments.  

Authentication level  PDU header  PDU body  sec_trailer  

RPC_C_AUTHN_LEVEL_CONNECT  None  None  None  

RPC_C_AUTHN_LEVEL_CALL  None  None  None  

RPC_C_AUTHN_LEVEL_PKT  None  None  None  

RPC_C_AUTHN_LEVEL_PKT_INTEGRITY  None  Integrity  None  

RPC_C_AUTHN_LEVEL_PKT_PRIVACY  None  Confidentiality  None  

In the preceding tables, "None" means no protection, "Integrity" means an integrity check per 
[RFC2743]  section 2.3.1 MUST be applied, and "Confidentiality" means that the segment MUST be 
encrypt ed.  

The PDU header, PDU body, and sec_trailer MUST be passed in the input message, in this order, to 
GSS_WrapEx, GSS_UnwrapEx, GSS_GetMICEx, and GSS_VerifyMICEx. For integrity protection the 
sign flag for that PDU segment MUST be set to TRUE, else it MUST be set to FALSE. For 
confidentiality protection, the conf_req_flag  for that PDU segment MUST be set to TRUE, else it 

MUST be set to FALSE.  

http://go.microsoft.com/fwlink/?LinkId=90378


 

120  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

The PDU header, PDU body, and sec_trailer from the output message of GSS_WrapEx and 
GSS_VerifyMICEx MUST be sent to the other side (client or server) as part of the request or 

response PDU, and the signature output MUST be sent to the other side (client or server) as the 
authentication token as specified in section 2. 2.2.12 .  

If the authentication level is RPC_C_AUTHN_LEVEL_PKT_PRIVACY, the PDU body will be encrypted. 
The PDU body from the output message of GSS_UnwrapEx represents the plain text version of the 
PDU body. The PDU header and sec_trailer output from the ou tput message SHOULD be ignored. 
Similarly the signature output SHOULD be ignored.  

For further details on GSS_WrapEx, see [MS -NLMP]  section 3.4.6 , [MS -KILE]  section 3.4.5.4  and 
[MS -TLSP]  section 3.1.5.1 . 

For details on GSS_UnwrapEx, see [MS -NLMP]  section 3.4.7 , [MS -KILE]  section 3.4.5.5  and [MS -

TLSP]  section 3.1.5.2 . 

For further details on GSS_GetMICEx , see [MS -NLMP]  section 3.4.8 and [MS -KILE]  section 3.4.5.6 . 

For further details on GSS_VerifyMICEx, see [MS -NLMP]  section 3.4.9 and [MS -KILE]  section 
3.4.5.7 . 

If the authentication level is connect, the security provider MUST use for request and response PDUs 
an authentication token t hat is optional and that does not need to be transmitted to the other side.  

This protocol does not specify whether the authentication token itself is protected from tampering by 
the security provider. It also does not specify how the security provider app lies integrity or 
confidentiality protection to a PDU segment. The algorithms for doing so are specific to the security 
provider. For details about a security provider, see the documentation for that security provider.  

3.3.1.5.3   Bind Time Feature Negotiation  

These extensions introduce additional rules about how a bind PDU  SHOULD be composed by the 

client and processed by the server, and how the response bind_ack PDU SHOULD be composed by 
the server and processed by the client. [C706]  sections 12.6.4.3 and 12.6.4. 4 specify a bind PDU 

and a bind_ack PDU. When sending a bind PDU, a client SHOULD add an element in the 
p_cont_elem  array that has the same value for the abstract_syntax  field as the previous element 
in the p_cont_elem  array, but that MUST have exactly one  element in the transfer_syntaxes  
array; also, its if_uuid  field MUST have the following prefix: 6CB71C2C -9812 -4540 and a version 
number of 1.0. If a client does so, it is said to have indicated support for bind time feature 

negotiation. A client MUST have , at most, one element in the p_cont_elem  array that has an 
if_uuid  with that prefix in the transfer_syntaxes  array. If a client has indicated support for bind 
time feature negotiation, the message processing rule in this section SHOULD be applied by the 
server implementation to all messages for this connection. If a client has not indicated support for 
bind time feature negotiation, the message processing rules in this section do not apply to this 
connection. <99>  

If a client has ind icated support for bind time feature negotiation, the eight octets immediately after 
the prefix are interpreted as BindTimeFeatureNegotiationBitmask, as specified in section 2.2.2.14 . If 
the SecurityCont extMultiplexingSupported  bit is set, this means the client supports security 

context multiplexing, as specified in section 3.3.1.5.4 . If the KeepConnectionOnOrphan bit is set, 
this means the client suppo rts keeping the connection open after an orphaned PDU is sent, as 
specified in section 3.3.1.5.10 .  

