[MS -RDPEGFX - Diff]:

Remote Desktop Protocol: Graphics Pipeline Extension

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Mi crosoft publishes Open Specifications doc
documentationo) for protocols, file formats, data portabil
support. Additionally, overview documents cover inter -protocol relationships and interactions.

A Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any

schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of

thi s documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open

Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Communit y Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com

License Programs . To see all of the protocols in scope under a specific license program and the

associated patents, visit t he Patent Map .

Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks

A Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events tha t are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

> >

>

>

Reservation of Rights . All other rights are reser ved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com

1/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

Revision Summary

Revision Revision
Date History Class Comments
12/16/2011 1.0 New Released new document.
3/30/2012 10 None tl\é?:r::r:ilglggsnt%::.e meaning, language, or formatting of the
7/12/2012 2.0 Major Significantly changed the technical content.
10/25/2012 3.0 Major Significantly changed the technical content.
1/31/2013 4.0 Major Significantly changed the technical content.
8/8/2013 5.0 Major Significantly changed the technical content.
11/14/2013 6.0 Major Significantly changed the technical content.
2/13/2014 7.0 Major Significantly changed the technical content.
5/15/2014 7.0 None t’\é?:r::r:ig?ceotr?t;hni meaning, language, or formatting of the
6/30/2015 8.0 Major Significantly changed the technical content.
10/16/2015 9.0 Major Significantly changed the technical content.
7114/2016 10.0 Major Significantly changed the technical content.
3/16/2017 11.0 Major Significantly changed the technical content.
6/1/2017 11.0 None thég;r:igiqcez;fegf meaning, language, or formatting of the
9/15/2017 12.0 Major Significantly changed the technical content.
12/1/2017 120 None tl\éc;hcr:iglgscsmttc;:tl-e meaning, language, or formatting of the
3/16/2018 13.0 Major_ Significantly changed the technical content.

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2/ 143

Table of Contents

1 INrOAUCHION i et e aeneenne 8
11 GlOSSAIY oiiiiiiiiiiiic s e s e 8
12 REFEIENCES ..oiiiiiiiiiiiciiciiiis i s e 8

121 Normative References ...t e e 9
122 Informative Reference S ...iiiiiiicies e e 9
13 OVEIVIEW oiiiiiiiie e iriieeeiies eevreeeesee e sree e snieee s eeeeasiee e e e e annea e eaeenees 9
1.4 Relationship to Other ProtoCoIS ..o e e 11
15 Prerequisites/Preconditions ..o e eeevrea e, 11
151 Client Implemen tation ReqUIrements ccoccciiiiiiiiiiiiics e 11
152 Server Implementation REqQUIrEMENES coiiiiiiiiieeiies e 12
1.6 Applicability Statement ...t e e 13
1.7 Versioning and Capability Negotiation ..ot e .13
1.8 Vendor -Extensible Fields ...t e e 14
1.9 Standards ASSIONMENTS ..ociiiiiiiciiiieiii e e 14

2 Messagesccccceeiiiieenn. 15
21 Transport 15
2.2 MESSAQE SYNIAX cveiiiiiiiiiiiiiieiiiiiees et aeaieee e 15

221 CommoNn Data TYPES e e e 15
2211 RDPGFX_POINTLE ..ocviiiiiiiiiieiiieiiiieiee eeveesee e sniee e eeenveeenseeennes 15
2212 RDPGFX_RECTLE ..ooovviiiiieiiiiiiieiiiiees et eee e siee e eeaieesnseesnees 15
2.2.1.3 RDPGFX_COLORS32 ...ccoiiiiiiiiiiiriiiieiies et see e aeeniesiesinens 16
2214 RDPGFX_PIXELFORMAT ...ooiiiiiiiieiiiesiieniies e siee e siee e aeeeeaes 16
2.2.15 RDPGFX_HEADER ... iiieiiiees e esee et snee e eeanveesnseesnes 16
2216 RDPGFX_CAPSET ..ooiiiiiiieiiiiviieiiiees v siee e eeanieesneee e 18

222 GraphiCsS MESSA0ES oot e e 19
2221 RDPGFX_WIRE_TO_SURFACE_PDU_1 ..ccocoiiiiiiiiiiiiiiceiies e 19
2222 RDPGFX_WIRE_TO_SURFACE_PDU_2 ..cccooiiiiiiiiiiiiiieiies e 21
2223 RDPGFX_DELETE_ENCODING_CONTEXT_PDUccocoviiiiiiiiiiinienis v 22
2224 RDPGFX_SOLIDFILL_PDU ..cccciiiiiiiiiiciiiieiiee e eniee s aevaeas 22
2225 RDPGFX_SURFACE_TO_SURFACE_PDUccccooiiiiiiiiiiiiiiiiies e 23
2226 RDPGFX_SURFACE_TO_CACHE_PDU 24
2227 RDPGFX_CACHE_TO_SURFACE_PDU 24
22238 RDPGFX_EVICT_CACHE_ENTRY_PDU ...cccoiiiiiiiiiiiiiiiiiiis e 25
2229 RDPGFX_CREATE_SURFACE_PDU....cccocoiiiiiiiiiiiiiiiiies et enee e 25
2.2.2.10 RDPGFX_DELETE_SURFACE_PDUccccoociiiiiiiiiiiiiiiis e 26
22211 RDPGFX_START_FRAME_PDU . 26
22212 RDPGFX_END_FRAME_PDUccccccccvvvieiiieeciiene .27
2.2.2.13 RDPGFX_FRAME_ACKNOWLEDGE_PDUcccccviiiiiiiiiiieiiis e 27
2.2.2.14 RDPGFX_RESET_GRAPHICS_PDU ...ccccciiiiiiiiiiiiiiiiiis et 28
2.2.2.15 RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU 29
2.2.2.16 RDPGFX_CACHE_IMPORT_OFFER_PDU 30

2.2.2.16.1 RDPGFX_CACHE_ENTRY_METADATA ...oooiiiviinievieiies e 30
22217 RDPGFX_CACHE_IMPORT_REPLY_PDU ...cccooiiiiiiiiiiiiiiiiiiieee eeveeaiee e 31
2.2.2.18 RDPGFX_CAPS_ADVERTISE_PDU ...ccoccoiiiiiiiiiniiiiiis et 31
2.2.2.19 RDPGFX_CAPS_CONFIRM_PDU ...ccoiiiiiiiiiiiiiiiciiieiies e naee e 32
2.2.2.20 RDPGFX_MAP_SURFACE_TO_WINDOW _PDUccccoooveiviieccciieieiee eeeeenans 32
2.2.2.21 RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDUccccovvvieeicececiieieee e 33
22222 RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDUcccccccvviireiireiene .34
2.2.2.23 RDPGFX_MAP_SURFACE_TO_SCALED_ WINDOW_PDU 35

2.2.3 Capability SEtS ..o e 36
2231 RDPGFX_CAPSET_VERSIONSccocccevviiiniiiienenn. . 36
2232 RDPGFX_CAPSET_VERSIONSLccccoiiiiiiiiiiiiieiiies e iee e seee e 36
2.2.33 RDPGFX_CAPSET_VERSIONIO ...ttt eveeeesiiiieieee e 37
2234 RDPGFX_CAPSET_VERSIONIOL ..oooviiiiiiiiiiiiiiieciiiiiies evvviiieeeee e 38

31/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2235 RDPGFX_CAPSET_VERSION102 38

2236 RDPGFX_CAPSET_VERSION103 39
2237 RDPGFX_CAPSET_VERSION104 40
2238 RDPGFX_CAPSET_VERSION105 41
224 Bitmap COMPreSSION it eeriiieeiie e enees aeeeeeaeeea e 41
2241 CLEARCODEC_BITMAP_STREAM ...ccciiiiiiiiiiiiieiiiii et 41
22411 CLEARCODEC_COMPOSITE_PAYLOAD ...ccoeooiiiiiiiiiiiiiiees e 42
224111 CLEARCODEC_RESIDUAL_DATA ..ot v 43
2241111 CLEARCODEC_RGB_RUN_SEGMENTcccocviiiiiiiiiiiieiiis e 44
224112 CLEARCODEC_BANDS_DATA ..o et 44
2241121 CLEARCODEC_BANDcccctiiiiiiiiiiniciieiie et 45
22411211 CLEARCODEC_VBAR.....ccoiiiriericiieiies et 45
224112111 VBAR_CACHE_HIT oo e 46
224112112 SHORT_VBAR_CACHE_HIT ..o e 47
224112113 SHORT_VBAR_CACHE_MISScccccovviiviiiiieiieiis e 47
224113 CLEARCODEC_SUBCODECS_DATA 48
2241131 CLEARCODEC_SUBCODECc.ccceveeirienene. 48
22411311 CLEARCODEC_SUBCODEC_RLEX.......ccocviiiiiiniieiiiiiis e 49
224113111 RLEX_RGB_TRIPLET oot e 50
224113112 CLEARCODEC_SUBCODEC_RLEX_SEGMENTc....... 50
2242 RFX_PROGRESSIVE_BITMAP_STREAM ...oociiiiiiiiiiiiiciiinee eeeeesiee e 52
22421 RFX_PROGRESSIVE_DATABLOCK ...ccccciiiiiiiciiiiiiiies et 52
224211 RFX_PROGRESSIVE_SYNC ...ccccoiiiiiiiiiiieiieiiis e 53
224212 RFX_PROGRESSIVE_FRAME_BEGINccocoiniiiiiiiiiiieies e 53
224213 RFX_PROGRESSIVE_FRAME_ENDccccocimiiiiiiiiiiiees e 54
224214 RFX_PROGRESSIVE_CONTEXT ..oooiiiiiiiiiiiiiiieiiieene eerieeeiee e 55
224215 RFX_PROGRESSIVE_REGIONccccoviiiiiiiiiiiiiiiiiis e 55
2242151 RFX_PROGRESSIVE_CODEC_QUANT ...cccoviiiiiiiiniieviiene e 57
2242152 RFX_COMPONENT_CODEC_QUANTccooviiiiiiiiiieiieeiies e 58
2242153 RFX_PROGRESSIVE_TILE_SIMPLEccooiiiiiiiiiiiiieiiee e 59
22421, 54 RFX_PROGRESSIVE_TILE_FIRST oo e 60
2242155 RFX_PROGRESSIVE_TILE_UPGRADEcccoovvviiiiiiiienis e 62
2243 ALPHACODEC_BITMAP_STREAMiiiiiiiiiiiiiieiies et 65
22431 CLEARCODEC_ALPHA_RLE_SEGMENTccccccniiiiiiiiiiiiiiens e 65
2244 RFX_AVCA420_BITMAP_STREAM ..o et 66
22441 RFX_AVC420_ METABLOCKccoiiiiiiiiiiiiiens ettt 66
22442 RDPGFX_AVC420_QUANT_QUALITY i e 67
2245 RFX_AVC444_BITMAP_STREAMccccovevnen. 68
2246 RFX_AVC444V2_BITMAP_STREAM 69
225 Data Packagin gccccccvvvveiieeininnns 70
2251 RDP_SEGMENTED_DATA ...ooiiiiiiiiiiiiiiiiis vt nee eveens 70
2252 RDP_DATA_SEGMENT ..ot vt neees eeenineens 71
2253 RDP8_BULK_ENCODED_DATA ..ottt ettt 71
2.3 Directory Service Schema Elements . e e 12
3 Protocol Details oo s e e 73
3.1 CommON DEtalS ..o e 73
3.11 Abstract Data Model ... e e 73
3.12 TIMEIS i e e e 73
3.13 Initialization 73
3.14 Higher -Layer Triggered EVENIS .oooiiiiiiiiiiiiiiiiies e e 73
3.15 Message Processing Events and Sequencing Rules ... e 73
3.151 Processing a GraphiCs MESSAQGE .cccvcvvviiiiiiiiiieiiins e 73
3.1.6 TIMEIr EVE NES oo et e 73
3.17 Other Local EVENES ..o et ies e 73
3.18 Bitmap COMPreSSION oiiiiciiiiciiciriiieiie e nees aeeeeeseeee e 73
3.181 RemoteFX Progressive Codec COMPression oocvcvvieviieiiieniienee eeveeesieens 73
3.181.1 General Terms and CONCEPLS .oeviivciiiiiiiie s e 74

4/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.1.8.1.2 Sub-Band Diffing .cccccviiiiiiiciiiiis s e 74

3.1.8.1.3 Extra QUantization ... e aeveeaee 74
3.18.1.4 State Tracking cococcveiiviieicii it e eerrrer e 75
3.1.8.15 Simplified Run -Length (SRL) 75
3.1.815.1 Zero Run -Length Encoding 75
3.1.8.1.5.2 Unary ENCOAINGccocviviiiiiiiiiiiciiiies e eeeaas 76
3.1.8.1.6 SUMMAry Of TEIMS oo e eevneees 76
3.1.9 Bulk Data COMPIreSSION coceiiciiiiiiiiiecviiieiee eveevcee e sree e nee arreeeeaaas 77
3.1.9.1 RDP 8.0 ..oooiiiiiiieieeieeie e, 77
31911 Overview 77
3.1.9.1.2 Detailed DeSCHPHON occciiiiiiieiiieeiiies e aeeaees 77
3.19.1.21 De-BIOCKING ..oocciiiiiiiieiiiiieeiiis e e 78
3.1.9.1.2.2 Compressed Segment Header —coccviiiieiiiiieiiiiies e 78
3.1.91.23 Compressed Segment Bit Stream ... s 78
3.19.1.2.4 Compressed Segment Trailer ..o e 78
3.1.9.1.25 Bit Stream Encoding Examples .. e 81

3.2 Server DetalS ..o e e .. 81
321 Abstract Data Model ... s e 81
3.211 Bitmap Cache Map ..o e e 82
3.2.1.2 Unacknowledged Framesccccvvciiiiiiiiiiiics e e 82
3.2.2 1T 1= £ PR 82
323 INIGANZALON oo e e 82
3.24 Higher -Layer Triggered EVEN 1S .cocviiiiiiiiiiiiiiiiins e e 82
3.25 Message Processing Events and Sequencing Rules ... e 82
3.251 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_1 mesSage ccccoeverveennn. 82
3.252 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_2 message ccccccovvevenvenns 82
3.253 Sending an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message 82
3.254 Sending an RDPGFX_SOLIDFILL_PDU MESSAJE .oocvvvveeeiieiiiieiieenee e 83
3.255 Sending an RDPGFX_SURFACE_TO_SURFACE_PDU message ccccoceenueen. 83
3.256 Sending an RDPGFX_SURFACE_TO_CACHE_PDU message ccccccovveeeninenne 83
3.257 Sending an RDPGFX_CACHE_TO_SURFACE_PDU message ccccccveveereeene 83
3.2538 Sending an RDPGFX_EVICT_CACHE_ENTRY_PDU message cccocceevvene 83
3.259 Sending an RDPGFX_CREATE_SURFACE_PDU mMesSSage ccccovveeerierenneennn 83
3.25.10 Sending an RDPGFX_DELETE_SURFACE_PDU mesSSage cccccveeeerniineeennns 84
3.25.11 Sending an RDPGFX_START_FRAME_PDU MesSSage ccccccevveerveenineennn .. 84
3.25.12 Sending an RDPGFX_END_FRAME_PDU message ccccocvcevviieeeiniiees e 84
3.25.13 Processing an RDPGFX_FRAME_ACKNOWLEDGE_PDU message cccoceeue 84
3.25.14 Sending an RDPGFX_RESET_GR APHICS_PDU mMessageccccceeenvrrnvrenne 84
3.25.15 Sending an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message 84
3.2.5.16 Processing an RDPGFX_CACHE_IMPORT_OFFER_PDU message cccoceene 85
3.25.17 Sending an RDPGFX_CACHE_IMPORT_REPLY_PDU message cccccvevenen. 85
3.2.5.18 Processing an RDPGFX_CAP S_ADVERTISE_PDU mMessageccccoeeviveennne. 85
3.25.19 Sending an RDPGFX_CAPS_CONFIRM_PDU message cccccccceevieeeeinineenns . 85
3.2.5.20 Sending an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message 85
3.25.21 Processing an RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message 85

3.2.5.22 Sending an RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU message ... 86
3.25.23 Sending an RDPGFX_MAP_SURFACE_TO_SCALE D_WINDOW_PDU message . 86

3.2.6 TIMEr EVENES i s e 86
3.2.7 Other Local EVENES ..o et ies e 86
3.2.8 Bitmap COMPreSSION oiiiiciiiiciiciriiieiie e nees aeeeeeseeee e 86
3.281 RemoteFX Progressive Codec COMPresSion oocvcvviveviiiniiieniienee eeveeesieens 86
3.281.1 Color Conversion (RGB t0 YCDBCr) i e 86
3.28.1.2 DWT coiiiiiiiiiiiiiiciiiniens aeeree et nees e 87
3.281.21 Original Method ccviiiiiiiiie e e 87
3.2.8.1.2.2 Reduce -Extrapolate Methodccccoviiiiiiiiiiiies e 87
3.2.8.1.3 Quantization and Linearization cccoccviiiiiiiiiiiiis e 89
3.281.4 Sub-Band Diffing ..oocviiiiiiis s e 89
3.2.8.1.5 Progressive Entropy ENCOAING cvoviiiiiiiiiiiiiiiie e 90

