

1 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

[MS -RDPEGFX -Diff]:

Remote Desktop Protocol: Graphics Pipeline Extension

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promi se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Commun ity Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This noti ce does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be infe rred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are int ended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and sup port, please contact dochelp@microsoft.com .

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Revision Summary

Date
Revision
History

Revision
Class Comments

12/16/2011 1.0 New Released new document.

3/30/2012 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 2.0 Major Significantly changed the technical content.

10/25/2012 3.0 Major Significantly changed the technical content.

1/31/2013 4.0 Major Significantly changed the technical content.

8/8/20 13 5.0 Major Significantly changed the technical content.

11/14/2013 6.0 Major Significantly changed the technical content.

2/13/2014 7.0 Major Significantly changed the technical content.

5/15/2014 7.0 None
No change to the meaning, language, or formatting of the
technical content.

6/30/2015 8.0 Major Significantly changed the technical content.

10/16/2015 9.0 Major Significantly changed the technical content.

7/14/2016 10.0 Major Significantly changed the technical content.

3/16/2017 11.0 Major Significantly changed the technical content.

6/1/2017 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 12.0 Major Significantly changed the technical content.

12/1/2017 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2018 13.0 Major Significantly changed the technical content.

9/12/2018 14.0 Major Significantly changed the technical content.

8/26/2020 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Table of Contents

1 Introduction 8
1.1 Glossary 8
1.2 References 8

1.2.1 Normative References 9
1.2.2 In formative References 9

1.3 Overview 9
1.4 Relationship to Other Protocols 11
1.5 Prerequisites/Preconditions 11

1.5.1 Client Implementation Requirements 11
1.5.2 Server Implementation Requirements 12

1.6 Applicability Statement 13
1.7 Versioning and Capability Negotiation 13
1.8 Vendor -Extensible Fields 14
1.9 Standards Assignments 14

2 Messages 15
2.1 Transport 15
2.2 Message Syntax 15

2.2.1 Common Data Types 15
2.2.1.1 RDPGFX_POINT16 15
2.2.1.2 RDPGFX_RECT16 15
2.2.1.3 RDPGFX_COLOR32 16
2.2.1.4 RDPGFX_PIXELFORMAT 16
2.2.1.5 RDPGFX_HEADER 16
2.2.1.6 RDPGFX_CAPSET 18

2.2.2 Graphics Messages 19
2.2.2.1 RDPGFX_WIRE_TO_SURFACE_PDU_1 19
2.2.2.2 RDPGFX_WIRE_TO_SURFACE_PDU_2 21
2.2.2.3 RDPGFX_DELETE_ENCODING_CONTEXT_PDU 22
2.2.2.4 RDPGFX_SOLIDFILL_PDU 22
2.2.2.5 RDPGFX_SURFACE_TO_SURFACE_PDU 23
2.2.2.6 RDPGFX_SURFACE_TO_CACHE_PDU 24
2.2.2.7 RDPGFX_CACHE_TO_SURFACE_PDU 24
2.2.2.8 RDPGFX_EVICT_CACHE_ENTRY_PDU 25
2.2.2.9 RDPGFX_CREATE_SURFACE_PDU 25
2.2.2.10 RDPGFX_DELETE_SURFACE_PDU 26
2.2.2.11 RDPGFX_START_FRAME_PDU 26
2.2.2.12 RDPGFX_END_FRAME_PDU 27
2.2.2.13 RDPGFX_FRAME_ACKNOWLEDGE_PDU 27
2.2.2.14 RDPGFX_RESET_GRAPHICS_PDU 28
2.2.2.15 RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU 29
2.2.2.16 RDPGFX_CACHE_IMPORT_OFFER_PDU 30

2.2.2.16.1 RDPGFX_CACHE_ENTRY_METADATA 30
2.2.2.17 RDPGFX_CACHE_IMPORT_REPLY_PDU 31
2.2.2.18 RDPGFX_CAPS_ADVERTISE_PDU 31
2.2.2.19 RDPGFX_CAPS_CONFIRM_PDU 32
2.2.2.20 RDPGFX_MAP_SURFACE_TO_WINDOW_PDU 32
2.2.2.21 RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU 33
2.2.2.22 RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU 34
2.2.2.23 RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU 35

2.2.3 Capability Sets 36
2.2.3.1 RDPGFX_CAPSET_VERSION8 36
2. 2.3.2 RDPGFX_CAPSET_VERSION81 36
2.2.3.3 RDPGFX_CAPSET_VERSION10 37
2.2.3.4 RDPGFX_CAPSET_VERSION101 38

4 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.3.5 RDPGFX_CAPSET_VERSION102 39
2.2.3.6 RDPGFX_CAPSET_VERSION103 39
2.2.3.7 RDPGFX_CAPSET_VERSION104 40
2.2.3.8 RDPGFX_CAPSET_VERSION105 41
2.2.3.9 RDPGFX_CAPSET_VERSION106 41

2.2.4 Bitmap Compression 42
2.2.4.1 CLEARCODEC_BITMAP_STREAM 42

2.2.4.1.1 CLEARCODEC_COMPOSITE_PAYLOAD 43
2.2.4.1.1.1 CLEARCODEC_RESIDUAL_DATA 44

2.2.4.1.1.1.1 CLEARCODEC_RGB_RUN_SEGMENT 45
2.2.4.1.1.2 CLEARCODEC_BANDS_DATA 45

2.2.4.1.1.2.1 CLEARCODEC_BAND 46
2.2.4.1.1.2.1.1 CLEARCODEC_VBAR 46

2. 2.4.1.1.2.1.1.1 VBAR_CACHE_HIT 47
2.2.4.1.1.2.1.1.2 SHORT_VBAR_CACHE_HIT 47
2.2.4.1.1.2.1.1.3 SHORT_VBAR_CACHE_MISS 48

2.2.4.1.1.3 CLEARCODEC_SUBCODECS_DATA 49
2.2.4.1.1.3.1 CLEARCODEC_SUBCODEC 49

2.2.4.1.1.3.1.1 CLEARCODEC_SUBCODEC_RLEX 50
2.2.4.1.1.3.1.1.1 RLEX_RGB_TRIPLET 51
2.2.4.1.1.3.1.1.2 CLEARCODEC_SUBCODEC_RLEX_SEGMENT 51

2.2.4.2 RFX_PROGRESSIVE_BITMAP_STREAM 52
2.2.4.2.1 RFX_PROGRESSIVE_DATABLOCK 53

2.2.4.2.1.1 RFX_PROGRESSIVE_SYNC 54
2.2.4.2.1.2 RFX_PROGRESSIVE_FRAME_BEGIN 54
2.2.4.2.1.3 RFX_PROGRESSIVE_FRAME_END 55
2.2.4.2.1.4 RFX_PROGRESSIVE_CONTEXT 55
2.2.4.2.1.5 RFX_PROGRESSIVE_REGION 56

2.2.4.2.1.5.1 RFX_PROGRESSIVE_CODEC_QUANT 58
2.2.4.2.1.5.2 RFX_COMPONENT_CODEC_QUANT 59
2.2.4.2.1.5.3 RFX_PROGRESSIVE_TILE_SIMPLE 59
2.2.4.2.1.5.4 RFX_PROGRESSIVE_TILE_FIRST 61
2.2.4.2.1.5.5 RFX_PROGRESSIVE_TILE_UPGRADE 63

2.2.4.3 ALPHACODEC_BITMAP_STREAM 66
2.2.4.3.1 CLEARCODEC_ALPHA_RLE_SEGMENT 66

2.2.4.4 RFX_AVC420_BITMAP_STREAM 67
2.2.4.4.1 RFX_AVC420_METABLOCK 67
2. 2.4.4.2 RDPGFX_AVC420_QUANT_QUALITY 68

2.2.4.5 (Updated Section) RFX_AVC444_BITMAP_STREAM 69
2.2.4.6 (Updated Section) RFX_AVC444V2_BITMAP_STREAM 70

2.2.5 Data Packaging 71
2.2.5.1 RDP_SEGMENTED_DATA 71
2.2.5.2 RDP_DATA_SEGMENT 72
2.2.5.3 RDP8_BULK_ENCODED_DATA 73

2. 3 Directory Service Schema Elements 73

3 Protocol Details 74
3.1 Common Details 74

3.1.1 Abstract Data Model 74
3.1.2 Timers 74
3.1.3 Initialization 74
3.1.4 Higher -Layer Triggered Events 74
3.1.5 Message Processing Events and Sequencing Rules 74

3.1.5.1 Processing a Graphics Message 74
3.1.6 Timer Events 74
3.1.7 Other Local Events 74
3.1.8 Bitmap Compression 74

3.1.8.1 RemoteFX Progressive Codec Compression 74

5 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.1.8.1.1 General Terms and Concepts 75
3.1.8.1.2 Sub -Band Diffing 75
3.1.8. 1.3 Extra Quantization 75
3.1.8.1.4 State Tracking 76
3.1.8.1.5 Simplified Run -Length (SRL) 76

3.1.8.1.5.1 Zero Run -Length Encoding 76
3.1.8.1.5.2 Unary Encoding 77

3.1.8.1.6 Summary of Terms 77
3.1.9 Bulk Data Compression 78

3.1.9.1 RDP 8.0 78
3.1.9.1.1 Overview 78
3.1.9.1.2 Detailed Description 78

3.1.9.1.2.1 De-Blocking 79
3.1.9.1.2.2 Compressed Segment Header 79
3.1.9.1.2.3 Compressed Segment Bit Stream 79
3.1.9.1.2.4 Compressed Segment Trailer 79
3.1.9.1.2.5 Bit Stream Encoding Examples 82

3.2 Server Details 82
3.2.1 Abstract Data Model 82

3.2.1.1 Bitmap Cache Map 83
3.2.1.2 Unacknowledged Frames 83

3.2.2 Timers 83
3.2.3 Initialization 83
3.2.4 Higher -Layer Triggered Events 83
3.2.5 Message Processing Events and Sequencing Rules 83

3.2.5.1 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_1 message 83
3.2.5.2 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_2 message 83
3.2.5.3 Sending an RDPGFX_DELETE_ENCODING_CONTEXT_PD U message 83
3.2.5.4 Sending an RDPGFX_SOLIDFILL_PDU message 84
3.2.5.5 Sending an RDPGFX_SURFACE_TO_SURFACE_PDU message 84
3.2.5.6 Sending an RDPGFX_SURFACE_TO_CACHE_PDU message 84
3.2.5.7 Sending an RDPGFX_CACHE_TO_SURFACE_PDU mes sage 84
3.2.5.8 Sending an RDPGFX_EVICT_CACHE_ENTRY_PDU message 84
3.2.5.9 Sending an RDPGFX_CREATE_SURFACE_PDU message 84
3.2.5.10 Sending an RDPGFX_DELETE_SURFACE_PDU message 85
3.2.5.11 Sending an RDPGFX_START_FRAME_PDU message 85
3.2.5.12 Sending an RDPGFX_END_FRAME_PDU message 85
3.2.5.13 Processing an RDPGFX_FRAME_ACKNOWLEDGE_PDU message 85
3.2.5.14 Sending an RDPGFX_RESET_GRAPHICS_PDU message 85
3.2.5.15 Sending an RDPGFX_MAP_SURFACE_TO_OUTPUT_P DU message 85
3.2.5.16 Processing an RDPGFX_CACHE_IMPORT_OFFER_PDU message 86
3.2.5.17 Sending an RDPGFX_CACHE_IMPORT_REPLY_PDU message 86
3.2.5.18 Processing an RDPGFX_CAPS_ADVERTISE_PDU message 86
3.2.5.19 Sending an RDPGFX_CAPS_CONFIRM_PDU mess age 86
3.2.5.20 Sending an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message 86
3.2.5.21 Processing an RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message 86
3.2.5.22 Sending an RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU message ... 87
3.2.5.23 Sending an RDPGFX_MAP_S URFACE_TO_SCALED_WINDOW_PDU message . 87

3.2.6 Timer Events 87
3.2.7 Other Local Events 87
3.2.8 Bitmap Compression 87

3.2.8.1 RemoteFX Progressive Codec Compression 87
3.2.8.1.1 Color Conversion (RGB to YCbCr) 87
3.2.8.1.2 DWT 88

3.2.8.1.2.1 Original Method 88
3.2.8.1.2.2 (Updated Section) Reduce -Extrapolate Method 88

3.2.8.1.3 Quantization and Linearization 90
3.2.8.1.4 Sub -Band Diffing 90

6 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.2.8.1.5 (Updated Section) Progressive Entropy Encoding 91
3.2.8.1.5.1 Performing the First Progressive Pass 92
3.2.8.1.5.2 Performing Upgrade Progressive Passes 93

3.2.8.1.5.2.1 Sending Raw Bits 93
3. 2.8.1.5.3 Maintaining the Decoder Reference 93

3.3 Client Details 93
3.3.1 Abstract Data Model 93

3.3.1.1 Codec Contexts 94
3.3.1.2 Progressive Tile Contexts 94
3.3.1.3 Sub -Band Diffing Tile Contexts 94
3.3.1.4 (Updated Section) Bitmap Cache 94
3.3.1.5 Persistent Bitmap Cache 95
3.3.1.6 Offscreen Surface 95
3.3.1.7 Graphics Output Buffer 95
3.3.1.8 Surface to Output Mapping 95
3.3.1.9 Decompressor Glyph Storage 95
3.3.1.10 V-Bar Storage 95
3.3.1.11 V-Bar Storage Cursor 95
3.3.1.12 Short -V-Bar Storage 95
3.3. 1.13 Short V -Bar Storage Cursor 95
3.3.1.14 Confirmed Graphics Capabilities 96
3.3.1.15 Surface to Window Mapping 96

3.3.2 Timers 96
3.3.3 Initialization 96
3.3.4 Higher -Layer Triggered Events 96
3.3.5 Message Processing Events and Sequencing Rules 96

3.3.5.1 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_1 message 96
3.3.5.2 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_2 message 96
3.3.5.3 Processing an RDPGFX_DELETE_ENCODING _CONTEXT_PDU message 97
3.3.5.4 Processing an RDPGFX_SOLIDFILL_PDU message 97
3.3.5.5 Processing an RDPGFX_SURFACE_TO_SURFACE_PDU message 97
3.3.5.6 Processing an RDPGFX_SURFACE_TO_CACHE_PDU message 97
3.3.5.7 Processing an RDPGFX_CACHE_TO_SURFACE_PDU message 97
3.3.5.8 Processing an RDPGFX_EVICT_CACHE_ENTRY_PDU message 98
3.3.5.9 Processing an RDPGFX_CREATE_SURFACE_PDU message 98
3.3.5.10 Processing an RDPGFX_DELETE_SURFACE_PDU message 98
3.3.5.11 Processing an RDPGFX_START_FRAME_PDU message 98
3.3.5.12 Processing an RDPGFX_END_FRAME_PDU message 98
3.3.5.13 Sending an RDPGFX_FRAME_ACKNOWLEDGE_PDU message 98
3.3.5.14 Processing an RDPGFX_RESET_GRAPHICS_PDU message 99
3.3.5.15 Processing an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message 99
3.3.5.16 Sending an RDPGFX_CACHE_IMPORT_OFFER_PDU message 99
3.3.5.17 Processing an RDPGFX_CACHE_IMPORT_REPLY_PDU message 99
3.3.5.18 Sending an RDPGFX_CAPS_ADVERTISE_PDU message 99
3.3.5.19 Processing an RDPGFX_CAPS_CONFIRM_PDU message 99
3.3.5.20 Processing an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message 100
3.3.5.21 Sending an RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message 100
3.3.5.22 Processing an RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU message 100
3.3.5.23 Processing an RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message

 100
3.3.6 Timer Events 100
3.3.7 Other Local Events 100
3.3.8 Bitmap Compression 101

3.3.8.1 ClearCodec Compression 101
3.3.8.1.1 ClearCodec Run -Length Encoding 101
3.3.8.1.2 Decompressing a Bitmap 101

3.3.8.2 RemoteFX Progressive Codec Compression 102
3.3.8.2.1 Progressive Entropy Decode 103

7 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.3.8.2.1.1 Performing the First Progressive Pass 103
3.3.8.2.1.2 Performing the Upgrade Progressive Passes 104

3.3.8.2.2 Inverse DWT 105
3.3.8.2.3 Color Conversion 105

3.3.8.3 MPEG-4 AVC/H.264 Compression 105
3.3.8.3.1 Color Conversion 105
3.3.8. 3.2 YUV420p Stream Combination for YUV444 mode 106
3.3.8.3.3 YUV420p Stream Combination for YUV444v2 mode 109

4 Protocol Examples 113
4.1 Bitmap Compression 113

4.1.1 ClearCodec Compression 113
4.1.1.1 Example 1 113
4.1.1.2 Example 2 113
4.1.1.3 Exampl e 3 115
4.1.1.4 Example 4 117
4.1.1.5 Example 5 118

4.1.2 Progressive Entropy Encode and Decode 120
4.1.2.1 Encode 121

4.1.2.1.1 Encode Frame #1 at 25% 121
4.1.2.1.2 Encode Frame #1 at 50% 121
4.1.2.1.3 Encode Frame #2 at 25% 122
4.1.2.1.4 Encode Frame #2 at 50% 123
4.1.2.1.5 Encode Frame #2 at 100% 124

4.1.2.2 Decode 124
4.1.2.2.1 Decode Frame #1 at 25% 124
4.1.2.2.2 Decode Frame #1 at 50% 125
4.1.2.2.3 Decode Frame #2 at 25% 126
4.1.2.2.4 Decode Frame #2 at 50% 126
4.1.2.2.5 Decode Frame #2 at 100% 126

4.2 Bulk Data Compression 127
4.2.1 RDP 8.0 127

4.2.1.1 Compression Samples 127
4.2.1.1.1 Example 1 127
4.2.1.1.2 Example 2 127
4.2.1.1.3 Example 3 128
4.2.1.1.4 Example 4 128
4.2.1.1.5 Example 5 129

4.2.1.2 Sample Code 130

5 Security 137
5.1 Security Considerations for Implementers 137
5.2 Index of Security Parameters 137

6 Appendix A: Product Behavior 138

7 Change Tracking 139

8 Index 140

8 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

1 Introduction

The Remote Desktop Protocol: Graphics Pipeline Extension applies to the Remo te Desktop Protocol:
Basic Connectivity and Graphics Remoting, as specified in [MS -RDPBCGR] sections 1 to 5. The
graphics protocol specified in section 2.2 is used to efficiently encode graphics display data generated
in a session associated with a remote user on a terminal server so that the data can be sent on the
wire, received, decoded, and rendered by a compatible client. The net effect is that a desktop or

application running on a remote terminal server will appear to a user as if it is running locall y.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

ANSI character : An 8 -bit Windows -1252 character set unit.

ARGB : A color space wherein each color is represented as a quad (A, R, G, B), where A represents
the alpha (transparency) component, R represents the red component, G represents the green
component, and B represents the blu e component. The ARGB value is typically stored as a 32 -
bit integer, wherein the alpha channel is stored in the highest 8 bits and the blue value is stored

in the lowest 8 bits.

Coordinated Universal Time (UTC) : A high -precision atomic time standard that a pproximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC -0 (or GMT).

discrete wavelet transform (DWT) : A mathematical procedure that can be used to derive a

discrete representation of a signal.

inverse discrete wavelet transform (IDWT) : A mathematical procedure that can be used to
reconstruct a signal without loss of information.

little - endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

Quality of Experience (QoE) : A subjective measure of a user's experiences with a media service.

RAIL window : A local client window that mimics a remote application window.

terminal server : A computer on which terminal services is running.

XRGB : A color spa ce wherein each color is represented as a quadruple (X, R, G, B), where X is
unused, R represents the red component, G represents the green component, and B represents
the blue component. XRGB effectively has the same color range as RGB.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library poi nt to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the corr ect section numbering by checking the Errata .

9 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with findin g a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[ITU -BT.709 -5] ITU -R, "Parameter values for the HDTV standards for production and international
programme exchange", Recommendation BT.7 09 -5, April 2002, https://www.itu.int/rec/R -REC-
BT.709/en

[ITU -H.264 -201201] ITU -T, "Advanced video coding for generic audiovisual services",
Recommendation H.264, January 2012, http://www.itu.int/rec/T -REC-H.264 -201201 -S/en

[MS -RDPBCGR] Microsoft Corporat ion, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS -RDPEDYC] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS -RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Devic e Interface (GDI)

Acceleration Extensions".

[MS -RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS -RDPNSC] Microsoft Corporation, "Remote Desktop Protocol: NSCodec Extension".

[MS -RDPRFX] Microsoft Corp oration, "Remote Desktop Protocol: RemoteFX Codec Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[SAYOOD] Sayood, K., "Lossless Compression Handbook, First Edition", Academic Press, August 2002,
ISBN: 0126208611.

1.3 Overview

The graphics commands specifie d in section 2.2 are used to efficiently encode graphics display data

generated in the session associated with a remote user and can be separated into five categories.

1. Cache management commands are used to evict entries from a bitmap cache and to notify th e
server of cache entries stored in an optional client -side persistent bitmap cache.

Á RDPGFX_EVICT_CACHE_ENTRY_PDU (section 2.2.2.8)

Á RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16)

Á RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17)

2. Surface management commands are used to manage the lifetime of offscreen surfaces, to map
offscreen surfaces to a graphics output buffer, and to adjust the dimensions of any associated
graphics output buffers.

Á RDPGFX_CREATE_SURFACE_PDU (section 2.2.2.9)

Á RDPGFX_DEL ETE_SURFACE_PDU (section 2.2.2.10)

10 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Á RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)

Á RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

3. Framing commands are used to group graphics commands into logical frames and to indicate to
the server that a frame has been decoded.

Á RDPGFX_START_FRAME_PDU (section 2.2.2.11)

Á RDPGFX_END_FRAME_PDU (section 2.2.2.12)

Á RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

4. Capability exchange commands are used to exchange capability sets (section 2.2.1.4).

Á RDPGFX_CAPS_ADVERTISE_PDU (sect ion 2.2.2.18)

Á RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)

5. Blit commands are used to transfer bitmaps from the server to an offscreen surface on the client,

transfer bitmaps between offscreen surfaces, transfer bitmaps between offscreen surfaces and a
bitmap cache, and to fill a rectangular region on an offscreen surface with a predefined color.

Á RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

Á RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

Á RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)

Á RDPGFX_SOLIDFILL_PD U (section 2.2.2.4)

Á RDPGFX_SURFACE_TO_SURFACE_PDU (section 2.2.2.5)

Á RDPGFX_SURFACE_TO_CACHE_PDU (section 2.2.2.6)

Á RDPGFX_CACHE_TO_SURFACE_PDU (section 2.2.2.7)

11 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Figure 1 : Overview of the blit commands

For more details regarding t he graphics protocol behavior, sequencing, and processing rules, see
section 3.

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: Graphics Pipeline Extension is embedded in a dynamic virtual channel
transport, as specified in [MS -RDPEDYC] sections 1 through 3.

1.5 Prerequisites/Preconditions

The Remote Desktop Protocol: Graphics Pipeline Extension operates only after the dynamic virtual
channel transport is fully established. If the dynamic virtual channel transport is terminated, the
Remote Desktop Protocol: Graphics Virtual Channel Extension is also terminated. The prot ocol is
terminated by closing the underlying virtual channel. For details about closing the dynamic virtual

channel, refer to [MS -RDPEDYC] section 3.3.5.2.

1.5.1 Client Implementation Requirements

Clients implementing the Remote Desktop Protocol: Graphics Pipeli ne Extension must set the
RNS_UD_CS_SUPPORT_DYNVC_GFX_PROTOCOL (0x0100) flag in the earlyCapabilityFlags field of

the Client Core Data ([MS -RDPBCGR] section 2.2.1.3.2) to indicate support for the protocol.
Furthermore, the client must be capable of process ing the following messages:

Á RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

Á RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

Á RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)

Á RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

12 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Á RDPGFX_SURFACE_TO_SURFACE_PDU (section 2.2 .2.5)

Á RDPGFX_SURFACE_TO_CACHE_PDU (section 2.2.2.6)

Á RDPGFX_CACHE_TO_SURFACE_PDU (section 2.2.2.7)

Á RDPGFX_EVICT_CACHE_ENTRY_PDU (section 2.2.2.8)

Á RDPGFX_CREATE_SURFACE_PDU (section 2.2.2.9)

Á RDPGFX_DELETE_SURFACE_PDU (section 2.2.2.10)

Á RDPGFX_START_FRAME_PDU (section 2.2.2.11)

Á RDPGFX_END_FRAME_PDU (section 2.2.2.12)

Á RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)

Á RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

Á RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)

Furthermore, clients implementing the Remote Desktop Pro tocol: Graphics Pipeline Extension must be
capable of sending the following messages:

Á RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

Á RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18)

Clients that implement optional persistent bitmap caching must be capable of sending the
RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16) message and processing the

RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17) message.

Clients that implement Enhanced RemoteApp ([MS -RDPERP] section 1.3.3) must be capable of
processing the RDPGFX _MAP_SURFACE_TO_WINDOW_PDU (section 2.2.2.20) message.