As specified in [C706] , section 12.6.3.1, the bind_ack  PDU MUST contain the same number of 

<p_result_t> elements in <p_result_list> as the number of elements in p_cont_array  in the bind 
PDU. Each <p_result_t> element represents the response from the server for each element in the 

%5bMS-NLMP%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-TLSP%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-TLSP%5d.pdf
%5bMS-TLSP%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-KILE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

121  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

p_cont_array . Thu s the elements in the <p_result_list> MUST be in the same order as the 
elements in the p_cont_array .  

The server MUST set the corresponding p_result_t  element in the p_result_list  in the bind_ack 
PDU described as follows. If the server supports bind time fe ature negotiation, it MUST reply with 

the result field in the p_result_t structure of the bind_ack PDU equal to negotiate_ack, and it MUST 
use the reason field of the p_result_t  structure as a BindTimeFeatureNegotiationResponseBitmask 
structure. The server  MUST set the transfer_syntax  element in the p_result_t  structure to zero.  

If a client has set the SecurityContextMultiplexingSupported  bit in the 
BindTimeFeatureNegotiationResponseBitmask structure, and the server supports security context 
multiplexing, t he server SHOULD set the SecurityContextMultiplexingSupported  bit of the 
BindTimeFeatureNegotiationResponseBitmask structure.  

If the server does not support security context multiplexing, the server MUST clear the 
SecurityContextMultiplexingSupported  bit of the BindTimeFeatureNegotiationResponseBitmask 
structure. If the SecurityContextMultiplexingSupported  bit in the 
BindTimeFeatureNegotiationResponseBitmask structure is set, and if the client supports security 

context multiplexing, then security context m ultiplexing SHOULD be used on this connection, as 
specified in section 3.3.1.5.4 .<100>  

If a client has set the KeepConnectionOnOrphanSupported bit in the 
BindTimeFeatureNegotiationBitmask structure and the server supports keeping the connection open 
after an orphaned PDU is received, the server SHOULD set the KeepConnectionOnOrphanSupported 
bit in the BindTimeFeatureNegotiationResponseBitmask structure.  

If the server does not support keeping the connection open after an orphaned PDU is received, the 
server MUST clear the KeepConnectionOnOrphanSupported bit in the 
BindTimeFeatureNegotiationRes ponseBitmask. If the KeepConnectionOnOrphanSupported bit in the 

BindTimeFeatureNegotiationResponseBitmask is set and the client supports keeping the connection 
open after an orphaned PDU is sent, the client SHOULD start keeping the connection open after 
sending an orphaned PDU on the connection, as specified in Keeping Connections Open After Client 
Sends an Orphaned PDU (section 3.3.1.5.10). <101>  

For future extensibility, these rules MUST be applied by the server and the client to al l reserved bits 
in the BindTimeFeatureNegotiationResponseBitmask and 
BindTimeFeatureNegotiationResponseBitmask structures:  

Á If a client supports a given feature, the client MUST set the bit (or set of bits) associated with this 

feature.  

Á If a bit (or set of  bits) used to communicate that a client supports a given feature is not set, the 

server MUST assume that the client does not support this feature.  

Á If a server does support the feature, the server MUST set the bits associated with that feature in 

the Bind TimeFeatureNegotiationResponseBitmask bitmask.  

Á A server MUST clear all bits in the BindTimeFeatureNegotiationResponseBitmask bitmask that it 

interprets are reserved.  

Any bind time features that are successfully negotiated are stored in the client and serve r's 
Association's  Bind Features Bitmask .  

3.3.1.5.4   Security Context Multiplexing  

These extensions allow for a client implementation to use more than one security context per 
connection. A client implementation MUST NOT do security context multiplexing unless the 



 

122  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Association's  Bind Feature Bitmask  has the SecurityContextMultiplexingSupported  bit set. 
When security context multiplexing has been negotiated, if a client needs to negotiate a new 

security context, it is allowed to do so on an existing connection subject to the constr aints in the 
server state machine. These extensions also introduce some constraints and conventions along with 

this capability. If there is only one security context on a given connection, and this security context 
has the authentication level connect, a c lient and a server MAY choose not to send authentication 
information for that security context. In such a case, the server MUST treat request PDUs without 
authentication information as if they had Connect level authentication information, and all other 
security context attributes are picked from the only security context negotiated on the 
connection. <102>  

A client MUST send authentication information for all request PDUs if the higher - level protocol on the 

client has asked for the co nnect authentication level and there is more than one security context 
negotiated for the connection.  