51/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.2.8.15.1 Performing the First Progressive Pass cccccoviivivciieeiiiies e 91
3.2.8.1.5.2 Performing Upgrade Progressive Passes ...occccvviiceiicieeenees e 91
3.2.8.1.5.21 Sending Raw BitS ..o e . 92
3.2.8.1.53 Maintaining the Decoder Reference ccoiiiiiiiiiiiiiie e, 92
3.3 (41T 01 315 1= = 1 SRR . 92
331 Abstract Data Model ... s e 92
3.3.1.1 (070 [Tl O o] o1 1) £ OO SRT 93
3.3.1.2 Progressive Tile CONEXIS iiiiiiiiiiiiiieciiieiiiis vt eee e 93
3.3.13 Sub-Band Diffing Tile CONEXIS ..o e 93
3.3.14 Bitmap CacChecoccoiiiiiiieviiiis e eeerie e, 93
3.3.15 Persistent Bitmap Cache ...occcciiiiiiiiiiiiies s e 93
3.3.1.6 OffSCreen SUMaCe ..ot e eeeeea e 93
3.3.17 Graphics OQutput BUffer .ot e v 94
3.3.18 Surface to Output Mapping oo e s 94
3.3.1.9 Decompressor Glyph Storage ..o e .94
3.3.1.10 V-Bar Storage ccocoeiiiiiiiiieieeeee 94
3.3.1.11 V-Bar Storage Cursor 94
3.3.1.12 Short -V-Bar StOragecccccvevviiiieiiiiiieiiiis v eeeaiaeae 94
3.3.1.13 Short V -Bar Stor age CUISOIcccccveviiiriieiiieiiies s 94
3.3.1.14 Confirmed Graphics Capabilities ..o e 94
3.3.1.15 Surface to WIindow Mapping oo e . 94
3.3.2 TIMEIS oo s s s 95
3.3.3 INIALIZALION oo e e 95
3.34 Higher -Layer Triggered EVENES .oooiiiiiiiiiiiiiiiiieviine v e 95
3.35 Message Processing Events and Sequencing Rules ... e 95
3351 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_1 message cccoeuvene. 95
3.35.2 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_2 message c.ccccceeueene. 95
3.353 Processing an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message 96
3.354 Processing an RDPGFX_SOLIDFILL_PDU MeSSage .ccccocvvvvvvvvciveiieeiieene e 96
3.355 Processing an RDPGFX_SURFACE_TO_SURFACE_PDU messagecccoceeeue 96
3.3.5.6 Processing an RDPGFX_SURFACE_TO_CACHE_PDU message 96
3.35.7 Processing an RDPGFX_CACHE_TO_SURFACE_PDU message 96
3.358 Processing an RDPGFX_EVICT_CACHE_ENTRY_PDU message ccccceveenne 97
3.35.9 Processing an RDPGFX_CREATE_SURFACE_PDU message ccccccceeeviiieenn. 97
3.3.5.10 Processing an RDPGFX_DELETE_SURFACE_PDU messagecccoeeviieennne. 97
3.35.11 Processing an RDPGFX_START_FRAME_PDU messageccccccovveeeriiieeennins 97
3.3.5.12 Processing an RDPGFX_END_FRAME_PDU message cccccceeviieenne .97
3.35.13 Sending an RDPGFX_FRAME_ACKNOWLEDGE_PDU message 97
3.35.14 Processing an RDPGFX_RESET_GRAPHICS_PDU message 97
3.3.5.15 Processing an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message 98
3.3.5.16 Sending an RDPGFX_CACHE_IMPORT_OFFER_PDU message cccceenueen. 98
3.3.5.17 Processing an RDPGFX_CACHE_IMPORT_REPLY_PDU message cccocvene 98
3.3.5.18 Sending an RDPGFX_CAPS_ADVERTISE_PDU message ccccccveeeiniiieeennns 98
3.3.5.19 Processing an RDPGFX_CAPS_CONFIRM_PDU mMeSSsage ccccccvvvrriveenineenns 98
3.3.5.20 Processing an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message 98
3.35.21 Sending an RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message 99
3.3.5.22 Processing an RDPGFX_MAP_SURFACE_TO_SCALED_OUT PUT_PDU message 99
3.3.5.23 Processing an RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message 99
3.3.6 TIMEr EVENES i et e 99
3.3.7 Other LOCal EVENES ...ooiiiiiiiiiiiiiiiiiiiiis et enies areeea et 99
3.3.8 Bitmap COMPreSSION oo e e 99
3.38.1 ClearCodec COMPreSSION .oocceviiieriiiiiieiiieriis e aees aveeens 99
3.3.8.1.1 ClearCodec Run -Length ENcOding ...cccccovviiiiiiiiiiiiiiiiies e 100
3.3.8.1.2 Decompressing @ Bitmap ..o e .100
3.3.8.2 RemoteFX Prog ressive Codec COMPresSioN ...ccccovcveeeiiiiieiniiees eeeeeeieenn 101
3.3.821 Progressive Entropy DECOUE ..covciiiiiiiiiiiiiiiies et 102
3.3.8211 Performing the First Progressive Pass ..o e, 102
3.3.8.21.2 Performing the Upgrade Progressive Passes ccccvoieivieeeennnen. .103

6/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.3.8.22 Inverse DWT ..o 104
3.3.8.2.3 Color Conversion cccccceeeeviccivieeneeeenn, 104
3.3.8.3 MPEG-4 AVC/H. 264 Compression 104
3.3.8.3.1 Color Conversioncccccoeeceeeiiiiienenns 104
3.3.8.3.2 YUV420p Stream Combination for YUV444 mode ..o 105
3.3.8.3.3 YUV420p Stream Combination for YUV444v2 mode ~ cooceeviiveeiinennn, 108
4 Protocol EXamples s e e 112
4.1 Bitmap COMPrESSION .oooiiiiiiiciiicciiiieiiies evveeeesier e sire e siiiee e eeesiree e s e 112
41.1 ClearCodec COMPrESSION ..oiiiiiciieiiciieesiiiieeiee eeeereeeeseee e siee e e nnees aneeeeaeanes 112
41.11 Example 1 112
41.1.2 Example 2 112
41.1.3 Example 3 114
41.1.4 Example 4 ..o, 116
41.15 Example 5 .. 117
41.2 Progressive Entropy Encode an d Decode 119
4121 Encodecccooveeeieiiiiin, 120
41211 Encode Frame #1 at 25% 120
41212 Encode Frame #1 at 50% 120
41213 Encode Fram e #2 at 25% 121
41214 Encode Frame #2 at 50% 122
41215 Encode Frame #2 at 100% cocoeviiiie e e 123
4.1.2.2 Decodecccccvevieeiiienien 123
41221 Decode Frame #1 at 25% 123
41222 Decode Frame #1 at 50% 124
41223 Decode Frame #2 at 25% 125
41224 Decode Frame #2 at 50%0 .o e 125
41225 Decode Frame #2 at 100%0 .ooccceviiiiieeiiieicieiis e 125
4.2 Bulk Data COMPIESSION oooviiiiiiiiiieiiieniiens e eeeaiee e 126
421 LI S 126
4211 Compression SAMPIES s e v 126
42111 Example 1 126
42112 Example 2 126
42.1.13 Example 3 127
42114 EXample 4 i e e 127
42115 EXQMPIE 5 oo e 128
4212 SAMPIE COAE ..ooiiiiiiiiiiiiciiiies s e 129
B USECUMLY it e e eeeaeeaaee 136
5.1 Security Considerations for Implementers . e 136
5.2 Index of Security Parameters .o s eeeeas 136
6 Appendix A: Product BEhavior = i e aeereeeea 137
7 Change TraCKinNg cccccciiiiiiiiiiiiiiiieiiis et eereeee e e . 138
8 INAEX it e eerreee e eeaeaaaeeaaeaa 139
7/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol:

Graphics Pipeline Extension

Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

1 Introduction

The Remote Desktop Protocol: Graphics Pipeline Extension applies to the Remote Desktop Protocol:
Basic Connectivity and Graphics Remoting, as specified in [MS -RDPBCGR] sections 1to 5. The
graphics prot ocol specified in section 2.2 is used to efficiently encode graphics display data generated
in a session associated with a remote user on a terminal server so that the data can be sent on the

wire, received, decoded, and rendered by a compatible client. Th e net effect is that a desktop or
application running on a remote terminal server will appear to a user as if it is running locally.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:
ANSI character : An 8 -bit Windows -1252 character set unit.

ARGB : A color space wherein each color is represented as a quad (A, R, G, B), where A represents
the alpha (transp arency) component, R represents the red component, G represents the green
component, and B represents the blue component. The ARGB value is typically stored as a 32 -
bit integer, wherein the alpha channel is stored in the highest 8 bits and the blue value i s stored
in the lowest 8 bits.

Coordinated Universal Time (UTC) : A high -precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as pos itive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC -0 (or GMT).

discrete wavelet transform (DWT) : A mathematical p rocedure that can be used to derive a
discrete representation of a signal.

inverse discrete wavelet transform (IDWT) : A mathematical procedure that can be used to
reconstruct a signal without loss of information.

little -endian : Multiple -byte valuesthatar e byte -ordered with the least significant byte stored in
the memory location with the lowest address.

Quality of Experience (QoE) : A subjective measure of a user's experiences with a media service.
RAIL window : A local client window that mimics a remote ap plication window.
terminal server : A computer on which terminal services is running.

XRGB : A color space wherein each color is represented as a quadruple (X, R, G, B), where X is
unused, R represents the red component, G represents the green component, and B represents
the blue component. XRGB effectively has the same color range as RGB.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD N OT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the sect ion numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

8/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

1.2.1 Normative References

We conduct frequent surveys of the normative references to as sure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[ITU -BT.709 -5] ITU -R, "Parameter values for the HDTV standards for p roduction and international
programme exchange", Recommendation BT.709 -5, April 2002, https://www.itu.int/rec/R -REC-
BT.709/en

[ITU -H.264 -201201] ITU -T, "Advanced video coding for generic audiovisual services",
Recommendation H.264, January 2012, http://www itu.int/rec/T -REC-H.264 -201201 -S/en

[MS -RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS -RDPEDY C] Microsoft Corporation, "Remote Desktop Protocol: Dynamic Channel Virtual Channel
Extension".

[MS -RDPEGDI] Microsoft Corporation, "Remote Desktop Protocol: Graphics Device Interface (GDI)
Acceleration Extensions".

[MS -RDPERP] Microsoft Corporation, "Remote Desktop Protocol: Remote Programs Virtual Channel
Extension".

[MS -RDPNSC] Microsoft Corporati on, "Remote Desktop Protocol: NSCodec Extension".

[MS -RDPRFX] Microsoft Corporation, "Remote Desktop Protocol: RemoteFX Codec Extension".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http: Ihiwww.rfc - editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[SAYOOD] Sayood, K., "Lossless Compression Handbook, First Edition", Academic Press, August 2002,
ISBN: 0126208611.

1.3 Overview

The graphics commands specified in section 2.2 are used to efficiently encode graphics display data
generated in the session associated with a remote user and can be separated into five categories.

1. Cache manage ment commands are used to evict entries from a bitmap cache and to notify the

server of cache entries stored in an optional client -side persistent bitmap cache.
A RDPGFX_EVICT_CACHE_ENTRY_PDU (section 2.2.2.8)

A RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16)

A RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17)

2. Surface management commands are used to manage the lifetime of offscreen surfaces, to map
offscreen surfaces to the graphics output buffer, and to adjust the dimensions of the graphics
output buffer.

A RDPGFX _CREATE_SURFACE_PDU (section 2.2.2.9)

A RDPGFX_DELETE_SURFACE_PDU (section 2.2.2.10)

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

9/ 143

A RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)
A RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

3. Framing commands are used to group graphics commands into logical frames and to indicate to
the server that a frame has been decoded.

A RDPGFX_START_FRAME_PDU (section 2.2.2.11)
A RDPGFX_END_FRAME_PDU (section 2.2.2.12)
A RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)
4. Capability exchange commands are used to exchange capability sets (s ection 2.2.1.4).
A RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18)
A RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)

5. Blit commands are used to transfer bitmaps from the server to an offscreen surface on the client,
transfer bitmaps between offscreen surfaces, transfer bitmaps between offscreen surfaces and a
bitmap cache, and to fill a rectangular region on an offscreen surface with a predefined color.

A RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

A RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

A RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)
A RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)

A RDPGFX_SURFACE_TO_SURFACE_PDU (section 2.2.2.5)

A RDPGFX_SURFACE_TO_CACHE_PDU (section 2.2.2.6)

A RDPGFX_CACHE_TO _SURFACE_PDU (section 2.2.2.7)

10 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Cache

WireToSurface PDU

@ WireToSurface Blit @ SurfaceToCache Biit @ CacheToSurface Blit

Surface: 0x02

AT

Surface: 0x01

@ SurfaceToSurface Blit
SurfaceToSurface Blit

AV

@ Soll’ﬁ Fill

\

SalidFill PDU

Figure 1: Overview of the blit commands

For more details regarding the graphics protocol behavior, sequencing, and processing rules, see
section 3.

1.4 Relationship to Other Protocols

The Remote Desktop Protocol: Graphics Pipeline Extension is embedded in a dynamic virtual channel
transport, as specified in [MS -RDPEDYC] sections 1 through 3.

15 Prerequisites/Preconditions

The Remote Desktop Protocol: Graphics Pipeline Extension operates only after the dynamic virtual
channel transport is fully established. If the dynamic virtual channel transport is terminated, the
Remote Desktop Protocol: Graphics V irtual Channel Extension is also terminated. The protocol is
terminated by closing the underlying virtual channel. For details about closing the dynamic virtual
channel, refer to [MS -RDPEDYC] section 3.3.5.2.

15.1 Client Implementation Requirements

Clients impl ementing the Remote Desktop Protocol: Graphics Pipeline Extension must set the
RNS_UD_CS_SUPPORT_DYNVC_GFX_PROTOCOL (0x0100) flag in the earlyCapabilityFlags field of
the Client Core Data ((MS -RDPBCGR] section 2.2.1.3.2) to indicate support for the protoco I
Furthermore, the client must be capable of processing the following messages:

A RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

A RDPGFX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2)

A RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3)
A RDPGFX_SOLIDFILL_PDU (sectio n 2.2.2.4)

>

RDPGFX_SURFACE_TO_SURFACE_PDU (section 2.2.2.5)

11/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

p>N

RDPGFX_SURFACE_TO_CACHE_PDU

p>N

RDPGFX_CACHE_TO_SURFACE_PDU

>

RDPGFX_EVICT _CACHE_ENTRY_PDU
RDPGFX_CREATE_SURFACE_PDU
RDPGFX_DELETE_SURFACE_PDU
RDPGFX_START_FRAME_PDU
RDPGFX_END_FRAME_PDU

RDPGFX_RESET_GRAPHICS_PDU

> > > > > > >

RDPGFX_CAPS_CONFIRM_PDU

RDPGFX_MAP_SURFACE_TO_OUTPUT PDU

(section 2.2.2.6)
(section 2.2.2.7)
(section 2.2.2.8)

(section 2.2.2.9)

(section 2.2.2.10)
(section 2.2.2.11)
(section 2.2.2.12)

(section 2.2.2.14)

(section 2.2.2.15)

(section 2.2.2.19)

Furthermore, clients implementing the Remote Desktop Protocol: Graphics Pipeline Extension must be

capable of sending the following messages:

A RDPGFX_FRAME_ACKNOWLEDGE_PDU

A RDPGFX_CAPS_ADVERTISE_PDU

(section 2.2.2.13)

(section 2.2.2.18)

Clients that implement optional persistent bitmap caching must be capable of sending the

RDPGFX_CACHE_IMPORT_OFFER_PDU
RDPGFX_CACHE_IMPORT_REPLY_PDU

Clients that implement Enhanced Re

Clients that advertise the

RDPGFX_CAPSET_VERSION105

(section 2.2.2.16) message and processing the
(section 2.2.2.17) message.

moteApp ([MS -RDPERP] section 1.3.3) must be capable of
processing the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU

(section 2.2.2.20) message.

(section 2.2.3.8) capability set MUST be

capable of processing the follow

ing messages:

A RDPGEX MAP_SURFACE TO_SCALED OUTPUT PDU

(section 2.2.2.22)

A RDPGFEX_MAP_SURFACE_TO _SCALED_WINDOW_ PDU (section 2.2.2.23), if also
implementing Enhanced RemoteApp
1.5.2 Server Implementation Requirements

Servers implementing the Remote Desktop Protocol

sending the following messages:

: Graphics Pipeline Extension must be capable of

(section 2.2.2.1)
(section 2.2.2.2)

(section 2.2.2.3)

(section 2.2.2.5)
(section 2.2.2.6)

(section 2.2.2.7)

A RDPGFX_WIRE_TO_SURFACE_PDU_1

A RDPGFX_WIRE_TO_SURFACE_PDU_2

A RDPGFX_DELETE_ENCODING_CONTEXT PDU
A RDPGFX_SOLIDFILL_PDU (sectio n2.2.2.4)
A RDPGFX_SURFACE_TO_SURFACE_PDU

A RDPGFX_SURFACE_TO_CACHE_PDU

A RDPGFX_CACHE_TO_SURFACE_PDU

A RDPGFX_EVICT_CACHE_ENTRY_PDU

(section 2.2.2.8)

[MS -RDPEGFX-Diff] - v20180316

12 / 143

Remote Desktop Protocol: Graphics Pipeline Extension

Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

RDPGFX_CREATE_SURFACE_PDU (section 2.2.2.9)

> >

RDPGFX_DELETE_ SURFACE_PDU (section 2.2.2.10)

>

RDPGFX_START FRAME_PDU (section 2.2.2.11)
RDPGFX_END_FRAME_PDU (section 2.2.2.12)
RDPGFX_RESET_GRAPHICS_PDU (section 2.2.2.14)

RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU (section 2.2.2.15)

> > > >

RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17)
A RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19)

Furthermore, servers implementing the Remote Desktop Protocol: Graphics Pipeline Extension must
be capable of processing the following messages:

A RDPGFX_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.13)

A RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16)

A RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18)

Servers that implement Enhanced RemoteApp ([MS -RDPERP] section 1.3.3) must be capable of
sending the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU (section 2.2.2.20) message.
Servers that support the RDPGFX_CAPSET_VERSION10 (section 2.2.3.3) capability set must be
capable of processing the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU (section 2.2.2.21)
message.