Clients that advertise the RDPGFX_CAPSET_VERSION105 (section 2.2.3.8) or
RDPGFX_CAPSET_VERSION106 (section 2.2.3.9) capability sets MUST be capable of processing the
following messages:

Á RDPGFX_MAP_SURF ACE_TO_SCALED_OUTPUT_PDU (section 2.2.2.22)

Á RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU (section 2.2.2.23), if also
implementing Enhanced RemoteApp

1.5.2 Server Implementation Requirements

Servers implementing the Remote Desktop Protocol: Graphics Pipeline Extension must be capable of
sending the following messages:

Á RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

Á RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

Á RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)

Á RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

Á RDPGFX_SU RFACE_TO_SURFACE_PDU (section 2.2.2.5)

Á RDPGFX_SURFACE_TO_CACHE_PDU (section 2.2.2.6)

13 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Á RDPGFX_CACHE_TO_SURFACE_PDU (section 2.2.2.7)

Á RDPGFX_EVICT_CACHE_ENTRY_PDU (section 2.2.2.8)

Á RDPGFX_CREATE_SURFACE_PDU (section 2.2.2.9)

Á RDPGFX_DELETE_SURFACE_PDU (section 2.2.2.10)

Á RDPGFX_START_FRAME_PDU (section 2.2.2.11)

Á RDPGFX_END_FRAME_PDU (section 2.2.2.12)

Á RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)

Á RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

Á RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17)

Á RDPGFX_CAPS_CONFI RM_PDU (section 2.2.2.19)

Furthermore, servers implementing the Remote Desktop Protocol: Graphics Pipeline Extension must

be capable of processing the following messages:

Á RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

Á RDPGFX_CACHE_IMPORT_OFFER_PDU (sectio n 2.2.2.16)

Á RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18)

Servers that implement Enhanced RemoteApp ([MS -RDPERP] section 1.3.3) must be capable of
sending the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU (section 2.2.2.20) message.

Servers that support the RDPGFX_CAPSE T_VERSION10 (section 2.2.3.3),
RDPGFX_CAPSET_VERSION102 (section 2.2.3.5), RDPGFX_CAPSET_VERSION103 (section
2.2.3.6), RDPGFX_CAPSET_VERSION104 (section 2.2.3.7), RDPGFX_CAPSET_VERSION105
(section 2.2.3.8), or RDPGFX_CAPSET_VERSION106 (section 2.2.3.9) cap ability sets must be

capable of processing the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.21)
message.

1.6 Applicability Statement

The Remote Desktop Protocol: Graphics Pipeline Extension is applicable in scenarios where the
efficient transfer of server -side graphics display data is required from a terminal server to a terminal
server client.

1.7 Versioning and Capability Negotiation

Capability exchange using the RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) and
RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) messages takes place before any graphics
messages flow on the wire. The client advertises supported capability set s from section 2.2.3 in an

RDPGFX_CAPS_ADVERTISE_PDU message. In response, the server selects one of these sets and
then sends an RDPGFX_CAPS_CONFIRM_PDU message to the client containing the selected set.

Implementers of the Remote Desktop Protocol: Graphics Pipeline Extension have to support the
ClearCodec codec as described in sections 2.2.4.1 and 3.3.8.1. Usage of the RemoteFX Codec ([MS -
RDPRFX] sections 2.2.2 and 3.1.8) and the RemoteFX Progressive Code c (sections 2.2.4.2, 3.1.8.1,
3.2.8.1, and 3.3.8.1) is based on the flags exchanged in the RDPGFX_CAPSET_VERSION8 ,
RDPGFX_CAPSET_VERSION81 , RDPGFX_CAPSET_VERSION10 ,

RDPGFX_CAPSET_VERSION102 , RDPGFX_CAPSET_VERSION103 ,
RDPGFX_CAPSET_VERSION104 , RDPGFX_CAPSET _VERSION105, or

14 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

RDPGFX_CAPSET_VERSION106 structure (sections 2.2.3.1, 2.2.3.2, 2.2.3.3, 2.2.3.5, 2.2.3.6,
2.2.3.7, 2.2.3.8, and 2.2.3.9 respectively). Usage of the MPEG -4 AVC/H.264 Codec in YUV420p,

YUV444, or YUV444v2 mode (sections 2.2.4.3, 2.2.4.4, 2.2. 4.5, 2.2.4.6, and 3.3.8.3) is based on the
flags exchanged in the RDPGFX_CAPSET_VERSION81 , RDPGFX_CAPSET_VERSION10 ,

RDPGFX_CAPSET_VERSION102 , RDPGFX_CAPSET_VERSION103 ,
RDPGFX_CAPSET_VERSION104 , RDPGFX_CAPSET_VERSION105 , or
RDPGFX_CAPSET_VERSION106 structur e (sections 2.2.3.2, 2.2.3.3, 2.2.3.5, 2.2.3.6, 2.2.3.7,
2.2.3.8, and 2.2.3.9 respectively). Usage of the MPEG -4 AVC/H.264 Codec in YUV444v2 mode is
implied by the RDPGFX_CAPSET_VERSION101 structure (section 2.2.3.4). Only the flags of the
selected capabil ity set that are sent in the RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)
message apply to the connection. All of the capability set structures are encapsulated in the

RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) and RDPGFX_CAPS_CONFIRM_PDU
(section 2.2.2.19) messages. Furthermore, any data exchanged in the Bitmap Codecs Capability Set
([MS -RDPBCGR] section 2.2.7.2.10) does not influence the choice of codecs used by the Remote
Desktop Protocol: Graphics Pipeline Extension.

1.8 Vendor -Extensible Fields

None.

1.9 Standards Assignments

None.

15 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2 Messages

2.1 Transport

The Remote Desktop Protocol: Graphics Pipeline Extension is designed to operate over a non - lossy

dynamic virtual channel, as specified in [MS -RDPEDYC] sections 1 through 3. The dynamic virtual
channel name is the null - terminated ANSI character string "Microsoft::Windows::RDS::Graphics". The
usage of channel names in the context of opening a dynamic virtual channel is specified in [MS -
RDPEDYC] section 2.2.2.1.

All server - to -client graphics messages are encapsulated within an RDP_SEGMENTED_DATA
structure (section 2.2.5.1) when sent on the "Microsoft::Windows::RDS::Graphics" dynamic virtual

channel. Decoding one RDP_SEGMENTED_DATA structure yields one or more graphics messages.
Graph ics messages are not spanned across multiple RDP_SEGMENTED_DATA structures, but can be
broken into multiple RDP_DATA_SEGMENT frames (section 2.2.5.2).

Client - to -server graphics messages are not encapsulated within any external structure when sent on

the "M icrosoft::Windows::RDS::Graphics" dynamic virtual channel.

To ensure that the transport is utilized effectively, continuous network characteristics detection
SHOULD be enabled as specified in [MS -RDPBCGR] sections 1.3.9 and 2.2.14.

2.2 Message Syntax

The following sections specify the Remote Desktop Protocol: Graphics Pipeline Extension message
syntax. All multiple -byte fields within a message MUST be marshaled in little -endian byte order, unless
otherwise specified.

2.2.1 Common Data Types

2.2.1.1 RDPGFX_POINT16

The RDPGFX_POINT16 structure specifies a point relative to the origin of a target surface.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

x y

x (2 bytes): A 16 -bit signed integer that specifies the x -coordinate of the point.

y (2 bytes): A 16 -bit signed integer that specifies the y -coordinate of the point.

2.2.1.2 RDPGFX_RECT16

The RDPGFX_RECT16 structure specifies a rectangle relative to the origin of a target su rface using
exclusive coordinates (the right and bottom bounds are not included in the rectangle).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

left top

right bottom

16 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

left (2 bytes): A 16 -bit unsigned integer that specifies the leftmost bound of the rectangle.

top (2 bytes): A 16 -bit unsigned integer that specifies the upper bound of the rectangle.

right (2 bytes): A 16 -bit unsigned integer that specifies the rightmost bound of the rectangle.

bottom (2 bytes): A 16 -bit unsigned integer that specifies the lower bound of the rectangle.

2.2.1.3 RDPGFX_COLOR32

The RDPGFX_COLOR32 structure specifies a 32bpp ARGB or XRGB color value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

B G R XA

B (1 byte): An 8 -bit unsigned integer that specifies the blue ARGB or XRGB color component.

G (1 byte): An 8 -bit unsigned integer that specifies the green ARGB or XRGB color component.

R (1 byte): An 8 -bit unsigned integer that specifies the red ARGB or XRGB color component.

XA (1 byte): An 8 -bit unsigned integer that in the case of ARGB specifies the alp ha color component
or in the case of XRGB MUST be ignored.

2.2.1.4 RDPGFX_PIXELFORMAT

The RDPGFX_PIXELFORMAT structure specifies the color component layout in a pixel.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

format

format (1 byte): An 8 -bit unsigned integer that specifies the pixel format.

Value Meaning

PIXEL_FORMAT_XRGB_8888

0x20

32bpp with no valid alpha (XRGB).

PIXEL_FORMAT_ARGB_8888

0x21

32bpp with valid alpha (ARGB).

2.2.1.5 RDPGFX_HEADER

The RDPGFX_HEADER structure is included in all graphics command PDUs and specifies the graphics

command type, the transport flags, and the length of the PDU.

17 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cmdId flags

pduLength

cmdId (2 bytes): A 16 -bit unsigned integer that identifies the type of the graphics command PDU.

Value Meaning

RDPGFX_CMDID_WIRETOSURFACE_1

0x0001

RDPGFX_WIRE_TO_SURFACE_PDU_1 (section
2.2.2.1)

RDPGFX_CMDID_WIRETOSURFACE_2

0x0002

RDPGFX_WIRE_TO_SURFACE_PDU_2 (section
2.2.2.2)

RDPGFX_CMDID_DELETEENCODINGCONTEXT

0x0003

RDPGFX_DELETE_ENCODING_CONTEXT_PDU
(section 2.2.2.3)

RDPGFX_CMDID_SOLIDFILL

0x0004

RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

RDPGFX_CMDID_SURFACETOSURFACE

0x0005

RDPGFX_SURFACE_TO_SURFACE_PDU (section
2.2.2.5)

RDPGFX_CMDID_SURFACETOCACHE

0x0006

RDPGFX_SURFACE_TO_CACHE_PDU (section
2.2.2.6)

RDPGFX_CMDID_CACHETOSURFACE

0x0007

RDPGFX_CACHE_TO_SURFACE_PDU (section
2.2.2.7)

RDPGFX_CMDID_EVICTCACHEENTRY

0x0008

RDPGFX_ EVICT_CACHE_ENTRY_PDU (section
2.2.2.8)

RDPGFX_CMDID_CREATESURFACE

0x0009

RDPGFX_CREATE_SURFACE_PDU (section
2.2.2.9)

RDPGFX_CMDID_DELETESURFACE

0x000A

RDPGFX_DELETE_SURFACE_PDU (section
2.2.2.10)

RDPGFX_CMDID_STARTFRAME

0x000B

RDPGFX_START_FRAME_PDU (section 2.2.2.11)

RDPGFX_CMDID_ENDFRAME

0x000C

RDPGFX_END_FRAME_PDU (section 2.2.2.12)

RDPGFX_CMDID_FRAMEACKNOWLEDGE

0x000D

RDPGFX_FRAME_ACKNOWLEDGE_PDU (section
2.2.2.13)

RDPGFX_CMDID_RESETGRAPHICS

0x000E

RDPGFX_RESET_GRAPHICS_P DU (section
2.2.2.14)

RDPGFX_CMDID_MAPSURFACETOOUTPUT

0x000F

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
(section 2.2.2.15)

RDPGFX_CMDID_CACHEIMPORTOFFER

0x0010

RDPGFX_CACHE_IMPORT_OFFER_PDU (section
2.2.2.16)

18 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Value Meaning

RDPGFX_CMDID_CACHEIMPORTREPLY

0x0011

RDPGFX_CACHE_IMPORT_REPLY_PDU (section
2.2.2.17)

RDPGFX_CMDID_CAPSADVERTISE

0x0012

RDPGFX_CAPS_ADVERTISE_PDU (section
2.2.2.18)

RDPGFX_CMDID_CAPSCONFIRM

0x0013

RDP_CAPS_CONFIRM_PDU (section 2.2.2.19)

RDPGFX_CMDID_MAP SURFACETOWINDOW

0x0015

RDPGFX_MAP_SURFACE_TO_WINDOW_PDU
(section 2.2.2.20)

RDPGFX_CMDID_QOEFRAMEACKNOWLEDGE

0x0016

RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU
(section 2.2.2.21)

RDPGFX_CMDID_MAPSURFACETOSCALEDOUTPUT

0x0017

RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_

PDU (s ection 2.2.2.22)

RDPGFX_CMDID_MAPSURFACETOSCALEDWINDOW

0x0018

RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW
_PDU (section 2.2.2.23)

flags (2 bytes): A 16 -bit unsigned integer that contains graphics command flags common to all
PDUs. No common graphics command flags are specified; therefore, this field MUST be set to zero.

pduLength (4 bytes): A 32 -bit unsigned integer that specifies the length of the graphics command

PDU, in bytes. This value MUST include the length of the RDPGFX_HEADER (8 bytes).

2.2.1.6 RDPGFX_CAPSET

The RDPGFX_CAPSET structure specifies the layout of a capability set sent in the

RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) message. All of the capability sets specified in

section 2.2.3 conform to this basic structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

capsData (variable)

...

...

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set.

Value Meaning

RDPGFX_CAPVERSION_8

0x00080004

RDPGFX_CAPSET_VERSION8 (section 2.2.3.1)

19 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Value Meaning

RDPGFX_CAPVERSION_81

0x00080105

RDPGFX_CAPSET_VERSION81 (section 2.2.3.2)

RDPGFX_CAPVERSION_10

0x000A0002

RDPGFX_CAPSET_VERSION10 (section 2.2.3.3)

RDPGFX_CAPVERSION_101

0x000A0100

RDPGFX_CAPSET_VERSION101 (section 2.2.3.4)

RDPGFX_CAPVERSION_102

0x000A0200

RDPGFX_CAPSET_VERSION102 (section 2.2.3.5)

RDPGFX_CAPVERSION_103

0x000A0301

RDPGFX_CAPSET_VERSION103 (section 2.2.3.6)

RDPGFX_CAPVERSION_104

0x000A0400

RDPGFX_CAPSET_VERSION104 (section 2.2.3.7)

RDPGFX_CAPVERSION_105

0x000A0502

RDPGFX_CAPSET_VERSION105 (section 2.2.3.8)

RDPGFX_CAPVERSION_106

0x0 00A0601

RDPGFX_CAPSET_VERSION106 (section 2.2.3.9)

The format of the data in the capsData field and the length specified in the capsDataLength
field are both determined by the version of the capability set.

capsDataLength (4 bytes): A 32 -bit unsigned inte ger that specifies the size, in bytes, of the
capability set data present in the capsData field.

capsData (variable): A variable - length array of bytes that contains data specific to the capability

set. The number of bytes in this array is specified by the capsDataLength field.

2.2.2 Graphics Messages

2.2.2.1 RDPGFX_WIRE_TO_SURFACE_PDU_1

The RDPGFX_WIRE_TO_SURFACE_PDU_1 message is used to transfer encoded bitmap data from
the server to a client -side destination surface.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId codecId

pixelFormat destRect

...

20 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

... bitmapDataLength

... bitmapData (variable)

...

...

header (8 bytes): An RDPGFX_HEADER structure (section 2.2.1.5). The cmdId field MUST be set
to RDPGFX_CMDID_WIRETOSURFACE_1 (0x0001), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.

codecId (2 bytes): A 16 -bit unsigned integer that spe cifies the codec that was used to encode the
bitmap data encapsulated in the bitmapData field.

Value Meaning

RDPGFX_CODECID_UNCOMPRESSED

0x0000

The bitmap data encapsulated in the bitmapData field is
uncompressed. Pixels in the uncompressed data are order ed from
left to right and then top to bottom.

RDPGFX_CODECID_CAVIDEO

0x0003

The bitmap data encapsulated in the bitmapData field is
compressed using the RemoteFX Codec ([MS -RDPRFX] sections
2.2.1 and 3.1.8). Note that the TS_RFX_RECT ([MS -RDPRFX]
section 2.2.2.1.6) structures encapsulated in the bitmapData
field MUST all be relative to the top - left corner of the rectangle
def ined by the destRect field.

RDPGFX_CODECID_CLEARCODEC

0x0008

The bitmap data encapsulated in the bitmapData field is
compressed using the ClearCodec Codec (sections 2.2.4.1 and
3.3.8.1).

RDPGFX_CODECID_PLANAR

0x000A

The bitmap data encapsulated in the bi tmapData field is
compressed using the Planar Codec ([MS -RDPEGDI] sections
2.2.2.5.1 and 3.1.9).

RDPGFX_CODECID_AVC420

0x000B

The bitmap data encapsulated in the bitmapData field is
compressed using the MPEG -4 AVC/H.264 Codec in YUV420p
mode (section 2.2. 4.4).

RDPGFX_CODECID_ALPHA

0x000C

The bitmap data encapsulated in the bitmapData field is
compressed using the Alpha Codec (section 2.2.4.3).

RDPGFX_CODECID_AVC444

0x000E

The bitmap data encapsulated in the bitmapData field is
compressed using the MPEG -4 AVC/H.264 Codec in YUV444 mode
(section 2.2.4.5).

RDPGFX_CODECID_AVC444V2

0x000F

The bitmap data encapsulated in the bitmapData field is
compressed using the MPEG -4 AVC/H.264 Codec in YUV444v2
mode (section 2.2.4.6).

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies the
pixel format of the decoded bitmap data encapsulated in the bitmapData fi eld.

destRect (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the target point
on the destination surface to which to copy the decoded bitmap and the dimensions (width and
height) of the bitmap data encapsulated in the bitmapData fi eld. This field specifies a bounding
rectangle if the codecId field contains the RDPGFX_CODECID_AVC420 (0x000B),

RDPGFX_CODECID_AVC444 (0x000E), or the RDPGFX_CODECID_AVC444V2 (0x000F) identifier.

21 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

bitmapDataLength (4 bytes): A 32 -bit unsigned integer that specifies the length, in bytes, of the
bitmapData field.

bitmapData (variable): A variable - length array of bytes containing bitmap data encoded using the
codec identified by the ID in the codecId field.

2.2.2.2 RDPGFX_WIRE_TO_SURFACE_PDU_2

The RDPGFX_WIRE_TO_SUR FACE_PDU_2 message is used to transfer encoded bitmap data
progressively from the server to a client -side destination surface by leveraging a compression context

that persists on the server and the client until the transfer of the bitmap data is complete.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId codecId

codecContextId

pixelFormat bitmapDataLength

... bitmapData (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_WIRETOSURFACE_2 (0x0002), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.

codecId (2 byte s): A 16 -bit unsigned integer that specifies the codec that was used to encode the
bitmap data encapsulated in the bitmapData field.

Value Meaning

RDPGFX_CODECID_CAPROGRESSIVE

0x0009

The bitmap data encapsulated in the bitmapData field is
compressed using the RemoteFX Progressive Codec (sections
2.2.4.2, 3.1.8.1, 3.2.8.1, and 3.3.8.2).

codecContextId (4 bytes): A 32 -bit unsigned integer that identifies the compression context

associa ted with the bitmap data encapsulated in the bitmapData field.

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies the
pixel format of the decoded bitmap data encapsulated in the bitmapData field.

bitmapDataLength (4 byt es): A 32 -bit unsigned integer that specifies the length, in bytes, of the
bitmapData field.

bitmapData (variable): A variable - length array of bytes containing bitmap data encoded using the

codec identified by the ID in the codecId field.

22 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.2.3 RDPGFX_DELETE_E NCODING_CONTEXT_PDU

The RDPGFX_DELETE_ENCODING_CONTEXT_PDU message is sent by the server to instruct the
client to delete a compression context that was used by a collection of

RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) messages to progressively transf er bitmap
data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId codecContextId

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_DELETEENCODINGCONTEXT (0x0003), while the flags field MUST be set to
zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface associated with

the compression context ID specified in the codecContextId field.

codecContextId (4 bytes): A 32 -bit unsigned integer that specifies the ID of the compression
context to delete.

2.2.2.4 RDPGFX_SOLIDFILL_PDU

The RDPGFX_SOLIDFILL_PDU message is used to instruct the client to fill a collection of rectangles
on a destination surface with a solid color.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId fillPixel

... fillRectCount

fillRects (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_SOLIDFILL (0x0004), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.

23 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

fillPixel (4 bytes): An RDPGFX_COLOR32 (section 2.2.1.3) structure that specifies the color that
MUST be used to fill the destination rectangles specified in the fillRects field.

fillRectCount (2 bytes): A 16 -bit unsigned integer that specifies the number of RDPGFX_RECT16
(section 2.2.1.2) structures in the fillRects field.

fillRects (variable): A variable - length array of RDPGFX_RECT16 structures that specifies
rectangles on the destination surface to be filled. The number of structures in this array is
specified by the fillRectCount field.

2.2.2.5 RDPGFX_SURFACE_TO_SURFACE_PDU

The RDPGFX_SURFACE_TO_SURFACE_PDU message is used to instruct the c lient to copy bitmap
data from a source surface to a destination surface or to replicate bitmap data within the same
surface.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceIdSrc surfaceIdDest

rectSrc

...

destPtsCount destPts (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_SURFACETOSURFACE (0x0005), while the flags field MUST be set to zero.

surfaceIdSrc (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface containing the
source bitmap.

surfaceIdDest (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.

rectSrc (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the rectangle that
bounds the source bitmap.

destPtsCount (2 bytes): A 16 -bit unsigned integer that specifies the number of
RDPGFX_POINT16 (section 2.2.1.1) structures in the destPts field.

destPts (variable): A variable - length array of RDPGFX_ POINT16 structures that specifies target
points on the destination surface to which to copy the source bitmap. The number of structures in
this array is specified by the destPtsCount field.

24 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.2.6 RDPGFX_SURFACE_TO_CACHE_PDU

The RDPGFX_SURFACE_TO_CACHE_PDU message is used to instruct the client to copy bitmap
data from a source surface to the bitmap cache.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId cacheKey

...

... cacheSlot

rectSrc

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_SURFACETOCACHE (0x0006), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that s pecifies the ID of the surface containing the
source bitmap.

cacheKey (8 bytes): A 64 -bit unsigned integer that specifies a key to associate with the bitmap
cache entry that will store the bitmap.

cacheSlot (2 bytes): A 16 -bit unsigned integer that speci fies the index of the bitmap cache entry in
which the source bitmap data MUST be stored. The value of this field is constrained as specified in
section 3.3.1.4.

rectSrc (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the rectangle t hat
bounds the source bitmap.

2.2.2.7 RDPGFX_CACHE_TO_SURFACE_PDU

The RDPGFX_CACHE_TO_SURFACE_PDU message is used to instruct the client to copy bitmap
data from the bitmap cache to a destination surface.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

cacheSlot surfaceId

destPtsCount destPts (variable)

25 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_CACHETOSURFACE (0x0007), while the flags field MUST be set to zero.

cacheSlot (2 bytes): A 16 -bit unsigned integer that specifies the index of the bitmap cache entry

that contains the source bitmap. The value of this field is constrained as specified in section
3.3.1.4.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.

destPtsCount (2 bytes): A 16 -bit unsigned integer that specifies the number of
RDPGFX_POINT16 (section 2.2.1.1) structures in the destPts field.

destPts (variable): A variable - length array of RDPGFX_POINT16 structures that specif ies target

points on the destination surface to which to copy the source bitmap. The number of structures in
this array is specified by the destPtsCount field.

2.2.2.8 RDPGFX_EVICT_CACHE_ENTRY_PDU

The RDPGFX_EVICT_CACHE_ENTRY_PDU message is used to instruct the cl ient to delete an entry

from the bitmap cache.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

cacheSlot

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_EVICTCACHEENTRY (0x0008), while the flags field MUST be set to zero.

cacheSlot (2 bytes): A 16 -bit unsigned integer that specifies the index of the bitmap cache entry to
delete from the bitmap cache. The value of this fi eld is constrained as specified in section 3.3.1.4.

2.2.2.9 RDPGFX_CREATE_SURFACE_PDU

The RDPGFX_CREATE_SURFACE_PDU message is used to instruct the client to create a surface of a
given width, height, and pixel format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId width

26 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

height pixelFormat

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_CREATESURFACE (0x0009), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID that MUST be assigned to the

surface once it has been created.

width (2 bytes): A 1 6-bit unsigned integer that specifies the width of the surface to create.

height (2 bytes): A 16 -bit unsigned integer that specifies the height of the surface to create.

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifi es the
pixel format of the surface to create.

2.2.2.10 RDPGFX_DELETE_SURFACE_PDU

The RDPGFX_DELETE_SURFACE_PDU message is used to instruct the client to delete a surface.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_DELETESURFACE (0x000A), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to delete.

2.2.2.11 RDPGFX_START_FRAME_PDU

The RDPGFX_START_FRAME_PDU message is sent by the server to specify the start of a logical

frame, enabling related graphics commands to be grouped together.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

timestamp

frameId

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_STARTFRAME (0x000B), while the flags field MUST be set to zero.

timestamp (4 bytes): A 32 -bit unsigned integer that contains a UTC timestamp assig ned to the
frame. If no timestamp is available, this field MUST be set to zero.

27 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

The format of the timestamp field is described by the following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

milliseconds seconds minutes hours

milliseconds (10 bits): A 10 -bit, unsigned integer that contains the millisecond value of the
timestamp. This field MUST be greater than or equal to 0, and less than or equal to 999.

seconds (6 bits): A 6 -bit, unsigned integer that contains the second value of the timestamp.
This field MUST be greater than or equal to 0, and less than or equal to 59.

minutes (6 bits): A 6 -bit, unsigned integer that contains the minute value of the timestamp.
This field MUST be greater than or equal to 0, and less than or equal to 59.

hours (10 bits): A 10 -bit, unsigned integer that contains the hour value of the timestamp. This
field MUST be greater than or equal to 0, and less than or equal to 23.

frameId (4 bytes): A 32 -bit unsigned integer that specifies a unique ID assigned to the frame.

2.2.2.12 RDPGFX_END_FRAME_PDU

The RDPGFX_END_FRAME_PDU message is sent by the server to specify the end of a logical frame.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

frameId

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_ENDFRAME (0x000C), while the flags field MUST be set to zero.

frameId (4 bytes): A 32 -bit unsigned integer that contains the ID assigned to the frame in the
RDPGFX_START_FRAME_PDU (section 2.2.2.11) message.