A client MUST NOT build more than 2,000 security contexts per connection, but it MAY choose to 
impose an even lower limit on the number of security conte xts that can be built on a 
connection. <103>  

The server MAY enforce a limit in the number of security contexts that can be associated with a 

single connection.  

If a server receives a request to associate a security context with an ex isting connection, the server 
SHOULD check that such limit has not been reached. <104>   

If the new security context exceeds the server's limit, the server MUST send to the client an 
rpc_fault packet with the RPC_S_PROTOCOL_ERROR erro r code.  

If the new association would make the limit be exceeded, the server MUST send to the client an 
rpc_fault packet with the RPC_S_PROTOCOL_ERROR error code.  

3.3.1.5.5   Primary and Secondary Endpoint Address  

Primary and Secondary Endpoint Addresses ( [C706]  section 9.3.3.2) allows a server to have a 

primary and secondary endpoint  address. These extensions recognize the syntactic rules associated 
with a primary and secondary endpoint address, but they discard all semantic meaning of a primary 
and secondary endpoint address. Servers that implement these extensions SHOULD return a 
secondary endpoint address that is the same as the primary endpoint address. Clients that 

implement these extensions SHOULD ignore the secondary endpoint address. Implementations of 
this protocol MUST conform to [C706]  with respect to transmitting, storing, and failure handling of 
the secondary endpoint. Clients SHOULD ignore secondary endpoints that the server returns.  

3.3.1.5.6   Presentation Context and Transfer Syntax Negotiation  

These extensions extend and augment the message processing rules for presentation context and 

transfer syntax negotiation, as specified in [C706]  section 12.6. The scope of a presentation context 
in these extensions is a connection.  

The basic model for the negotiation process is that the client enumerates all transfer syntaxes it 

supp orts, and the server chooses one of them. A detailed description of the processing rules follows.  

If a client supports multiple transfer syntaxes, as listed in the List of Supported Transfer 
Syntaxes  in the association , the client SHOULD send multiple elem ents in the p_cont_elem  
array of the p_cont_elem_t structure, as specified in [C706]  section 12. The abstract_syntax  field 

in each element of the array SHOULD contain the same if_uuid  and if_vers ion , and the 
transfer_syntaxes  array of each element SHOULD have one element only. The if_uuid  and 

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90952


 

123  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

if_version  of the element in the transfer_syntaxes  array MUST contain the transfer syntax UUID 
and version number for the transfer syntax the client is propo sing.  

The server responds with a bind_ack or alter_context_resp PDU depending on what PDU the client 
sent to it. The server SHOULD accept, at most, one of the transfer syntaxes. Selection of a transfer 

syntax is based on the following criteria:  

1.  If one of the client proposed transfer syntaxes matches the server's preferred transfer syntax, 
then that transfer syntax is accepted.  

2.  If the client does not propose a transfer syntax that ma tches the server's preferred transfer 
syntax, the first transfer syntax in the client's list of proposed syntaxes which is also supported 
by the server is accepted.  

3.  If none of the proposed transfer syntaxes are supported, the server MUST send a bind_ack  wi th 

all transfer syntaxes rejected.  

The response of the server is a p_result_list_t structure that MUST have the same number of 

elements as the p_cont_elem_t structure the client sent to it. Each array element in the 
p_result_list_t structure is interpreted  to correspond to the array element in the p_cont_elem_t 
structure in the same position of the array. For example, the first array element in the 
p_result_list_t structure is interpreted to correspond to the first array element in the p_cont_elem_t 

structu re. If the server does not recognize the abstract_syntax  field in an array element in the 
p_cont_elem_t structure, it MUST set the result field in the p_result_list_t structure corresponding 
to that array element to abstract_syntax_not_supported . If the se rver recognizes the 
abstract_syntax  field, the server MUST set the result field corresponding to the transfer syntax it 
prefers to use to the "acceptance" value and the result field corresponding to all other transfer 
syntaxes to the "provider_rejection" v alue. Both of these values are as specified in [C706]  section 
12.6.  

The client SHOULD NOT interpret the rejection of a transfer syntax as an indication that the server 
will not accept this transf er syntax at a future date but instead SHOULD interpret the rejection as an 
indication that the server prefers the transfer syntax it accepted over the other transfer syntaxes 
proposed by the client. A client is allowed to propose a rejected transfer synta x at a later time, but if 

it has a choice, the client SHOULD use the transfer syntax that the server accepted instead of trying 
to renegotiate a transfer syntax that was rejected earlier by the server.  