1.6 Applicability Statement

The Remote Desktop Protocol: Graphics Pipeline Extension is applicable in scenarios where the
efficient transfer of server -side graphics display data is required from a terminal server to a terminal
server client.

1.7 Versioning and Capability Negotiation

Capability exchange using the RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) and
RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) messages takes place before any graphics
messages f low on the wire. The client advertises supported capability sets from section 2.2.3 in an
RDPGFX_CAPS_ADVERTISE_PDU message. In response, the server selects one of these sets and

then sends an RDPGFX_CAPS_CONFIRM_PDU message to the client containing the se lected set.

Implementers of the Remote Desktop Protocol: Graphics Pipeline Extension have to support the

ClearCodec codec as described in sections 2.2.4.1 and 3.3.8.1. Usage of the RemoteFX Codec ([MS -
RDPRFX] sections 2.2.2 and 3.1.8) and the RemoteFX Prog ressive Codec (sections 2.2.4.2, 3.1.8.1,
3.2.8.1, and 3.3.8.1) is based on the flags exchanged in the RDPGFX_CAPSET_VERSIONS ,
RDPGFX_CAPSET_VERSIONS81 , RDPGFX_CAPSET_VERSION10 ,
RDPGFX_CAPSET_VERSION102 , RDPGFX_CAPSET_VERSION103 ,

RDPGFX_CAPSET_ VERSION104 . or RDPGFX_CAPSET_ VWERSION484—VERSION105 structure
(sections 2.2.3.1 ,2.2.3.2, 2.233,2235 ,2236, 2237, and?223. 78, respectively). Usage of the
MPEG-4 AVC/H.264 Codec in YUV420p, YUV444, or YUV444v2 mode (sections 2.2.4.3, 2.2.4.4,

2.2.45,2.2.4.6, and 3.3.8.3) is based on the flags exchanged in the

RDPGFX_CAPSET_VERSIONS81 , RDPGFX_CAPSET_VERSION10 ,
RDPGFX_CAPSET_VERSIO N102 , RDPGFX_CAPSET_VERSION103 ,
RDPGEX_CAPSET_VERSION104 . or RDPGFX_CAPSET_ WYERSIONt84—VERSION105 _ structure

13/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

(sections 2.2.3.2,2.2.3.3, 2.2.3.5, 2.2.3.6, 2.2.3.7, and 2.2.3. 78, respectively). Usage of the MPEG -4
AVC/H.264 Codec in YUV444v2 mode is implied by the RDPGFX_CAPSET_VERSION101 structure
(section 2.2.3.4). Only the flags of the selected capability set that are sent in the

RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) message apply to the connection. All of the

capability set structures are encapsulated inthe RDPGFX_CAPS_ADVERTISE_PDU (section
2.2.2.18)and RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) messages. Furthermore, any data
exchanged in the Bitmap Codecs Capability Set ([MS -RDPBCGR] section 2.2.7.2.10) does not influence

the choice of codecs used by the Remote Desktop Protocol: Graphics Pipeline Extension.

1.8 Vendor -Extensible Fields

None.

1.9 Standards Assignments

None.

14 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2 Messages

2.1 Transport

The Remote Desktop Protocol: Graphics Pipeline Extension is designed to operate over a non -lossy
dynamic virtual channel, as specified in [MS -RDPEDYC] sections 1 through 3. The dynamic virtual
channel name is the null -terminated ANSI character string "Microsoft::Windows::RDS::Graphics". The

usage of channel names in the context of opening a dynamic virtual channel is specified in [MS -
RDPEDYC] section 2.2.2.1.

All server -to -client graphics messages are encapsulated within an RDP_SEGMENTED_DATA

structure (section 2.2.5.1) when sent on the "Microsoft::Windows::RDS::Graphics" dynamic virtual

chan nel. Decoding one RDP_SEGMENTED_DATA structure yields one or more graphics messages.
Graphics messages are not spanned across multiple RDP_SEGMENTED_DATA structures, but can be
broken into multiple RDP_DATA_SEGMENT frames (section 2.2.5.2).

Client -to - serve r graphics messages are not encapsulated within any external structure when sent on
the "Microsoft::Windows::RDS::Graphics" dynamic virtual channel.

To ensure that the transport is utilized effectively, continuous network characteristics detection
SHOULD b e enabled as specified in [MS -RDPBCGR] sections 1.3.9 and 2.2.14.

2.2 Message Syntax

The following sections specify the Remote Desktop Protocol: Graphics Pipeline Extension message
syntax. All multiple -byte fields withina message MUST be marshaled in little -endian byte order, unless
otherwise specified.

221 Common Data Types

2211 RDPGFX_POINT16

The RDPGFX_POINT16 structure specifies a point relative to the origin of a target surface.

X y
X (2 bytes): A 16 -bit signed integer that specifies the x -coordinate of the point.
y (2 bytes): A 16 -bit signed integer that specifies the y -coordinate of the point.

2212 RDPGFX_RECT16

The RDPGFX_RECT16 structure specifies a rectangle relative to the origin of a target surface using
exclusive coordinates (the right and bottom bounds are not included in the rectangle).

left top

right bottom

15/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

left (2 bytes): A 16 -bit unsigned integer that specifies the leftmost bound of the rectangle.

top (2 bytes): A 16 -bit unsigned integer that specifies the upper bound of the rectangle.
right (2 bytes): A 16 -bit unsigned integer that specifies the rightmost bound of the rectangle.
bottom (2 bytes): A 16 -bit unsigned integer that specifies the lower bound of the rectangle.

2213 RDPGFX_COLOR32

The RDPGFX_COLOR32 structure specifies a 32bpp ARGB or XRGB color value.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0|1|2|3|4[(5|6|7|8|9|0]1

B G R XA

B (1 byte): An 8 -bit unsigned integer that specifies the blue ARGB or XRGB color component.
G (1 byte): An 8 -bit unsigned integer that specifies the green ARGB or XRGB color component.
R (1 byte): An 8 -bit unsigned integer that specifies the red ARGB or XRGB color component.

XA (1 byte): An 8 -bit unsigned integer that in the case of ARGB specifies the alpha color component
or in the case of XRGB MUST be ignored.

2214 RDPGFX_PIXELFORMAT

The RDPGFX_PIXEL FORMAT structure specifies the color component layout in a pixel.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

format
format (1 byte): An 8 -bit unsigned integer that specifies the pixel format.
Value Meaning

PIXEL_FORMAT XRGB_8888 | 32bpp with no valid alpha (XRGB).
0x20

PIXEL_FORMAT_ARGB_8888 32bpp with valid alpha (ARGB).
0x21

2215 RDPGFX_HEADER

The RDPGFX_HEADER structure is included in all graphics command PDUs and specifies the graphics
command type, the tr ansport flags, and the length of the PDU.

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

16 / 143

cmdld flags
pduLength
cmdld (2 bytes): A 16 -bit unsigned integer that identifies the type of the graphics command PDU.
Value Meaning
RDPGFX_CMDID_WIRETOSURFACE_1 RDPGFX_WIRE_TO_SURFACE_PDU_1 (section
0x0001 2221)
RDPGFX_CMDID_WIRETOSURFACE_2 RDPGFX_WIRE_TO_SURFACE_PDU 2 (section
0x0002 2222)
RDPGFX_CMDID_DELETEENCODINGCONTEXT RDPGFX_DELETE_ENCODING_CONTEXT_PDU
0x0003 (section 2. 2.2.3)
RDPGFX_CMDID_SOLIDFILL RDPGFX_SOLIDFILL_PDU (section 2.2.2.4)
0x0004
RDPGFX_CMDID_SURFACETOSURFACE RDPGFX_SURFACE_TO_SURFACE_PDU (section
0x0005 22.25)
RDPGFX_CMDID_SURFACETOCACHE RDPGFX_SURFACE_TO_CACHE_PDU (section
0x0006 22.26)
RDPGFX_CMDID_CACHETOSURFACE RDPGFX_CACHE_TO_SURFACE_PDU (section
0x0007 22.27)
RDPGFX_CMDID_EVICTCACHEENTRY RDPGFX_EVICT_CACHE_ENTRY_PDU (section
0x0008 22.28)
RDPGFX_CMDID_CREATESURFACE RDPGFX_CREATE_SURFACE_PDU (section
0x0009 2229
RDPGFX_CMDI D_DELETESURFACE RDPGFX_DELETE_SURFACE_PDU (section
RDPGFX_CMDID_STARTFRAME RDPGFX_START_FRAME_PDU (section 2.2.2.11)
0x000B
RDPGFX_CMDID_ENDFRAME RDPGFX_END_FRAME_PDU (section 2.2.2.12)
0x000C
RDPGFX_CMDID_FRAMEACKNOWLEDGE RDPGFX_FRAME_ACKNOWLEDGE_PDU (section
0x000D 2.2.2.13)
RDPGFX_CMDID_RESETGRAPHICS RDPGFX_RESET_GRAPHICS_PDU (section
RDPGFX_CMDID_MAPSURFACETOOUTPUT RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
0x000F (section 2.2.2.15)
RDPGFX_CMDID_CACHEIMPORTOFFER RDPGFX_CACHE_IMPORT_OFFER_PDU (section
0x0010 222.16)

17 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Value Meaning
RDPGFX_CMDID_CACHEIMPORTREPLY RDPGFX_CACHE_IMPORT_REPLY_PDU (section
0x0011 2.2.2.17)
RDPGFX_CMDID_CAPSADVERTISE RDPGFX_CAPS_ADVERTISE_PDU (section
0x0012 2.2.2.18)
RDPGFX_CMDID_CAPSCONFIRM RDP_CAPS_CONFIRM_PDU (section 2.2.2.19)
0x0013
RDPGFX_CMDID_MAPSURFACETOWINDOW RDPGFX_MAP_SURFACE_TO_WINDOW_PDU
0x0015 (section 22220)
RDPGFX_CMDID_QOEFRAMEACKNOWLEDGE RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU
0x0016 (section 22221)
RDPGFX_CMDID_MAPSURFACETOSCALEDOUTPUT RDPGFX_MAP_SURFACE TO_SCALED OUTPUT
0x0017 PDU (section 2.2.2.22)
RDPGFX_CMDID_MAPSURFACETOSCALEDWINDOW RDPGFX_MAP_SURFACE TO_SCALED WINDOW
0x0018 PDU (Section 22223)

flags (2 bytes): A 16 -bit unsigned integer that contains graphics command flags common to all

PDUs. No common graphics command flags are specified; therefore, this field MUST be set to zero.
pduLength (4 bytes): A 32 -bit unsigned integer that specifies the length of the graphics command

PDU, in byt es. This value MUST include the length of the RDPGFX_HEADER (8 bytes).
2216 RDPGFX_CAPSET

The RDPGFX_CAPSET structure specifies the layout of a capability set sent in the
RDPGFX_CAPS_ADVERTISE_PDU (section 2.2.2.18) message. All of the capability sets specified in
section 2.2.3 conform to this basic structure.

version

capsDatalength

capsData (variable)

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set.
Value Meaning
RDPGFX_CAPVERSION_8 RDPGFX_CAPSET_VERSIONS (section 2.2.3.1)
0x00080004

18 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Value Meaning
RDPGFX_CAPVERSION_81 RDPGFX_CAPSET_VERSIONS81 (section 2.2.3.2)
0x00080105
RDPGFX_CAPVERSION_10 RDPGFX_CAPSET_VERSION10 (section 2.2.3.3)
0x000A0002
RDPGFX_CAPVERSION_101 RDPGFX_CAPSET_VERSION101 (section 2.2.3.4)
0x000A0100
RDPGFX_CAPVERSION_102 RDPGFX_CAPSET_VERSION102 (section 2.2.3.5)
0x000A0200
RDPGFX_CAPVERSION_103 RDPGFX_CAPSET_VERSION103 (section 2.2.3.6)
0x000A0301
RDPGFX_CAPVERSION_104 RDPGFX_CAPSET_VERSION104 (section 2.2.3.7)
0x000A0400
RDPGFX_CAPVERSION_105 RDPGFX_CAPSET VERSION105 (section 2.2.3.8)
0x000A0502
The format of the data in the capsData field and the length specified in the capsDatalength
field are both determined by the version of the capability set.
capsDatalLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data present in the capsData field.
capsData (variable): A variable -length array of bytes that contains data specific to the capability
set. The number of bytes in this array is specified by the capsDatalength field.

2.2.2 Graphics Messages

2.22.1 RDPGFX_WIRE_TO_SURFACE_PDU_1

The RDPGFX_WIRE_TO_SU RFACE_PDU_1 message is used to transfer encoded bitmap data from
the server to a client -side destination surface.

header

surfaceld codecld

pixelFormat destRect

bitmapDatalength

bitmapData (variable)

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

19 / 143

header (8 bytes): An RDPGFX_HEADER structure (section 2.2.1.5). The cmdld field MUST be set
to RDPGFX_CMDID_WIRETOSURFACE_1 (0x0001), while the flags field MUST be set to zero.

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.
codecld (2 bytes): A 16 -bit unsigned integer that specifies the codec that was used to encode the
bitmap data encapsulated in the bitmapData field.
Value Meaning

RDPGFX_CODECID_ UNCOMPRESSED | The bitmap data encapsulated in the bitmapData field is
0x0000 uncompressed. Pixels in the uncompressed data are ordered from
left to right and then top to bottom.

RDPGFX_CODECID_CAVIDEO The bitmap data encapsulated in the bitmapData field is

0x0003 compressed using the RemoteFX Codec ([MS -RDPRFX] sections
2.2.1 and 3.1.8). Note that the TS_RFX_RECT ([MS -RDPRFX]
section 2.2.2.1.6) structures encapsulated in the bitmapData
field MUST all be relative to the top -left corner of the rectangle

defined by the destRect field.

RDPGFX_CODECID_CLEARCODEC The bitmap data encapsulated in the bitmapData field is

0x0008 compressed using the ClearCodec Codec (sections 2.2.4.1 and
3.3.8.1).

RDPGFX_CODECID_PLANAR The bitmap data encapsulated in the bitmapData field is

OX000A compressed using the Planar Codec ([MS -RDPEGDI] sections
2.2.25.1 and 3.1.9).

RDPGFX_CODECID_AVC420 The bitmap data encapsulated in the bitmapData field is

0x000B compressed using the MPEG -4 AVC/H.264 Codec in YUV420p
mode (section 2. 2.4.4).

RDPGFX_CODECID_ALPHA The bitmap data encapsulated in the bitmapData field is

0x000C compressed using the Alpha Codec (section 2.2.4.3).

RDPGFX_CODECID_AVC444 The bitmap data encapsulated in the bitmapData field is

OX000E compressed using the MPEG -4 AVC/H.264 Codec in YUV444 mode
(section 2.2.4.5).

RDPGFX_CODECID_AVC444V2 The bitmap data encapsulated in the bitmapData field is

OX000F compressed using the MPEG -4 AVC/H.264 Codec in YUV444v2

mode (section 2.2.4.6).

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies the
pixel format of the decoded bitmap data encapsulated in the bitmapData field.

destRect (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the target point
on the destination surface to which to copy the decoded bitmap and the dimensions (width and
height) of the bitmap data encapsulated in the bitmapData field. This field specifies a bounding
rectangle ifthe codecld field contains the RDPGFX_CO DECID_AVC420 (0x000B),
RDPGFX_CODECID_AVC444 (0x000E), or the RDPGFX_CODECID_AVC444V?2 (0x000F) identifier.

bitmapDatalLength (4 bytes): A 32 - bit unsigned integer that specifies the length, in bytes, of the
bitmapData field.

20 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

bitmapData (variable): A variab le-length array of bytes containing bitmap data encoded using the
codec identified by the ID in the codecld field.

2222 RDPGFX_WIRE_TO_SURFACE_PDU 2

The RDPGFX_WIRE_TO_SURFACE_PDU_2 message is used to transfer encoded bitmap data
progressively from the server t o aclient -side destination surface by leveraging a compression context
that persists on the server and the client until the transfer of the bitmap data is complete.