2.2.2.13 RDPGFX_FRAME_ACKNOWLEDGE_PDU

The RDPGFX_FRAME_ACKNOWLEDGE_PDU message is sent by the client to indicate to the server
that a logical frame of graphics commands has been successfully decoded. This message MUST be
sent in response to an RDPGFX_END_FRAME_PDU (section 2.2.2.12) message, unless the client
has opted out of this behavior.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

queueDepth

28 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

frameId

totalFramesDecoded

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_FRAMEACKNOWLEDGE (0x000D), while the flags field MUST be set to zero.

queueDepth (4 bytes): A 32 -bit unsigned integer that either specifies the nu mber of unprocessed

bytes buffered at the client, or indicates to the server that the client will no longer be transmitting
RDPGFX_FRAME_ACKNOWLEDGE_PDU messages.

Value Meaning

QUEUE_DEPTH_UNAVAILABLE

0x00000000

Specifies that no information is available regarding the size, in
bytes, of the graphics messages that have been buffered at the
client and not yet processed.

0x00000001 ï 0xFFFFFFFE Specifies the size, in bytes, of the graphics messages that have
been buffered at the client and not yet processed.

SUSPEND_FRAME_ACKNOWLEDGEMENT

0xFFFFFFFF

Indicates to the server that the client will no longer be
transmitting RDPGFX_FRAME_ACKNOWLEDGE_PDU messages.
The client can opt back into sending these messages by sending
an RDPGFX_FRAME_ACKNOWLEDGE_PD U message with the
queueDepth field set to a value in the range 0x00000000 to
0xFFFFFFFE (inclusive) in response to an
RDPGFX_END_FRAME_PDU message.

frameId (4 bytes): A 32 -bit unsigned integer that contains the ID of the frame being acknowledged.
The ID of the frame is specified in the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages.

totalFramesDecoded (4 bytes): A 32 -bit unsigned integer that specifies the number of frames that

have been decoded by the cli ent since the connection was initiated.

2.2.2.14 RDPGFX_RESET_GRAPHICS_PDU

The RDPGFX_RESET_GRAPHICS_PDU message is sent by the server to instruct the client to
change the width and height of the Graphics Output Buffer (section 3.3.1.7) ADM element, and to
update the monitor layout. Note that this message MUST be 340 bytes in size.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

width

height

monitorCount

monitorDefArray (variable)

29 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

...

pad (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_RESETGRAPHICS (0x000E), the flags field MUST be set to zero, and the
pduLength field MUST be set to 340 bytes.

width (4 bytes): A 32 -bit unsigned integer that specifies the new width of the Graphics Output

Buffer ADM ele ment (the maximum allowed width is 32766 pixels).

height (4 bytes): A 32 -bit unsigned integer that specifies the new height of the Graphics Output
Buffer ADM element (the maximum allowed height is 32766 pixels).

monitorCount (4 bytes): A 32 -bit unsigned integer that specifies the number of display monitor
definitions in the monitorDefArray field. This value MUST be less than or equal to 16.

monitorDefArray (variable): A variable - length array containing a series of TS_MONITOR_DEF
([MS -RDPBCGR] section 2.2 .1.3.6.1) structures that specify the display monitor layout of the
session on the remote server. The number of TS_MONITOR_DEF structures is specified by the
monitorCount field.

pad (variable): A variable - length byte array that is used for padding. The nu mber of bytes in this
array is calculated by subtracting the combined size of the header , width , height ,
monitorCount , and monitorDefArray fields from the total size of the PDU (which is specified by

the pduLength field embedded in the header field). The c ontents of the pad field MUST be
ignored.

2.2.2.15 RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU

The RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message is sent by the server to instruct the

client to map a surface to a rectangular area of the Graphics Output Buffer (section 3.3.1.7) ADM
element.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId reserved

outputOriginX

outputOriginY

30 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_MAPSURFACETOOUTPUT (0x000F), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to be associated
with the output - to -surface mapping.

reserved (2 bytes): A 16 -bit unsigned integer that is reserved for future use. This field MUST be set
to zero.

outputOriginX (4 bytes): A 32 -bit unsigned integer that specifies the x -coordinate of the point,
relative to the origin of the Graphics Output Buffer ADM element, at which to map the top - left
corner of the surface.

outputOriginY (4 bytes): A 32 -bit unsigned integer that specifies the y -coordinate of the point,
relative to the origin of the Graphics Output Buffer ADM element, at which to map the upper -

left corner of the surface.

2.2.2.16 RDPGFX_CACHE_IMPORT_OFFER_PDU

The RDPGFX_CACHE_IMPORT_OFFER_PDU message is sent by the client to inform the server of

bitmap data that is present in an optional client -side persistent bitmap cache.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

cacheEntriesCount cacheEntries (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_CACHEIMPORTOFFER (0x0010), while the flags field MUST be set to zero.

cacheEntriesCount (2 bytes): A 16 -bit unsigned integer that specifies the number of
RDPGFX_CACHE_ENTRY_METADATA (section 2.2.2.16.1) structures in the cacheEntries field.
This value MUST be less than 5462 (0x1556).

cacheEntries (variable): A variable - length array of RDPGFX_CACHE_ENTRY_METADATA
structures that identifies a collection of bitmap cache entries present on the client. The number of
structures in this array is specified by the cacheEntriesCount field.

2.2.2.16.1 RDPGFX_CACHE_ENTRY_METADATA

The RDPGFX_CACHE_ENTRY_METADATA structure specifies attr ibutes of a bitmap cache entry

stored on the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cacheKey

31 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

bitmapLength

cacheKey (8 bytes): A 64 -bit unsigned integer that specifies a unique key associated with the
bitmap cache entry.

bitmapLength (4 bytes): A 32 -bit unsigned integer that specifies the size of the bitmap cache

entry, in bytes.

2.2.2.17 RDPGFX_CACHE_IMPORT_REPLY_PDU

The RDPGFX_CACHE_IMPORT_REPLY_PDU message is sent by the server to indicate that

persistent bitmap cache metadata advertised in the RDPGFX_CACHE_IMPORT_OFFER_PDU
(section 2.2.2.16) message has been transferred to the bitmap ca che.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

importedEntriesCount cacheSlots (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set

to RDPGFX_CMDID_CACHEIMPORTREPLY (0x0011), while the flags field MUST be set to zero.

importedEntriesCount (2 bytes): A 16 -bit unsigned integer that specifies the number of entries
that were imported into the server -side Bitmap Cache Ma p (section 3.2.1.1) ADM element from

the most recent RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16) message. A value of
N implies that the first N entries were imported into the bitmap cache from the most recent
RDPGFX_CACHE_IMPORT_OFFER_PDU message.

cac heSlots (variable): An array of 16 -bit unsigned integers. The number of integers in this array is
specified by the importedEntriesCount field. Each integer in the array identifies the cache slot
that an imported entry has been assigned. For example, an im portedEntriesCount field value of
0x0003 and a cacheSlots field that contains the elements [0x0006, 0x0009, 0x0002] together

imply that the first imported entry was associated with cache slot 6, the second imported entry
was associated with cache slot 9, a nd the third imported entry was associated with cache slot 2.
Each of the cache slot values contained in this field is constrained as specified in section 3.3.1.4.

2.2.2.18 RDPGFX_CAPS_ADVERTISE_PDU

The RDPGFX_CAPS_ADVERTISE_PDU message is sent by the client to adv ertise supported
capabilities.

32 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

capsSetCount capsSets (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_CAPSADVERTISE (0x0012), while the flags field MUST be set to zero.

capsSetCount (2 bytes): A 16 -bit unsigned integer that specifies the number of RDPGFX_CAPSET

(section 2.2.1.6) str uctures in the capsSets field.

capsSets (variable): A variable - length array of RDPGFX_CAPSET structures. The number of
elements in this array is specified by the capsSetCount field.

2.2.2.19 RDPGFX_CAPS_CONFIRM_PDU

The RDPGFX_CAPS_CONFIRM_PDU message is sent by th e server to confirm capabilities for the
connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

capsSet (variable)

...

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_CAPSCONFIRM (0x0013), while the flags field MUST be set to zero.

capsSet (variable): A variable - length RDPGFX_CAPSET (section 2.2.1.6) structure that contains

the capability set sele cted by the server from the RDPGFX_CAPS_ADVERTISE_PDU (section

2.2.2.18) message sent by the client.

2.2.2.20 RDPGFX_MAP_SURFACE_TO_WINDOW_PDU

The RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message is sent by the server to instruct the

client to map a surface to a RAIL windo w on the client.

33 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId windowId

...

... mappedWidth

... mappedHeight

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_MAPSURFACETOWINDOW (0x0015), while the flags field MUST be set to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to be associated

with the surface - to -window mapping.

windowId (8 bytes): A 64 -bit unsigned integer that specifies the ID of the RAIL window to be
associated with the surface - to -window mapping. RAIL windows are created via the New or Existing
Window Order ([MS -RDPERP] section 2.2.1. 3.1.2.1). The WindowId field of the Common Header
([MS -RDPERP] section 2.2.1.3.1.1), embedded within the order, contains the window ID.

mappedWidth (4 bytes): A 32 -bit unsigned integer that specifies the width of the rectangular region

on the surface to wh ich the window is mapped.

mappedHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the rectangular
region on the surface to which the window is mapped.

2.2.2.21 RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU

The optional RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU mes sage is sent by the client to enable
the calculation of Quality of Experience (QoE) metrics. This message is sent solely for informational
and debugging purposes and MUST NOT be transmitted to the server if the
RDPGFX_CAPSET_VERSION10 , RDPGFX_CAPSET_VERSIO N102 ,
RDPGFX_CAPSET_VERSION103 , RDPGFX_CAPSET_VERSION104 ,
RDPGFX_CAPSET_VERSION105 , or RDPGFX_CAPSET_VERSION106 structure (sections 2.2.3.3,
2.2.3.5, 2.2.3.6, 2.2.3.7, 2.2.3.8, and 2.2.3.9 respectively) was not received by the client.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

frameId

timestamp

timeDiffSE timeDiffEDR

34 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

header (8 bytes) : An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_QOEFRAMEACKNOWLEDGE (0x0016), while the flags field MUST be set to

zero.

frameId (4 bytes) : A 32 -bit unsigned integer that contains the ID of the frame being annotated. The

ID of the frame is specified in the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages.

timestamp (4 bytes) : A 32 -bit unsigned in teger that specifies the timestamp (in milliseconds) when
the client started decoding the RDPGFX_START_FRAME_PDU message. The value of the first
timestamp sent by the client implicitly defines the origin for all subsequent timestamps. The
server is respons ible for handling roll -over of the timestamp.

timeDiffSE (2 bytes) : A 16 -bit unsigned integer that specifies the time, in milliseconds, that elapsed

between the decoding of the RDPGFX_START_FRAME_PDU and RDPGFX_END_FRAME_PDU
messages. If the elapsed time i s greater than 65 seconds, then this field SHOULD be set to
0x0000.

timeDiffEDR (2 bytes) : A 16 -bit unsigned integer that specifies the time, in milliseconds, that
elapsed between the decoding of the RDPGFX_END_FRAME_PDU message and the completion
of the r endering operation for the commands contained in the logical graphics frame. If the

elapsed time is greater than 65 seconds, then this field SHOULD be set to 0x0000.

2.2.2.22 RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU

The RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU messag e is sent by the server to
instruct the client to map a surface to a rectangular area of the Graphics Output Buffer (section

3.3.1.7) ADM element, including a target width and height to which the surface MUST be scaled.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId reserved

outputOriginX

outputOriginY

targetWidth

targetHeight

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_MAPSURFACETOSCALEDOUTPUT (0x0017), while the flags field MUST be set
to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to be associated

with the output - to -surface mapping.

reserv ed (2 bytes): A 16 -bit unsigned integer that is reserved for future use. This field MUST be set
to zero.

35 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

outputOriginX (4 bytes): A 32 -bit unsigned integer that specifies the x -coordinate of the point,
relative to the origin of the Graphics Output Buffer ADM element, at which to map the top - left

corner of the surface.

outputOriginY (4 bytes): A 32 -bit unsigned integer that specifies the y -coordinate of the point,

relative to the origin of the Graphics Output Buffer ADM element, at which to map the upper -
left corner of the surface.

targetWidth (4 bytes): A 32 -bit unsigned integer that specifies the width of the target Graphics
Output Buffer ADM element to which the surface will be mapped, as specified in section 3.3.1.7.

targetHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the target Graphics
Output Buffer ADM element to which the surface will be mapped.

2.2.2.23 RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU

The RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message is sent by the server to
instruct the client to map a surface to a RAIL window on the client, including a target width and height

to which the surface should be scaled.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header

...

surfaceId windowId

...

... mappedWidth

... mappedHeight

... targetWidth

... targetHeight

...

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdId field MUST be set
to RDPGFX_CMDID_MAPSURFACETOSCALEDWINDOW (0x0018), while the flags field MUST be set
to zero.

surfaceId (2 bytes): A 16 -bit unsigned integer that specifies the ID o f the surface to be associated

with the surface - to -window mapping.

windowId (8 bytes): A 64 -bit unsigned integer that specifies the ID of the RAIL window to be

associated with the surface - to -window mapping. RAIL windows are created via the New or
Existing Window order ([MS -RDPERP] section 2.2.1.3.1.2.1). The WindowId field of the
Common Header ([MS -RDPERP] section 2.2.1.3.1.1), embedded within the order, contains the
window ID.

36 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

mappedWidth (4 bytes): A 32 -bit unsigned integer that specifies the width of the rectangular region
on the surface to which the window is mapped.

mappedHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the rectangular
region on the surface to which the window is mapped.

targetWidth (4 bytes): A 32 -bit unsigned integer that specifies the width of the target graphics
output to which the surface will be mapped.

targetHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the target graphics
output to which the surface will be mapped.

2.2.3 Capability Sets

2.2.3.1 RDPGFX_CAPSET_VERSION8

The RDPGFX_CAPSET_VERSION8 structure specifies an RDP version 8.0 Graphics Capability Set

and conforms to the capability set layout specified in section 2.2.1.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_8 (0x00080004).

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the

capability set data. Thi s field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_THINCLIENT

0x00000001

Indicates that the bitmap cache MUST be constrained to 16 MB in
size (if it is used) and that the RemoteFX Codec ([MS -RDPRFX]
sections 1 to 3) MUST be used in place of the RemoteFX
Progressive Codec (section 2.2.4.2).

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

Indicates that the bitmap cache MUST be constrained to 16 MB in
size (if it is used).

The RDPGFX_CAPS_FLAG_THINCLIENT and RDPGFX_CAPS_FLAG_SMALL_CACHE capability flags

SHOULD NOT be specified together. If neither the RDPGFX_CAPS_FLAG_THINCLIENT nor the
RDPGFX_CAPS_FLAG_SMALL_CACHE capability flag is specified, then the bitmap cache size is
assumed to be 100 MB in size, if it is used.

2.2.3.2 RDPGFX_CAPSET_VERSION81

The RDPGFX_CAPSET_VERSION81 structure specifies an RDP version 8.1 Graphics Capability Set
and conforms to the capability set layout specified in section 2.2.1.6.

37 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_81 (0x00080105).

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the

capability set data. Th is field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_THINCLIENT

0x00000001

See the definition of the RDPGFX_CAPS_FLAG_THINCLIENT
(0x00000001) flag in section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

See the definition of the RDPGFX_CAPS_FLAG_SMALL_CACHE
(0x00000002) flag in section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_AVC420_ENABLED

0x00000010

Indicates that the usage of the MPEG -4 AVC/H. 264 Codec in
YUV420p mode is supported in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message.

If this field is nonzero, it SHOULD contain one of the following combinations of the capability flags
and SHOULD NOT contain any other combination:

Á THINC LIENT

Á SMALL_CACHE

Á SMALL_CACHE | AVC420_ENABLED

Á SMALL_CACHE | AVC420_ENABLED | THINCLIENT

If neither the RDPGFX_CAPS_FLAG_THINCLIENT nor the RDPGFX_CAPS_FLAG_SMALL_CACHE
capability flag is specified, the bitmap cache size is assumed to be 100 MB in size, if it is used.

2.2.3.3 RDPGFX_CAPSET_VERSION10

The RDPGFX_CAPSET_VERSION10 structure specifies an RDP version 10.0 Graphics Capability Set

and conforms to the capability set layout specified in section 2.2.1.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

38 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_10 (0x000A0002).

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the

capability set data. Th is field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

See the definition of the RDPGFX_CAPS_FLAG_SMALL_CACHE
(0x00000002) flag in section 2.2.3 .1 for details.

RDPGFX_CAPS_FLAG_AVC_DISABLED

0x00000020

If this flag is set, it indicates that usage of the MPEG -4 AVC/H.264
Codec in any mode is not supported in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message. If the flag is not set, the client MUST be capable of
processing the MPEG -4 AVC/H.264 Cod ec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 message.

2.2.3.4 RDPGFX_CAPSET_VERSION101

The RDPGFX_CAPSET_VERSION101 structure specifies an RDP version 10.1 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

reserved

...

...

...

version (4 bytes): A 32 -bit, unsigned integer that specifies the version of the capability set. This

field MUST be set to RDPGFX_CAPVERSION_101 (0x000A0100).

capsDataLength (4 bytes): A 32 -bit, unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000010.

reserved (16 bytes): An array of sixteen 8 -bit, unsigned integers reserved for future use. All sixteen
integers within this array MUST be set to zero.

39 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.3.5 RDPGFX_CAPSET_VERSION102

The RDPGFX_CAPSET_VERSION102 structure spe cifies an RDP version 10.2 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6. It is identical in form to the

RDPGFX_CAPSET_VERSION10 (section 2.2.3.3) structure, except for the version field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_102 (0x000A0200).

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data. T his field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

See the definition of the RDPGFX_CAPS_FLAG_SMALL_CACHE
(0x00000002) flag in section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_AVC_DISABLED

0x00000020

If this flag is set, it indicates that usage of the MPEG -4 AVC/H.264
Codec in any mode is not supported in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
messa ge. If the flag is not set, the client MUST be capable of
processing the MPEG -4 AVC/H.264 Codec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 message.

2.2.3.6 RDPGFX_CAPSET_VERSION103

The RDPGFX_CAPSET_VERSION103 structure specifies an RDP version 10.3 Grap hics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6. Selection of this capability
set implies that the bitmap cache (as defined in section 3.3.1.4) MUST be constrained to 16MB in size.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This field

MUST be set to RDPGFX_CAPVERSION_103 (0x000A0301).

40 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_AVC_DISABLED

0x00000020

If this flag is set, it indicates that usage of the MPEG -4 AVC/H.264
Codec in any mode is not supported in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message. If the flag is not set, the client MUST be capab le of
processing the MPEG -4 AVC/H.264 Codec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message.

RDPGFX_CAPS_FLAG_AVC_THINCLIENT

0x00000040

Indicates that the client prefers the MPEG -4 AVC/H.264 Codec in
YUV444 mode. If this flag is set, the
RDPGFX_CAPS_FLAG_AVC_DISABLED flag MUST NOT be set.

2.2.3.7 RDPGFX_CAPSET_VERSION104

The RDPGFX_CAPSET_VERSION104 structure specifies an RDP version 10.4 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This field
MUST be set to RDPGFX_CAPVERSION_104 (0x000A0400).

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the

capability set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capabilit y flags.

Flag Meaning

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

See the definition of the
RDPGFX_CAPS_FLAG_SMALL_CACHE (0x00000002) flag in
section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_AVC_DISABLED

0x00000020

If this flag is set, it indicates that usage of the MPEG -4
AVC/H.264 Codec in any mode is not supported in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message. If the flag is not set, the client MUST be capable
of processing:

1. The MPEG -4 AVC/H.264 Codec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 message.

2. The MPEG -4 AVC/H.264 Codec in YUV420 mode in the

41 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Flag Meaning

RDPGFX_WIRE_TO_SURFACE_PDU_1 message in the
same frame as other codecs.

RDPGFX_CAPS_FLAG_AVC_THINCLIENT

0x00000040

See the definition of the
RDPGFX_CAPS_FLAG_AVC_THINCLIENT (0x00000040) flag
in section 2.2.3.6 for details.

2.2.3.8 RDPGFX_CAPSET_VERSION105

The RDPGFX_CAPSET_VERSION105 structure specifies an RDP version 10.5 Graphics Capability

Set and conforms to the capability set layout specified in section 2.2.1.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This field
MUST be set to RDPGFX_CAPVERSION_105 (0x000A0502).

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capab ility set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

See the definition of the
RDPGFX_CAPS_FLAG_SMALL_CACHE (0x00000002) flag
in section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_AVC_DISABLED

0x00000020

See the definition of the
RDPGFX_CAPS_FLAG_AVC_DISABLED (0x00000020)
flag in section 2.2.3.7 for details.

RDPGFX_CAPS_FLAG_AVC_THINCLI ENT

0x00000040

See the definition of the
RDPGFX_CAPS_FLAG_AVC_THINCLIENT (0x00000040)
flag in section 2.2.3.6 for details.

2.2.3.9 RDPGFX_CAPSET_VERSION106

The RDPGFX_CAPSET_VERSION106 structure specifies an RDP version 10.6 Graphics Capability

Set and conforms to the capability set layout specified in section 2.2.1.6.

42 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

version

capsDataLength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This field
MUST be set to RDPGFX_CAPVERSION_106 (0x000A0601).

capsDataLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capab ility set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_SMALL_CACHE

0x00000002

See the definition of the
RDPGFX_CAPS_FLAG_SMALL_CACHE
(0x00000002) flag in section 2.2.3.1 for details.

RDPGFX_CAPS_FLAG_AVC_DISABLED

0x00000020

See the definition of the

RDPGFX_CAPS_FLAG_AVC_DISABLED
(0x00000020) flag in section 2.2.3.7 for details.

RDPGFX_CAPS_FLAG_AVC_THINCLI ENT

0x00000040

See the definition of the
RDPGFX_CAPS_FLAG_AVC_THINCLIENT
(0x00000040) flag in section 2.2.3.6 for details.

2.2.4 Bitmap Compression

2.2.4.1 CLEARCODEC_BITMAP_STREAM

The CLEARCODEC_BITMAP_STREAM structure encapsulates metadata and a stream of bitmap dat a
encoded using ClearCodec compression techniques. Bitmaps with widths larger than 65,535 pixels and
heights larger than 65,535 pixels MUST NOT be encoded using ClearCodec. ClearCodec -compressed
bitmap data is transported in the bitmapData field of the RDP GFX_WIRE_TO_SURFACE_PDU_1
(section 2.2.2.1) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags seqNumber glyphIndex (optional)

compositePayload (variable)

...

43 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

flags (1 byte): An 8 -bit unsigned integer that specifies glyph and control flags.

Flag Meaning

CLEARCODEC_FLAG_GLYPH_INDEX

0x01

Indicates that the glyphIndex field is present. This flag MUST NOT
be used in conjunction with a bitmap that has an area larger than
1024 squa re pixels.

CLEARCODEC_FLAG_GLYPH_HIT

0x02

Indicates the source of the glyph data. This flag MUST NOT be
present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag is not
present.

If the CLEARCODEC_FLAG_GLYPH_HIT flag is not present, the glyph
data is present in the compositePayload field. The decompressed
payload MUST be placed in the Decompressor Glyph Storage
(section 3.3.1.9) ADM element at the index specified by the
glyphIndex field.

If the CLEARCODEC_FLAG_GLYPH_HIT flag is present, the glyph data

is already present in the Decompressor Glyph Storage ADM
element at the index specified by the glyphIndex field. In this case,
the compositePayload field MUST NOT be present.

CLEARCODEC_FLAG_CACHE_RESET

0x04

Indicates that both the V-Bar Storage Cursor (section 3.3.1.11)
ADM element and Short V - Bar Storage Cursor (section 3.3.1.13)
ADM element MUST be reset to 0 before decoding the stream.

seqNumber (1 byte): An 8 -bit unsigned intege r that specifies the sequencing of the stream. For the
first ClearCodec message in the remote session, this value MUST be 0x00. In subsequent

messages, the value of the seqNumber field MUST be equal to the value of the seqNumber field
in the previous Clear Codec message plus one. The sequence number counter wraps around the
value 0xFF, with 0x00 following message 0xFF.

glyphIndex (2 bytes, optional): An optional 16 -bit unsigned integer that specifies the position in
the Decompressor Glyph Storage ADM elemen t for the current glyph. This field MUST NOT be
present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag is not present in the flags field. If
this field is present, its value MUST be in the range 0 (0x0000) to 3,999 (0x0F9F), inclusive.

compositePayload (va riable): An optional variable - length
CLEARCODEC_COMPOSITE_PAYLOAD (section 2.2.4.1.1) structure. This field MUST NOT be
present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag and the
CLEARCODEC_FLAG_GLYPH_HIT (0x02) flag are both present in the flags field.

2.2.4.1.1 CLEARCODEC_COMPOSITE_PAYLOAD

The CLEARCODEC_COMPOSITE_PAYLOAD structure contains bitmap data encoded using

ClearCodec compression techniques.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

residualByteCount

bandsByteCount

subcodecByteCount

44 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

residualData (variable)

...

...

bandsData (variable)

...

...

subcodecData (variable)

...

...

residualByteCount (4 bytes): A 32 -bit unsigned integer that specifies the number of bytes in the
residualData field.

bandsByteCount (4 bytes): A 32 -bit unsigned integer that specifies the number of bytes in the

bandsData field.

subcodecByteCount (4 bytes): A 32 -bit unsigned integer that specifies the number of bytes in the
subcodecData field.

residualData (variable): An optional variable - length CLEARCODEC_RESIDUAL_DATA (section
2.2.4.1.1.1) structure that contains the compressed data for the first layer of the image. If the
residua lByteCount field is zero, this field MUST NOT be present.

bandsData (variable): An optional variable - length CLEARCODEC_BANDS_DATA (section
2.2.4.1.1.2) structure that contains the compressed data for the second layer of the image. If the
bandsByteCount fi eld is zero, this field MUST NOT be present.

subcodecData (variable): An optional variable - length CLEARCODEC_SUBCODECS_DATA (section
2.2.4.1.1.3) structure that contains the compressed data for the third layer of the image. If the
subcodecByteCount field is zero, this field MUST NOT be present.