If the client receives a bind_ack  with no accepted tra nsfer syntax, the client MUST fail the 

call. <105>  

If the client attempts to negotiate a presentation context when the server already has 4000 X 
NumberOfRegisteredInterfaces  or greater presentation contexts, the server MUST fail 
nego tiation of a presentation context with bind_nak  packet. The client behavior when receiving the 
bind_nak packet is as described in [C706]  section 11.1.3 (CO_CLIENT Events, RCV_BIND_NAK 
event).  

Once negotiated, a presentation context SHOULD be maintained by both the client and server 
implementations for the lifetime of the connection it was negotiated on by adding it to the Table of 
Presentation Contexts  in the association  and to the List of Negotiated Presentation 

Contexts  in the connection .  

Servers SHOULD implement at least transfer syntax NDR, as defined in this document, to allow for a 
fallback transfer syntax if another transfer syntax cannot be negotiated. <106>  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824


 

124  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.3.1.5.7   Adding a New RPC Transport Connection to an Association  

The assoc_group_id  field in the bind PDU is as specified in [C706]  section 12.6.4.3. These 
extensions add some constraints to the protocol specified in [C706] . If a new connection tries to join 

an existing association by setting the assoc_group_id  field to the value of an existing association, 
the server SHOULD establish from the RPC transport whether the connection comes from the same 
machine as the connection that created the association. If yes, it MUST allow the connection to join 
the association. If no, it SHOULD NOT allow the connection to join the association. The only 
transports capable of determining this conclusively are RPC over TCP, RPC over HTTP and RPC over 
Named Pipes.  For other transports this checks SHOULD be omitted.  

Determining the identity o f the client machine is performed in a transport -specific manner. For RPC 

over TCP, an implementation of this protocol MUST use the client's IP address. For RPC over HTTP, 
an implementation of this protocol MUST use the Association Group ID of the client. For RPC over 
Named Pipes, an implementation of this protocol MUST use the client machine name.  

3.3.1.5.8   Multiplexed Connections  

A client SHOULD <107>  support concurrent multiplexing on a connection.  

A client can indicate to the server that it wants to do concurrent multiplexing on a connection. It 
does that by setting the PFC_CONC_MPX bit, as specified in [C706]  section 12. If the server als o 
supports this capability, it responds with a PDU that also has the same bit set. At this point both the 
client and server MUST set the Connection Multiplex Flag  to Yes. Once concurrent multiplexing on 
a connection is negotiated, a client is allowed to se nd another request on a connection before it 
receives a response on a previous request, provided that the server is in CONTEXT_NEGOTIATED or 
Dispatched state. A client still MUST send all request PDUs for a fragmented request before it can 

move on to the n ext. Each request on the connection MUST abide by the same rule.  

If a client negotiates a connection that does not support concurrent multiplexing (also called an 
exclusive connection), a client MUST wait for all PDUs of a response to arrive before it can send a 
request PDU for the next call.  

3.3.1.5.9   Handling of Callbacks  

Method calls declared as callbacks have some additional rules for handling on the network compared 

to calls without this attribute. A callback on the network is represented as a regular RPC  except that 
the direction of the PDUs is reversed. The server sends one or more request PDUs, and the client 
responds with one or more response PDUs. The server MUST NOT send request PDUs while in any 
state other than the Dispatch state, and a client SHOU LD NOT accept callbacks in any state other 
than the Wait For Response state.  

Callbacks are allowed recourse to any level that the implementation is willing to support. That is, if a 
client gets a callback, it SHOULD initiate another RPC method call by sen ding more request PDUs 

instead of replying to the previous request. This same rule applies for the server. For the server, if it 
sends one or more request PDUs during the Dispatch state, the call that is in the Dispatch state is 
called a nesting or outer c all. The callback call that the request PDUs sent from the server is called a 
nested or inner call. For the client, if it sends one or more request PDUs during the Wait For 
Response state, the call that is in the Wait For Response state is called a nesting  or outer call. The 

callback call that the request PDUs sent from the client is called a nested or inner call. Callback calls 

by definition use the presentation and security context of the nesting call and MUST NOT send bind 
or alter_context PDUs.  

The cal l_id  field for all request and response PDUs of a nested callback MUST be the same as the 
call_id  of the request/response PDUs of the nesting callback.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90952


 

125  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

3.3.1.5.10   Keeping Connections Open After Client Sends an Orphaned PDU  

A client implementation MUST NOT keep the connection open after sending the orphaned PDU 
unless the Association's  Bind Feature Bitmask  has the KeepConnectionOnOrphanSupported  

bit set.  