0(1(2|3[(4|5(6|7(8|9(0|1(2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

header

surfaceld codecld

codecContextld

pixelFormat bitmapDatalLength

bitmapData (variable)

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_WIRETOSURFACE_2 (0x0002), while the flags field MUST be set to zero.
surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.
codecld (2 bytes): A 16 -bit unsigned integer that specifies the codec that was used to encode the
bitmap data encapsulated in the bitmapData field.
Value Meaning

RDPGFX_CODECID_CAPROGRESSIVE | The bitmap data encapsulated in the bitmapData field is
0x0009 compressed using the RemoteFX Progressive Codec (sections
2.2.4.2,3.1.8.1,3.2.8.1,and 3.3.8.2).

codecContextld (4 bytes): A 32 -bit unsigned integer that identifies the compression context
associated with the bitmap data encapsulated in the bitmapData field.

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies the
pixel format of the decoded bitmap data encapsulated in the bitmapData field.

bitmapDatalength (4 bytes): A 32 -bit unsigned integer that specifies the length, in bytes, of the
bitmapData field.

bitmapData (variable): A variable -length array of bytes containing bitmap data encoded using the
codec identified by the ID in the codecld field.

21 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2.22.3 RDPGFX_DELETE_ENCODING_CONTEXT_PDU

The RDPGFX_DELETE_ENCODING_CONTEXT_PDU message is sent by the server to instruct the
client to delete a compression context that was used by a collection of

RDPGF X_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) messages to progressively transfer bitmap
data.

0(1(2|3[(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6(|7(8|9|0]|1

header

surfaceld codecContextld

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_DELETEENCODINGCONTEXT (0x0003), while the flags field MUST be set to
zero.

surfaceld (2 bytes): A 16 - bit unsigned integer that specifies the ID of the surface associated with
the co mpression context ID specified in the codecContextld field.

codecContextld (4 bytes): A 32 -bit unsigned integer that specifies the ID of the compression
context to delete.

2224 RDPGFX_SOLIDFILL_PDU

The RDPGFX_SOLIDFILL_PDU message is used to instruct the clien t to fill a collection of rectangles
on a destination surface with a solid color.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6(7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

header

surfaceld fillPixel

fillRectCount

fillRects (variable)

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_SOLIDFILL (0x0004), while the flags field MUST be set to zero.
surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.
22 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

fill Pixel (4 bytes): An RDPGFX_COLOR32 (section 2.2.1.3) structure that specifies the color that
MUST be used to fill the destination rectangles specified in the fillRects field.

filRectCount (2 bytes): A 16 -bit unsigned integer that specifies the number of RDPGFX_RECT16
(section 2.2.1.2) structures in the fillRects field.

fillRects (variable): A variable -length array of RDPGFX_RECT16 structures that specifies
rectangles on the destination surface to be filled. The number of structures in this array is
specified by the fillRectCount field.

2225 RDPGFX_SURFACE_TO_SURFACE_PDU

The RDPGFX_SURFACE_TO_SURFACE_PDU message is used to instruct the ¢ lient to copy bitmap
data from a source surface to a destination surface or to replicate bitmap data within the same
surface.

1 2 &
0|1|2|3|4|5|6(|7|8[|9(0|1|2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1
header
surfaceldSrc surfaceldDest
rectSrc
destPtsCount destPts (variable)
header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set

to RDPGFX_CMDID_SURFACETOSURFACE (0x0005), while the flags field MUST be set to zero.

surfaceldSrc (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface containing the
source bitmap.

surfaceldDest (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.

rectSrc (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the rectangle that
bounds the source bitmap.

destPtsCount (2 bytes): A 16 -bit unsigned integer that specifies the number of
RDPGFX_POINT16 (section 2.2.1.1) structures in the destPts field.

destPts (variable): A variable -length array of RDPGFX_POINT16 structures that specifies target
points on the destination surface to which to copy the source bitmap. The number of structures in
this array is specified by the destPtsCount field.

23/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2226 RDPGFX_SURFACE_TO_CACHE_PDU

The RDPGFX_SURFACE_TO_CACHE_PDU message is used to instruct the client to copy bitmap
data from a source surface to the bitmap cache.

1 2 3]
0|1|2|3|4|5|6|7|8[9(0|1|2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1
header
surfaceld cacheKey
cacheSlot
rectSrc
header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set

to RDPGFX_CMDID_SURFACETOCACHE (0x0006), while the flags field MUST be set to zero.

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the su rface containing the
source bitmap.

cacheKey (8 bytes): A 64 -bit unsigned integer that specifies a key to associate with the bitmap
cache entry that will store the bitmap.

cacheSlot (2 bytes): A 16 - bit unsigned integer that specifies the index of the bit map cache entry in
which the source bitmap data MUST be stored. The value of this field is constrained as specified in
section 3.3.1.4.

rectSrc (8 bytes): An RDPGFX_RECT16 (section 2.2.1.2) structure that specifies the rectangle that
bounds the source bit map.

2.22.7 RDPGFX_CACHE_TO_SURFACE_PDU

The RDPGFX_CACHE_TO_SURFACE_PDU message is used to instruct the client to copy bitmap
data from the bitmap cache to a destination surface.

1 2 3
0(1(2|3|4|5|6|7|8[|9|0|1|2|3|4|5[6|7|8|9|0|1|2|3|4|5|6|7|8|9|0]1
header
cacheSlot surfaceld
destPtsCount destPts (variable)

24 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_CACHETOSURFACE (0x0007), while the flags field MUST be set to zero.

cacheSlot (2 bytes): A 16 -bit unsigned integer that specifies the index of the bitmap cache entry
that contains the source bitmap. The value of this field is constrained as specified in section
3.3.1.4.

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the destination surface.
destPtsCount (2 bytes): A 16 -bit unsigned integer that specifies the number of

RDPGFX_POINT16 (section 2.2.1.1) structures in the destPts field.
destPts (variable): A variable -length array of RDPGFX_POINT16 structures that specifies target

points on the destination surface to which to copy the source bitmap. The number of structures in
this array is specified by the destPtsCount field.

2228 RDPGFX_EVICT_CACHE_ENTRY_PDU

The RDPGFX_EVICT_CACHE_ENTRY_PDU message is us ed to instruct the client to delete an entry
from the bitmap cache.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

header

cacheSlot

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_EVICTCACHEENTRY (0x0008), while the flags field MUST be set to zero.

cacheSlot (2 bytes): A 16 -bit unsigned integer that specifies the index of the bitmap cache entry to
delete from the bitmap cache. The value of this fi eld is constrained as specified in section 3.3.1.4.

2229 RDPGFX_CREATE_SURFACE_PDU

The RDPGFX_CREATE_SURFACE_PDU message is used to instruct the client to create a surface of a
given width, height, and pixel format.

0(1(2|3|(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

header

surfaceld width

25/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

height pixelFormat

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_CREATESURFACE (0x0009), while the flags field MUST be set to zero.

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID that MUST be assigned to the
surface once it has been created.

width (2 bytes): A 16 -bit unsigned integer that specifies the width of the surface to create.

height (2 bytes): A 16 -bit unsigned integer that specifies the height of the surface to create.

pixelFormat (1 byte): An RDPGFX_PIXELFORMAT (section 2.2.1.4) structure that specifies the

pixel format of the surface to create.

2.2.2.10 RDPGFX_DELETE_SURFACE_PDU

The RDPGFX_DELETE_SURFACE_PDU message is used to instruct the client to delete a surface.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

header

surfaceld

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_DELETESURFACE (0x000A), while the flags field MUST be set to zero.

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to delete.

22211 RDPGFX_START_FRAME_PDU

The RDPGFX_START_FRAME_PDU message is sent by the server to specify the start of a logical
frame, enabling related graphics commands to be grouped together.

1 2 3
0|1|/2(3|4|5(6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[(6|7|8[9|0]|1
header
timestamp
frameld
header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set

to RDPGFX_CMDID_STARTFRAME (0x000B), while the flags field MUST be set to zero.

timestamp (4 bytes): A 32 -bit unsigned integer that contains a UTC timestamp assigned to the
frame. If no timestamp is available, this field MUST be set to zero.

26 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

The format of the timestamp field is described by the following bitmask diagram.

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9]|0(1|2(3|4(5|6(|7|8|9|0]|1

milliseconds seconds minutes hours

milliseconds (10 bits): A 10 -bit, unsigned integer that contains the millisecond value of the
timestamp. This field MUST be greater than or equal to 0, and less than or equal to 999.

seconds (6 bits): A 6 - bit, unsigned integer that contains the second va lue of the timestamp.
This field MUST be greater than or equal to 0, and less than or equal to 59.

minutes (6 bits): A 6 - bit, unsigned integer that contains the minute value of the timestamp.
This field MUST be greater than or equal to 0, and less than or equal to 59.
hours (10 bits): A 10 -bit, unsigned integer that contains the hour value of the timestamp. This

field MUST be greater than or equal to 0, and less than or equal to 23.

frameld (4 bytes): A 32 - bit unsigned integer that specifies a unique ID assigned to the frame.

22212 RDPGFX_END_FRAME_PDU

The RDPGFX_END_FRAME_PDU message is sent by the server to specify the end of a logical frame.

1 2 3
0|1|2(3|4|5(6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[(6|7|8[9|0]|1
header
frameld
header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set

to RDPGFX_CMDID_ENDFRAME (0x000C), while the flags field MUST be set to zero.

frameld (4 bytes): A 32 -bit unsigned integer that contains the ID assigned to the frame in the
RDPGFX_STAR T_FRAME_PDU (section 2.2.2.11) message.

22213 RDPGFX_FRAME_ACKNOWLEDGE_PDU

The RDPGFX_FRAME_ACKNOWLEDGE_PDU message is sent by the client to indicate to the server
that a logical frame of graphics commands has been successfully decoded. This message MUST be

sent in response toan RDPGFX_END_FRAME_PDU (section 2.2.2.12) message, unless the client
has opted out 0 f this behavior.

0(1(2|3|4|5|(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

header

gqueueDepth

27 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

frameld

totalFramesDecoded

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_FRAMEACKNOWLEDGE (0x000D), while the flags field MUST be set to zero.

gueueDepth (4 bytes): A 32 -bit unsigned integer that either specifies the number of unprocessed
bytes buffered at the client, or indicates to the server that the client will no longer be transmitting
RDPGFX_FRAME_ACKNOWLEDGE_PDU messages.

Value Meaning
QUEUE_DEPTH_UNAVAILABLE Specifies that no information is available regarding the size, in
0x00000000 bytes, of the graphics messages that have been buffered at the

client and not yet processed.

0x00000001 i OXFFFFFFFE Specifies the size, in bytes, of the graphics messages that have
been buffered at the client and not yet processed.

SUSPEND_FRAME_ACKNOWLEDGEMENT | Indicates to the server that the client will no longer be

OXFEFFEFEF transmitting RDPGFX_FRAME_ACKNOWLEDGE_PDU messages.
The client can opt back i nto sending these messages by sending
an RDPGFX_FRAME_ACKNOWLEDGE_PDU message with the
queueDepth field set to a value in the range 0x00000000 to
OxFFFFFFFE (inclusive) in response to an
RDPGFX_END_FRAME_PDU message.

frameld (4 bytes): A 32 -bit unsigned integer that contains the ID of the frame being acknowledged.
The ID of the frame is specified in the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages.

totalFramesDecoded (4 bytes): A 32 -bit unsigned integert hat specifies the number of frames that
have been decoded by the client since the connection was initiated.

22214 RDPGFX_RESET_GRAPHICS_PDU

The RDPGFX_RESET_GRAPHICS_PDU message is sent by the server to instruct the client to
change the width and height of the g raphics output buffer (section 3.3.1.5), and to update the monitor
layout. Note that this message MUST be 340 bytes in size.

header

width

height

monitorCount

monitorDefArray (variable)

28 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

pad (variable)

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_RESETGRAPHICS (0x000E), the flags field MUST be set to zero, and the
pduLength field MUST be set to 340 bytes.

width (4 bytes): A 32 -bit unsigned integer that specifies the new width of the graphics output buffer
(the maximum allowed width is 32766 pixels).

height (4 bytes): A 32 -bit unsigned integer that specifies the new height of the graphics output
buffer (the maximum allowed height is 32766 pixels).

monitorCount (4 bytes): A 32 -bit unsigned integer that specifies the number of display monitor
definitions in the monitorDefArray field. This value MUST be less than or equal to 1 6.

monitorDefArray (variable): A variable -length array containing a series of TS_MONITOR_DEF
(IMS -RDPBCGR] section 2.2.1.3.6.1) structures that specify the display monitor layout of the
session on the remote server. The number of TS_MONITOR_DEF structures is specified by the
monitorCount field.

pad (variable): A variable -length byte array that is used for padding. The number of bytes in this
array is calculated by subtracting the combined size of the header , width , height ,
monitorCount , and monitorDefArra y fields from the total size of the PDU (which is specified by
the pduLength field embedded inthe header field). The contents of the pad field MUST be

ignored.
22215 RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU
The RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message is sent by the se rver to instruct the
client to map a surface to a rectangular area of the graphics output buffer.

1 2 3
0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1
header
surfaceld reserved
outputOriginX
outputOriginY

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set

to RDPGFX_CMDID_MAPSURFACETOOUTPUT (0x000F), while the flags field MUST be set to zero.

29 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to be associ ated
with the output -to -surface mapping.

reserved (2 bytes): A 16 - bit unsigned integer that is reserved for future use. This field MUST be set
to zero.

outputOriginX (4 bytes): A 32 -bit unsigned integer that specifies the x -coordinate of the point,
relative to the origin of the graphics output buffer (section 3.3.1.7), at which to map the top -left

corner of the surface.

outputOriginY (4 bytes): A 32 -bit unsigned integer that sp ecifies the y -coordinate of the point,
relative to the origin of the graphics output buffer, at which to map the upper -left corner of the
surface.
22216 RDPGFX_CACHE_IMPORT_OFFER_PDU
The RDPGFX_CACHE_IMPORT_OFFER_PDU message is sent by the client to inform the s erver of
bitmap data that is present in an optional client -side persistent bitmap cache.
1 2 3
0|1|2(3|4|5|6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[|6|7|8[9|0]|1
header
cacheEntriesCount cacheEntries (variable)
header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_CACHEIMPORTOFFER (0x0010), while the flags field MUST be set to zero.
cacheEntriesCount (2 bytes): A 16 -bit unsigned integer that specifies the number of
RDPGFX_CACHE_E NTRY_METADATA (section 2.2.2.16.1) structures in the cacheEntries field.
This value MUST be less than 5462 (0x1556).
cacheEntries (variable): A variable -length array of RDPGFX_CACHE_ENTRY_METADATA
structures that identifies a collection of bitmap cache entries present on the client. The number of
structures in this array is specified by the cacheEntriesCount field.
222161 RDPGFX_CACHE_ENTRY_METADATA

The RDPGFX_CACHE_ENTRY_METADATA structure specifies attr ibutes of a bitmap cache entry
stored on the client.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

cacheKey

30 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

bitmapLength

cacheKey (8 bytes): A 64 -bit unsigned integer that specifies a unique key associated with the
bitmap cache entry.

bitmapLength (4 bytes): A 32 -bit unsigned integer that specifies the size of the bitmap cache
entry, in bytes.
2.2.2.17 RDPGFX_CACHE_IMPORT_REPLY_PDU

The RDPGFX_CACHE_IM PORT_REPLY_PDU message is sent by the server to indicate that
persistent bitmap cache metadata advertised in the RDPGFX_CACHE_IMPORT_OFFER_PDU
(section 2.2.2.16) message has been transferred to the bitmap cache.

header

importedEntriesCount cacheSlots (variable)

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_CACHEIMPORTREPLY (0x0011), while the flags field MUST be set to zero.

importedEntriesCount (2 bytes): A 16 -bit unsigned integer that specifies the number of entries
that were imported into the server -side Bitmap Cache Map (section 3.2.1.1) ADM element from
the most recent RDPGFX_CACHE_IMPORT_OFFE R_PDU (section 2.2.2.16) message. A value of
N implies that the first N entries were imported into the bitmap cache from the most recent
RDPGFX_CACHE_IMPORT_OFFER_PDU message.

cacheSlots (variable): An array of 16 -bit unsigned integers. The number of inte gers in this array is
specified by the importedEntriesCount field. Each integer in the array identifies the cache slot
that an imported entry has been assigned. For example, an importedEntriesCount field value of

0x0003 and a cacheSlots field that contains the elements [0x0006, 0x0009, 0x0002] together
imply that the first imported entry was associated with cache slot 6, the second imported entry

was associated with cache slot 9, and the third imported entry was associated with cache slot 2.
Each of the cac he slot values contained in this field is constrained as specified in section 3.3.1.4.

2.2.2.18 RDPGFX_CAPS_ADVERTISE_PDU

The RDPGFX_CAPS_ADVERTISE_PDU message is sent by the client to advertise supported
capabilities.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

header

31/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

capsSetCount capsSets (variable)

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_CAPSADVERTISE (0x0012), while the flags field MUST be set to zero.

capsSetCount (2 bytes): A 16 -bit unsigned integer that specifies the number of RDPGFX_CAPSET
(section 2.2.1.6) structures in the capsSets field.

capsSets (variable): A variable -length array of RDPGFX_CAPSET structures. The num ber of
elements in this array is specified by the capsSetCount field.

2.2.2.19 RDPGFX_CAPS_CONFIRM_PDU

The RDPGFX_CAPS_CONFIRM_PDU message is sent by the server to confirm capabilities for the
connection.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

header

capsSet (variable)

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_CAPSCONFIRM (0x0013), while the flags field MUST be set to zero.

capsSet (variable): Avariable -length RDPGFX_CAPSET (section 2.2.1.6) structure that contains
the capability set selected by the server from the RDPGFX_CAPS_ADVERTISE_PDU (section
2.2.2.18) message sent by the client.