2.2.4.1.1.1 CLEARCODEC_RESIDUAL_DATA

The CLEARCODEC_RESIDUAL_DATA structure contains the first layer of pixels in an encoded
image. The number of pixels encoded by this structure MUST be less than or equal to the number of
pixe ls in the original image. The pixels are ordered from left to right and then top to bottom, and are
stored as a succession of CLEARCODEC_RGB_RUN_SEGMENT (section 2.2.4.1.1.1.1) structures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

runSegments (variable)

...

...

45 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

runSegments (variable): A variable - length array of CLEARCODEC_RGB_RUN_SEGMENT structures.

2.2.4.1.1.1.1 CLEARCODEC_RGB_RUN_SEGMENT

The CLEARCODEC_RGB_RUN_SEGMENT structure encodes a single RGB run segment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blueValue greenValue redValue runLengthFactor1

runLengthFactor2 (optional) runLengthFactor3 (optional)

...

blueValue (1 byte): An 8 -bit unsigned integer that specifies the blue value of the current pixel.

greenValue (1 byte): An 8 -bit unsigned integer that specifies the green value of the current pixel.

redValue (1 byte): An 8 -bit unsigned integer that specifies the red value o f the current pixel.

runLengthFactor1 (1 byte): An 8 -bit unsigned integer. If this value is less than 255 (0xFF), the
runLengthFactor2 and runLengthFactor3 fields MUST NOT be present, and the current pixel
MUST be repeated for the next runLengthFactor1 positions. If the runLengthFactor1 field

equals 255 (0xFF), the runLengthFactor2 field MUST be present, and the run length is calculated
from the runLengthFactor2 field. The value of runLengthFactor1 MUST be greater than zero.

runLengthFactor2 (2 bytes, opti onal): An optional 16 -bit unsigned integer. If this value is less
than 65,535 (0xFFFF), the runLengthFactor3 field MUST NOT be present, and the current pixel
MUST be repeated for the next runLengthFactor2 positions. If the runLengthFactor2 field
equals 65 ,535 (0xFFFF), the runLengthFactor3 field MUST be present (and nonzero), and the

run length is calculated from the runLengthFactor3 field. If present, the value of

runLengthFactor2 MUST be greater than zero.

runLengthFactor3 (4 bytes, optional): An option al 32 -bit unsigned integer. If this field is present,
it contains the run length, and the current pixel MUST be repeated for the next
runLengthFactor3 positions. This field SHOULD NOT be used if the run length is smaller than
65,535 (0xFFFF). If present, t he value of runLengthFactor3 MUST be greater than zero.

2.2.4.1.1.2 CLEARCODEC_BANDS_DATA

The CLEARCODEC_BANDS_DATA structure contains the second layer of pixels in an encoded image.
This layer MUST be decoded on top of the first layer, in some cases overwriting pixel s in the first
layer. The data consists of a succession of CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bands (variable)

...

...

bands (variable): A variable - length array of CLEARCODEC_BAND structures.

46 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.4.1.1.2.1 CLEARCODEC_BAND

The CLEARCODEC_BAND structure specifies a horizontal band that is composed of columns of pixels.
Each of these columns is referred to as a "V -Bar". The maximum height of a band is 52 p ixels.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

xStart xEnd

yStart yEnd

blueBkg greenBkg redBkg vBars (variable)

...

...

xStart (2 bytes): A 16 -bit unsigned integer that specifies the horizontal position (relative to the left
edge of the bitmap) where the band starts.

xEnd (2 bytes): A 16 -bit unsigned integer that specifies the horizontal position (relative to the left
edge of the bitmap) w here the band ends. This is an inclusive coordinate.

yStart (2 bytes): A 16 -bit unsigned integer that specifies the vertical position (relative to the top
edge of the bitmap) where the band starts.

yEnd (2 bytes): A 16 -bit unsigned integer that specifies the vertical position (relative to the top
edge of the bitmap) where the band ends. This is an inclusive coordinate.

blueBkg (1 byte): An 8 -bit unsigned integer that specifies the blue value of the background for this
band.

greenBkg (1 byte): An 8 -bit unsigned integer that specifies the green value of the background for
this band.

redBkg (1 byte): An 8 -bit unsigned integer that specifies the red value of the background for this
band.

vBars (variable): A variable - length arr ay of CLEARCODEC_VBAR (section 2.2.4.1.1.2.1.1)
structures. The total count of CLEARCODEC_VBAR structures MUST be equal to (xEnd - xStart
+ 1), one per x -coordinate in the band. The V -Bars are encoded from left to right, with the first V -
Bar corresponding to the xStart field and the last corresponding to the xEnd field.

2.2.4.1.1.2.1.1 CLEARCODEC_VBAR

The CLEARCODEC_VBAR structure is used to encode a single column of pixels (referred to as a "V -
Bar") and is encapsulated inside a CLEARCODEC_BAND (section 2.2.4.1.1.2.1) str ucture. The

xStart , xEnd , yStart and yEnd fields of the CLEARCODEC_BAND structure specify the area within
which the V -Bar is contained.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vBarHeader (variable)

47 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

...

shortVBarPixels (variable)

...

...

vBarHeader (variable): A VBAR_CACHE_HIT (section 2.2.4.1.1.2.1.1.1) structure,
SHORT_VBAR_CACHE_HIT (section 2.2.4.1.1.2.1.1.2) structure, or
SHORT_VBAR_CACHE_MISS (section 2.2.4.1.1.2.1.1.3) structure.

shortVBarPixel s (variable): An optional variable - length array of bytes that MUST be present only if

the vBarHeader field contains a SHORT_VBAR_CACHE_MISS structure. If this field is present,
the number of bytes in the field MUST be equal to 3 * (shortVBarYOff - shortVB arYOn): one
RGB triplet per pixel where shortVBarYOff and shortVBarYOn are specified in the
SHORT_VBAR_CACHE_MISS structure. This field contains raw pixels in top - to -bottom order.
The pixels are encoded in little -endian byte order (blue in the first byte, green in the second byte,

and red in the third byte).

Each pixel in the V -Bar MUST be placed at position (xPos , yPos) in the image (relative to the top -
left corner), where xPos and yPos are calculated as follows:

xPos = xStart + position of the V -Bar in th e vBars field of the CLEARCODEC_BAND structure

yPos = yStart + position of the pixel in the V- Bar Storage ADM element

2.2.4.1.1.2.1.1.1 VBAR_CACHE_HIT

The VBAR_CACHE_HIT structure is used to specify a V -Bar cache hit.

The use of this structure implies that the necessary V -Bar data is already present in the V- Bar
Storage (section 3.3.1.10) ADM element at the index specified by the vBarIndex field. In this case,
the shortVBarPixels field of the encapsulating CLEARCODEC_VB AR (section 2.2.4.1.1.2.1.1)
structure MUST NOT be present, and the size of the data in the V- Bar Storage ADM element MUST be
equal to 3 * (yEnd - yStart + 1) bytes, where yEnd and yStart are specified in the encapsulating
CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vBarIndex x

vBarIndex (15 bits): A 15 -bit unsigned integer that specifies the position in the V- Bar Storage

ADM element for the current V -Bar.

x (1 bit): A 1 -bit field that MUST be set to 0x1.

2.2.4.1.1.2.1.1.2 SHORT_VBAR_CACHE_HIT

The SHORT_VBAR_CACHE_HIT structure is used to specify a Short V -Bar cache hit.

The use of this structure implies that the necessary Short V -Bar data is already present in the Short
V- Bar Storage (section 3.3.1.12) ADM element at the index specified by the shortVBarIndex field.

48 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

In this case, the shortVBarPixels field of the encapsulating CLEARCODEC_VBAR (section
2.2.4.1.1.2.1.1) structure MUST NOT be present, and the size of the data in the Short V - Bar Storage

ADM element MUST NOT exceed 3 * (yEnd - yStart + 1 - shortVBarYOn) bytes , where yEnd and
yStart are specified in the encapsulating CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structure.

As part of processing this header, each pixel position in the V- Bar Storage ADM element at the V-
Bar Storage Cursor (section 3.3.1.11) ADM element MUST be updated using the data in the Short
V- Bar Storage ADM element. The number of pixels placed into the V- Bar Storage ADM element
MUST equal yEnd ï yStart + 1. For each position y within the V -Bar, the pixels MUST be updated as
follows:

Á If y < shortVB arYOn , then use the blueBkg , greenBKg , and redBkg values specified in the
encapsulating CLEARCODEC_BAND structure

Á If y >= shortVBarYOn and y < shortVBarYOn + Short V -Bar pixel count, then use the color
found in the Short V - Bar Storage ADM element at pixel position y ï shortVBarYOn

Á If y >= shortVBarYOn + Short V -Bar pixel count, then use the blueBkg , greenBKg , and

redBkg values specified in the encapsulating CLEARCODEC_BAND structure

The V- Bar Storage Cursor (section 3.3.1.11) ADM element MUST be incremented by 1 and MUST
wrap to zero when incremented from 32767.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shortVBarIndex x shortVBarYOn

shortVBarIndex (14 bits): A 14 -bit unsigned integer that specifies the position in the Short V - Bar
Storage ADM element for the current Short V -Bar.

x (2 bits): A 2 -bit unsigned integer that MUST be set to 0x1.

shortVBarYOn (8 bits): An 8 -bit unsigned in teger that specifies where the Short V -Bar begins,

expressed as an offset from the top of the V -Bar.

2.2.4.1.1.2.1.1.3 SHORT_VBAR_CACHE_MISS

The SHORT_VBAR_CACHE_MISS structure is used to specify a Short V -Bar cache miss.

As part of processing this header, each pixel position in the Short V- Bar Storage (section 3.3.1.12)
ADM element at the Short V- Bar Storage Cursor (section 3.3.1.13) ADM element MUST be updated
using the data in the shortVBarPixels field of the encapsulati ng CLEARCODEC_VBAR (section
2.2.4.1.1.2.1.1) structure. The number of pixels placed into the Short V- Bar Storage ADM element
MUST equal shortVBarYOff - shortVBarYOn (shortVBarYOff MUST be larger than or equal to

shortVBarYOn).

The Short V- Bar Storage Curso r ADM element MUST be incremented by 1.

In addition to updating the Short V- Bar Storage ADM element, each pixel position in the V- Bar
Storage (section 3.3.1.10) ADM element and the V- Bar Storage Cursor (section 3.3.1.11) ADM
element MUST be updated using t he data in the Short V - Bar Storage ADM element. The number of
pixels placed into the V- Bar Storage ADM element MUST equal yEnd ï yStart + 1. For each position

y within the V -Bar, the pixels MUST be updated as follows:

Á If y < shortVBarYOn , then use the blue Bkg , greenBKg , and redBkg values specified in the
encapsulating CLEARCODEC_BAND structure

49 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Á If y >= shortVBarYOn and y < shortVBarYOn + Short V -Bar pixel count, then use the color
found in the Short V - Bar Storage ADM element at pixel position y ï shortVBarYO n

Á If y >= shortVBarYOn + Short V -Bar pixel count, then use the blueBkg , greenBKg , and
redBkg values specified in the encapsulating CLEARCODEC_BAND structure

The V- Bar Storage Cursor (section 3.3.1.11) ADM element MUST be incremented by 1 and MUST
wrap to zero when incremented from 32767.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

shortVBarYOn shortVBarYOff x

shortVBarOn (8 bits): An 8 -bit unsigned integer that specifies where the Short V -Bar begins,
expressed as an offset from the top of the V -Bar.

shortVBarOff (6 bits): A 6 -bit unsigned integer that specifies where the Short V -Bar ends,

expressed as an offset from the top of the V-Bar.

x (2 bits): A 2 -bit unsigned integer that MUST be set to 0x0.

2.2.4.1.1.3 CLEARCODEC_SUBCODECS_DATA

The CLEARCODEC_SUBCODECS_DATA structure contains the third layer of pixels in an encoded
image. This layer MUST be decoded on top of the second layer, in some cases overwriting pixels in the
first and second layers. The data consists of a succession of CLEARCODEC_SUBCODEC (section

2.2 .4.1.1.3.1) structures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

subcodecs (variable)

...

...

subcodecs (variable): A variable - length array of CLEARCODEC_SUBCODEC structures.

2.2.4.1.1.3.1 CLEARCODEC_SUBCODEC

The CLEARCODEC_SUBCODEC structure encapsulates an uncompressed bitmap or a bitmap encoded
with the NSCodec Codec ([MS -RDPNSC] sections 1 through 3) or the RLEX scheme as specified in

section 2.2.4.1.1.3.1.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

xStart yStart

width height

bitmapDataByteCount

50 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

subCodecId bitmapData (variable)

...

...

xStart (2 bytes): A 16 -bit unsigned integer that specifies the horizontal position (relative to the left
edge of the bitmap) where the subcodec -encoded bitmap MUST be placed once it has been
decoded.

yStart (2 bytes): A 16 -bit unsigned integer that specifies the vertical position (relative to the top
edge of the bitmap) where the subcodec -encoded bitmap MUST be placed once it has been
decoded.

width (2 bytes): A 16 -bit unsigned integer that specifies the width of the subcodec -encoded bitmap.

height (2 bytes): A 16 -bit unsigned integer that specifies the height of the subcodec -encoded
bitmap.

bitmapDataByteCount (4 bytes): A 32 -bit unsigned integer that specif ies the number of bytes in
the bitmapData field. This field MUST be used to determine whether the bitmap in the
bitmapData field is in compressed or uncompressed format. The value in the
bitmapDataByteCount field MUST NOT exceed (3 * width * height).

subCo decId (1 byte): An 8 -bit unsigned integer that identifies the encoding scheme used to encode
the data in the bitmapData field.

bitmapData (variable): A variable - length array of bytes that contains bitmap data.

If the subCodecId field equals 0x00, the bit mapData field contains the raw pixels of the bitmap
in little -endian byte order (blue in the first byte, green in the second byte, and red in the third
byte). The pixels are ordered from left to right and then top to bottom.

If the subCodecId field equals 0x01, the bitmapData field contains a bitmap encoded with the
NSCodec Codec ([MS -RDPNSC] section 1, 2 and 3).

If the subCodecId field equals 0x02, the bitmapData field contains a
CLEARCODEC_SUBCODEC_RLEX (section 2.2.4.1.1.3.1.1) structure.

2.2.4.1.1.3.1.1 CLEARCODEC_SUB CODEC_RLEX

The CLEARCODEC_SUBCODEC_RLEX structure contains a palette and segments that contain
encoded indexes that reference colors in the palette.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

paletteCount paletteEntries (variable)

...

...

segments (variable)

...

51 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

paletteCount (1 byte): An 8 -bit unsigned integer that specifies the number of
RLEX_RGB_TRIPLET (section 2.2.4.1.1.3.1.1.1) structures in the paletteEntries field. This
value MUST be less than or equal to 0x7F. The number of bits in the stopIndex field of each

CLEARCODEC_SUBCODEC_RLEX_SEGMENT (section 2.2.4.1.1.3.1.1.2) structure embedded in
the seg ments field is given by floor(log 2(paletteCount ï 1)) + 1.

paletteEntries (variable): A variable - length array of RLEX_RGB_TRIPLET structures. The number
of elements in this array is specified by the paletteCount field.

segments (variable): A variable - len gth array of CLEARCODEC_SUBCODEC_RLEX_SEGMENT
structures.

2.2.4.1.1.3.1.1.1 RLEX_RGB_TRIPLET

The RLEX_RGB_TRIPLET structure is used to express the red, green, and blue components

necessary to reproduce a color in the additive RGB space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blue green red

blue (1 byte): An 8 -bit unsigned integer that specifies the blue RGB color component.

green (1 byte): An 8 -bit unsigned integer that specifies the green RGB color component.

red (1 byte): An 8 -bit unsigned integer that specifies the red RGB color component.

2.2.4.1.1.3.1.1.2 CLEARCODEC_SUBCODEC_RLEX_SEGMENT

The CLEARCODEC_SUBCODEC_RLEX_SEGMENT structure contains a collect ion of encoded palette
indexes. This encoding exploits the fact that a collection of palette indexes can consist of the
following:

Á Repeated values

Á Sequences of values that monotonically increase by 1

A palette index that repeats N times is called a "run of length N" (for example, 0x03, 0x03 is a run of
length 2), while a sequence of palette indexes that monotonically increase by 1 is called a "suite"
(0x04, 0x05, 0x06 is a suite with a stopping value of 0x06 and a depth of 3). In the specification for
the CLEARCODEC_SUBCODEC_RLEX_SEGMENT structure, the run length factor fields
(runLengthFactor1 , runLengthFactor2 , and runLengthFactor3) represent the number of times a
starting color (defined by the stopIndex and suiteDepth fields) repeats before a suite (also defined

by the stopIndex and suiteDepth fields) begins.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

stopIndex (variable)

...

...

52 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

suiteDepth (variable)

...

...

runLengthFactor1 runLengthFactor2 (optional)
runLengthFactor3

(optional)

...

stopIndex (variable): A variable number of bits (maximum 7 bits) that defines an unsigned integer.
The number of bits is determined by the paletteCount field of the encapsulating
CLEARCODEC_SUBCODEC_RLEX (section 2.2.4.1.1.3.1.1) structure and the sum of the number
of bits in this field and the suiteDepth field MUST equal 8 (the bits in the stopIndex field are

present in the least significant bits of the containing byte). The stopIndex field specifies the
position of an RLEX_RGB_TRIPLET (section 2.2.4.1.1.3.1.1.1) structure in the paletteEntries

field of the encapsulating CLEARCODEC_SUBCODEC_RLEX structure. This
RLEX_RGB_TRIPLET structure is referred to as stopColor .

suiteDepth (variable): A variable number of bits (maximum 8 bits) that defines an unsigned
integer. The sum of t he number of bits in this field and the stopIndex field MUST equal 8, and
the bits in the suiteDepth field are present in the most significant bits of the containing byte. The
suiteDepth field specifies the number of consecutive indexes encoded in the curr ent suite. Each

index represents one pixel preceding the stopIndex and starting from stopIndex ï suiteDepth
(referred to as startIndex). The startIndex value specifies the position of an
RLEX_RGB_TRIPLET structure (referred to as startColor) in the palette Entries field of the
encapsulating CLEARCODEC_SUBCODEC_RLEX structure.

runLengthFactor1 (1 byte): An 8 -bit unsigned integer. If the value of the runLengthFactor1 field
is less than 255 (0xFF), the runLengthFactor2 and runLengthFactor3 fields MUST NOT be

present and the startColor value MUST be applied to the next runLengthFactor1 pixels. If the

value of the runLengthFactor1 field equals 255 (0xFF), the runLengthFactor2 field MUST be
present, and the run length is calculated from the runLengthFactor2 field.

runLengthFactor2 (2 bytes, optional): An optional 16 -bit unsigned integer. If the value of the
runLengthFactor2 field is less than 65,535 (0xFFFF), the runLengthFactor3 field MUST NOT be
present, and the startColor value MUST be applied to the next runLe ngthFactor2 pixels. If the
value of the runLengthFactor2 field equals 65,535 (0xFFFF), the runLengthFactor3 field MUST
be present, and the run length is calculated from the runLengthFactor3 field.

runLengthFactor3 (4 bytes, optional): An optional 32 -bit u nsigned integer. If this field is present,
it contains the run length. The startColor value MUST be applied to the next runLengthFactor3
pixels. This field SHOULD NOT be used if the run length is smaller than 65,535 (0xFFFF).

2.2.4.2 RFX_PROGRESSIVE_BITMAP_STREAM

The RFX_PROGRESSIVE_BITMAP_STREAM structure encapsulates regions of a graphics frame
compressed using discrete wavelet transforms (DWTs), sub -band diffing, and progressive compression
techniques. The data compressed using these techniques is transported in the bitmapData field of
the RDPG FX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) message.

53 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

progressiveDataBlocks (variable)

...

...

progressiveDataBlocks (variable): A variable - length array of RFX_PROGRESSIVE_DATABLOCK
(section 2.2.4.2.1) structures.

2.2.4.2.1 RFX_PROGRESSIVE_DATABLOCK

The RFX_PROGRESSIVE_DATABLOCK structure is used to wrap data sent from the server to the
client. All RemoteFX Progressive data blocks conform to this basic structure and are specified in

sections 2.2.4.2.1.1 through 2.2.4.2.1.5.5.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... blockData (variable)

...

...

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set

to one of the following values. If this field is not set to one of the specified values, the decoder
SHOULD ignore the contents of the blockLen and blockData fields.

Value Mea ning

WBT_SYNC

0xCCC0

RFX_PROGRESSIVE_SYNC (section 2.2.4.2.1.1)

WBT_FRAME_BEGIN

0xCCC1

RFX_PROGRESSIVE_FRAME_BEGIN (section 2.2.4.2.1.2)

WBT_FRAME_END

0xCCC2

RFX_PROGRESSIVE_FRAME_END (section 2.2.4.2.1.3)

WBT_CONTEXT

0xCCC3

RFX_PROGRESSIVE_CONTEXT (section 2.2.4.2.1.4)

WBT_REGION

0xCCC4

RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5)

WBT_TILE_SIMPLE

0xCCC5

RFX_PROGRESSIVE_TILE_SIMPLE (section 2.2.4.2.1.5.3)

WBT_TILE_PROGRESSIVE_FIRST

0xCCC6

RFX_PROGRESSIVE_TILE_FIRST (section 2.2.4.2.1.5.4)

54 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Value Mea ning

WBT_TILE_PROGRESSIVE_UPGRADE

0xCCC7

RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5)

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the combined size, in bytes, of the
blockType , blockLen and blockData fields.

blockData (variable): A variable - length field that contains data that conforms to the structure of
the type specified by the blockType field.

2.2.4.2.1.1 RFX_PROGRESSIVE_SYNC

The RFX_PROGRESSIVE_SYNC structure is used to transport codec version information. It is
optional and SHOULD appear only once as the first block in the progressiveDataBlocks field of the
encapsulating RFX_PROGRESSIVE_BITMAP_STRE AM (section 2.2.4.2) structure. If this block
appears out of sequence, the decoder SHOULD ignore it.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... magic

... version

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_SYNC (0xCCC0).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_SYNC block. This field MUST be set to 12 (0x0000000C).

magic (4 bytes): A 32 -bit unsigned integer that SHOULD be set to 0xCACCACCA. The decoder
SHOULD ignore this value.

version (2 bytes): A 16 -bit unsigned integer that specifies the version of the codec. The upper 8

bits indicate the major version number, while the lower 8 bits indicate the minor version number.
The current version of the wire format is 1.0 (encoded as 0x0100). The decoder SHOULD ignore
this value.

2.2.4.2.1.2 RFX_PROGRESSIVE_FRAME_BEGIN

The RFX_PROGRESSIVE_FRAME_BEGIN struct ure marks the beginning of the frame in the codec
payload. This block MUST appear only once, before any RFX_PROGRESSIVE_REGION (section

2.2.4.2.1.5) blocks but after the RFX_PROGRESSIVE_CONTEXT (section 2.2.4.2.1.4) block.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... frameIndex

... regionCount

55 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

regions (variable)

...

...

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_FRAME_BEGIN (0xCCC1).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the

RFX_PROGRESSIVE_FRAME_BEGIN block, excluding the size of the regions field. This field
MUST be set to 12 (0x0000000C).

frameIndex (4 bytes): A 32 -bit unsigned integer that specifies the frame index. This value SHOULD
be ignored by the decoder.

regionCount (2 bytes): A 16 -bit unsigned integer that specifies the number of
RFX_PROGRESSIVE_REGION blocks that follow this RFX_PROGRESSIVE_FRAME_BEGI N

block.

regions (variable): An array of RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) blocks. The
number of elements in this array is specified by the regionCount field. If the number of elements
specified by the regionCount field is larger than the actua l number of elements in the regions
field, the decoder SHOULD ignore this inconsistency.

2.2.4.2.1.3 RFX_PROGRESSIVE_FRAME_END

The RFX_PROGRESSIVE_FRAME_END structure marks the end of the frame in the codec payload.
This block SHOULD appear only once, after the final RFX_PROGRESSIVE_REGION (section
2.2.4.2.1.5) block. If this block appears more than once, the decoder SHOULD ignore the other
occurrences.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

...

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_FRAME_END (0xCCC2).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_FRAME_END block. This field MUST be set to 0x00000006.

2.2.4.2.1.4 RFX_PROGRESSIVE_CONTEXT

The RFX_PROGRESSIVE_CONTEXT structure provides information about the compressed data. It is
optional and SHOULD appear before the RFX_PROGRESSIVE_FRAME_BEGIN (section 2.2.4.2.1.2)
block. If the block appears after the RFX_PROGRESSIVE_FRAME_BEGIN block, the decoder

SHOULD process it.

56 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... ctxId tileSize

... flags

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_CONTEXT (0xCCC3).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the

RFX_PROGRESSIVE_CONTEXT block. This field MUST be set to 10 (0x0000000A) .

ctxId (1 byte): An 8 -bit unsigned integer that specifies the context ID. This field SHOULD be set to
0x00. The decoder SHOULD ignore this value.

tileSize (2 bytes): A 16 -bit unsigned integer that indicates the width and height of a square ti le.
This field MUST be set to 0x0040.

flags (1 byte): An 8 -bit unsigned integer that contains context flags.

Flag Meaning

RFX_SUBBAND_DIFFING

0x01

Indicates that sub -band diffing is enabled.