3.3.1.6   Timer Events  

There are no timer events that are common between a connection -oriented client and a connection -
oriented server.  

3.3.1.7   Other Local Events  

There are no other local events that are common between a connection -oriented client and a 
connection -oriented server.  

3.3.2   Client Details  

The following diagram defines the client state machine.  

 



 

126  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

Figure 18: Client state machine  

State  Description  

ESTABLISHED  The client has received a transport connect complete indicating 

that a new transport connection has been established.  

WAIT for UNSECURE_BIND_ACK  The client has sent the bind PDU, in case of an unsecure call.  

CONTEXT_NEGOTIATED  The client is ready to send  the request PDU.  

WAIT for SECURE_BIND_ACK  The client has sent a bind PDU, in case of a secure call.  

WAIT for 

SECURE_ALTER_CONTEXT_RESP 

The client has sent a SECURE_ALTER_CONTEXT  PDU and is 

waiting for an answer.  

WAIT_RSP  The client is waiting for a response PDU.  

Notes on this state machine:  

When a state does not show an error transition, these extensions handle the error from this state by 
closing the connection.  

When concurrent multiplexing is used on a connection, as so on as an independent logical thread of 
execution makes a transition from CONTEXT_NEGOTIATED to WAIT_RSP state, another independent 
logical thread of execution can make the transition from CONTEXT_NEGOTIATED to WAIT_RSP. Only 

one logical thread of execution  is allowed to make this transition at a given time, but multiple logical 
threads of execution can be in the WAIT_RSP state. A client MUST NOT send any request PDU for 
request N+1 before it sends all request PDUs for request N.  

If concurrent multiplexing o n a connection is not enabled, a client MUST NOT send any request PDU 
for request N+1 before it receives all the response PDUs for request N.  

3.3.2.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document.  

Note   The conceptual data can be implemented by using a variety of techniques.  

3.3.2.1.1   Idle Connection Cleanup Enabled  

Idle Connection Cleanup Enabled : A flag that, if set, indicates that cleaning up idle connections 
is enabled. It MUST be clear by default.  

3.3.2.1.2   Association Active Context Handle Count  

Association Active Context Handle Count : The client version of the Association  ADM element, 
as described in section 3.3.1.1.1 , includes a count of active context handles, stored in a 32 -bit 

unsigned integer. When a new association  is created, the count is zero. The Association Active 
Context Handle Count  is incremented when context handles are created for an association  
accordin g to the mechanisms described in [C706] . Likewise, the Association Active Context 
Handle Count  is decremented when context handles are released. The client SHOULD not allow the 

http://go.microsoft.com/fwlink/?LinkId=89824


 

127  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

count of context h andles to overflow the data type, although the chance of doing so without 
exceeding the server's resource limits is very minimal.  

3.3.2.1.3   Client Call  

The client call  is a data element that encapsulates the state associated with a client call . The 
client call  is specified by a state machine with the following states.  

State  Description  

STATE_SEND_PDUS  The client is sending request PDUs of the call's [in] parameters to the server. This 

is the call's initial state.  

STATE_DISPATCHED  The server has received all Request PDUs and is processing the request.  

STATE_RECEIVE_PDU  The server is sending reply PDUs of the call's [out] parameters to the client.  

STATE_COMPLETE The call completed successfully. This is a terminal state.  

STATE_FAULT The call failed. This is a terminal state.  

The client call states are depicted in the following diagram:  



 

128  /  183  

[MS -RPCE] ð v20130722   
 Remote Procedure Call Protocol Extensions  
 
 Copyright © 2013 Microsoft Corporation.  
 
 Release: Monday, July 22, 2013  

 

Figure 19: Client Call State Diagram  

Client Call : The client call  data structure maintains state and property information relating to a 

client call , as specified in [C706]  section 9.3.4. Each client call  contains the following properties:  

Á Connection : As specified in section 3.3.1.5.5 , each call MUST establish and maintain an affinity 

for a single connection . The mechanism of linking a call to a connection  is implementation -
dependent. The process for determining an appropriate connection  is described in section 
3.3.2.4.1.2 . 

Á Call_id : An unsigned 32 -bit integer  identifying the call, as defined in [C706]  section 12.6.3.5.  

Á Communication Time - out Value : A 32 -bit integer value that specifies a time -out period in 

milliseconds for PDU transmission. This valu e is set by higher - level protocol in an implementation 
specific manner <108>  prior to making a call. See section 3.3.2.2.2  for more information on how 
this affects PDU transmission. If not specified by the higher - layer protocol, the default value is 
MAX_INT.  

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824





































































