22220 RDPGFX_MAP_SURFACE_TO_WINDOW_PDU

The RDPGFX_MAP_SURFACE_TO _WINDOW_PDU message is sent by the server to instruct the
client to map a surface to a RAIL window on the client.

header

32 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

surfaceld windowld

mappedWidth

mappedHeight

header (8 bytes): An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_MAPSURFACETOWINDOW (0x0015), while the flags field MUST be set to zero.

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to be associated
with the surface -to-window mapping.

windowld (8 bytes): A 64 -bit unsigned integer that specifies the ID of the RAIL window to be
associated with the surface -to-window mapping. RAIL windows are created via the New or Existing
Window Order ((MS -RDPERP] section 2.2.1.3.1.2.1). The Windowld field of the Common Head er
(IMS -RDPERP] section 2.2.1.3.1.1), embedded within the order, contains the window ID.

mappedWidth (4 bytes): A 32 -bit unsigned integer that specifies the width of the rectangular region
on the surface to which the window is mapped.

mappedHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the rectangular
region on the surface to which the window is mapped.

22221 RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU

The optional RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message is sent by the client to enable
the calcul ation of Quality of Experience (QOE) metrics. This message is sent solely for informational

and debugging purposes and MUST NOT be transmitted to the server if the

RDPGFX_CAPSET_VERSION10 , RDPGFX_CAPSET_VERSION102 ,
RDPGFX_CAPSET_VERSION103 , RDPGEX_CAPSET V_ERSION104 . or

RDPGFX_CAPSET_ ¥ZERSIONT64—VERSION105 structure (sections 2.2.3.3, 2.2.3.5, 2.2.3.6,

2.2.3.7, and 2.2.3. 78, respectively) was not received by the client.

0123456789(1)123456789512345678931
header
frameld
timestamp
timeDiffSE timeDiffEDR

header (8 bytes) :An RDPGFX_HEADER (section 2.2.1.5) structure. The cmdld field MUST be set
to RDPGFX_CMDID_QOEFRAMEACKNOWLEDGE (0x0016), while the flags field MUST be set to
zero.

33/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

frameld (4 bytes) : A 32 -hit unsigned integer that contains the ID of the frame being annotated. The
ID of the frame is specified in the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages.

timestamp (4 bytes) : A 32 -bit unsigned in teger that specifies the timestamp (in milliseconds) when
the client started decoding the RDPGFX_START_FRAME_PDU message. The value of the first
timestamp sent by the client implicitly defines the origin for all subsequent timestamps. The

server is respons ible for handling roll -over of the timestamp.

timeDIffSE (2 bytes) : A 16 -hit unsigned integer that specifies the time, in milliseconds, that elapsed
between the decoding ofthe =~ RDPGFX_START_FRAME_PDU and RDPGFX_END_FRAME_PDU
messages. If the elapsed time i s greater than 65 seconds, then this field SHOULD be set to
0x0000.

timeDIffEDR (2 bytes) : A 16 -bit unsigned integer that specifies the time, in milliseconds, that

elapsed between the decoding of the RDPGFX_END_FRAME_PDU message and the completion
of the r endering operation for the commands contained in the logical graphics frame. If the
elapsed time is greater than 65 seconds, then this field SHOULD be set to 0x0000.

2.2.2.22 RDPGEX MAP_SURFACE_TO SCALED OUTPUT PDU

The RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU messag e is sent by the server to
instruct the client to map a surface to a rectangular area of the graphics output buffer, including a
target width and height to which the surface MUST be scaled.

i 2 3
0|1|2(3|4|5(6|7|8|9|0|1|2(|3|4|5(6|7|8|9|0|1|2|3|4|5|6|7|8|9|0|1
header
surfaceld reserved
outputOriginX
outputOriginY
targetWidth
targetHeight
header (8 bytes): An RDPGFX_HEADER _ (section 2.2.1.5) structure. The cmdld _field MUST be set
to RDPGFX_CMDID _MAPSURFACETOSCALEDOUTPUT (0x0017), while the flags field MUST be set
to zero.
surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to be associated
with the output -to - surface mapping.
reserved (2 bytes): A 16 -bit unsigned integer that is reserved for future use. This field M UST be set
to zero.
outputOriginX (4 bytes): A 32 -bit unsigned integer that specifies the x - coordinate of the point,
relative to the origin of the Graphics Output Buffer (section 3.3.1.7), at which to map the top -
left corner of the surface.
34 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

outputOriginY (4 bytes): A 32 -bit unsigned integer that specifies the y - coordinate of the point,

relative to the origin of the Graphics Output Buffer . at which to map the upper -left corner of the
surface.
targetWidth (4 bytes): A 32 -bit unsigned integer th __at specifies the width of the target graphics
output buffer to which the surface will be mapped, as specified in section 3.3.1.7.
targetHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the target graphics
output buffer to which the surface will be mapped.
2.2.2.23 RDPGEX MAP_SURFACE _TO _SCALED WINDOW_PDU
The RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message is sent by the server to

instruct the client to map a surface to a RAIL window on the client, including a target width and height

to which t he surface should be scaled.

1O |w

©
=
N
&)
IS
o
o
I~
|oo
|©
1o -
=
N
&)
IS
I~
|oo
|©
o N
=
N
o
IS
o
o
I~
|oo
|©

5|6

=

header

surfaceld windowld

. mappedWidth

. mappedHeight

. targetWidth

. targetHeight

header (8 bytes): An RDPGFX_HEADER _ (section 2.2.1.5) structure. The cmdld _field MUST be set

to RDPGFX_CMDID_MAPSURFACETOSCALEDWINDOW (0x0018), while the flags field MUST be set

to zero.

surfaceld (2 bytes): A 16 -bit unsigned integer that specifies the ID of the surface to be associated

wit h the surface -to -window mapping.

windowld (8 bytes): A 64 -bit unsigned integer that specifies the 1D of the RAIL window to be

associated with the surface -to -window mapping. RAIL windows are created via the New or

Existing Window order ((MS -RDPERP] section 2.2.1.3.1.2.1). The Windowld _field of the

Common Header (IMS -RDPERP] section 2.2.1.3.1.1), embedded within the order, contains the

window ID.

mappedWidth (4 bytes): A 32 -bit unsigned integer that specifies the width of the rectangular reqgion

on the surface to which the window is mapped.

mappedHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the rectangular

region on the surface to which the window is mapped.

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

35/ 143

targetWidth (4 bytes): A 32 -bit unsigned integer that specifies the width of the target graphics
output to which the surface will be mapped.

targetHeight (4 bytes): A 32 -bit unsigned integer that specifies the height of the target graphics
output to which the surface will be mapped.

2.2.3 Capability Sets

2231 RDPGFX_CAPSET_VERSIONS

The RDPGF X_CAPSET_VERSIONS structure specifies an RDP version 8.0 Graphics Capability Set
and conforms to the capability set layout specified in section 2.2.1.6.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[6|7|8|9|0|1|2|3|4[|5|6|7|8|9|0]1

version

capsDatalength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_8 (0x00080004).

capsDatalLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capab ility set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32 - bit unsigned integer that specifies capability flags.

Flag Meaning

RDPGFX_CAPS_FLAG_THINCLIENT Indicates that the bitmap cache MUST be constrained to 16 MB in
0x00000001 size (if itis used) and that the RemoteFX Codec ([MS -RDPRFX]
sections 1 to 3) MUST be used in place of the RemoteFX

Progressive Codec (section 2.2.4.2).

RDPGFX_CAPS_FLAG_SMALL_CACHE | Indicates that the bitmap cache MUST be constrained to 16 MB in
0x00000002 size (if it is used).

The RDPGFX_CAPS_FLAG_THINCLIENT and RDPGFX_CAPS_FLAG_SMALL_CACHE capability flags
SHOULD NOT be specified together. If neither the RDPGFX_CAPS_FLAG_THINCLIENT nor the
RDPGFX_CAPS_FLAG_SMALL_CACHE capability flag is specified, then the bit map cache size is
assumed to be 100 MB in size, if it is used.

2.23.2 RDPGFX_CAPSET_VERSIONS1

The RDPGFX_CAPSET_VERSIONS81 structure specifies an RDP version 8.1 Graphics Capability Set
and conforms to the capability set layout specified in section 2.2.1.6.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

version

36 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

capsDatalength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_81 (0x00080105).

capsDatalLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000004.
flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.
Flag Meaning
RDPGFX_CAPS_FLAG_THINCLIENT See the definition of the RDPGFX_CAPS_FLAG_THINCLIENT
0x00000001 (0x00000001) flag in section 2.2.3.1 for details.
RDPGFX_CAPS_FLAG_SMALL_CACHE See the definition of the RDPGFX_CAPS_FLAG_SMALL_CACHE
0x00000002 (0x00000002) flag in section 2.2.3.1 for details.
RDPGFX_CAPS_FLAG_AVC420_ENABLED Indicates that the usage of the MPEG -4 AVC/H.264 Codec in
0x00000010 YUV420p mode is supported in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message.

If this field is nonzero, it SH OULD contain one of the following combinations of the capability flags
and SHOULD NOT contain any other combination:

A THINCLIENT

A SMALL_CACHE

A SMALL_CACHE | AVC420_ENABLED
A SMALL_CACHE | AVC420_ENABLED | THINCLIENT
If neither the RDPGFX_CAPS_FLAG_THINCLIENT nor the RDPGFX_CAPS_FLAG_SMALL_CACHE
capability flag is specified, the bitmap cache size is assumed to be 100 MB in size, if it is used.
2.23.3 RDPGFX_CAPSET_VERSION10

The RDPGFX_CAPSET_VERSION10 structure specifies an RDP version 10.0 Graphics Capability Set
and conforms to the capability set layout specified in section 2.2.1.6.

0123456789(1)123456789212345678931
version
capsDatalength
flags
version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This

field MUST be set to RDPGFX_CAPVERSION_10 (0x000A0002).

37 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

capsDatalLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data. Th is field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.
Flag Meaning
RDPGFX_CAPS_FLAG_SMALL_CACHE See the definition of the RDPGFX_CAPS_FLAG_SMALL_CACHE
0x00000002 (0x00000002) flag in section 2.2.3 .1 for details.
RDPGFX_CAPS_FLAG_AVC_DISABLED If this flag is set, it indicates that usage of the MPEG -4 AVC/H.264
0x00000020 Codec in any mode is not supported in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

message. If the flag is not set, the client MUST be capable of
processing the MPEG -4 AVC/H.264 Codec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 message.

2234 RDPGFX_CAPSET_VERSION101

The RDPGFX_CAPSET_VERSION101 structure specifies an RDP version 10.1 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6.

1 2 &
0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0|1|2|3|4[|5|6(|7|8|9|0]1
version
capsDatalength
reserved

version (4 bytes): A 32 -bit, unsigned integer that specifies the version of the capability set. This

field MUST be set to RDPGFX_CAPVERSION_101 (0x000A0100).

capsDatalLength (4 bytes): A 32 -bit, unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000010.

reserved (16 bytes): An array of sixteen 8 -bit, unsigned integers reserved for future use. All sixteen
integers within this array MUST be set to zero.
2.2.35 RDPGFX_CAPSET_VERSION102

The RDPGFX_CAPSET_VERSION102 structure spe cifies an RDP version 10.2 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6. It is identical in form to the
RDPGFX_CAPSET_VERSION10 (section 2.2.3.3) structure, except for the version field.

38 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

version

capsDatalength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This
field MUST be set to RDPGFX_CAPVERSION_102 (0x000A0200).

capsDatalLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.
Flag Meaning
RDPGFX_CAPS_FLAG_SMALL _CACHE | See the definition ofthe =~ RDPGFX_CAPS_FLAG_SMALL_CACHE
0x00000002 (0x00000002) flag in section 2.2.3.1 for details.
RDPGFX_CAPS_FLAG_AVC_DISABLED If this flag is set, it indicates that usage of the MPEG -4 AVC/H.264
0x00000020 Codec in any mode is not supported in the

RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

message. If the flag is not set, the client MUST be capable of
processing the MPEG -4 AVC/H.264 Codec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 message.

2236 RDPG FX_CAPSET_VERSION103

The RDPGFX_CAPSET_VERSION103 structure specifies an RDP version 10.3 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6. Selection of this capability
set implies that the bitmap cache (as defined in section 3.3.1.4) MUST be constrained to 1 6MB in size.

version

capsDatalength

flags

version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This field
MUST be setto RDPGFX_CAPVERSION_103 (0x000A0301).

capsDatalLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000004.

flags (4 bytes): A 32 -bit unsigned integer that specifies capabilit y flags.

39 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Flag Meaning

RDPGFX_CAPS_FLAG_AVC_DISABLED If this flag is set, it indicates that usage of the MPEG -4 AVC/H.264
0x00000020 Codec in any mode is not supported in the _
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)

message. If the flag is not set, the client MUST be capable of
processing the MPEG -4 AVC/H.264 Codec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message.

RDPGFX_CAPS _FLAG_AVC THINCLIENT Indicates that the client prefers the MPEG -4 AVC/H.264 Codec in
0x00000040 YUV444 mode. If this flag is set, the
RDPGFX_CAPS _FLAG_AVC DISABLED flag MUST NOT be set.

2.2.3.7 RDPGFX_CAPSET_VERSION104

The RDPGFX_CAPSET_VERSION104 structure specifies an RDP version 10.4 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6.

version
capsDatalength
flags
version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This field
MUST be set to RDPGFX_CAPVERSION_104 (0x000A0400).
capsDatalLength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capability set data. This field MUST be set to 0x00000004.
flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.
Flag Meaning
RDPGFX_CAPS_FLAG_SMALL_CACHE See the definition of the
0X00000002 RDPGFX_CAPS_FLAG_SMALL_CACHE (0x00000002) flag in
section 2.2.3.1 for details.
RDPGFX_CAPS_FLAG_AVC_DISABLED If this flag is set, it indicates that usage of the MPEG -4
AVC/H.264 Codec in any mode is not supported in the
0x00000020 RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1)
message. If the flag is not set, the client MUST be capable
of processing:
1. The MPEG -4 AVC/H.264 Codec in YUV444 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 message.
2. The MPEG -4 AVC/H.264 Codec in YUV420 mode in the
RDPGFX_WIRE_TO_SURFACE_PDU_1 message in the
same frame as other codecs.
RDPGEX_CAPS_FLAG_AVC_THINCLIENT See the definition of the
RDPGEX_CAPS FLAG_AVC_THINCLIENT (0x00000040) flag

40 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Flag Meaning

0x00000040 in section 2.2.3.6 for details.

2238 RDPGFX CAPSET VERSION105

The RDPGFEX_CAPSET_VERSION105 structure specifies an RDP version 10.5 Graphics Capability
Set and conforms to the capability set layout specified in section 2.2.1.6.

i 2 3
0O(1(2(3|4|5|6|7|8|9]|0|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|6|72|8|9|0|1
version
capsDatal ength
flags
version (4 bytes): A 32 -bit unsigned integer that specifies the version of the capability set. This field
MUST be set to RDPGFX_CAPVERSION_105 (0x000A0502).
capsDatalength (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
capab ility set data. This field MUST be set to 0x00000004.
flags (4 bytes): A 32 -bit unsigned integer that specifies capability flags.
Flag Meaning
RDPGFX_CAPS FLAG_SMALL CACHE See the definition of the
0x00000002 RDPGFX CAPS _FLAG _SMALL CACHE (0x00000002) flag
—— in section 2.2.3.1 for details.
RDPGFX_CAPS FLAG_AVC DISABLED See the definition of the
0x00000020 RDP_GFX _CAPS FLAG AVC_ DISABLED (0x00000020)
I flag in section 2.2.3.7 for details.
RDPGFEX_CAPS FLAG_AVC THINCLIENT See the definition of the
0x00000040 RDP_GFX _CAPS FLAG AVC_ THINCLIENT (0x00000040)
—— flag in section 2.2.3.6 for details.

2.2.4 Bitmap Compression

2241 CLEARCODEC_BITMAP_STREAM

The CLEARCODEC_BITMAP_STREAM structure encapsulates metadata and a stream of bitmap data
encoded using ClearCodec compression techniques. Bitmaps with widths larger than 65,535 pixels and
heights larger than 65,535 pixels MUST NOT be encoded using ClearCodec. ClearCodec -compressed
bitmap data is transported in the bitmapData field ofthe RDPGFX_WIRE_TO_SUR FACE_PDU_1
(section 2.2.2.1) message.

41 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0|1

flags segNumber glyphindex (optional)

compositePayload (variable)

flags (1 byte): An 8 -bit unsigned integer that specifies glyph and control flags.

Flag Meaning

CLEARCODEC_FLAG_GLYPH_INDEX Indicates that the glyphindex field is present. This flag MUST NOT
0x01 be used in conjunction with a bitmap that has an area larger than
1024 squa re pixels.

CLEARCODEC_FLAG_GLYPH_HIT Indicates the source of the glyph data. This flag MUST NOT be

0x02 present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag is not
present.
If the CLEARCODEC_FLAG_GLYPH_HIT flag is not present, the glyph
data is present inthe compositePayload field. The decompressed

payload MUST be placed in the Decompressor Glyph Storage
(section 3.3.1.9) ADM element at the index specified by the
glyphindex field.