2.2.4.2.1.5 RFX_PROGRESSIVE_REGION

The RFX_PROGRESSIVE_REGION structure contains the compressed data for a set of tiles from the
frame. All RFX_PROGRESSIVE_REGION blocks SHOULD be present between the
RFX_PROGRESSIVE_FRAME_BEGIN (section 2.2.4.2.1.2) and RFX_PROGRESSIVE_FRAME_END
(section 2.2.4. 2.1.3) blocks. If a block is not present between the
RFX_PROGRESSIVE_FRAME_BEGIN and RFX_PROGRESSIVE_FRAME_END blocks, the decoder

MUST ignore it.

Note that RFX_PROGRESSIVE_REGION entries that are part of the same frame can share the tiles
defined in the tiles field of each entry. In this scenario, tiles are not repeated in successive
RFX_PROGRESSIVE_REGION entries. Across all of the RFX_PROGRESSIVE_REGION entries of a
frame, the rectangles (defined in the rects field of each entry) MUST be distinct, and t he region
defined by these rectangles MUST be completely covered by all of the tiles defined in the
RFX_PROGRESSIVE_REGION entries of the frames. Note that in this context, the frame is

bracketed between the RDPGFX_START_FRAME_PDU and the RDPGFX_END_FRAME_ PDU , and
can span multiple RFX_PROGRESSIVE_FRAME_BEGIN and RFX_PROGRESSIVE_FRAME_END

blocks.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... tileSize numRects

57 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

... numQuant numProgQuant flags

numTiles tileDataSize

... rects (variable)

...

...

quantVals (variable)

...

...

quantProgVals (variable)

...

...

tiles (variable)

...

...

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_REGION (0xCCC4).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the variable -

length RFX_PROGRESSIVE_REGION block.

tileSize (1 byte): An 8 -bit unsigned integer that indicates the width and height of a square tile. This
field MUST be set to 0x40.

numRects (2 bytes): A 16 -bit unsigned integer that specifies the number of TS_RFX_RECT ([MS -
RDPRFX] section 2.2.2.1.6) structures in the re cts field. The value of this field MUST be greater
than zero.

numQuant (1 byte): An 8 -bit unsigned integer that specifies the number of
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) structures in the quantVals field.
The value of this field MUST be in the range 0 to 7 (inclusive).

numProgQuant (1 byte): An 8 -bit unsigned integer that specifies the number of
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) structures in the quantProgVals
field.

flags (1 byte): An 8 -bit unsigned integer that contain s region flags.

58 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Flag Meaning

RFX_DWT_REDUCE_EXTRAPOLATE

0x01

Indicates that the discrete wavelet transform (DWT) uses the
"Reduce -Extrapolate" method.

numTiles (2 bytes): A 16 -bit unsigned integer that specifies the number of elements in the tiles
field.

tileDataSize (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the tiles field.

rects (variable): A variable - length array of TS_RFX_RECT structu res that specifies the encoded
region (the number of rectangles in this field is specified by the numRects field). This region

MUST be completely covered by the tiles enumerated in the tiles field of this
RFX_PROGRESSIVE_REGION entry and by tiles that were specified in
RFX_PROGRESSIVE_REGION entries that previously appeared within the current frame. Note
that because regions are not necessarily tile -aligned, it is valid for tiles to carry compressed
information for pixels outside of the region.

quantVals (v ariable): A variable - length array of RFX_COMPONENT_CODEC_QUANT structures

(the number of quantization tables in this field is specified by the numQuant field).

quantProgVals (variable): A variable - length array of RFX_PROGRESSIVE_CODEC_QUANT
structures (th e number of quantization tables in this field is specified by the numProgQuant
field).

tiles (variable): A variable - length array of RFX_PROGRESSIVE_DATABLOCK (section 2.2.4.2.1)
structures. The value of the blockType field of each block present in the array MUST be
WBT_TILE_SIMPLE (0xCCC5), WBT_TILE_PROGRESSIVE_FIRST (0xCCC6), or

WBT_TILE_PROGRESSIVE_UPGRADE (0xCCC7).

2.2.4.2.1.5.1 RFX_PROGRESSIVE_CODEC_QUANT

The RFX_PROGRE SSIVE_CODEC_QUANT structure specifies a progressive quantization table for

compressing a tile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

quality yQuantValues

... cbQuantValues

... crQuantValues

...

quality (1 byte): An 8 -bit unsigned integer that specifies the quality associated with the progressive

stage as a value between 0 (0x00) and 100 (0x64), where 100 (0x64) indicates that the tile will
reach its final target quality. This value SHOULD be ign ored by the decoder.

yQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2)
structure that contains the progressive quantization table for the Luma (Y) component.

cbQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT structure that contains the
progressive quantization table for the Chroma Blue (Cb) component.

59 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

crQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT structure that contains the
progressive quantization table for the Chroma Red (Cr) component.

2.2.4.2.1.5.2 RFX_COMPONENT_CODEC_QUANT

The RFX_COMPONENT_CODEC_QUANT structure stores information regarding the scalar
quantization values for the ten sub -bands in the three - level discrete wavelet transform (DWT)
decomposition.

When embedded within the quantVals field of the RFX_PROGRESSIVE_REGI ON (section
2.2.4.2.1.5) structure, the RFX_COMPONENT_CODEC_QUANT structure contains the scalar
quantization values. Each field in this structure MUST have a value in the range of 0 to 15 (inclusive).

When embedded within the yQuantValues , cbQuantValues , a nd crQuantValues fields of the

RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) structure, the
RFX_COMPONENT_CODEC_QUANT structure contains values to be added to the quantization
values specified in the quantVals field of the RFX_PROGRESSIVE_REGION stru cture. Each field in
this structure MUST have a value in the range of 0 to 8 (inclusive).

Note that the RFX_COMPONENT_CODEC_QUANT structure differs from the
TS_RFX_CODEC_QUANT ([MS -RDPRFX] section 2.2.2.1.5) structure with respect to the order of the

bands .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LL3 HL3 LH3 HH3 HL2 LH2 HH2 HL1

LH1 HH1

LL3 (4 bits): A 4 -bit, unsigned integer. The LL quantization factor for the level -3 DWT sub -band.

HL3 (4 bits): A 4 -bit, unsigned integer. The HL quantization factors for the level -3 DWT sub -band.

LH3 (4 bits): A 4 -bit, unsigned integer. The LH quantization factor fo r the level -3 DWT sub -band.

HH3 (4 bits): A 4 -bit, unsigned integer. The HH quantization factor for the level -3 DWT sub -band.

HL2 (4 bits): A 4 -bit, unsigned integer. The HL quantization factor for the level -2 DWT sub -band.

LH2 (4 bits): A 4 -bit, unsign ed integer. The LH quantization factor for the level -2 DWT sub -band.

HH2 (4 bits): A 4 -bit, unsigned integer. The HH quantization factor for the level -2 DWT sub -band.

HL1 (4 bits): A 4 -bit, unsigned integer. The HL quantization factor for the level -1 DWT sub -band.

LH1 (4 bits): A 4 -bit, unsigned integer. The LH quantization factor for the level -1 DWT sub -band.

HH1 (4 bits): A 4 -bit, unsigned integer. The HH quantization factor for the level -1 DWT sub -band.

2.2.4.2.1.5.3 RFX_PROGRESSIVE_TILE_SIMPLE

The RFX_PROGRESSIVE _TILE_SIMPLE structure specifies a tile that has been compressed without
progressive techniques.

60 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... quantIdxY quantIdxCb

quantIdxCr xIdx yIdx

... flags yLen

cbLen crLen

tailLen yData (variable)

...

...

cbData (variable)

...

...

crData (variable)

...

...

tailData (variable)

...

...

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_TILE_SIMPLE (0xCCC5).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the variable -

length RFX_PROGRESSIVE_TILE_SIMPLE block.

quantIdxY (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of the
containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified quantization
table MUST be used for de -quantization of the sub -bands for the Luma (Y) component.

quantIdxCb (1 byte): An 8 -bit unsigned integer that specifies an index into the

RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGI ON block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Blue (Cb) component.

61 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

quantIdxCr (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing

RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Red (Cr) component.

xIdx (2 bytes): A 16 -bit unsigned integer that specifies the x - index of the encod ed tile in the screen
tile grid. The pixel x -coordinate is obtained by multiplying the x - index by the size of the tile.

yIdx (2 bytes): A 16 -bit unsigned integer that specifies the y - index of the encoded tile in the screen
tile grid. The pixel y -coordinat e is obtained by multiplying the y - index by the size of the tile.

flags (1 byte): An 8 -bit unsigned integer that contains tile flags.

Flag Meaning

RFX_TILE_DIFFERENCE

0x01

Indicates that the tile contains the compressed difference of the DWT coefficients
for the same tile between the current frame and the previous frame.

yLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the yData field.

cbLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the cb Data field.

crLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the crData field.

tailLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the tailData field.
This field SHOULD<1> be set to zero.

yData (variable): A variable - length array of bytes that contains the compressed data for the Luma
(Y) component of the tile using, a discrete wavelet transform (DWT), sub -band diffing if enabled,
and quantizatio n and entropy encoded using the RLGR1 method. The size of this field, in bytes, is
specified by the yLen field.

cbData (variable): A variable - length array of bytes that contains the compressed data for the
Chroma Blue (Cb) component of the tile using the same methods as the yData field. The size of

this field, in bytes, is specified by the cbLen field.

crData (variable): A variable - length array of bytes that contains the compressed data for the
Chroma Red (Cr) component of the tile using the same methods as the yData field. The size of
this field, in bytes, is specified by the crLen field.

tailData (variable): A variable - length array of bytes that contains data that SHOULD<2> be

ignored. The size of this field, in bytes, is specified by the tailLen field.

2.2.4.2.1.5.4 RFX_PROGRESSIVE_TILE_FIRST

The RFX_PROGRESSIVE_TILE_FIRST structure specifies the first -pass compression of a tile with
progressive techniques. Subsequent passes, which improve the quality of the tile, are specified using
the RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5) block.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... quantIdxY quantIdxCb

quantIdxCr xIdx yIdx

62 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

... flags progressiveQuality yLen

... cbLen crLen

... tailLen yData (variable)

...

...

cbData (variable)

...

...

crData (variable)

...

...

tailData (variable)

...

...

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_TILE_PROGRESSIVE_FIRST (0xCCC6).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the variable -

length RFX_PROGR ESSIVE_TILE_FIRST block.

quantIdxY (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of the
containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified quantization
table MUST be used for de -quantization of the sub -bands for the Luma (Y) component.

quantIdxCb (1 byte): An 8 -bit unsigned integer that specifies an index into the

RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the contai ning
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Blue (Cb) component.

quantIdxCr (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chr oma Red (Cr) component.

xIdx (2 bytes): A 16 -bit unsigned integer that specifies the x - index of the encoded tile in the screen
tile grid. The pixel x -coordinate is obtained by multiplying the x - index by the size of the tile.

yIdx (2 bytes): A 16 -bit unsi gned integer that specifies the y - index of the encoded tile in the screen
tile grid. The pixel y -coordinate is obtained by multiplying the y - index by the size of the tile.

63 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

flags (1 byte): An 8 -bit unsigned integer that contains a single tile flag.

Flag Meaning

RFX_TILE_DIFFERENCE

0x01

Indicates that the tile contains the compressed difference of the DWT
coefficients for the same tile between the current frame and the previous frame.

The seven high bits of the flags field MAY be set to zero by the encod er and MUST be ignored by
the decoder.

progressiveQuality (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) array (the quantProgVals field)

of the containing RFX_PROGRESSIVE_REGION blo ck. A value of 255 (0xFF) indicates a full
progressive quality table (the quality is 100%, and all the coefficients are zero).

yLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the yData field.

cbLen (2 bytes): A 16 -bit unsi gned integer that specifies the size, in bytes, of the cbData field.

crLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the crData field.

tailLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the tailData field.

This field SHOULD<3> be set to zero.

yData (variable): A variable - length array of bytes that contains the compressed data for the Luma
(Y) component of the tile using a discrete wavelet transform (DWT), sub -band diffing if enabled,
quantiz ation and entropy encoded using the RLGR1 method. The size of this field, in bytes, is
specified by the yLen field.

cbData (variable): A variable - length array of bytes that contains the compressed data for the
Chroma Blue (Cb) component of the tile using the same methods as the yData field. The size of

this field, in bytes, is specified by the cbLen field.

crData (variable): A variable - length array of bytes that contains the compressed data for the

Chroma Red (Cr) component of the tile using the same metho ds as the yData field. The size of
this field, in bytes, is specified by the crLen field.

tailData (variable): A variable - length array of bytes that contains data that SHOULD<4> be
ignored. The size of this field, in bytes, is specified by the tailLen fie ld.

2.2.4.2.1.5.5 RFX_PROGRESSIVE_TILE_UPGRADE

The RFX_PROGRESSIVE_TILE_UPGRADE structure contains data required for an upgrade pass of a
tile using progressive techniques. The block contains information that MUST be added to the
information currently stored by the decoder in order to increase the quality of the tile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

blockType blockLen

... quantIdxY quantIdxCb

quantIdxCr xIdx yIdx

... progressiveQuality ySrlLen

64 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

yRawLen cbSrlLen

cbRawLen crSrlLen

crRawLen ySrlData (variable)

...

...

yRawData (variable)

...

...

cbSrlData (variable)

...

...

cbRawData (variable)

...

...

crSrlData (variable)

...

...

crRawData (variable)

...

...

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set

to WBT_TILE_PROGRESSIVE_UPGRADE (0xCCC7).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the variable -

length RFX_PROGRESSIVE_TILE_UPGRADE block.

quantIdxY (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of the
containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified quantization
table MUST be used for de -quantization of the sub -bands for the Luma (Y) component.

65 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

quantIdxCb (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing

RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Blue (Cb) component.

quantI dxCr (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Red (Cr) component.

xIdx (2 bytes): A 16 -bit unsigned integer that specifies the x - index of the encoded tile in the screen
tile grid. The pixel x -coordinate is obtained by multiplying the x - index by the size of the tile.

yIdx (2 bytes): A 16 -bit unsigned integer that specifies the y - index of the encoded tile in the screen

tile grid. The pixel y -coordinate is obtained by multiplying the y - index by the size of the tile.

progressiveQuality (1 byte): An 8 -bit unsigned integer that specifie s an index into the
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) array (the quantProgVals field)

of the containing RFX_PROGRESSIVE_REGION block. A value of 255 (0xFF) indicates a full
progressive quality table (the quality is 100%, and all the coeff icients are zero).

ySrlLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the ySrlData field.

yRawLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the yRawData
field.

cbSrlLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the cbSrlData
field.

cbRawLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the cbRawData
field.

crSrlLen (2 bytes): A 16 -bit unsigned integ er that specifies the size, in bytes, of the crSrlData

field.

crRawLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the crRawData
field.

ySrlData (variable): A variable - length array of bytes that contains bits for the Luma (Y) component
compressed using the Simplified -RL method.

yRawData (variable): A variable - length array of bytes that contains raw bits for the Luma (Y)
component.

cbSrlData (variable): A variable - length array of bytes that contains bits for the Chroma Blue (C b)
component compressed using the Simplified -RL method.

cbRawData (variable): A variable - length array of bytes that contains raw bits for the Chroma Blue
(Cb) component.

crSrlData (variable): A variable - length array of bytes that contains bits for the Chro ma Red (Cr)

component compressed using the Simplified -RL method.

crRawData (variable): A variable - length array of bytes that contains raw bits for the Chroma Red
(Cr) component.

66 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.4.3 ALPHACODEC_BITMAP_STREAM

The ALPHACODEC_BITMAP_STREAM structure specifies the opacity of each pixel in the encoded
bitmap. The number of pixels encoded in the segments field MUST equal the area of the original

image when decoded.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

alphaSig compressed

segments (variable)

...

...

alphaSig (2 bytes): A 16 -bit unsigned integer. This field MUST contain the value 16,716 (0x414C).

compressed (2 bytes): A 16 -bit unsigned integer. If this field equals 0x0000, the segments field
contains the alpha channel val ues, encoded in raw format, one after the other, in top - left to
bottom -right order. If this field is nonzero, the segments field contains one or more
CLEARCODEC_ALPHA_RLE_SEGMENT (section 2.2.4.3.1) structures.

segments (variable): An optional variable - length array of bytes or
CLEARCODEC_ALPHA_RLE_SEGMENT structures, depending on the value of the compressed
field.

2.2.4.3.1 CLEARCODEC_ALPHA_RLE_SEGMENT

The CLEARCODEC_ALPHA_RLE_SEGMENT structure encodes a single alpha channel run segment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

runValue runLengthFactor1 runLengthFactor2 (optional)

runLengthFactor3 (optional)

runValue (1 byte): An 8 -bit unsigned integer that specifies the alpha value of the current pixel.

runLengthFactor1 (1 byte): An 8 -bit unsigned integer. If the value of the runLengthFactor1 field
is less than 255 (0xFF), the runLengthFactor2 and runLengthFactor3 fields MUST NOT be
present, and the current alpha value MUST be applied to the next runLengt hFactor1 pixels. If
the value of the runLengthFactor1 field equals 255 (0xFF), the runLengthFactor2 field MUST
be present, and the run length is calculated from the runLengthFactor2 field.

runLengthFactor2 (2 bytes, optional): An optional 16 -bit unsigned i nteger. If the value of the
runLengthFactor2 field is less than 65,535 (0xFFFF), the runLengthFactor3 field MUST NOT be
present, and the current alpha value MUST be applied to the next runLengthFactor2 pixels. If
the value of the runLengthFactor2 field equ als 65,535 (0xFFFF), the runLengthFactor3 field
MUST be present, and the run length is calculated from the runLengthFactor3 field.

runLengthFactor3 (4 bytes, optional): An optional 32 -bit unsigned integer. If this field is present,
it contains the run leng th. The current alpha value MUST be applied to the next

67 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

runLengthFactor3 pixels. This field SHOULD NOT be used if the run length is smaller than
65,535 (0xFFFF).

2.2.4.4 RFX_AVC420_BITMAP_STREAM

The RFX_AVC420_BITMAP_STREAM structure encapsulates regions of a grap hics frame
compressed using the MPEG -4 AVC/H.264 codec in YUV420p mode (as specified in [ITU -H.264 -
201201]) and conforming to the byte stream format specified in [ITU -H.264 -201201] Annex B. The
data compressed using these techniques is transported in the b itmapData field of the RD

PGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1) message or encapsulated in the
RFX_AVC444_BITMAP_STREAM structure (section 2.2.4.5) or the
RFX_AVC444V2_BITMAP_STREAM structure (section 2.2.4.6).

Note that the width and height of the MPEG -4 AVC/H.264 codec bitstream MUST be aligned to a
multiple of 16 and MUST be cropped by the region mask specified in the regionRects field that is
embedded in the avc420MetaData field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

avc420MetaData (variable)

...

...

avc420EncodedBitstream (variable)

...

...

avc420MetaData (variable): A variable - length RFX_AVC420_METABLOCK (section 2.2.4.4.1)
structure.

avc420EncodedBitstream (variable): An array of bytes that represents a single frame encoded
using the MPEG -4 AVC/H.264 codec in YUV420p mode (as specified in [ITU -H.264 -201201]) and
conforming to the byte stream format specified in [ITU -H.264 -201201] Annex B. Color conversion
is described in section 3.3.8.3.1.

2.2.4.4.1 RFX_AVC420_METABLOCK

The RFX_AVC420_METABLOCK structure describes metadata associated with MPEG -4 AVC/H.264
encoded data sent from the server to the client. The data contained within the
RFX_AVC420_ME TABLOCK structure is purely informational and SHOULD NOT be used by the client
when decoding the MPEG -4 AVC/H.264 stream. When decoding the stream, the data that is available

in the RFX_AVC420_METABLOCK is present within the MPEG -4 AVC/H.264 stream.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

numRegionRects

regionRects (variable)

68 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

...

quantQualityVals (variable)

...

...

numRegionRects (4 bytes): A 32 -bit unsigned integer that specifies the total number of elements in
the regionRects field. The quantQualityVals field MUST contain the same number of elements
as the regionRects field.

regionRects (variable): A variable - length array of RDPGFX_RECT16 (section 2.2.1.2) structures

that specifies the region mask to apply to the MPEG -4 AVC/H.264 encoded data. The total number
of elements in this field is specified by the numRegionRects field.

quantQualityVals (varia ble): A variable - length array of RDPGFX_AVC420_QUANT_QUALITY
(section 2.2.4.4.2) structures that describes the quantization parameter and quality level
associated with each rectangle in the regionRects field. The total number of elements in this field

is s pecified by the numRegionRects field.

2.2.4.4.2 RDPGFX_AVC420_QUANT_QUALITY

The RDPGFX_AVC420_QUANT_QUALITY structure describes the quantization parameter and
quality level associated with a rectangular region.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

qpVal qualityVal

qpVal (1 byte): An 8 -bit unsigned integer that specifies the progressive indicator and quantization

parameter associated with a rectangular region. The format of the qpVal field is described by the
following bitmask diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

qp r p

qp (6 bits): A 6 -bit, unsigned integer that that specifies the quantization parameter associated
with a rectangular region. This value MUST be in the range required by [ITU -H.264 -
201201] sections 7.4.2.1.1 and 7.4.3 for high profiles ([ITU -H.264 -201201] section

A.2.4) .

r (1 bit): A 1 -bit field that is reserved for future use. This field SHOULD be set to zero.

p (1 bit): A 1 -bit field that indicates whether a rectangular region is progressively encoded. A
value of 0x1 indicates that the region is progressively encoded.

qualityVal (1 byte): An 8 -bit unsigned integer that specifies the quality level associated with a
rectangular region. This value MUST be in the range 0 to 100 inclusive.

69 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.4.5 (Updated Section) RFX_AVC444_BITMAP_STREAM

The RFX_AVC444_BITMAP_STREAM structure encapsulates regions of a graphics frame
compressed using MPEG -4 AVC/H.264 compression techniques [ITU -H.264 -201201] in YUV444 mode.

The data compressed using these techniques is transported in the bitmapData field of the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1) message.

To send all the chroma data for a YUV444 frame, two RFX_AVC420_BITMAP_STREAM structures
(section 2.2.4.4) are utilized. The format of the RFX_AVC444_BITMAP_STREAM structure is a four -
byte integer tha t specifies which subframes are encoded and the size of the first YUV420p subframe
encoded bitstream, followed by the first subframe, and then optionally the second subframe. These
bitstreams MUST be encoded using the same MPEG -4 AVC/H.264 encoder and deco ded by a single

MPEG-4 AVC/H.264 decoder as one stream. The method to combine the two streams is detailed in
section 3.3.8.3.2. Note that the YUV420 and Chroma420 views (as shown in the figure captioned "A
representation of a YUV444 macroblock as two YUV24 0p macroblocks" in section 3.3.8.3.2) both have
identical MPEG -4 AVC/H.264 bitstream formats.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

avc420EncodedBitstreamInfo

avc420EncodedBitstream1 (variable)

...

...

avc420EncodedBitstream2 (variable)

...

...

avc420EncodedBitstreamInfo (4 bytes): A 32 -bit unsigned integer that specifies the size of the

data present in the avc420EncodedBitstream1 field and which subframes are encoded.

The format of the avc420EncodedB itstreamInfo field is described by the following bitmask
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbAvc420EncodedBitstream1 LC

cbAvc420EncodedBitstream1 (30 bits): A 30 -bit unsigned integer that specifies the size, in

bytes, of the luma YUV420 frame present in the avc420EncodedBitstream1 field. If no
YUV420 frame is present, then this field MUST be set to zero.

LC (2 bits): A 2 -bit unsigned integer that specifies how data is encoded in the
avc420EncodedBitstream1 and avc420EncodedBitstream2 fields.

Value Meaning

0x0 A YUV420 frame is contained in the avc420EncodedBitstream1 field, and a Chroma420

70 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Value Meaning

frame is contained in the avc420EncodedBitstream2 field.

0x1 A YUV420 frame is contained in the avc420EncodedBitstream1 field, and no data is
present in the avc420EncodedBitstream2 field. No Chroma420 frame is present. The
Chroma420 frame corresponding to the updates in the YUV420 frame is sent in a
RFX_AVC444_BITMA P_STREAM message in subsequent frames if required.

0x2 A Chroma420 frame is contained in the avc420EncodedBitstream1 field, and no data is
present in the avc420EncodedBitstream2 field. No YUV420 frame is present. The
Chroma420 frame MUST be combined with the decoded AVC stream from previous frames.

0x3 An invalid state that MUST NOT occur.

avc420EncodedBitstream1 (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the first YUV420p subframe of a single frame that was encoded using the MPEG -4
AVC/H.264 codec in YUV444 mode.

avc420EncodedBitstream2 (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the second YUV420p subframe (if it exists) of a single frame that was encoded using the
MPEG-4 AVC/H.264 codec in YUV444 mode.

2.2.4.6 (Updated Section) RFX_AVC444V2_BITMAP_STREAM

The RFX_AVC444V2_BITMAP_STREAM structure encapsulates regions of a graphics frame
compressed using MPEG -4 AVC/H.264 compression techniques [ITU -H.264 -201201] in YUV444v2
mode. The data compressed using these techniques is transported in the bitmapData field of the
RDPGFX_WIRE_TO_SURFAC E_PDU_1 (section 2.2.2.1) message.

To send all the chroma data for a YUV444 frame, two RFX_AVC420_BITMAP_STREAM structures
(section 2.2.4.4) are used. The format of the RFX_AVC444V2_BITMAP_STREAM structure is a
four -byte integer that specifies which subfra mes are encoded, and the size of the first YUV420p

subframe encoded bitstream, followed by the first subframe, and then, optionally, the second

subframe. These bitstreams MUST be encoded using the same MPEG -4 AVC/H.264 encoder and
decoded by a single MPEG -4 AVC/H.264 decoder as one stream. The method to combine the two
streams is detailed in section 3.3.8.3.3. Note that the YUV420 and Chroma420 views (as shown in the
figure captioned "A representation of a YUV444 frame as two YUV240p frames" in section 3.3. 8.3.3)
both have identical MPEG -4 AVC/H.264 bitstream formats.

Note that the RFX_AVC444V2_BITMAP_STREAM structure is identical to the
RFX_AVC444_BITMAP_STREAM structure except for the combination method of the YUV420 and
Chroma420 views.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

avc420EncodedBitstreamInfo

avc420EncodedBitstream1 (variable)

...

avc420EncodedBitstream2 (variable)

...

71 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

avc420EncodedBitstreamInfo (4 bytes): A 32 -bit unsigned integer that specifies the size of the
data present in the avc420EncodedBitstream1 field and which subframes are encoded.

The format of the avc420EncodedBitstreamInfo field is described by the following bitmask
diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbAvc420EncodedBitstream1 LC

cbAvc420EncodedBitstream1 (30 bits): A 30 -bit unsigned integer that specifies the size, in
bytes, of the luma YUV420 frame present in the avc420EncodedBitstream1 field. If no
YUV420 frame is present, then this field MUST be set to zero.

LC (2 bits): A 2 -bit unsigned integer that specifies how data is encoded in the
avc420EncodedBitstream1 and avc420EncodedBitstream2 fields.

Value Meaning

0x0 A YUV420 frame is contained in the avc420EncodedBitstream1 field, and a Chroma420
frame is contained in the avc420EncodedBitstream2 field.

0x1 A YUV420 frame is contained in the avc420EncodedBitstream1 field, and no data is

present in the avc420EncodedBitstream2 field. No Chroma420 frame is present. The
Chroma42 0 frame corresponding to the updates in the YUV420 frame is sent in a
RFX_AVC444V2_BITMAP_STREAM message in subsequent frames if required.

0x2 A Chroma420 frame is contained in the avc420EncodedBitstream1 field, and no data is
present in the avc420Encoded Bitstream2 field. No YUV420 frame is present. The
Chroma420 frame MUST be combined with the decoded AVC stream from previous frames.

0x3 An invalid state that MUST NOT occur.

avc420EncodedBitstream1 (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the first YUV420p subframe of a single frame that was encoded using the MPEG -4
AVC/H.264 codec in YUV444v2 mode.

avc420EncodedBitstream2 (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the second YUV420p subframe (if it exists) of a single frame that was encoded using the
MPEG-4 AVC/H.264 codec in YUV444v2 mode.

2.2.5 Data Packaging

2.2.5.1 RDP_SEGMENTED_DATA

The RDP_SEGMENTED_DATA structure is used to wrap one or more RDP_DATA_SEGMENT
(section 2.2.5.2) structures. Each segment contains data that has been encoded using RDP 8.0 Bulk
Compression techniques (section 3.1.9.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

descriptor segmentCount (optional)
uncompressedSize

(optional)

... bulkData (variable)

72 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

...

...

segmentArray (variable)

...

...

descriptor (1 byte): An 8 -bit unsigned integer that specifies whether the
RDP_SEGMENTED_DATA structure wraps a single segment or multiple segments.

Value Meaning

SINGLE

0xE0

The segmentCount , uncompressedSize, and segmentArray fields MUST NOT be
present, and the bulkData field MUST be present.

MULTIPART

0xE1

The segmentCount , uncompressedSize , and segmentArray fields MUST be present, and
the bulkData field MUST NOT be present.

segmentCount (2 bytes, optional): An optional 16 -bit unsigned integer that specifies the number
of elements in the segmentArray field.

uncompressedSize (4 bytes, optional): An optional 32 -bit unsigned integer that specifies the size,
in bytes, of the data present in the segmentArray field once it has been reassembled and
decompressed.

bulkData (variable): An optional variable - length RDP8_BULK_ENCODED_DAT A structure (section

2.2.5.3).

segmentArray (variable): An optional variable - length array of RDP_DATA_SEGMENT structures.
The number of elements in this array is specified by the segmentCount field.

2.2.5.2 RDP_DATA_SEGMENT

The RDP_DATA_SEGMENT structure contains data that has been encoded using RDP 8.0 Bulk
Compression techniques (section 3.1.9.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

size

bulkData (variable)

...

...

size (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the bulkData field.

bulkData (variable): A variable - length RDP8_BULK_ENCODED_DATA structure (section 2.2.5.3).

73 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.2.5.3 RDP8_BULK_ENCODED_DATA

The RDP8_BULK_ENCODED_DATA structure contains a header byte and data that has been
encoded using RDP 8.0 Bulk Compression techniques (section 3.1.9.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header data (variable)

...

header (1 byte): An 8 -bit, unsigned integer that specifies the compression type and flags.

Flag Meaning

CompressionTypeMask

0x0F

Indicates the package which was used for compression. See the following table for

a list of compression packages.

PACKET_COMPRESSED

0x20

The payload data in the data field is compressed.

Possible compression types are as follows.

Value Meaning

PACKET_COMPR_TYPE_RDP8

0x4

RDP 8.0 bulk compression (see section 3.1.9.1).

data (variable): A variable - length array of bytes that contains data encoded using RDP 8.0 Bulk
Compression techniques. If the PACKET_COMPRESSED (0x20) flag is specified in the header field,

then the data is compressed.

2.3 Directory Service Schema Elements

None.

74 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher -Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Processing a Graphics Message

All graphics messages are prefaced by the RDPGFX_HEADER (section 2.2.1.5) structure.

During processing of a graphics message, the cmdId field in the header MUST first be examined t o
determine if the message is within the subset of expected messages. If the message is not expected,
it SHOULD be ignored.

If the message is in the correct sequence, the pduLength field MUST be examined to make sure that
it is consistent with the amount o f data read from the "Microsoft::Windows::RDS::Graphics" dynamic

virtual channel (section 2.1). If this is not the case, the connection SHOULD be dropped.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.1.8 Bitmap Compression

3.1.8.1 RemoteFX Progressive Codec Compression

The RemoteFX Progressive Codec extends the RemoteFX Codec ([MS -RDPRFX] sections 2.2.2 and
3.1.8) by adding sub -band diffing and the ability to progressively encode an image. Sub -band diffing
is a compression technique that entails transmitting the differences between the DWT coefficient s of
consecutive frames, while progressive encoding involves the transmission of low -quality images that
are gradually refined and improved in quality.

75 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.1.8.1.1 General Terms and Concepts

Assume that F1 , F2 , F3 , ... are the frames being encoded. Further, for simpli city, assume that every
frame contains only one tile and the same component from the YCbCr color -space.

DwtQ represents a tile after DWT transformation and quantization, and DwtQn corresponds to Fn .

DwtQ is composed of 10 bands: LL3, LH3, HL3, HH3, LH2, HL 2, HH2, LH1, HL1, and HH1 ([MS -
RDPRFX] section 2.2.2.1.5). The LL3 band is designated as DwtQ - LL , and the remaining 9 bands as
DwtQ - NonLL .

3.1.8.1.2 Sub -Band Diffing

Sub -band diffing is used to determine whether a difference tile or an original tile is sent to the R LGR

Entropy Encoder ([MS -RDPRFX] section 3.1.8.1.7).

The sending of an original tile entails dispatching the nine non -LL3 bands and the deltas of the LL3
band to the RLGR Entropy Encoder. An LL3 delta is defined as the difference between a given LL3

element and the previous element within the same tile. The first LL3 element is transmitted without
modification. The differences in the LL3 band are denoted as DwtQ - LL - Deltas .

Sending an original tile to the RLGR Entropy Encoder is represented as:

DwtQ - NonLL , DwtQ - LL -Deltas -> RLGR Entropy Encoder

A difference ti le is defined as the difference between the DwtQ elements of two consecutive frames
Fm and Fn (where m > n):

Diffm = DwtQm - DwtQn

Diff is composed of Diff - LL and Diff - NonLL . All the bands of a diff tile are sent to the RLGR Entropy
Encoder:

Diff - NonLL , Di ff - LL -> RLGR Entropy Encoder

3.1.8.1.3 Extra Quantization

When performing progressive encoding, an extra quantization step is performed on the data resulting
from the Sub -Band Diffing Stage. Quantization is expressed in terms of the number of bits that are
shifted. The number of bits is a function of:

Á The regular quality (low, medium - low, medium -high, high)

Á The color component (Y, Cb or Cr)

Á The band (HH1 to LL3)

Á The progressive chunk (0% to 100%)

Assume the following:

BitPos (quality, component, band, 0%) = 15

BitPos (quality, component, band, 100%) = 0

0 <= BitPos (quality, component, band, chunk) < 15; where (chunk > 0%)

If SB is the result of the sub -band diffing decision engine, the progressive quantized value is

calculated as follows:

if (SB >= 0) then ProgQ (chunk) = SB >> BitPos (chunk)

76 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

if (SB < 0) then ProgQ (chunk) = - ((-SB) >> BitPos (chunk))

This can also be expressed as:

ProgQ (chunk) = SB / PQF (chunk); division MUST round the result toward zero

Where PQF (chunk) is the Progressive Quantization Factor:

PQF (chun k) = 1 << BitPos (chunk)

However, the progressive quantized value of the LL3 band is calculated differently. The quantization of
the elements is performed toward negative infinity, resulting in the following formula:

ProgQ - LL (chunk) = SB >> BitPos (chunk)

3.1.8.1.4 St ate Tracking

To correctly perform sub -band diffing and progressive encoding, the decoder's state MUST be tracked,

specifically the following:

Á The current DWT/quantized bits (in non -progressive mode, this matches the encoder's DwtQ).

Á The current progressive chunk.

The current DWT/quantized bits of the decoder are referred to as the "reference bits" (Ref). Whenever
the encoder sends a difference, it MUST be based on Ref , not on the DwtQ of the previous frame,
because the decoder might not have received all of the associated progressive chunks. Maintaining

Ref is specified in section 3.2.8.1.5.2.1.

3.1.8.1.5 Simplified Run -Length (SRL)

The Simplified Run -Leng th (SRL) Encoder uses the same zero run - length engine as the RLGR entropy
encoder ([MS -RDPRFX] section 3.1.8.1.7). However, it differs when encoding nonzero elements,
because these elements are unary -encoded (there is no Golomb -Rice coding). An extra zero byte is
always emitted after the last SRL byte.

3.1.8.1.5.1 Zero Run -Length Encoding

Runs of zeros are encoded using the same techniques as RLGR. The KP state value defines the
likelihood of encountering long runs of zeros.

Á The initial value of KP is 8.

Á K is defined as KP / 8 (rounded down) and indicates the number of bits that MUST be used to
encode the number of zeros (nz).

Á If nz >= (1 << K) then:

Á One "0" bit is written

Á nz = nz - (1 << K)

Á KP = KP + 4; if KP > 80 then KP = 80

Á K = KP / 8

Á Repeat until nz < (1 << K)

Á Otherwise,

Á One "1" bit is written

77 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Á The count of zeros is written using K bits

Á KP = KP - 6; if KP < 0 then KP = 0

Á K = KP / 8

Note that, contrary to RLGR, it is possible to encode a run of zeros with K = 0. If the length of the run

is zero, a single "1" bit is written.

3.1.8.1.5.2 Unary Encoding

Unary encoding is based on the number of bits of magnitude that the current upgrade pass (section
3.2.8.1.5.2) is encoding. The value to encode MUST be nonzero, positive or negative, and the
magnitude (absolute value) MU ST NOT exceed (1 << nBits) - 1, where nBits is the number of bits of
magnitude that the upgrade pass is encoding.

Á First, the sign is written as a single bit.

Á Next, a sequence of "magnitude - 1" zeros is written.

Á Finally, a "1" bit terminates the sequence, except if the magnitude equals (1 << nBits) - 1.

Once this value has been encoded, the encoder returns to encoding a zero run - length. If the next
value is nonzero, a zero run of length zero is encoded, and the next value is unary encoded.

Consider the case where nBits = 3. In this scenario, the magnitude MUST be between 1 and 7

(inclusive). After writing the sign, the following encodings are used for the seven possible magnitudes:

Á 1 is encoded as "1"

Á 2 is encoded as "01"

Á 3 is encoded as "00 1"

Á 4 is encoded as "0001"

Á 5 is encoded as "00001"

Á 6 is encoded as "000001"

Á 7 is encoded as "000000"

In the case where nBits = 1, only the sign would be written, because the magnitude cannot exceed 1.

3.1.8.1.6 Summary of Terms

DwtQ : A tile after DWT transformation and quantization.

DwtQ - LL : The LL3 band of DwtQ .

DwtQ - NonLL : The non -LL3 bands of DwtQ .

DwtQ - LL - Deltas : The difference betwe en two consecutive LL3 elements from DwtQ .

Ref : The reference tile, which reflects the current DWT/quantized bits of the decoder.

Diff , Diff - LL , Diff -NonLL : The difference between Ref and DwtQ of the current tile.

SB : The result of the sub -band diffing de cision engine.

BitPos : A function that returns a bit position used for progressive encoding.

78 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

PQF : The Progressive Quantization Factor, defined as (1 << BitPos).

ProgQ : Data from SB that has been "extra quantized" using PQF .

3.1.9 Bulk Data Compression

3.1.9.1 RDP 8.0

RDP 8.0 lossless compression is a specialization of the Lempel -Ziv ("LZ77") technique ([SAYOOD]
section 6.2.3.2.2) paired with static Huffman encoding ([SAYOOD] sections 4.1 to 4.7). It is most -
easily explained by detailing the operation of a decompressor. A compliant data compressor MUST
encode input data, and a compliant data decompressor MUST decode compressed data, according to
the format defined in section 3.1.9.1.2 and its subsections.

Any given input data could have many valid but different compressed representations. Whether the
"compressed" representation is actually smaller than the original is dependent on the characteristics of

the input data and on the compressor implementation. A compliant decompressor MUST accept any

conforming compressed encodi ng and produce output that exactly matches the original input to the
compressor. This document specifies at least one way to decode RDP 8.0 compressed data, although
numerous implementation approaches are possible.

3.1.9.1.1 Overview

The essential elements of a deco mpressor include de -blocking, Huffman decoding, and maintaining a

history of recent output.

To accommodate input blocks of an arbitrary size, multiple segments can be used. The de -blocking
header from compressed input indicates whether that input is to be decoded in a single pass or in
multiple passes, with the output from each segment concatenated to recover the original input data.

Each frame of compressed input data, with de -blocking headers excluded, is passed through a
Huffman decoder using a static model to translate multibit sequences into tokens. The decoder MUST
identify each variable - length token, which represents either a "literal" or a "match". The value of a

literal token is presented as the next byte of output. The value of a match tok en conveys the match
"distance", indicating how far back to reach into the output history to locate the required bytes. A
match token is followed by an encoded length, indicating the number of bytes to output.

As decompressed data is presented, it MUST be stored into a "history" buffer, which tracks the most -
recent bytes of output, which could be referenced by a subsequent match token.

3.1.9.1.2 Detailed Description

This section describes a method to accept a compressed stream of data of a given length and to
output the decompressed bytes and a byte count.

Any compressor can encounter input data that cannot be reduced further. There are two different
paths that allow input data to be passed "raw" or with minimal encoding overhead. All output bytes
MUST be recorded in the history buffer, even bytes from unencoded segments or runs, because a

match operation could subsequently appear and reference these bytes.

RDP 8.0 compressor limits:

Á Maximum number of uncompressed bytes in a single segment: 65,535.

Á Maximum match distan ce / minimum history size: 2,500,000 bytes.

Á Maximum number of segments: 65,535.

Á Maximum expansion of a segment (when compressed size exceeds uncompressed): 1,000 bytes.

79 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Á Minimum match length: 3 bytes.

The compression type code to identify RDP 8.0 compressed data is PACKET_COMPR_TYPE_RDP8

(0x04).

3.1.9.1.2.1 De -Blocking

Each compressed stream MUST begin with an RDP_SEGMENTED_DATA (section 2.2.5.1) structure.
A descriptor field value of SINGLE (0xE0) indicates that the original input was processed as one
segment . The segmentCount and uncompressedSize fields are omitted, and the entire remainder
of the input is passed as one segment to the decoder.

If the value of the descriptor field is MULTIPART (0xE1), the input was possibly too large to be
represented in a sin gle segment, typically because the uncompressed byte count exceeds 65,535 or a

smaller count due to compressor implementation limits. The 16 -bit segmentCount field indicates the
number of segments whose decompressed output will be concatenated to reconstru ct the entire
output. The 32 -bit uncompressedSize field MUST equal the total number of decompressed bytes
(the sum of the decompressed size of all segments). The value in the uncompressedSize field can be

used by the decompressor to allocate a reassembly b uffer.

Each segment of compressed data appears in an RDP_DATA_SEGMENT (section 2.2.5.2) structure.

When the value of the descriptor field is MULTIPART (0xE1), the size field of the
RDP_DATA_SEGMENT structure indicates the number of encoded bytes to be deco ded. When the
descriptor field value is SINGLE (0xE0), the size field is omitted, and the number of encoded bytes
can be derived from the total size of the provided RDP_SEGMENTED_DATA structure (the total input
size minus the size of the 1 -byte descriptor field).

3.1.9.1.2.2 Compressed Segment Header

The PACKET_COMPRESSED bit (0x20) in the header field of each RDP8_BULK_ENCODED_DATA
(section 2.2.5.3) structure indicates that the stream of bytes that follows in the data field is a bit
stream to be Huffman -decoded. If th is bit is not set, the bytes are not Huffman -encoded and are
copied directly to the output. The four low -order bits of the header field contain the compression type

identifier, which is always four (0x04) for the format described in this document. The rema ining bits in
the header field are reserved.

3.1.9.1.2.3 Compressed Segment Bit Stream

Huffman decoding views the input bytes as a stream of bits. The input bits are examined until a token
is recognized. The first bit to decode is the most -significant bit of the first byte, followed by the next
most -significant bit, and so on. In Huffman decoding, the number of bits in each token is not known
until the leading bits in that token are examined. A decoder typically reads one to several bits at a
time, until the next token is recognized.

3.1.9.1.2.4 Compressed Segment Trailer

The bit stream can end with some number of unused bits (0 -7) in the last byte, which MUST NOT be
decoded. (Attempting to decode can overrun input and produce too many bytes of output). The value
of the last byte i n the compressed segment indicates the number of unused bits in the final byte

(some value between 0 and 7, inclusive). The five high -order bits in the last byte of the compressed
segment are reserved.

For example, if the encoding of a stream produces 217 bits, the stream is 29 bytes in length. The first
27 bytes plus the most -significant bit of the 28th byte comprise the bit stream. The 29th byte has the
value 7, indicating that 7 bits (of the 28th byte) are to be ignored. The total length of a segment's b it
stream is:

NumberOfBitsToDecode = ((NumberOfBytesToDecode - 1) * 8) - ValueOfLastByte.

80 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

There is no "end of block" token or other marker. The decoder MUST stop when this number of bits
has been decoded.

Huffman symbols or "tokens" are defined for:

Á A lite ral (a single byte to be output).

Á A match, including the distance back into the history from which to copy.

Á An unencoded sequence, introducing some number of bytes to copy directly from input.

Most literals are encoded with a "0" prefix, followed by 8 bits containing the byte to output, most -
significant bit first. Some selected literals MUST be represented using a shorter token varying between
5 and 8 bits, all beginning with a "11" prefix. The nine -bit encodings that would otherwise represent
these lit erals are reserved and MUST NOT be used to encode these literal values.

A match token is followed by some number of bits indicating the number of bytes output since the

needed bytes or the "distance" backward. Each token has been assigned a different base distance and
number of additional value bits to be added to compute the full distance. Additional value bits are

presented most -significant bit first. A match length prefix follows the token and indicates how many
additional bits will be needed to get the full length (the number of bytes to be copied). Most of the
match length prefixes have been defined so that a decoder can simply count the number of "1" bits
until a "0" bit appears to determine how many value bits follow.

The distance is not a buffer offs et, but instead indicates the number of bytes that have been output
since the first of the bytes to be copied. A linear buffer is often used to record recent history, with a
"cursor" indicating the buffer offset where the next byte will be placed, wrapped around to the
beginning of the buffer when the end is reached (also known as a "ring buffer"). With this approach,
the distance can be subtracted from the cursor offset, while compensating for any buffer wrap -around,
if applicable, which might have occurre d since the needed bytes were decoded.

A match distance of zero is a special case, which indicates that an unencoded run of bytes follows. The

count of bytes is encoded as a 15 -bit value, most significant bit first. After decoding this count, any
bits rema ining in the current input byte are ignored, and the unencoded run will begin on a whole -byte

boundary. The ignored bits, plus 8 bits for each unencoded byte, are also considered part of the total
number of bits in the input stream. If any bits remain afte r an unencoded run of bytes, decoding
continues with the most -significant bit of the first byte following the run.

The following table contains all the defined tokens. Any token or bit sequence that is not defined in
this table is reserved.

Bit
Prefix Deci mal

Value
Bits Purpose

0 0 8 Literal xxxxxxxx (excluding those literals with shorter codes described in this
table for which their 9 -bit representation is reserved)

10001 17 5 Unencoded literal sequence (10001 00000), or

Match distance 1...31 (10001 xxxxx)

10010 18 7 Match distance 32...159

10011 19 9 Match distance 160...671

10100 20 10 Match distance 672...1695

10101 21 12 Match distance 1696...5791

101100 44 14 Match distance 5792...22175

101101 45 15 Match distance 22176...54943

81 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Bit
Prefix Deci mal

Value
Bits Purpose

1011100 92 18 Match distance 54944...317087

1011101 93 20 Match distance 317088...1365663

10111100 188 20 Match distance 1365664...2414239

10111101 189 21 Match distance 2414240...2500000

11000 24 Literal 0x00 (000000000 is reserved)

11001 25 Literal 0x01 (000000001 is reserved)

110100 52 Literal 0x02 (000000010 is reserved)

110101 53 Literal 0x03 (000000011 is reserved)

110110 54 Literal 0xFF (011111111 is reserved)

1101110 110 Literal 0x04 (000000100 is reserved)

1101111 111 Literal 0x05 (000000101 is reserved)

1110000 112 Literal 0x06 (000000110 is reserved)

1110001 113 Literal 0x07 (000000111 is reserved)

1110010 114 Literal 0x08 (000001000 is reserved)

1110011 115 Literal 0x09 (000001001 is reserved)

1110100 116 Literal 0x0A (000001010 is reserved)

1110101 117 Literal 0x0B (000001011 is reserved)

1110110 118 Literal 0x3A (000111010 is reserved)

1110111 119 Literal 0x3B (000111011 is reserved)

1111000 120 Literal 0x3C (000111100 is reserved)

1111001 121 Literal 0x3D (000111101 is reserved)

1111010 122 Literal 0x3E (000111110 is reserved)

1111011 123 Literal 0x3F (000111111 is reserved)

1111100 124 Literal 0x40 (001000000 is reserved)

1111101 125 Literal 0x80 (010000000 is reserved)

11111100 252 Literal 0x0C (000001100 is reserved)

11111101 253 Literal 0x38 (000111000 is reserved)

11111110 254 Literal 0x39 (000111001 is reserved)

11111111 255 Literal 0x66 (001100110 is reserved)

Match tokens are followed by a length token:

82 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Bit Prefix Value Bits Definition

0 Length 3

10 2 Length 4...7

110 3 Length 8...15

1110 4 Length 16...31

11110 5 Length 32...63

111110 6 Length 64...127

1111110 7 Length 128...255

11111110 8 Length 256...511

111111110 9 Length 512...1023

1111111110 10 Length 1024...2047

11111111110 11 Length 2048...4095

111111111110 12 Length 4096...8191

1111111111110 13 Length 8192...16383

11111111111110 14 Length 16384...32767

111111111111110 15 Length 32768...65535

A single compressed segment MUST NOT translate to more than 65,535 uncompressed bytes.

3.1.9.1.2.5 Bit Stream Encoding Examples

The following example bit streams contain spaces added for clarity:

0 0100 1001 is the encoding for a single byte 0x49.

10010 0001100 is a match with a distance of 44 (base value of 32 + 7 bits with a value of 12). This
would be followed by a length prefix such as 110 (which indicates a base value of 8), followed by 3
bits with a value of 101, resulting in a length of 13.

0 0100 1001 10001 00001 110 001 decodes to ten bytes of 0x49 (one byte 0x49, followed by a match
with distance = 1 and length = 8 + 1 = 9, which replicates the first 0x49 nine more times).

3.2 Server Details

3.2.1 Abstract Data Model

This section desc ribes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that i mplementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produc es external behavior that is consistent with that described in this

document.

83 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.2.1.1 Bitmap Cache Map

The Bitmap Cache Map abstract data model (ADM) element stores a list of keys and slot indices.
Each key uniquely identifies a bitmap stored in the client -side bitmap cache in an assigned slot

(identified by a slot index). The specific slot in which a bitmap is stored is deter mined by the server.

3.2.1.2 Unacknowledged Frames

The Unacknowledged Frames ADM element contains a list of logical frames (each represented by a
frame ID) that have been sent to the client but that have not yet been acknowledged by the

RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13) message. Logical frames are delineated
by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and RDPGFX_END_FRAME_PDU (section
2.2.2.12) messages.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher -Layer Triggered Events

None.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_1 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_1 message are specified in
section 2.2.2.1. The command fields MUST be populated in accordance with this description.
Furthermore, the RDPGFX_WIRE_TO_SURFACE_PDU_1 messag e MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the target surface identified in the
surfaceId field MUST exist on the client.

3.2.5.2 Sending an RDPGFX_WIRE_TO _SURFACE_PDU_2 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_2 message are specified in
section 2.2.2.2. The command fields MUST be populated in accordance with this descripti on.
Furthermore, the RDPGFX_WIRE_TO_SURFACE_PDU_2 message MUST be part of a logical frame

(delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages), and the target surface identified in the
surfaceId field MUST exist on the client. The codecContextId field MUST also contain a valid ID that

is associated with a bitmap that is being progressively transferred to the client.

3.2.5.3 Sending an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message

The structure and fields of the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message are
specified in section 2.2.2.3. The command fields MUST be populated in accordance with this
description. Both the codec context specified in the codecContextId and the surface identified in the
surfaceId field MUST exist on the client.