If the CLEARCODEC_FLAG_GLYPH_HIT flag is present, the glyph data

is alrea dy presentinthe Decompressor Glyph Storage ADM
element at the index specified by the glyphindex field. In this case,
the compositePayload field MUST NOT be present.

CLEARCODEC_FLAG_CACHE_RESET | Indicates that both the V-Bar Storage Cursor (section 3 .3.1.11)
0x04 ADM elementand ShortV -Bar Storage Cursor (section 3.3.1.13)
ADM element MUST be reset to 0 before decoding the stream.

seqNumber (1 byte): An 8 -bit unsigned integer that specifies the sequencing of the stream. For the
first ClearCodec message in the remote session, this value MUST be 0x00. In subsequent

messages, the value of the seqNumber field MUST be equal to the value of the seqNumber field

in the previous ClearCodec message plus one. The sequence number counter wraps around the
value OxFF, with 0x00 following message OxFF.

glyphindex (2 bytes, optional): An optional 16 -bit unsigned integer that specifies the position in
the Decompressor Glyph Storage ADM element for the current glyph. This field MUST NOT be
present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag is not present in the flags field. If
this field is present, its value MUST be in the range 0 (0x0000) to 3,999 (OxOF9F), inclus ive.

compositePayload (variable): An optional variable -length
CLEARCODEC_COMPOSITE_PAYLOAD (section 2.2.4.1.1) structure. This field MUST NOT be
present if the CLEARCODEC_FLAG_GLYPH_INDEX (0x01) flag and the
CLEARCODEC_FLAG_GLYPH_HIT (0x02) flag are both presentinthe flags field.

22411 CLEARCODEC_COMPOSITE_PAYLOAD

The CLEARCODEC_COMPOSITE_PAYLOAD structure contains bitmap data encoded using
ClearCodec compression techniques.

42 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0|1

residualByteCount

bandsByteCount

subcodecByteCount

residualData (variable)

bandsData (variable)

subcodecData (variable)

residualByteCount (4 bytes): A 32 -bit unsigned integer that specifies the number of bytes in the
residualData field.

bandsByteCount (4 bytes): A 32 -bit unsigned integer that specifies the number of bytes in the
bandsData field.

subcodecByteCount (4 bytes): A 32 -bit unsigned integer that specifies the number of bytes in the
subcodecData field.

residu alData (variable): An optional variable -length CLEARCODEC_RESIDUAL_DATA (section
2.2.4.1.1.1) structure that contains the compressed data for the first layer of the image. If the
residualByteCount field is zero, this field MUST NOT be present.

bandsData (variable): An optional variable -length CLEARCODEC_BANDS_DATA (section
2.2.4.1.1.2) structure that contains the compressed data for the second layer of the image. If the
bandsByteCount field is zero, this field MUST NOT be present.

subcodecData (variable): An optional variable -length CLEARCODEC_SUBCODECS_DATA (section
2.2.4.1.1.3) structure that contains the compressed data for the third layer of the image. If the
subcodecByteCount field is zero, this field MUST NOT be present.

224111 CLEARCODEC_RESIDUAL_DATA

The CLEARCODEC_RESIDUAL_DATA structure contains the first layer of pixels in an encoded

image. The number of pixels encoded by this structure MUST be less than or equal to the number of

pixels in the original image. The pixels are ordered from left to right a nd then top to bottom, and are
stored as a succession of CLEARCODEC_RGB_RUN_SEGMENT (section 2.2.4.1.1.1.1) structures.

43 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0|1

runSegments (variable)

runSegments (variable): A variable -length array of CLEARCODEC_RGB_RUN_SEGMENT structures.

2241111 CLEARCODEC_RGB_RUN_SEGMENT

The CLEARCODEC_RGB_RUN_SEGMENT structure encodes a single RGB run segment.

1 2 3

0|1|2(3|4|5(6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[6|7|8[9|0]|1
blueValue greenValue redValue runLengthFactorl
runLengthFactor2 (optional) runLengthFactor3 (optional)

blueValue (1 byte): An 8 - bit unsigned integer that specifies the blue value of the current pixel.
greenValue (1 byte): An 8 -bit unsigned integer that spec ifies the green value of the current pixel.
redValue (1 byte): An 8 - bit unsigned integer that specifies the red value of the current pixel.
runLengthFactorl (1 byte): An 8 -bit unsigned integer. If this value is less than 255 (0xFF), the

runLengthFactor2 and runLengthFactor3 fields MUST NOT be present, and the current pixel
MUST be repeated for the next runLengthFactorl positions. If the runLengthFactorl field
equals 255 (OxFF), the runLengthFactor2 field MUST be present, and the run length is calculated
from the runLengthFactor2 field. The value of runLengthFactorl MUST be greater than zero.

runLengthFactor2 (2 bytes, optional): An optional 16 -bit unsigned integer. If this value is less
than 65,535 (OXFFFF), the runLengthFactor3 field MUST NOT be present, and the current pixel
MUST be repeated for the next runLengthFactor2 positions. If the runLengthFactor2 field
equals 65,535 (OxFFFF), the runLengthFactor3 field MUST be present (and nonzero), and the
run length is calculated fro m the runLengthFactor3 field. If present, the value of
runLengthFactor2 MUST be greater than zero.

runLengthFactor3 (4 bytes, optional): An optional 32 -bit unsigned integer. If this field is present,
it contains the run length, and the current pixel MUST be repeated for the next
runLengthFactor3 positions. This field SHOULD NOT be used if the run length is smaller than
65,535 (OxFFFF). If present, the value of runLengthFactor3 MUST be greater than zero.

224112 CLEARCODEC_BANDS_DATA

The CLEARCODEC_BANDS_DATA struc ture contains the second layer of pixels in an encoded image.
This layer MUST be decoded on top of the first layer, in some cases overwriting pixels in the first
layer. The data consists of a succession of CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structures

44 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0|1

bands (variable)

bands (variable): A variable -length array of CLEARCODEC_BAND structures.

2241121 CLEARCODEC_BAND

The CLEARCODEC_BAND structure specifies a horizontal band that is composed of columns of pixels.
Each of these columns is referred to as a "V -Bar". The maximum height of a band is 52 pixels.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6(7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

xStart xEnd

yStart yEnd

blueBkg greenBkg redBkg vBars (variable)

xStart (2 bytes): A 16 - bit unsigned integer that specifies the horizontal position (relative to the left
edge of the bitmap) where the band starts.

XEnd (2 bytes): A 16 -bit unsigned integer that specifies the horizontal position (relative to the left
edge of the bitmap) where the band ends. This is an inclusive coordinate.

yStart (2 bytes): A 16 -bit unsigned integer that specifies the vertical position (relative to the top
edge of the bitmap) where the band starts.

yEnd (2 bytes): A 16 - bit unsigned integer that specifies the vertical position (relative to the top
edge of the bitmap) where the band ends. This is an inclusive coordinate.

blueBkg (1 byte): An 8 -bit unsigned integer that specifies the blue value of the background for this
band.

greenBkg (1 byte): An 8 -bit unsigned integer that specifies the green value of the background for
this band.

redBkg (1 byte): An 8 -bit unsigned integer that specifi es the red value of the background for this
band.

vBars (variable): Avariable -length array of CLEARCODEC_VBAR (section 2.2.4.1.1.2.1.1)

structures. The total count of CLEARCODEC_VBAR structures MUST be equalto (xEnd - xStart
+ 1), one per x -coordinate i nthe band. TheV -Bars are encoded from left to right, with the first V -
Bar corresponding to the xStart field and the last corresponding to the xEnd field.

22411211 CLEARCODEC_VBAR

45 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

The CLEARCODEC_VBAR structure is used to encode a single column of pixels (referred toasa"Vv -
Bar") and is encapsulated inside a CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structure. The

xStart , xEnd , yStart and yEnd fields ofthe CLEARCODEC_BAND structure specify the area within
which the V -Bar is contained.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

vBarHeader (variable)

shortVBarPixels (variable)

vBarHeader (variable): A VBAR_CACHE_HIT (section 2.2.4.1.1.2.1.1.1) structure,
SHORT_VBAR_CACHE_HIT (section 2.2.4.1.1.2.1.1.2) structure, or
SHORT_VBAR_CACHE_MISS (section 2.2.4.1.1.2.1.1.3) structure.

shortVBarPixels (variable): An optional variable -length array of bytes that MUST be present only if
the vBarHeader field containsa SHORT_VBAR_CACHE_MISS structure. If this field is present,
the number of bytes in the field MUST be equal to 3 * (shortVBarYOff - shortVBarYOn): one
RGB triplet per pixel where shortVBarYOff and shortVBarYOn are specified in the
SHORT_VBAR_CACHE_MISS structure. This field contains raw pixels in top -to -bottom order.
The pixels are encoded in little -endian byte order (blue in the first byte, green in the second byte,
and red in the third byte).

Each pixel inthe V -Bar MUST be placed at position (xPos , yPos) in the image (relative to the top -
left corner), where ~ xPos and yPos are calculated as follows:

xPos = xStart + positionoftheV -Barinthe vBars fieldofthe CLEARCODEC_BAND structure

yPos = yStart + position of the pixel in the V-Bar Storage ADM element

224112111 VBAR_CACHE_HIT
The VBAR_CACHE_HIT structure is used to specify a V-Bar cache hit.

The use of this structure implies that the necessary V -Bar data is already present in the V-Bar
Storage (section 3.3.1.10) ADM element at the index specified by the vBarindex field. In this case,
the shortVBarPixels field of the encapsu lating CLEARCODEC_VBAR (section 2.2.4.1.1.2.1.1)

structure MUST NOT be present, and the size of the data in the V-Bar Storage ~ ADM element MUST be
equalto3*(yEnd - yStart +1)bytes,where yEnd and yStart are specified in the encapsulating
CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structure.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

vBarlndex X

46 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

vBarindex (15 bits): A 15 -bit unsigned integer that specifies the position in the V-Bar Storage
ADM element for the current V -Bar.

X (1 bit): A 1-bit field that MUST be set to 0x1.

224112112 SHORT_VBAR_CACHE_HIT

The SHORT_VBAR_CACHE_HIT structure is used to specify a Short V -Bar cache hit.

The use of this structure implies that the necessary Short V -Bar data is already present in the Short
V-Bar Storage (section 3.3.1.12) ADM element at the index specified by the shortVBarlndex field.
In this case, the shortVBarPixels field of the encapsulat ing CLEARCODEC_VBAR (section
2.2.4.1.1.2.1.1) structure MUST NOT be present, and the size of the data in the ShortV -Bar Storage

ADM element MUST NOT exceed 3 * (yEnd - yStart +1 - shortVBarYOn) bytes, where yEnd and
yStart are specified in the encapsulat ing CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structure.

As part of processing this header, each pixel position in the V-Bar Storage ADM element atthe V-
Bar Storage Cursor (section 3.3.1.11) ADM element MUST be updated using the data in the Short
V-Bar Stor age ADM element. The number of pixels placed into the V-Bar Storage ~ ADM element
MUST equal yEnd 71 yStart + 1. Foreach position y withinthe V -Bar, the pixels MUST be updated as
follows:

A If y < shortvBarYOn ,thenusethe blueBkg , greenBKg ,and redBkg values specified in the
encapsulating CLEARCODEC_BAND structure

A If y >= shortVBarYOn and y < shortVBarYOn + Short V -Bar pixel count, then use the color
found inthe ShortV -Bar Storage = ADM element at pixel position y T shortvBarYOn

A If y >= shortVBarYOn + Short V -Bar pixel count, then use the blueBkg , greenBKg , and
redBkg values specified in the encapsulating CLEARCODEC_BAND structure

The V-Bar Storage Cursor (section 3.3.1.11) ADM element MUST be incremented by 1 and MUST
wrap to zero when incremented from 32767.

1 2 S
0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6[7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

shortVBarlndex X shortVBarYOn
shortVBarlndex (14 bits): A 14 -bit unsigned integer that specifies the position in the ShortV -Bar
Storage ADM element for the current Short V -Bar.

X (2 bits): A 2 -bit unsigned integer that MUST be set to 0x1.

shortVBarYOn (8 bits): An 8 -bit unsigned integer that specifies where the Short V -Bar begins,
expressed as an offset from the top of the V -Bar.

224112113 SHORT_VBAR_CACHE_MISS

The SHORT_VBAR_CACHE_MISS structure is used to specify a Short V -Bar cache miss.

As part of processing this header, each pixel position in the Short V-Bar Storage (section 3.3.1.12)

ADM element atthe Short V-Bar Storage Cursor (section 3.3.1.13) ADM element MUST be updated
using the data inthe ~ shortVBarPixels field of the encapsulating CLEARCODEC_VBAR (section
2.2.4.1.1.2.1.1) structure. The number of pixe Is placed into the Short V-Bar Storage ADM element
MUST equal shortVBarYOff - shortvVBarYOn (shortvVBarYOff MUST be larger than or equal to
shortVBarYOn).

The Short V-Bar Storage Cursor ADM element MUST be incremented by 1.

47 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

In addition to updating the Short V-Bar Storage ADM element, each pixel position in the V-Bar
Storage (section 3.3.1.10) ADM element and the V- Bar Storage Cursor (section 3.3.1.11) ADM
element MUST be updated using the data in the ShortV -Bar Storage =~ ADM element. The number of
pixels place dintothe V-Bar Storage ADM element MUST equal yEnd 7 yStart + 1. For each position
y within the V -Bar, the pixels MUST be updated as follows:

A If y < shortVBarYOn ,thenusethe blueBkg , greenBKg ,and redBkg values specified in the
encapsulating CLEARCODEC _BAND structure

A If y >= shortVBarYOn and y < shortVBarYOn + Short V -Bar pixel count, then use the color
foundinthe ShortVV -Bar Storage = ADM element at pixel position y 1 shortvVBarYOn

A If y >= shortvBarYOn + Short V -Bar pixel count, then use the blueBkg , greenBKg , and
redBkg values specified in the encapsulating CLEARCODEC_BAND structure

The V-Bar Storage Cursor (section 3.3.1.11) ADM element MUST be incremented by 1 and MUST
wrap to zero when incremented from 32767.

1 2 3
0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

shortVBarYOn shortVBarYOff X
shortVBarOn (8 bits): An 8 -bit unsigned integer that specifies where the Short V -Bar begins,
expressed as an offset from the top of the V -Bar.
shortVBarOff (6 bits): A 6 - bit unsigned integer that specifies where the Short V -Bar ends,
expressed as an offset from the top of the V -Bar.

X (2 bits): A 2-bit unsigned integer that MUST be set to 0x0.

224113 CLEARCODEC_SUBCODECS_DATA

The CLEARCODEC_SUBCODECS_DATA structure contains the third layer of pixels in an encoded
image. This layer MUST be decoded on top of the second layer, in some cases overwriting pixels in the

first and second layers. The data consists of a succession of CLEARCODEC_SUBCODEC (section
2.2 .4.1.1.3.1) structures.

0(1(2|3[(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

subcodecs (variable)

subcodecs (variable): A variable -length array of CLEARCODEC_SUBCODEC structures.

2241131 CLEARCODEC_SUBCODEC

The CLEARCODEC_SUBCODEC structure encapsulates an uncompressed bitmap or a bitmap encoded
with the NSCodec Codec ((MS -RDPNSC] sections 1 through 3) or the RLEX scheme as specified in
section 2.2.4.1.1.3.1.1.

48 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

1 2 3
0|1|2(3|4|5(6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[(6|7|8[9|0]|1
xStart yStart
width height

bitmapDataByteCount
subCodecld bitmapData (variable)

xStart (2 bytes): A 16 - bit unsigned integer that specifies the horizontal position (relative to the left
edge of the bitmap) where the subcodec -encoded bitmap MUST be placed once it has been
decoded.

yStart (2 bytes): A 16 -bit unsigned integer that specifies the vertical position (relative to the top
edge of the bitmap) where the subcodec -encoded bitmap MUST be placed once it has been
decoded.

width (2 bytes): A 16 -bit unsigned integer that specifies the width of the subcodec -encoded bitmap.

height (2 bytes): A 16 - bit unsigned integer that specifies the height of the subcodec -encoded
bitmap.

bitmapDataByteCount (4 bytes): A 32 -bit unsigned integer that specifies the number of bytes in
the bitmapData field. This field MUST be used to determine whether the bitm ap in the
bitmapData field is in compressed or uncompressed format. The value in the
bitmapDataByteCount field MUST NOT exceed (3* width * height).

subCodecld (1 byte): An 8 -bit unsigned integer that identifies the encoding scheme used to encode

the data inthe bitmapData field.

bitmapData (variable): A variable -length array of bytes that contains bitmap data.
If the subCodecld field equals 0x00, the bitmapData field contains the raw pixels of the bitmap
in little -endian byte order (blue in the first byt e, green in the second byte, and red in the third

byte). The pixels are ordered from left to right and then top to bottom.

If the subCodecld field equals 0x01, the bitmapData field contains a bitmap encoded with the
NSCodec Codec ([MS -RDPNSC]section1,2 and 3).

Ifthe subCodecld field equals 0x02,the bitmapData field contains a
CLEARCODEC_SUBCODEC_RLEX (section 2.2.4.1.1.3.1.1) structure.

22411311 CLEARCODEC_SUBCODEC_RLEX

The CLEARCODEC_SUBCODEC_RLEX structure contains a palette and segments that contain
encoded indexes that reference colors in the palette.