84 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.2.5.4 Sending an RDPGFX_SOLIDFILL_PDU message

The structure and fields of the RDPGFX_SOLID FILL_PDU message are specified in section 2.2.2.4.
The command fields MUST be populated in accordance with this description. Furthermore, the

RDPGFX_SOLIDFILL_PDU message MUST be part of a logical frame delineated by the
RDPGFX_START_FRAME_PDU (section 2.2 .2.11) and RDPGFX_END_FRAME_PDU (section
2.2.2.12) messages, and the target surface identified in the surfaceId field MUST exist on the client.
The format of the data in the fillPixel field MUST match the pixel format of the target surface.

3.2.5.5 Sending an RDPG FX_SURFACE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_SURFACE_PDU message are specified in
section 2.2.2.5. The command fields MUST be populated in accordance wit h this description.
Furthermore, the RDPGFX_SURFACE_TO_SURFACE_PDU message MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the source and target surfaces

identified in the surfaceIdSrc and surfaceIdDest fields, respectively, MUST exist on the client.

3.2.5.6 Sending an RDPGFX_SURFACE_TO_CACHE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_CACHE_ PDU message are specified in
section 2.2.2.6. The command fields MUST be populated in accordance with this description.

Furthermore, the RDPGFX_SURFACE_TO_CACHE_PDU message MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2 .2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the source surface identified in the
surfaceId field MUST exist on the client. Once the RDPGFX_SURFACE_TO_CACHE_PDU message
has been sent to the client, the Bitmap Cache Map (section 3.2.1. 1) ADM element MUST be updated
with the key (cacheKey field) and slot index (cacheSlot field) that were transmitted to the client.

3.2.5.7 Sending an RDPGFX_CACHE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_CACHE_TO_SURFACE_PDU message are specified in

section 2.2.2.7. The command fields MUST be populated in accordance with this description.
Furthermore, the RDPGFX _CACHE_TO_SURFACE_PDU message MUST be part of a logical frame

delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages. Additionally, the target surface identified
in the surfaceId field MUST exist on the client, and the bitmap cache slot identified by the cacheSlot
field MUST contain a valid bitmap entry on the client.

3.2.5.8 Sending an RDPGFX_EVICT_CACHE_ENTRY_PDU message

The structure and fields o f the RDPGFX_EVICT_CACHE_ENTRY_PDU message are specified in
section 2.2.2.8. The command fields MUST be populated in accordance with this description.
Furthermore, the bitmap cache slot identified by the cacheSlot field MUST contain a valid bitmap
entry on the client. Once the RDPGFX_EVICT_CACHE_ENTRY_PDU message has been sent to the
client, the key and slot index associated with the bitmap MUST be removed from the Bitmap Cache

Map (section 3.2.1.1) ADM element.

3.2.5.9 Sending an RDPGFX_CREATE_SURFACE_PDU message

The structure and fields of the RDPGFX_CREATE_SURFACE_PDU message are specified in section
2.2.2.9. The command fields MUST be populated in accordance with this description. Furthermore, the

value specified i n the surfaceId field MUST NOT collide with an ID assigned to an existing surface on
the client.

85 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.2.5.10 Sending an RDPGFX_DELETE_SURFACE_PDU message

The structure and fields of the RDPGFX_DELETE_SURFACE_PDU message are specified in section
2.2.2.10. The command fields MUST be populated in accordance with this description. Furthermore,

the surfaceId field MUST identify a surface that exists on the client.

3.2.5.11 Sending an RDPGFX_START_FRAME _PDU message

The structure and fields of the RDPGFX_START_FRAME_PDU message are specified in section
2.2.2.11. The command fields MUST be populated in accordance with this description. Logical frames

SHOULD NOT be nested within each other.

3.2.5.12 Sending an RDPGFX_END_FRAME_PDU message

The structure and fields of the RDPGFX_END_FRAME_PDU message are specified in section

2.2.2.12. The command fields MUST be populated in accordance with this description. The frameId
field SHOULD be identical to the frame ID that was transmitted in the most recently transmitted

RDPGFX_START_FRAME_PDU (sectio n 2.2.2.11) message. Once the RDPGFX_END_FRAME_PDU
message has been sent to the client, the frame ID MUST be added to the Unacknowledged Frames
(section 3.2.1.2) ADM element.

3.2.5.13 Processing an RDPGFX_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_FRAME_ACKNOWLEDGE_PDU message are specified in
section 2.2.2.13. The header field MUST be processed as specified in section 3.2.5.1. Once the
RDPGFX_FRAME_ACKNOWLEDGE_PDU message has been successfully processe d, the frame ID
specified in the frameId field MUST be removed from the Unacknowledged Frames (section

3.2.1.2) ADM element.

If the queueDepth field is less than 0xFFFFFFFF, the server MUST expect that
RDPGFX_FRAME_ACKNOWLEDGE_PDU messages will continue to be sent by the client.
Furthermore, if the queueDepth field is in the range 0x00000001 to 0xFFFFFFFE the server SHOULD

use this value to determine how far the client is lagging in terms of graphics decoding and then
attempt to throttle the graphics frame rate accordingly.

If the queueDepth field is set to SUSPEND_FRAME_ACKNOWLEDGEMENT (0xFFFFFFFF), the server

MUST clear the Unacknowledged Frames (section 3.2.1.2) ADM element and MUST NOT expect any
further RDPGFX_FRAME_ACKNOWLEDGE_PDU messages from the cli ent. In this mode, the server
MUST NOT wait or block on unacknowledged frames (as the
RDPGFX_FRAME_ACKNOWLEDGE_PDU message is not sent by the client) and MUST assume that
the client is able to decode graphics data at a rate faster than it is receiving fram es.

3.2.5.14 Sending an RDPGFX_RESET_GRAPHICS_PDU message

The structure and fields of the RDPGFX_RESET_GRAPHICS_PDU message are specified in section
2.2.2.14. The command fields MUST be populated in accordance with this description.

3.2.5.15 Sending an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message are specified
in section 2.2.2.15. The command fields M UST be populated in accordance with this description.
Furthermore, the surface identified in the surfaceId field MUST exist on the client.

86 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.2.5.16 Processing an RDPGFX_CACHE_IMPORT_OFFER_PDU message

The structure a nd fields of the RDPGFX_CACHE_IMPORT_OFFER_PDU message are specified in
section 2.2.2.16. The header field MUST be processed as specified in section 3.1.5.1. If the message

is valid, then the cache keys specified in the cacheEntries field and the cache slot assigned by the
server to each entry SHOULD be added to the Bitmap Cache Map (section 3.2.1.1) ADM element.
Once the RDPGFX_CACHE_IMPORT_OFFER_PDU message has been processed, the server MUST
respond by sending the RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17) message to the
client (section 3.2.5.17).

3.2.5.17 Sending an RDPGFX_CACHE_IMPORT_REPLY_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_REPLY_PDU message are specified in
section 2.2.2.17. The command fields MUST be populated in accordance with this description. The
importedE ntriesCount field MUST be initialized with the number of entries that were imported into
the Bitmap Cache Map (section 3.2.1.1) ADM element while processing the most recent

RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16) message, as specified in section

3.2.5.16. Furthermore, the cache slot assigned to each entry imported by the server MUST be
enumerated in the cacheSlots field.

3.2.5.18 Processing an RDPGFX_CAPS_ADVERTISE_PDU message

The structure and fields of the RDPGFX_CAPS_ADV ERTISE_PDU message are specified in section
2.2.2.18. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_CAPS_ADVERTISE_PDU message has been successfully processed, the server MUST
respond by sending the RDPGFX_CAPS_CONFIRM _PDU (section 2.2.2.19) message to the client, as
specified in section 3.2.5.19.

If the RDPGFX_CAPS_ADVERTISE_PDU is received again during the session after the initial
RDPGFX_CAPS_CONFIRM_PDU message has been sent with the version field set to

RDPGFX_CAPS ET_VERSION103 or later, the server MUST resend the
RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) message to the client. The server MUST also

reset the protocol to the initial state and assume that the client has disregarded all the messages sent
by the server prior to RDPGFX_CAPS_CONFIRM_PDU in this channel.

3.2.5.19 Sending an RDPGFX_CAPS_CONFIRM_PDU message

The structure and fields of the RDPGFX_CAPS_CONFIRM_PDU message are specified in section
2.2.2.19. The command fie lds MUST be populated in accordance with this description. The server
MUST populate the capsSet field with a single instance of a correctly initialized capability set structure
(section 2.2.3).

3.2.5.20 Sending an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message

The struct ure and fields of the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message are
specified in section 2.2.2.20. The command fields MUST be populated in accordance with this
description. Furthermore, the surface identified in the surfaceId field MUST exist on the client.

3.2.5.21 Processing an RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message are specified
in section 2.2.2.21. The header field MUST be processed as specified in section 3.2.5.1. The
timestamp , timeDiffSE , and timeDiffEDR fields describe metrics associated with the frame

identified by the frameId field and SHOULD only be used for informational and debugging purposes.

87 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.2.5.22 Sendin g an RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU

message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU message are
specified in section 2.2.2.22. The command fields MUST be populated in accordance with this
description. Furthermore, t he surface identified in the surfaceId field MUST exist on the client.

3.2.5.23 Sending an RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU

message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message
are specified in section 2.2.2.23. The command fields MUST be populated in accordance with this
description. Furthermore, the surface identified in the surfaceId field MUST exist on the client.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.2.8 Bitmap Compression

3.2.8.1 Re moteFX Progressive Codec Compression

The functional stages involved in the encoding path are illustrated in the following figure. Each of
these stages is described in the following subsections.

Figure 2 : RemoteFX Progressive Cod ec encoding stages

When this encoding path is compared to [MS -RDPRFX] section 3.1.8.1, differencing has been
removed, sub -band diffing has been added, and progressive encoding has been incorporated into the
entropy encoder.

3.2.8.1.1 Color Conversion (RGB to YCbCr)

88 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Color conversion is identical to the technique specified in [MS -RDPRFX] section 3.1.8.1.3.

3.2.8.1.2 DWT

The discrete wavelet transform (DWT) is performed as specified in [MS -RDPRFX] section 3.1.8.1.4

with one exception. To improve the quality around tile edges, a variation has been added to the
transform, which modifies the behavior on pixel boundaries and changes the size of the bands.

3.2.8.1.2.1 Original Method

DWT results are calculated using an input coefficient and the surrounding coefficients. Tile boundaries
are handled by mirroring the input coefficients. The coefficients to the right of the leftmost input
coefficient are mirrored on the left side. For example, if there are eight input coefficients:

[0, 1, 2, 3, 4, 5, 6, 7]

After mirroring, the coefficients ar e logically extended as follows:

[..., 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, ...]

This technique is also used on the right edges and for vertical transforms.

The first pass for a given direction (horizontal or vertical) takes an input of 64 coefficients and
produces 32 low - frequency results and 32 high - frequency results.

3.2.8.1.2.2 (Updated Section) Reduce -Extrapolate Method

The Original Method (section 3.2.8.1.2.1) for dealing with boundaries when encoding tiles introduces
tile artifacts. The result is that users can perceive where the tile boundaries are in a decoded image.
The Reduce -Extrapolate method removes this artifact.

The first pass for a given direction (horizontal or vertical) takes an input of 64 coefficients and
produces 33 low - frequency results and 31 high - frequency results.

A 65th input coefficient is introduced by extrapolating from the last two input coefficients. Note that
the subscripts used in the equations that follow are 1 -based (in contrast to the equations in [MS -
RDPRFX] section 3.1.8.1.4, which are 0 ïbased). It is possible for the extrapolated 65th coefficient to
lie outside of the normal pixel range. Furthermore, extrapolation is only required for the first level.

The first -pass DWT is performed on the 65 coefficients, mirroring around the first and the sixty - fifth
boundary elements. As a result, 33 low - frequency and 32 high - frequency results are obtained. The
final frequency result is zero and is dropped.

89 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

The second -pass DWT takes the 33 low - frequency results from the first pass and performs a DWT with
normal mirroring, producing in turn 17 low - frequency elements and 16 high - frequency elements.

Finally, the third -pass DWT takes the 17 low - frequency results and produces (using the same
tech niques as the previous pass) 9 low - frequency elements and 8 high - frequency elements.

The resulting bands and the sizes are illustrated in the following figure.

90 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Figure 3 : Bands resulting from the Reduce - Extrapolate DWT Method

3.2.8.1.3 Qua ntization and Linearization

Quantization is performed as specified in [MS -RDPRFX] section 3.1.8.1.5, while linearization is
performed as specified in [MS -RDPRFX] section 3.1.8.1.6. Ordering of the bands is identical to the
ordering specified in [MS -RDPRFX] section 3.1.8.1.6.

3.2.8.1.4 Sub -Band Diffing

Sub -band diffing enables increased compression without any further quality loss by sending the
differences of the quantized values between frames.

To compress each tile in a surface, the encoder stores the quantized DWT coefficients that the decoder
most likely possesses. These coefficients differ slightly from the quantized coefficients of the previous
frame due to the progressive entropy encoder and are known as the reference bits. See section
3.1.8.1.4 and the figure captioned "RemoteFX Progressive Codec encoding stages" in section 3.2.8.1.

The first phase of the Sub -Band Diffing Stage decides between sending the quantized DWT coefficients
that have been calculated (section 3.2.8.1.3) or sending the differences with re spect to the reference

91 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

bits. This decision is made for each tile being encoded. If the quantized DWT coefficients of the tile are
to be sent, then the tile is called an "original tile"; otherwise, it is referred to as a "difference tile".

A tile that is be ing encoded for the first time is always sent as an original tile.

The calculation to determine the difference is performed on all three color components. Each of the

1024 coefficients from the tile contained in the reference bits are subtracted from each of the 1024
coefficients from the most recently calculated tile. This data is used to construct the difference tile.

In the preceding formula, "QC" stands for "Quantized Coefficient", "DT" for "Difference Tile", "OT" for
"Original Tile", and "RB" for "Reference Bits".

Zeros are counted in both the difference tile and the original tile in the Luma (Y) component and in all
of the bands except for the LL3 band. The tile with the most number of zeros is selected to be sent to

the RLGR Entropy Encoder. In t he case of a tie, the original tile is preferred. If an original tile is
selected over a difference tile, the reference bits MUST be cleared and filled with zeros.

3.2.8.1.5 (Updated Section) Progressive Entropy Encoding

The progressive encoder either can send a com plete tile or can transmit multiple versions of the same

tile over a period of time, with each subsequent version becoming more refined and improving in
quality. The input to the Progressive Entropy Encoding Stage is generated by the Sub -Band Diffing
engin e (section 3.2.8.1.4) and is either an original tile or a difference tile.

If a tile is to be transmitted in its entirety, then the tile data is dispatched to the RLGR1 Entropy
Encoder ([MS -RDPRFX] section 3.1.8.1.7.1), and the output forms the payload to be sent to the
decoder.

If a tile is to be transmitted progressively, the Progressive Entropy Encoding Stage is exercised

numerous times with the same input tile to generate multiple payloads that are consumed by the
decoder to re -create the tile in its en tirety. Sending a tile progressively is accomplished by executing a
First Progressive Pass (section 3.2.8.1.5.1) followed by subsequent Upgrade Progressive Passes
(section 3.2.8.1.5.2).

SB represents the data output from the Sub -Band Diffing Stage. This da ta is sent through multiple
progressive stages.

Where D 1, D 2, D 3, ..., D n is the data that is transmitted via n progressive passes.

When a progressive pass is performed, DAS ("Data Already Sent") represents the cumulated data that
has been transmitted through the previous passes, DTS ("Data To Send") represents the data to be

transmitted in the current pass, and DRS ("Data Remaining to be Sent") represents the data that

remai ns to be sent after the current pass.

When performing pass i:

92 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Each time a progressive pass is performed, DRS is reduced by the current DTS , and DAS is increased

by the current DTS for the next pass.

3.2.8.1.5.1 Performing the First Progre ssive Pass

The first progressive pass for a tile occurs when the encoder receives new pixels to encode and send
to the decoder.

The encoder first performs the DWT (section 3.2.8.1.2), Quantization and Linearization (section
3.2.8.1.3) stages to obtain DwtQ . At this point, the Sub -Band Diffing (section 3.2.8.1.4) stage

determines whether to send DwtQ or the difference (Diff). Diff is computed based on the "reference
bits" (Ref) specified in section 3.1.8.1.4.

Diff = DwtQ - Ref

SB = DwtQ or Diff

The progressive encoder performs extra quantization as specified in section 3.1.8.1.3:

ProgQ = SB / PQF

Each LL3 element is quantized toward negative infinity, and the result is subtracted from the next

quantized LL3 element. Note that even if the data is a difference tile, each quantized LL3 element,
which is the result of a difference, is subtracted from the next element. All of the bands are then sent
to the RLGR encoder:

ProgQ - NonLL , ProgQ - LL - Deltas -> RLGR Entropy Encoder

Note that all ten bands are entropy -encoded as one block without reset. The RLGR engine is started

with the state K = 1 and KR = 1.

If the chunk is 100%, then PQF = 1, and the bits being encoded are DwtQ - NonLL , DwtQ - LL - Deltas
for an original tile, or Diff -NonLL , Diff - LL for a difference tile.

Multiplying ProgQ by PQF yields DTS , the de -quantized progressive data. On the first pass, DAS is
zero, and DRS = SB - DTS .

The data generated by the first pass is written to an RFX_PROGRESSIVE_TILE_FIRST (section
2.2.4.2.1.5.4) structure.

93 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.2.8.1.5.2 Performing Upgrade Progressive Passes

To upgrade a tile, the encoder uses the previously calculated DRS , quantizes the data, and then (a)
sends it to the Simplified Run -Length (SRL) Encoder (section 3.1.8.1.5) or (b) transmits the raw bits

of each element using the scheme in section 3.2.8.1.5.2.1.

The SRL Encoder is an entropy encoder that is more suited to the upgrade pass than RLGR and is
based on th e fact that the maximum magnitude of any element to be sent is known.

The progressive chunk that the decoder is being driven toward is referred to as the "target chunk"
("TargetC" for brevity), while the most recent progressive chunk that the decoder has processed is
referred to as the "previous chunk" ("PrevC" for brevity).

UpgradeQ (PrevC, TargetC) = DRS / PQF (TargetC)

DTS = UpgradeQ (PrevC, TargetC) * PQF (TargetC)

For a given element in DTS , the decision to send raw bits or SRL -encoded data depends on what the
client has already decoded. If the corresponding element in DAS is zero, then UpgradeQ (PrevC,

TargetC) is SRL encoded. Otherwise, if the corresponding element in DAS is nonzero, the ab solute
value of the corresponding UpgradeQ (PrevC, TargetC) element is sent raw. For an LL3 element in an
original tile, the UpgradeQ element, which is always positive, is always sent raw.

If the corresponding element in DAS is strictly positive (nonzero), the UpgradeQ element lies
between zero and PQF (PrevC) / PQF (TargetC) - 1. Simplifying further:

PQF (PrevC) / PQF (TargetC) - 1

= (1 << BitPos (PrevC)) / (1 << BitPos (TargetC)) - 1

= (1 << (BitPos (PrevC) - BitPos (TargetC))) - 1

For a given tile, the data that has been generated by the SRL encoder is packaged in the ySrlData
(Luma), cbSrlData (Chroma Blue) and crSrlData (Chroma Red) fields of the

RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5) structure. All of the data that was

written as raw bits is packa ged in the yRawData (Luma), cbRawData (Chroma Blue), and
crRawData (Chroma Red) fields of the RFX_PROGRESSIVE_TILE_UPGRADE structure.

3.2.8.1.5.2.1 Sending Raw Bits

Raw bits are sent as a simple bit stream. The following sequence of bits "abc", "defg", "hijkl", when
wri tten, would produce the bytes "abcdefgh" and "ijkl0000".

3.2.8.1.5.3 Maintaining the Decoder Reference

After each progressive pass, the data that has been sent is added to the reference bits:

Ref = Ref + DTS

The reference bits are specified in section 3.1.8.1.4.

3.3 Clien t Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the pro tocol behaves. This document does not mandate that implementations

94 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

adhere to this model as long as their external behavior is consistent with that described in this
document.

Note It is possible to implement the following conceptual data by using a variet y of techniques as
long as the implementation produces external behavior that is consistent with that described in this

document.

3.3.1.1 Codec Contexts

The Codec Contexts ADM element contains a list of codec contexts. Each codec context is associated

with an offs creen surface and a bitmap that is being progressively rendered to the surface. The
context is used to store state information that is used to iteratively construct the bitmap. Once the
bitmap has been fully rendered, the associated context is no longer re quired. Furthermore, if the
server determines that a specific context will no longer be used, then the
RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3) message is sent to the client.

3.3.1.2 Progressive Tile Contexts

The Progressive Tile Contexts ADM element c ontains a list of progressive tile contexts. Each
progressive tile context is associated with a tile in an off -screen surface and one or more codec
contexts stored in the Codec Contexts (section 3.3.1.1) ADM element. The progressive tile context
contains t he sign state of each coefficient (described as Sign in section 3.3.8.2.1.1) and the bit
position for each band (described as BitPos in section 3.3.8.2.1.2).

A progressive tile context can be discarded once all of the codec contexts with which it is associ ated
have been deleted.

3.3.1.3 Sub -Band Diffing Tile Contexts

The Sub - Band Diffing Tile Contexts ADM element contains a list of sub -band diffing tile contexts.
Each sub -band diffing tile context is associated with a tile in an off -screen surface. This context
con tains the DWT coefficient data for the tile (described as DecDwtQ in section 3.3.8.2.1.1).

Each sub -band diffing tile context MUST be preserved for the duration of the RDP connection or until
the off -screen surface with which it is associated has been dele ted.

3.3.1.4 (Updated Section) Bitmap Cache

The Bitmap Cache ADM element is used to store bitmaps of arbitrary dimensions. Each bitmap is
associated with a key and is stored in a variable - length slot (identified by a one -based slot index). The
size of the bitmap cache is capped at 100 MB or 16 MB, depending on whet her the
RDPGFX_CAPS_FLAG_THINCLIENT (0x00000001) flag or RDPGFX_CAPS_FLAG_SMALL_CACHE
(0x00000002) flag is specified in the flags field of an RDPGFX_CAPSET_VERSION8 (section

2.2.3.1), RDPGFX_CAPSET_VERSION81 (section 2.2.3.2), RDPGFX_CAPSET_VERSION10
(sect ion 2.2.3.3), RDPGFX_CAPSET_VERSION102 (section 2.2.3.5),
RDPGFX_CAPSET_VERSION104 (section 2.2.3.7), RPDGFX_CAPSET_VERSION105 (section
2.2.3.8), or RDPGFX_CAPSET_VERSION106 (section 2.2.3.9) structure, which is encapsulated in

the server - to -client RDPGFX_ CAPS_CONFIRM_PDU (section 2.2.2.19) message. The size of the
bitmap cache is constrained to 16MB in size when the RDPGFX_CAPSET_VERSION103 (section

2.2.3.6) structure is encapsulated in the server - to -client RDPGFX_CAPS_CONFIRM_PDU message.
The maximum poss ible number of variable - length slots is 25,600 in the case of a 100 MB cache and
4,096 in the case of a 16 MB cache. The size of the bitmap data stored across all of the in -use
variable - length slots at any point in time MUST NOT exceed the total size of th e cache.

95 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.3.1.5 Persistent Bitmap Cache

The Persistent Bitmap Cache ADM element is optional offline storage that is used to selectively
persist bitmaps and any associated metadata that has been cached in the Bitmap Cache (section

3.3.1.4) ADM element.

3.3.1.6 Offscreen S urface

The Offscreen Surface ADM element contains a collection of bitmaps, each bitmap representing an
offscreen surface.

3.3.1.7 Graphics Output Buffer

The Graphics Output Buffer ADM element is the end -user visible output bitmap.

3.3.1.8 Surface to Output Mapping

The Surface to Output Mapping ADM element contains a list of where offscreen surfaces in the
Offscreen Surface (section 3.3.1.6) ADM element are mapped to the Graphics Output Buf fer
(section 3.3.1.7) ADM element.

3.3.1.9 Decompressor Glyph Storage

The Decompressor Glyph Storage ADM element is used to cache bitmaps decompressed using
ClearCodec decompression techniques (section 3.3.8.1). It contains 4,000 storage slots, each of which
can h old a bitmap image no larger than 1,024 square pixels.

3.3.1.10 V-Bar Storage

The V- Bar Storage ADM element is used to cache decompressed pixel columns from
CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structures. These pixel columns (which are the same

height as the co ntaining band) are referred to as "V -Bars". Encoded V -Bars are encapsulated in the

CLEARCODEC_BANDS_DATA (section 2.2.4.1.1.2) structure. The maximum number of V -Bars that
can be stored in the cache is 32,768.

3.3.1.11 V-Bar Storage Cursor

The V- Bar Storage Cursor ADM element is used to specify the position in the V- Bar Storage

(section 3.3.1.10) where the next V -Bar MUST be inserted. This element MUST be initialized to zero.

3.3.1.12 Short -V-Bar Storage

The Short - V- Bar Storage ADM element is used to cache decompressed pixel columns from

CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structures. These pixel columns (which are the same or
shorter than the height of the containing band) are referred to as "Short -V-Bars". Encoded Short -V-
Bars are encapsulated in the CLEARCODEC_BANDS_DA TA (section 2.2.4.1.1.2) structure. The

maximum number of Short -V-Bars that can be stored in the cache is 16,384.

3.3.1.13 Short V -Bar Storage Cursor

The Short V - Bar Storage Cursor ADM element is used to specify the position in the Short V - Bar
Storage (section 3.3. 1.12) ADM element where the next Short V -Bar MUST be inserted. This element
MUST be initialized to zero.

96 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.3.1.14 Confirmed Graphics Capabilities

The Confirmed Graphics Capabilities ADM element is used to store the set of graphics capabilities
specified by the serv er in the RDPGFX_CAPS_CONFIRM_PDU (section 3.3.5.19) message.