49 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0|1

paletteCount paletteEntries (variable)

segments (variable)

paletteCount (1 byte): An 8 -bit unsigned integer that specifies the number of
RLEX_RGB_TRIPLET (section 2.2.4.1.1.3.1.1.1) structures in the paletteEntries field. This
value MUST be less than or equal to 0x7F. The number of bits in the stopindex field of each
CLEARCODEC_SUBCODE C_RLEX_SEGMENT (section 2.2.4.1.1.3.1.1.2) structure embedded in
the segments field is given by floor(log 2(paletteCount T 1) +1.

paletteEntries (variable): Avariable -length array of RLEX_RGB_TRIPLET structures. The number
of elements in this array is s pecified by the paletteCount field.

segments (variable): Avariable -length array of CLEARCODEC_SUBCODEC_RLEX_SEGMENT
structures.

224113111 RLEX_RGB_TRIPLET

The RLEX_RGB_TRIPLET structure is used to express the red, green, and blue components
necessary to reproduce a color in the additive RGB space.

1 2 S
0(1(2|3[(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

blue green red
blue (1 byte): An 8 -bit unsigned integer that specifies the blue RGB color component.
green (1 byte): An 8 -bit unsigned integer that specifies the green RGB color component.
red (1 byte): An 8 -bit unsigned integer that specifies the red RGB color component.
224113112 CLEARCODEC_SUBCODEC_RLEX_SEGMENT

The CLEARCODEC_SUBCODEC_RLEX_SEGMENT structure contains a collect ion of encoded palette
indexes. This encoding exploits the fact that a collection of palette indexes can consist of the
following:

A Repeated values
A Sequences of values that monotonically increase by 1

A palette index that repeats N times is called a "run of length N" (for example, 0x03, 0x03 is a run of
length 2), while a sequence of palette indexes that monotonically increase by 1 is called a "suite"
(0x04, 0x05, 0x06 is a suite with a stopping value of 0x06 and a depth of 3). In the specification for

50 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

the CLEARCODEC_SUBCODEC_RLEX_SEGMENT structure, the run length factor fields
(runLengthFactorl , runLengthFactor2 ,and runLengthFactor3) represent the number of times a
starting color (defined by the stoplndex and suiteDepth fields) repeats before a suite (also defined
by the stopindex and suiteDepth fields) begins.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

stoplndex (variable)

suiteDepth (variable)

runLengthFactorl runLengthFactor2 (optional) runLengthFactor3
(optional)
stoplndex (variable): A variable number of bits (maximum 7 bits) that defines an unsigned integer.
The number of bits is determined by the paletteCount field of the encapsulating

CLEARCODEC_SUBCODEC_RLEX (section 2.2.4.1.1.3.1.1) structure and the sum of the number

of bits in this field and the suiteDepth field MUST equal 8 (the bits in the stoplndex field are
present in the least significant bits of the containing byte). The stoplndex field specifies the
position ofan RLEX_RGB_TRIPLET (section 2.2.4.1.1.3.1.1.1) structure in the paletteEntries
field of the encapsulating CLEARCODEC_SUBCODEC_RLEX structure. This
RLEX_RGB_TRIPLET structure is referred to as stopColor

suiteDepth (variable): A variable numb er of bits (maximum 8 bits) that defines an unsigned
integer. The sum of the number of bits in this field and the stoplndex field MUST equal 8, and
the bits in the suiteDepth field are present in the most significant bits of the containing byte. The
suiteD epth field specifies the number of consecutive indexes encoded in the current suite. Each
index represents one pixel preceding the stopindex and starting from stoplndex i suiteDepth
(referred to as startindex). The startindex value specifies the positiono fan
RLEX_RGB_TRIPLET structure (referred to as startColor) inthe paletteEntries field of the
encapsulating CLEARCODEC_SUBCODEC_RLEX structure.

runLengthFactorl (1 byte): An 8 -bit unsigned integer. If the value of the runLengthFactorl field
is less than 255 (OxFF), the runLengthFactor2 and runLengthFactor3 fields MUST NOT be
present and the startColor value MUST be applied to the next runLengthFactorl pixels. If the
value of the runLengthFactorl field equals 255 (OxFF), the runLengthFactor2 field MUST be
present, and the run length is calculated from the runLengthFactor2 field.

runLengthFactor2 (2 bytes, optional): An optional 16 -bit unsigned integer. If the value of the
runLengthFactor2 field is less than 65,535 (OXFFFF), the runLengthFactor3 field MUST NOT be
present, and the startColor value MUST be applied to the next runLengthFactor2 pixels. If the
value of the runLengthFactor2 field equals 65,535 (OXFFFF), the runLengthFactor3 field MUST
be present, and the run length is calculated from the runLength Factor3 field.

51 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

runLengthFactor3 (4 bytes, optional): An optional 32 -bit unsigned integer. If this field is present,
it contains the run length. The startColor value MUST be applied to the next runLengthFactor3
pixels. This field SHOULD NOT be used if the run length is smaller than 65,535 (OXFFFF).

2242 RFX_PROGRESSIVE_BITMAP_STREAM

The RFX_PROGRESSIVE_BITMAP_STREAM structure encapsulates regions of a graphics frame
compressed using discrete wavelet transforms (DWTSs), sub -band diffing, and progressive compression
techniques. The data compressed using these techniques is transported in the bitmapData field of
the RDPG FX_WIRE_TO_SURFACE_PDU_2 (section 2.2.2.2) message.

0(1(2|3[(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

progressiveDataBlocks (variable)

progressiveDataBlocks (variable): A variable -length array of RFX_PROGRESSIVE_DATABLOCK
(section 2.2.4.2.1) structures.

22421 RFX_PROGRESSIVE_DATABLOCK

The RFX_PROGRESSIVE_DATABLOCK structure is used to wrap data sent from the server to the
client. All RemoteFX Progressive data blocks conform to this basic structure and are specified in
sections 2.2.4.2.1.1 through 2.2.4.2.1.5.5.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

blockType blockLen

blockData (variable)

blockType (2 bytes): A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to one of the following values. If this field is not set to one of the specified values, the decoder
SHOULD ignore the contents of the blockLen and blockData fields.

Value Meaning

WBT_SYNC RFX_PROGRESSIVE_SYNC (section 2.2.4.2.1.1)

0xCCCO

WBT_FRAME_BEGIN RFX_PROGRESSIVE_FRAME_BEGIN (section 2.2.4.2.1.2)
0xCCC1

WBT_FRAME_END RFX_PROGRESSIVE_FRAME_END (section 2.2.4.2.1.3)
0xCCcC2

52 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Value Meaning
WBT_CONTEXT RFX_PROGRESSIVE_CONTEXT (section 2.2.4.2.1.4)
0xCCC3
WBT_REGION RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5)
0xCCC4
WBT_TILE_SIMPLE RFX_PROGRESSIVE_TILE_SIMPLE (section 2.2.4.2.1.5.3)
0xCCC5
WBT_TILE_PROGRESSIVE_FIRST RFX_PROGRESSIVE_TILE_FIRST (section 2.2.4.2.1.5.4)
0xCCC6
WBT_TI LE_PROGRESSIVE_UPGRADE | RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5)
0xCCC7

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the combined size, in bytes, of the

blockType , blockLen and blockData fields.

blockData (variable): A variable -length field that contains data that conforms to the structure of
the type specified by the blockType field.

224211 RFX_PROGRESSIVE_SYNC

The RFX_PROGRESSIVE_SYNC structure is used to transport codec version information. It is

optional and SHOULD appea r only once as the first block in the progressiveDataBlocks field of the
encapsulating RFX_PROGRESSIVE_BITMAP_STREAM (section 2.2.4.2) structure. If this block

appears out of sequence, the decoder SHOULD ignore it.

1 2 3
0|1|2(3|4|5|6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[|6|7|8[9|0]|1
blockType blockLen

magic
version
blockType (2 bytes): A 16 - bit unsigned integer that specifies the block type. This field MUST be set
to WBT_SYNC (0xCCCO0).
blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_SYNC block. This field MUST be set to 12 (0x0000000C).
magic (4 bytes): A 32 -bit unsigned integer that SHOULD be set to OXCACCACCA. The decoder
SHOULD ignore this value.
version (2 bytes): A 16 -bit unsigned integer that specifies the version of the codec. The upper 8
bits indicate the major version number, while the lower 8 bits indicate the minor version number.
The current version of the wire format is 1.0 (encoded as 0 x0100). The decoder SHOULD ignore
this value.
224212 RFX_PROGRESSIVE_FRAME_BEGIN

53 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

The RFX_PROGRESSIVE_FRAME_BEGIN structure marks the beginning of the frame in the codec
payload. This block MUST appear only once, before any RFX_PROGRESSIVE_REGION (section
2.2.4.2. 1.5) blocks but after the RFX_PROGRESSIVE_CONTEXT (section 2.2.4.2.1.4) block.

0(1(2|3[(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

blockType blockLen

framelndex

regionCount

regions (variable)

blockType (2 bytes): A 16 - bit unsigned integer that specifies the block type. This field MUST be set
to WBT_FRAME_BEGIN (0xCCC1).

blockLen (4 bytes): A 32 - bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_FRAME_BEGIN block, excluding the size of the regions field. This field
MUST be set to 12 (0x0000000C).

framelndex (4 bytes): A 32 - bit unsigned integer that specifies the frame index. This value SHOULD
be ignored by the decoder.

regionCount (2 bytes): A 16 -bit unsig ned integer that specifies the number of
RFX_PROGRESSIVE_REGION blocks that follow this RFX_PROGRESSIVE_FRAME_BEGIN
block.

regions (variable): An array of RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) blocks. The
number of elements in this array is specifi ed by the regionCount field. If the number of elements
specified by the regionCount field is larger than the actual number of elements in the regions

field, the decoder SHOULD ignore this inconsistency.

224213 RFX_PROGRESSIVE_FRAME_END

The RFX_PROGRESSIVE_FRAME_E ND structure marks the end of the frame in the codec payload.
This block SHOULD appear only once, after the final RFX_PROGRESSIVE_REGION (section
2.2.4.2.1.5) block. If this block appears more than once, the decoder SHOULD ignore the other
occurrences.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

blockType blockLen

blockType (2 bytes): A 16 - bit unsigned integer that specifies the block type. This field MUST be set
to WBT_FRAME_END (0xCCC2).

54 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_FRAME_END block. This field MUST be set to 0x00000006.

224214 RFX_PROGRESSIVE_CONTEXT

The RFX_PROGRESSIVE_CONTEXT structure provides information about the compressed data. It is
optional and SHOULD appear before the RFX_PROGRESSIVE_FRAME_BEGIN (section 2.2.4.2.1.2)
block. If the block appears after the RFX_PROGRESSIVE_FRAME_BEGIN block, the decoder
SHOULD process it.

1 2 3
0|1|2(3|4|5(6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[6|7|8[9|0]|1
blockType blockLen
ctxld tileSize
flags
blockType (2 bytes): A 16 - bit unsigned integer that specifies the block type. This field MUST be set
to WBT_CONTEXT (0xCCC3).
blockLen (4 bytes): A 32 - bit unsigned integer that specifies the size, in bytes, of the
RFX_PROGRESSIVE_CONTEXT block. This field MUST be set to 10 (0x0000000A)
ctxld (1 byte): An 8 - bit unsigned integer that specifies the context ID. This field SHOULD be set to
0x00. The d ecoder SHOULD ignore this value.
tileSize (2 bytes): A 16 - bit unsigned integer that indicates the width and height of a square tile.
This field MUST be set to 0x0040.
flags (1 byte): An 8 -bit unsigned integer that contains context flags.
Flag Meaning

RFX_SUBBAND_DIFFING Indicates that sub -band diffing is enabled.
0x01

224215 RFX_PROGRESSIVE_REGION

The RFX_PROGRESSIVE_REGION structure contains the compressed data for a set of tiles from the
frame. Al RFX_PROGRESSIVE_REGION blocks SHOULD be present between t he
RFX_PROGRESSIVE_FRAME_BEGIN (section 2.2.4.2.1.2) and RFX_PROGRESSIVE_FRAME_END
(section 2.2.4.2.1.3) blocks. If a block is not present between the

RFX_PROGRESSIVE_FRAME_BEGIN and RFX_PROGRESSIVE_FRAME_END blocks, the decoder
MUST ignore it.

Note that RFX_PROGRESSIVE_REGION entries that are part of the same frame can share the tiles

defined inthe tiles field of each entry. In this scenario, tiles are not repeated in successive
RFX_PROGRESSIVE_REGION entries. Across all of the RFX_PROGRESSIVE_REGION entries of a
frame, the rectangles (defined in the rects field of each entry) MUST be distinct, and the region

defined by these rectangles MUST be completely covered by all of the tiles defined in the
RFX_PROGRESSIVE_REGION entries of the frames. Note that in this context, the frame is

bracketed between the RDPGFX_START_FRAME_PDU and the RDPGFX_END_FRAME_PDU ,and

55 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

can span multiple = RFX_PROGRESSIVE_FRAME_BEGIN and RFX_PROGRESSIVE_FRAME_END
blocks.

0123456789(1)123456789312345678931
blockType blockLen
tileSize numRects
numQuant numProgQuant flags
numTiles tileDataSize

rects (variable)

guantVals (variable)

guantProgVals (variable)

tiles (variable)

blockType (2 bytes): A 16 - bit unsigned integer that specifies the block type. This field MUST be set
to WBT_REGION (OxCCC4).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the variable -
length RFX_PROGRESSIVE_REGION block.

tileSize (1 byte): An 8 -bit unsigned integer that indicates the width and height of a square tile. This
field MUST be set to 0x40.

numRects (2 bytes): A 16 -bit unsigned integer that specifies the number of TS_RFX_RECT ([MS -
RDPRFX] section 2.2.2.1.6) structures in the re cts field. The value of this field MUST be greater
than zero.
56 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

numQuant (1 byte): An 8 -bit unsigned integer that specifies the number of
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) structures in the quantVals field.
The value of this field MUST be in the range 0 to 7 (inclusive).

numProgQuant (1 byte): An 8 -bit unsigned integer that specifies the number of
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) structures in the guantProgVals
field.
flags (1 byte): An 8 -bit unsigned integer that contain s region flags.
Flag Meaning
RFX_DWT_REDUCE_EXTRAPOLATE | Indicates that the discrete wavelet transform (DWT) uses the
0x01 "Reduce -Extrapolate" method.
numTiles (2 bytes): A 16 -bit unsigned integer that specifies the number of elements in the tiles
field.
tileDataSize (4 bytes): A 32 - bit unsigned integer that specifies the size, in bytes, of the tiles field.
rects (variable): Avariable -length array of TS_RFX_RECT structures that specifies the encoded
region (the number of rectangles in this field is specified by the numRects field). This region
MUST be completely covered by the tiles enumerated in the tiles field of this
RFX_PROGRESSIVE_REGION entry and by tiles that were specified in
RFX_PROGRESSIVE_REGION entries that previously appeared within the current frame. Note
that because regions are not necessarily tile -aligned, it is valid for tiles to carry compressed

information for pixels outside of the region.

quantVals (variable): Avariable -length array of RFX_COMPONENT_CODEC_QUANT structures
(th e number of quantization tables in this field is specified by the numQuant field).

quantProgVals (variable): A variable -length array of RFX_PROGRESSIVE_CODEC_QUANT
structures (the number of quantization tables in this field is specified by the numProgQuant
field).

tiles (variable): A variable -length array of RFX_PROGRESSIVE_DATABLOCK (section 2.2.4.2.1)
structures. The value of the blockType field of each block present in the array MUST be

WBT_TILE_SIMPLE (0XCCC5), WBT_TILE_PROGRESSIVE_FIRST (0 XCCC6), or
WBT_TILE_PROGRESSIVE_UPGRADE (0XCCC?7).

2242151 RFX_PROGRESSIVE_CODEC_QUANT

The RFX_PROGRESSIVE_CODEC_QUANT structure specifies a progressive quantization table for
compressing a tile.

1 2 3
0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6[7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

quality yQuantValues

cbQuantValues

crQuantValues

57 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

quality (1 byte): An 8 -bit unsigned integer that specifies the quality associated with the progressive
stage as a value between 0 (0x00) and 100 (0x64), where 100 (0x64) indicates that the tile will

reach its final target quality. This value SHOULD be ignored by the decode

r.

yQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2)
structure that contains the progressive quantization table for the Luma (Y) component.

cbQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT structure that contains the

progr essive quantization table for the Chroma Blue (Cb) component.

crQuantValues (5 bytes): An RFX_COMPONENT_CODEC_QUANT structure that contains the

progressive quantization table for the Chroma Red (Cr) component.

2242152 RFX_COMPONENT_CODEC_QUANT

The RFX_COMPONENT_C ODEC_QUANT structure stores information regarding the scalar
guantization values for the ten sub -bands in the three -level discrete wavelet transform (DWT)

decomposition.

When embedded within the quantVals field of the RFX_PROGRESSIVE_REGION (section
2.2.4. 2.1.5) structure, the RFX_COMPONENT_CODEC_QUANT structure contains the scalar
quantization values. Each field in this structure MUST have a value in the range of 0 to 15 (inclusive).