3.3.1.15 Surface to Window Mapping

The Surface to Window Mapping ADM element contains a list of surfaces and the RAIL window and
rectangular region to which each of these surfaces is mapped.

3.3.2 Timers

None.

3.3.3 Initialization

None.

3.3.4 Higher -Layer Triggered Events

None.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_1 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_1 message are specified in
section 2.2.2.1. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a va lid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element,
and the size of the bitmap data specified in the bitmapDataLength field MUST be consistent with the

amount of data read from the "Microsoft::Windows::RDS::Graphics" dynamic virtu al channel (section
2.1). Once the data in the bitmapData field has been decoded as specified by the encoding type
enumerated in the codecId field, the bitmap MUST be copied to the target surface.

If the encoding type enumerated in the codecId field is not RDPGFX_CODECID_ALPHA (0x000C):

Á If the target surface is listed in the Surface to Window Mapping (section 3.3.1.15) ADM
element, then the alpha channel of the bitmap (if present) MUST be ignored when copying to the
target surface, while the red, green, and blue channels MUST all be copied to the target surface

without modification.

Á If the target surface is not listed in the Surface to Window Mapping ADM element, then only
the red, green, and blue channels SHOULD be copied to the target surface.

If the encod ing type enumerated in the codecId field is RDPGFX_CODECID_ALPHA:

Á Only the alpha channel of the target surface MUST be updated with the contents of the source

bitmap (the red, green, and blue channels of the target surface MUST NOT be changed).

3.3.5.2 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_2 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_2 message are specified in
section 2.2.2.2. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element,

and the size of the bitmap data specified in the bitmapDataLength field MUST be consistent with the
amount of data read from the "Microsoft ::Windows::RDS::Graphics" dynamic virtual channel (section

97 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

2.1). If there is no codec context identified by the codecContextId field in the Codec Contexts
(section 3.3.1.1) ADM element, the client MUST create a new context, place it into the Codec

Contexts ADM element, and begin the process of progressively rendering a bitmap from the data in
the bitmapData field, as specified by the encoding type enumerated value in the codecId field, using

the context to store intermediate state. The bitmap SHOULD be copied to the target surface using a
SRCCOPY ROP3 operation ([MS -RDPEGDI] section 2.2.2.2.1.1.1.7) once enough data has been
decoded to render a discernible image and SHOULD then c ontinue to be updated as subsequent
RDPGFX_WIRE_TO_SURFACE_PDU_2 messages are processed. Note that if the type (specified in
the blockType field) of the current RFX_PROGRESSIVE_DATABLOCK structure (section 2.2.4.2.1)
of an RFX_PROGRESSIVE_BITMAP_STREAM (se ction 2.2.4.2) is
WBT_TILE_PROGRESSIVE_UPGRADE (0xCCC7), then the codecContextId field in the Codec

Contexts (section 3.3.1.1) ADM element MUST be known.

3.3.5.3 Processing an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message

The structure and fields of the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message are

specified in section 2.2.2.3. The header field MUST be processed as specified in section 3.1.5.1. Once

the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message ha s been successfully decoded, the
codec context identified by the codecContextId field (which is associated with the surface identified
by the surfaceId field) MUST be removed from the Codec Contexts (section 3.3.1.1) ADM element.

3.3.5.4 Processing an RDPGFX_SOLID FILL_PDU message

The structure and fields of the RDPGFX_SOLIDFILL_PDU message are specified in section 2.2.2.4.
The header field MUST be processed as specified in section 3.1.5.1. The surfaceId field MUST
identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element. Once the
RDPGFX_SOLIDFILL_PDU message has been successfully decoded, the rectangles specified in the
fillRects field MUST be filled with the 32 -bpp color specified by the fillPixel field using an

R2_COPYPEN ROP2 operation ([MS -RDPEGDI] section 2.2.2.2.1.1.1.6).

3.3.5.5 Processing an RDPGFX_SURFACE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_SURFACE_PDU message are specified in
section 2.2.2.5. The header field MUST be processed as specified in section 3.1.5.1. The

surfaceIdSrc and surfaceIdDest fields MUST both identify valid offscreen surfaces in the Offscreen
Surface (section 3.3.1.6) ADM element. Once the RDPGFX_SURFACE_TO_SURFACE_P DU
message has been successfully decoded, the pixels in the source rectangle on the source surface
(specified in the rectSrc field) MUST be copied to the target surface at each of the points specified in
the destPts field using a SRCCOPY ROP3 operation ([M S-RDPEGDI] section 2.2.2.2.1.1.1.7).

3.3.5.6 Processing an RDPGFX_SURFACE_TO_CACHE_PDU message

The structure and fields of the RDPGF X_SURFACE_TO_CACHE_PDU message are specified in
section 2.2.2.6. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element.
Once th e RDPGFX_SURFACE_TO_CACHE_PDU message has been successfully decoded, the pixels

in the source rectangle on the source surface (specified in the rectSrc field) MUST be copied to the

slot in the Bitmap Cache (section 3.3.1.4) ADM element identified by the ca cheSlot field using a
SRCCOPY ROP3 operation ([MS -RDPEGDI] section 2.2.2.2.1.1.1.7) and tagged with the key specified
in the cacheKey field.

3.3.5.7 Processing an RDPGFX_CACHE_TO_SURFACE_PDU message

The structure and field s of the RDPGFX_CACHE_TO_SURFACE_PDU message are specified in
section 2.2.2.7. The header field MUST be processed as specified in section 3.1.5.1. The surfaceId
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM el ement,

98 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

and the cacheSlot field MUST contain a valid entry in the Bitmap Cache (section 3.3.1.4) ADM
element. Once the RDPGFX_CACHE_TO_SURFACE_PDU message has been successfully decoded,

the bitmap retrieved from the cache MUST be copied to the target surfac e at each of the points
specified in the destPts field using a SRCCOPY ROP3 operation ([MS -RDPEGDI] section

2.2.2.2.1.1.1.7).

3.3.5.8 Processing an RDPGFX_EVICT_CACHE_ENTRY_PDU message

The structure and fields of the RDPGFX_EVICT_CACHE_ENTRY_PDU message are specified in

section 2.2.2.8. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_EVICT_CACHE_ENTRY_PDU message has been successfully decoded, the entry in the
Bitmap Cache (section 3. 3.1.4) ADM element present in the slot identified by the cacheSlot field
MUST be removed from the cache.

3.3.5.9 Processing an RDPGFX_CREATE_SURFACE_PDU message

The structure and fields of the RDPGFX_CREATE_SURFACE_PDU message are specified in section

2.2.2.9. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_CREATE_SURFACE_PDU message has been successfully decoded, a bitmap MUST be
created with the appropriate width, height, and pixel format and M UST be placed into the Offscreen
Surface (section 3.3.1.6) ADM element. The entry MUST be tagged with the ID specified in the
surfaceId field.

3.3.5.10 Processing an RDPGFX_DELETE_SURFACE_PDU message

The structure and fields of the RDPGFX_DELETE_SURFACE_PDU message are specified in section
2.2.2.10. The header field MUST be processed as specified in section 3.1.5.1. Once the

RDPGFX_DELETE_SURFACE_PDU message has been successfully decoded, the surface identified by
the surfaceId field MUST be deleted from the Offscreen Surface (section 3.3.1.6) ADM element.

3.3.5.11 Processing an RDPGFX_START_FRAME_PDU message

The structure and fields of the RDPGFX_START_FR AME_PDU message are specified in section

2.2.2.11. The header field MUST be processed as specified in section 3.1.5.1.

3.3.5.12 Processing an RDPGFX_END_FRAME_PDU message

The structure and fields of the RDPGFX_END_FRAME_PDU message are specified in section

2.2.2.12. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_END_FRAME_PDU message has been successfully decoded, the clie nt MUST copy the
contents of every updated off -screen surface that is present in the Surface to Output Mapping
(section 3.3.1.8) ADM element to the Graphics Output Buffer (section 3.3.1.7) ADM element. Once
the copy is complete, the client MUST send the RD PGFX_FRAME_ACKNOWLEDGE_PDU (section
2.2.2.13) message to the server, as specified in section 3.3.5.13.

3.3.5.13 Sending an RDPGFX_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_FRAME_ ACKNOWLEDGE_PDU message are specified in
section 2.2.2.13. The command fields MUST be populated in accordance with this description. The
client MUST populate the frameId field with the ID of the most recently processed logical frame, as
specified in sectio n 3.2.5.12.

99 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.3.5.14 Processing an RDPGFX_RESET_GRAPHICS_PDU message

The structure and fields of the RDPGFX_RESET_GRAPHICS_PDU message are specified in section
2.2.2.14. The header field MUST be processed as specified in section 3.1.5.1. Once the

RDPGFX_RESET_GRAPHICS_PDU message has been successfully decoded, the client MUST resize
the Graphics Output Buffer (section 3.3.1.7) ADM element.

3.3.5.15 Processing an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message are specified

in section 2.2.2.15. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message has been successfully decoded, the surface -
to -output mapping in the Surface to Output Mapping (section 3.3.1.8) ADM element MUST be
updated by mapping the surface identified by the surfaceId field to the point on the Graphics
Output Buffer (section 3.3.1.7) ADM element specified by the outputOriginX and outputOriginY
fields.

3.3.5.16 Sending an RDPGFX_CACHE_IMPORT_OFFER_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_OFFER_PDU message are specified in
section 2.2.2.16 . The command fields MUST be populated in accordance with this description. The
client MUST populate the cacheEntries field by enumerating the bitmaps stored in the Persistent

Bitmap Cache (section 3.3.1.5) ADM element.

3.3.5.17 Processing an RDPGFX_CACHE_IMPORT_RE PLY_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_REPLY_PDU message are specified in

section 2.2.2.17. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_C ACHE_IMPORT_REPLY_PDU message has been successfully decoded, the client MUST
copy the number of entries specified in the importedEntriesCount field from the Persistent Bitmap
Cache (section 3.3.1.5) ADM element to the assigned slots in the Bitmap Cache (se ction 3.3.1.4)
ADM element.

3.3.5.18 Sending an RDPGFX_CAPS_ADVERTISE_PDU message

The structure and fields of the RDPGFX_CAPS_ADVERTISE_PDU message are specified in section
2.2.2.18. The command fields MUST be popula ted in accordance with this description. The client MUST
correctly populate the capsSet field with one or more of the capability sets specified in section 2.2.3.
Each capability set type MUST NOT appear more than once.

3.3.5.19 Processing an RDPGFX_CAPS_CONFIRM_PDU message

The structure and fields of the RDPGFX_CAPS_CONFIRM_PDU message are specified in section
2.2.2.19. The header field MUST be processed as specified in section 3.1.5.1. The graphics
capabili ties specified by the server SHOULD be stored in the Confirmed Graphics Capabilities

(section 3.3.1.14) ADM element and MUST be adhered to by the client.

If the capability set received in the RDPGFX_CAPS_CONFIRM_PDU message is
RDPGFX_CAPSET_VERSION103 , RDP GFX_CAPSET_VERSION104 ,
RDPGFX_CAPSET_VERSION105 , or RDPGFX_CAPSET_VERSION106 then the client can resend
the RDPGFX_CAPS_ADVERTISE_PDU message during the connection to reset the protocol. The
client MUST reset the channel state after sending the RDPGFX_CAPS _ADVERTISE_PDU message
and MUST ignore any messages sent by the server until RDPGFX_CAPS_CONFIRM_PDU message is

received.

100 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.3.5.20 Processing an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message are
specified in section 2.2.2.20. The header field MUST be processed as specified in section 3.1.5.1.

Once the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message has been successfully decoded,
the surface - to -window mapping in the Surface to Window Mapping (section 3.3.1 .15) ADM element
MUST be updated by associating the rectangular region (specified by the mappedWidth and
mappedHeight fields) on the surface identified by the surfaceId field to the RAIL window specified
by the windowId field.

3.3.5.21 Sending an RDPGFX_QOE_FRAME_A CKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message are specified
in section 2.2.2.21. The command fields MUST be populated in accordance with this description. The
client MUST populate the frameId field with the ID of the most recently processed logical frame, as
specified in section 3.2.5.12.

If the client has opted in to sending the RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

message, then, with respect to sequencing, the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU
me ssage SHOULD only be sent after the RDPGFX_FRAME_ACKNOWLEDGE_PDU message has been
transmitted.

3.3.5.22 Processing an RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU

message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message are specified
in section 2 .2.2.22. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU message has been successfully decoded,
the surface - to -output mapping in the Surface to Output Mapping (section 3.3.1.8) ADM elemen t

MUST be updated by mapping the surface identified by the surfaceId field to the point on the
Graphics Output Buffer (section 3.3.1.7) ADM element specified by the outputOriginX and
outputOriginY fields, and scaled to the targetWidth and targetHeight fiel ds specified.

3.3.5.23 Processing an RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU

message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message
are specified in section 2.2.2.23. The header field MUST be processed as specified in section 3.1.5.1.
Once the RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message has been successfully
decoded, the surface - to -window mapping in the Surface to Window Mapping (section 3.3.1.15)

ADM element MUST be updated by associating the rectangular region (specified by the mappedWidth
and mappedHeight fields) on the surface identified by the surfaceId field to the RAIL window
specified by the windowId field with the entire surface scaled to the targetWidth and targetHei ght
fields specified.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

101 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.3.8 Bitmap Compression

3.3.8.1 ClearCodec Compression

The ClearCodec Codec is used to encode bitmaps sent in the RDPGFX_WIRE_TO_SURFACE_PDU_1
(section 2.2.2.1) message. The encoded bitmap data MUST be transported in the bitmapData field of
the RDPGFX_WIRE_TO_SURFACE_PDU_1 message, and the codecId field MUST be set to
RDPGFX_CODECID_CLEARCODEC (0x0008).

The ClearCodec bitmap stream is described in section 2.2.4.1 and is composed of a maximum of three

layers. Each layer is optional and is encoded using different techniques.

Á The residual layer (section 2.2.4.1.1.1)

Á The bands layer (section 2.2.4.1.1.2)

Á The subcodec layer (section 2.2.4.1.1.3)

3.3.8.1.1 Clear Codec Run -Length Encoding

ClearCodec run - length encoding uses a standard RLE compression scheme that parses a pixel stream
and encodes run lengths.

For example, an initial stream containing the following 12 ANSI characters:

AAAABBCCCCCD

would be transforme d after encoding into the following stream:

A4B2C5D1

Note that in the real case, each ANSI character is a pixel represented by 3 bytes (R, G, B

components). This type of encoding is suitable for the content in the residual layer (section
2.2.4.1.1.1).

3.3.8.1.2 Deco mpressing a Bitmap

The following flowchart shows how to decompress a bitmap that is compressed using ClearCodec
compression techniques.

102 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Figure 4 : Decompressing a bitmap using ClearCodec Bitmap Compression

3.3.8.2 RemoteFX Progressive Codec Compression

The functional stages involved in the decoding path are illustrated in the following figure. Compared to
the encoding stages, the decoding stage operations are the operations of the encoding stage in
reverse order.

103 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Figure 5 : RemoteFX Progressive Codec decoding stages

When compared to [MS -RDPRFX] section 3.1.8.2, the codec now maintains state. "Current frame"
contains the DWT coefficients of the tiles, and "Persistent progressive state" is used to mai ntain
information pertinent to tiles that have been received in progressive chunks.

3.3.8.2.1 Progressive Entropy Decode

The first stage of decoding aims to reconstruct the DWT data of a tile.

The decoder MUST maintain a copy of the unquantized DWT data ("Current frame" in the figure
captioned "RemoteFX Progressive Codec decoding stages" in section 3.3.8.2) as well as a tri -state
value for each element in a tile that has not yet been fully upgraded ("Persistent progressive state" in
the same figure). The tri -state value records whether the data that has been received for an element
sums up to a positive value, a negative value, or zero.

A coefficient either is encoded with the SRL encoder, or its absolute value is written as raw bits
(section 3.2.8.1.5). T he decoder MUST determine which of these two methods was used and what sign
to apply to the decoded element. The sign can be determined by using the tri -state value associated
with each element.

If the input data is for the first progressive chunk of a til e (or it contains all of the data for a tile), then
the Persistent progressive state MUST be cleared. Furthermore, if the tile is an original tile (not a

difference tile), then the tile MUST be zeroed out in the current frame. The result of the entropy

decode operation MUST be added to the current frame.

3.3.8.2.1.1 Performing the First Progressive Pass

For the first pass, the data received is sent to the RLGR entropy decoder to produce the progressively
quantized coefficients DecProgQ .

For each element being decoded, except elements in the LL band, the sign is recorded (positive,
negative, or zero). This tri - state (referred to as Sign) is used for successive upgrade passes.

104 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Sign = -1 if DecProgQ - NonLL < 0

Sign = 0 if DecProgQ - NonLL = 0

Sign = 1 if DecProgQ - NonLL > 0

The LL3 deltas MUST be summed up to produce the LL3 elements, even if the tile is not an original tile

(section 3.1.8.1.2).

DecProgQ - LL [0] = DecProgQ - LL - Deltas [0]

DecProgQ - LL [idx+1] = DecProgQ - LL [idx] + DecProgQ - LL - Deltas [idx+1]

Elements in all the bands are dequantized.

DecDwtQ - NonLL , DecDwtQ - LL = DecProgQ * PQF

DecDwtQ is the data that MUST be de -quantized and inverse DWT transformed to produce the image
pixels.

If the tile is a difference tile (section 3.1.8.1.2), then the progressively quantized coefficients are
simply added to the DecDwtQ elements:

DecDwtQ = DecDwtQ + DecProgQ * PQF

3.3.8.2.1.2 Performing the Upgrade Progressive Passes

Except in the case of an LL3 element, the Sign state is used to determine how to decode the next

element (referred to as input).

If Sign > 0, input is read from the raw buffer (the tile header and previous history are used to
determine how many bits MUST be read), progressively de -quantized, and added to the current
frame:

DecDwtQ - NonLL = DecDwtQ - NonLL + (input * PQF)

If Sign < 0, input is read from the raw buffer, progressively de -quantized, and subtracted from the
current frame:

DecDwtQ - NonLL = DecDwtQ - NonLL - (input * PQF)

If Sign = 0, inp ut (a signed value) is read from the SRL encoded buffer (by decoding one element),
progressively de -quantized, and added to the current frame:

DecDwtQ - NonLL = DecDwtQ - NonLL + (input * PQF)

The Sign state for a non -LL element MUST be updated according to th e value of input :

Sign = -1 if input < 0

Sign = 0 if input = 0

Sign = 1 if input > 0

When an LL3 element is decoded, input is always read from the raw buffer and added to DecDwtQ :

DecDwtQ - LL = DecDwtQ - LL + (input * PQF)

To determine the number of bits to read from the raw buffer, the decoder MUST have recorded the
value of BitPos from the previous pass and MUST read the difference from the current BitPos as a
number of bits.

105 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Note that a band in a given pass might not have any bits to read. In this case, the decoder MUST skip
the band, and the DecDwtQ elements are left unchanged.

3.3.8.2.2 Inverse DWT

The inverse discrete wavelet transform (IDWT) is based on the equations specified in [MS -RDPRFX]
section 3.1.8.2.4. However, as descri bed in section 3.2.8.1.2, the associated forward transform uses
the Reduce -Extrapolate Method (section 3.2.8.1.2.2) to remove boundary artifacts. The structure of
the resultant tile (with its ten bands) is illustrated in the figure captioned "Bands resulti ng from the
Reduce -Extrapolate DWT Method" in section 3.2.8.1.2.2.

Each tile component undergoes three levels of inverse 2D discrete wavelet transformation.

The two first passes each take as input N low - frequency elements (where N is odd) and (N - 1) high -

frequency elements. Using normal mirroring, an odd number of elements are calculated, and they
become the input for the next pass.

The final pass takes as input 33 low - frequency elements and 31 high - frequency elements. Adding a

zero as the 32nd high - freque ncy element allows the final pass to be performed in the same manner as
the first two passes and produces 65 coefficients. The 65th element is an extrapolation of the previous
two elements and is not used; therefore, it is dropped.

3.3.8.2.3 Color Conversion

Color c onversion is identical to the technique specified in [MS -RDPRFX] section 3.1.8.2.5.

3.3.8.3 MPEG -4 AVC/H.264 Compression

3.3.8.3.1 Color Conversion

The forward transformation from ARGB to AYUV is based on full - range BT.709 ([ITU -BT.709 -5] section
4) and is described by the following two formulas:

A = A

The resultant Y, U, and V components MUST be clamped to the range 0...255 inclusive.

The reverse transformation from AYUV to ARGB is described by the following two formulas:

A = A

106 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

The resultant R, G, and B components M UST be clamped to the range 0...255 inclusive.

3.3.8.3.2 YUV420p Stream Combination for YUV444 mode

The RFX_AVC444_BITMAP_STREAM structure (section 2.2.4.5) encapsulates two
RFX_AVC420_BITMAP_STREAM structures (section 2.2.4.4). These two YUV420p streams MUST be
com bined to produce a YUV444 frame.

A YUV444 frame can be represented as shown in the following figure, where Y 444 , U 444 , and V 444 are
the Y, U, and V planes of a source YUV444 frame. It is assumed that the resolution of these planes is
specified by the width W and height H.

Figure 6 : A representation of a YUV444 frame as three planes

The YUV444 frame represented in the previous figure can be packed into two YUV420 frames (a main
and auxiliary view) as shown in the following figure, which represents the frame at a 16x16
macroblock level.

107 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Figure 7 : A representation of a YUV444 macroblock as two YUV240p macroblocks

The areas marked as B1 to B7 make up the Y, U, and V planes of the two YUV420p macroblocks

representing the main (luma) and auxiliary (chroma) views. These areas are related to Y 444 , U 444 , and
V444 as follows:

108 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Color conversion MUST occur as follows in each case:

For macroblocks that are in rectangles in a received luma subframe (refer to the regionRects field of
the corresponding RFX_AVC420_METABLOCK (section 2.2.4.4.1)), color conversion MUST be
performed as in YUV42 0p mode using only the data in the main view.

For macroblocks that are in rectangles in a received chroma subframe (refer to the regionRects field
of the corresponding RFX_AVC420_METABLOCK), color conversion MUST use the Y, U, and V

components from the las t corresponding rectangle in a luma subframe together with the current
chroma subframe.

Note that the ranges for x and y in the chroma subframe (auxiliary view) are based on 16x16
macroblock sizes, and the view in the figure captioned "A representation o f a YUV444 macroblock as
two YUV240p macroblocks" shows interleaving in the chroma subframe for B4 and B5 on an 8 - line
basis. Color conversion MUST be performed for the entire macroblock, after which the region mask in
regionRects MUST be applied. The use of 2x or 2y denotes even pixels, while (2x+1) or (2y+1)
denotes odd pixels.

Due to potential visual artifacts stemming from the quantization of AVC encoding, applying the reverse
filter is not optimal in all cases. If the reverse filter for a pixel compone nt (U and V separately)
changes the value by less than a given threshold, then the nonreversed value SHOULD be used
instead. A cutoff threshold of 30 is used for this purpose. Note that this is an optional step and is not
required in decoding.

109 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

3.3.8.3.3 YUV420p S tream Combination for YUV444v2 mode

The RFX_AVC444V2_BITMAP_STREAM structure (section 2.2.4.6) encapsulates two
RFX_AVC420_BITMAP_STREAM structures (section 2.2.4.4). These two YUV420p streams MUST be
combined to produce a YUV444 frame.

Note that the proce ss of combining the streams is similar to the process used for YUV444 mode
described in section 3.3.8.3.2, but the streams have a different layout in the auxiliary view. The

terminology for YUV420 and YUV444 frames refers to buffers and remains the same.

A YUV444 frame can be represented as shown in the following figure, where Y 444 , U 444 , and V 444 are
the Y, U, and V planes of a source YUV444 frame. It is assumed that the resolution of these planes is

specified by the width W and height H.

Figure 8 : A representation of a YUV444 frame as three planes

The YUV444 frame represented in the previous figure can be packed into two YUV420 frames (a main
and auxiliary view) as shown in the following figure, which represents the full frame.

110 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Figure 9 : A representation of a YUV444 frame as two YUV240p frames

The areas marked as B1 to B9 make up the Y, U, and V planes of the two YUV420p macroblocks
representing the main (luma) and auxiliary (chroma) views. Thes e areas are related to Y 444 , U 444 , and
V444 as follows.

111 / 144

[MS -RDPEGFX-Diff] - v20200826
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

Color conversion MUST occur as follows in each case:

For macroblocks that are in rectangles in a received luma subframe (refer to the regionRects field of
the corresponding RFX_AVC420_METABLOCK (section 2.2.4.4.1)), color conversion MUST be
performed as in YUV420p mode using only the data in the main view.

For macroblocks that are in rectangles in a received chroma subframe (refer to the regionRects field
of the corresponding RFX_AVC420_METABLOCK), color conversion MUST use the Y, U, and V
components from the last corresponding rectangle in a luma subframe t ogether with the current

chroma subframe.

Note that the ranges for x and y in the chroma subframe (auxiliary view) are based on 16x16
macroblock sizes, and the view in the figure captioned "A representation of a YUV444 macroblock as

two YUV240p macroblo cks" shows interleaving in the chroma subframe for B4 and B5 on an 8 - line
basis. Color conversion MUST be performed for the entire macroblock, after which the region mask in
regionRects MUST be applied. The use of 2x or 2y denotes even pixels, while (2x+1) or (2y+1)
denotes odd pixels.

Due to potential visual artifacts stemming from the quantization of AVC encoding, applying the reverse
filter is not optimal in all cases. If the reverse filter for a pixel component (U and V separately)

changes the value by less than a given threshold, then the nonreversed value SHOULD be used
instead. A cutoff threshold of 30 is used for this purpose. Note that this is an optional step and is not
required in decoding.