When embedded within the yQuantValues , cbQuantValues ,and crQuantValues fields of the

RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) structure, the

RFX_COMPONENT_CODEC_QUANT structure contains values to be added to the quantization

values specified inthe quantVals field of the RFX_PROGRESSIVE_REGION structure. Each field in
this structure MUST have a value in the range of 0 to 8 (inclusive).
Note thatthe RFX_COMPONENT_CODEC_QUANT structure differs from the
TS_RFX_CODEC_QUANT ([MS -RDPRFX] section 2.2.2.1.5) structure with respect to the order of the
bands.
1 2 3
0|1|2(3|4|5|6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1|2|3|4|5[6|7|8[9|0]|1
LL3 HL3 LH3 HH3 HL2 LH2 HH2 HL1
LH1 HH1
LL3 (4 bits): A 4 -bit, unsigned integer. The LL quantization factor for the level -3 DWT sub -band.
HL3 (4 bits): A 4 -Dbit, unsigned integer. The HL quantization factors for the level -3 DWT sub -band.
LH3 (4 bits): A 4 -Dbit, unsigned integer. The LH quantization factor for the level -3 DWT sub -band.
HH3 (4 bits): A 4 -bit, unsigned integer. The HH quantization factor fo r the level -3 DWT sub -band.
HL2 (4 bits): A 4 -Dbit, unsigned integer. The HL quantization factor for the level -2 DWT sub -band.
LH2 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level -2 DWT sub -band.
HH2 (4 bits): A 4-bit, unsign ed integer. The HH quantization factor for the level -2 DWT sub -band.
HL1 (4 bits): A 4-bit, unsigned integer. The HL quantization factor for the level -1 DWT sub -band.
LH1 (4 bits): A 4-bit, unsigned integer. The LH quantization factor for the level -1 DWT sub-band.
HH1 (4 bits): A 4-bit, unsigned integer. The HH quantization factor for the level -1 DWT sub -band.
58 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2242153 RFX_PROGRESSIVE_TILE_SIMPLE

The RFX_PROGRESSIVE_TILE_SIMPLE structure specifies a tile that has been compressed without
progressive techniques.

1 2 3]
0|1|2|3|4|5|6|7|8[9(0|1|2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1
blockType blockLen

quantldxyY quantldxCb
quantldxCr xldx yldx
flags yLen
cbLen crLen
tailLen yData (variable)

cbData (variable)

crData (variable)

tailData (variable)

blockType (2 bytes): A 16 - bit unsigned integer that specifies the block type. This field MUST be set
to WBT_TILE_SIMPLE (0xCCCS5).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the variable -
length RFX_PROGRESSIVE_TILE_SIMPLE block.

quantldxy (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the guantVals field) of the

containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified quantization
table MUST be used for de -quantization of the sub -bands for the Luma (Y) component.

59 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

quantldxCb (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (t he quantvals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Blue (Cb) component.

quantldxCr (1 byte): An 8 -bit unsigned integer that specifies an ind ex into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
guantization of the sub -bands for the Chroma Red (Cr) component.

xldx (2 bytes): A 16 -bit unsigned integer that specifies the x -index of the encoded tile in the screen
tile grid. The pixel x -coordinate is obtained by multiplying the x -index by the size of the tile.
yldx (2 bytes): A 16 -bit unsigned integer that specifies the y -index of the e ncoded tile in the screen
tile grid. The pixely -coordinate is obtained by multiplying the y -index by the size of the tile.
flags (1 byte): An 8 -bit unsigned integer that contains tile flags.
Flag Meaning
REX_TILE_DIFFERENCE | Indicates that the tile contains the compressed difference of the DWT coefficients
0x01 for the same tile between the current frame and the previous frame.
yLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the yData field.
cbLen (2 bytes): A 16 -bit uns igned integer that specifies the size, in bytes, of the cbData field.
crLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the crData field.
tailLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the tailData field.
This field SHOULD <1> be set to zero.
yData (variable): A variable -length array of bytes that contains the compressed data for the Luma
(Y) component of the tile using, a d iscrete wavelet transform (DWT), sub -band diffing if enabled,

and quantization and entropy encoded using the RLGR1 method. The size of this field, in bytes, is
specified by the yLen field.

cbData (variable): A variable -length array of bytes that contains the compressed data for the
Chroma Blue (Cb) component of the tile using the same methods as the yData field. The size of
this field, in bytes, is specified by the cbLen field.

crData (variable): A variable -length array of bytes that contains the compressed data for the
Chroma Red (Cr) component of the tile using the same methods as the yData field. The size of
this field, in bytes, is specified by the crLen field.

tailData (variable): A variable -length array of bytes that contains data that SHOULD <2> be
ignored. The size of this field, in bytes, is specified by the tailLen field.

2242154 RFX_PROGRESSIVE_TILE_FIRST

The RFX_PROGRESSIVE_TILE_FIRST structure specifies the first ~ -pass compression of a tile with
progressive techniques. Subsequent passes, which improve the quality of the tile, are specified using
the RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5) block.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

blockType blockLen

60 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

quantldxyY quantldxCb
quantldxCr xldx yldx
flags progressiveQuality yLen
cbLen crLen
tailLen yData (variable)

chData (variable)

crData (variable)

tailData (variable)

blockType (2 bytes): A 16 - bit unsigned integer that specifies the block type. This field MUST be set
to WBT_TILE_PROGRESSIVE_FIRST (0xCCCS6).

blockLen (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the variable -
length RFX_PROGRESSIVE_TILE_FIRST blo ck.

quantldxy (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of the
containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified quantizati on

table MUST be used for de -quantization of the sub -bands for the Luma (Y) component.

quantldxCb (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Blue (Cb) component.

quantldxCr (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
guantization of the sub -bands for the Chroma Red (Cr) component.

61 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

xldx (2 bytes): A 16 -bit unsigned integer that specifies the x-index of the encoded tile in the screen

tile grid. The pixel x -coordinate is obtained by multiplying the x -index by the size of the tile.
yldx (2 bytes): A 16 -bit unsigned integer that specifies the y -index of the encoded tile in the screen
tile grid. T he pixel y -coordinate is obtained by multiplying the y -index by the size of the tile.
flags (1 byte): An 8 -bit unsigned integer that contains a single tile flag.
Flag Meaning
RFX_TILE_DIFFERENCE | Indicates that the tile contains the compressed difference of the DWT
0x01 coefficients for the same tile between the current frame and the previous frame.

The seven high bits of the flags field MAY be set to zero by the encoder and MUST be ignored by
the decoder.

progressiveQuality (1 byte): An 8 -bit unsi gned integer that specifies an index into the
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) array (the quantProgVals field)
of the containing RFX_PROGRESSIVE_REGION block. A value of 255 (OxFF) indicates a full
progressive quality table (the quality is 100%, and all the coefficients are zero).

yLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the yData field.

cbLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the cbData field.

crLen (2 byte s): A 16 -bit unsigned integer that specifies the size, in bytes, of the crData field.

tailLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the tailData field.
This field SHOULD <3> be set to zero.

yData (variable): A variable -length array of bytes that contains the compressed data for the Luma
(Y) component of the tile using a discrete wavelet transform (DWT), sub -band diffing if enabled,
quantization and entropy encoded using the RLGR1 method. The size of this field, in bytes , 1S

specified by the yLen field.

cbData (variable): A variable -length array of bytes that contains the compressed data for the
Chroma Blue (Cb) component of the tile using the same methods as the yData field. The size of
this field, in bytes, is specifie d by the cbLen field.

crData (variable): A variable -length array of bytes that contains the compressed data for the
Chroma Red (Cr) component of the tile using the same methods as the yData field. The size of
this field, in bytes, is specified by the crLen field.

tailData (variable): A variable -length array of bytes that contains data that SHOULD <4> be
ignored. The size of this field, in bytes, is specified by the tailLen field.

2242155 RFX_PROGRESSIVE_TILE_UPGRADE

The RFX_PROGRESSIVE_TILE_UPGRADE structure contains data required for an upgrade pass of a
tile using progressive techniques. The block contains information that MUST be added to the
information currently stored by the decoder in order to increase the quality of the tile.

0(1(2|3|(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

blockType blockLen

quantldxyY guantldxCb

62 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

quantldxCr xldx yldx
progressiveQuality ySriLen
yRawLen cbSriLen
cbRawLen crSriLen
crRawLen ySriData (variable)

yRawData (variable)

cbSriData (variable)

cbRawData (variable)

crSriData (variable)

crRawData (variable)

blockType (2 bytes):

blockLen (4 bytes):

A 16 -bit unsigned integer that specifies the block type. This field MUST be set
to WBT_TILE_PROGRESSIVE_UPGRADE (0xCCC7).

A 32 -bit unsigned integer that specifies the size, in bytes, of the variable

length RFX_PROGRESSIVE_TILE_UPGRADE

block.

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension

Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

63 / 143

quantldxY (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT (section 2.2.4.2.1.5.2) array (the quantVals field) of the
containing RFX_PROGRESSIVE_REGION (section 2.2.4.2.1.5) block. The specified quanti zation
table MUST be used for de -quantization of the sub -bands for the Luma (Y) component.

quantldxCb (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESS IVE_REGION block. The specified quantization table MUST be used for de -
quantization of the sub -bands for the Chroma Blue (Cb) component.

quantldxCr (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_COMPONENT_CODEC_QUANT array (the quantVals field) of the containing
RFX_PROGRESSIVE_REGION block. The specified quantization table MUST be used for de -
guantization of the sub -bands for the Chroma Red (Cr) component.

xldx (2 bytes): A 16 -bit unsigned integer that specifies the x -index of t he encoded tile in the screen
tile grid. The pixel x -coordinate is obtained by multiplying the x -index by the size of the tile.

yldx (2 bytes): A 16 - bit unsigned integer that specifies the y -index of the encoded tile in the screen
tile grid. The pixely -coordinate is obtained by multiplying the y -index by the size of the tile.

progressiveQuality (1 byte): An 8 -bit unsigned integer that specifies an index into the
RFX_PROGRESSIVE_CODEC_QUANT (section 2.2.4.2.1.5.1) array (the quantProgVals field)
of the containing RFX_PROGRESSIVE_REGION block. A value of 255 (OxFF) indicates a full
progressive quality table (the quality is 100%, and all the coeffi cients are zero).

ySriLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the ySriData field.

yRawLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the yRawData
field.

cbSriLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the cbSriData
field.

cbRawLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the cbRawData
field.

crSriLen (2 bytes): A 16 - bit unsigned integer that specifies the size, in bytes, of the crSriData
field.

crRawLen (2 bytes): A 16 -bit unsigned integer that specifies the size, in bytes, of the crRawData
field.

ySriData (variable): A variable -length array of bytes that contains bits for the Luma (YY) component

compressed usingt he Simplified -RL method.

yRawData (variable): A variable -length array of bytes that contains raw bits for the Luma ()
component.
cbSriData (variable): A variable -length array of bytes that contains bits for the Chroma Blue (Cb)

component compressed using the Simplified -RL method.

cbRawData (variable): A variable -length array of bytes that contains raw bits for the Chroma Blue
(Cb) component.

crSriData (variable): A variable -length array of bytes that contains bits for the Chroma Red (Cr)
component compress ed using the Simplified -RL method.

crRawData (variable): A variable -length array of bytes that contains raw bits for the Chroma Red
(Cr) component.

64 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2243 ALPHACODEC_BITMAP_STREAM

The ALPHACODEC_BITMAP_STREAM structure specifies the opacity of each pixel in the e ncoded
bitmap. The number of pixels encoded in the segments field MUST equal the area of the original
image when decoded.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

alphaSig compressed

segments (variable)

alphasSig (2 bytes): A 16 -bit unsigned integer. This field MUST contain the value 16,716 (0x414C).

compressed (2 bytes): A 16 -bit unsigned integer. If this field equals 0x0000, the segments field
contains the alpha channel values, encoded in raw format, one after the other, in top -left to
bottom -right order. If this field is nonzero, the segments field contains one or more
CLEARCODEC_ALPHA_RLE_SEGMENT (section 2.2.4.3.1) structures.

segments (variable): An optional variable -length array of bytes or
CLEARCODEC_ALPHA RLE_SEGMENT structures, depending on the value of the compressed
field.

22431 CLEARCODEC_ALPHA RLE_SEGMENT

The CLEARCODEC_ALPHA_RLE_SEGMENT structure encodes a single alpha channel run segment.

1 2 S
0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

runValue runLengthFactorl runLengthFactor2 (optional)

runLengthFactor3 (optional)

runValue (1 byte): An 8 -bit unsigned integer that specifies the alpha value of the current pixel.

runLengthFactorl (1 byte): An 8 -bit unsigned integer. If the value of the runLengthFactorl field
is less than 255 (OxFF), the runLengthFactor2 and runLengthFactor3 fields MUST NOT be
present, and the current alpha value MUST be applied to the next runLengthFactorl pixels. If
the val ue of the runLengthFactorl field equals 255 (OxFF), the runLengthFactor2 field MUST
be present, and the run length is calculated from the runLengthFactor2 field.

runLengthFactor2 (2 bytes, optional): An optional 16 -bit unsigned integer. If the value of the
runLengthFactor2 field is less than 65,535 (OxFFFF), the runLengthFactor3 field MUST NOT be
present, and the current alpha value MUST be applied to the next runLengthFactor2 pixels. If
the value of the runLengthFactor2 field equals 65,535 (OXFFFF), the ru nLengthFactor3 field
MUST be present, and the run length is calculated from the runLengthFactor3 field.

runLengthFactor3 (4 bytes, optional): An optional 32 -bit unsigned integer. If this field is present,
it contains the run length. The current alpha value MUST be applied to the next

65 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

runLengthFactor3 pixels. This field SHOULD NOT be used if the run length is smaller than
65,535 (OXFFFF).

2244 RFX_AVC 420 BITMAP_STREAM

The RFX_AVC420_BITMAP_STREAM structure encapsulates regions of a graphics frame

compressed using the MPEG -4 AVC/H.264 codec in YUV420p mode (as specified in [ITU -H.264 -
201201]) and conforming to the byte stream format specified in [ITU -H.264 -201201] Annex B. The
data compressed using these techniques is transported in the bitmapData field ofthe RD
PGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1) message or encapsulated in the

RFX_AVC444 BITMAP_STREAM structure (section 2.2.4.5) or the

RFX_AVC 444V2_BITMAP_STREAM structure (section 2.2.4.6).

Note that the width and height of the MPEG -4 AVC/H.264 codec bitstream MUST be aligned to a
multiple of 16 and MUST be cropped by the region mask specified in the regionRects field that is

embedded inthe av c420MetaData field.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6|7|8|9|0]|1|2|3|4[(5|6|7|8|9|0]1

avc420MetaData (variable)

avc420EncodedBitstream (variable)

avc420MetaData (variable): A variable -length RFX_AVC420 METABLOCK (section 2.2.4.4.1)
structure.

avc420EncodedBitstream (variable): An array of bytes that represents a single frame encoded
using the MPEG -4 AVC/H.264 codec in YUV420p mode (as specified in [ITU -H.264 -201201]) and
conforming to the byte stream format speci fied in [ITU -H.264 -201201] Annex B. Color conversion
is described in section 3.3.8.3.1.

22441 RFX_AVC420_METABLOCK

The RFX_AVC420 METABLOCK structure describes metadata associated with MPEG -4 AVC/H.264
encoded data sent from the server to the client. The data co ntained within the
RFX_AVC420_METABLOCK structure is purely informational and SHOULD NOT be used by the client
when decoding the MPEG -4 AVC/H.264 stream. When decoding the stream, the data that is available

inthe RFX_AVC420 METABLOCK is present within the MPEG-4 AVC/H.264 stream.

0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

numRegionRects

regionRects (variable)

66 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

quantQualityVals (variable)

numRegionRects (4 bytes): A 32 -bit unsigned integer that specifies the total number of elements in
the regionRects field. The quantQualityVals field MUST contain the same number of elements
as the regionRects field.

regionRects (variable): A variable -length array of RDPGFX_RECT16 (section 2.2.1.2) structures
that specifies the region mask to apply to the MPEG -4 AVC/H.264 encoded data. The total number
of elements in this field is specified by the numRegionRects field.

quantQualityVals (variable): A variable -length array of RDPGFX_ AVC420_QUANT_QUALITY
(section 2.2.4.4.2) structures that describes the quantization parameter and quality level
associated with each rectangle in the regionRects field. The total number of elements in this field
is specified by the numRegionRects field.

22442 RDPGFX_AVC420_QUANT QUALITY

The RDPGFX_AVC420_QUANT_QUALITY structure describes the quantization parameter and
quality level associated with a rectangular region.

1 2 S
0(1(2|3|4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7(8|9|0]|1

gpVal qualityVal
gpVal (1 byte): An 8 -bit unsigned integer that specifies the progressive indicator and quantization
parameter associated with a rectangular region. The format of the gpVal field is described by the

following bitmask diagram.

ap rp

gp (6 bits): A 6 - bit, unsigned integer that that specifies the quantization parameter associated
with a rectangular region. This value MUST be in the range required by [ITU -H.264 -
201201] sections 7.4.2.1.1 and 7.4.3 for high profiles ([ITU -H.264 -201201] section
A2.4) .

r (1 bit): A 1-bitfield that is reserved for future use. This field SHOULD be set to zero.

p (1 bit): A 1-bit field that indicates whether a rectangular region is progressively encoded. A
value of 0x1 indicates that the region is progressively encoded.

qualityVal (1 byte): An 8 -bit unsigned integer that specifies the quality level associated with a
rectangular region. This value MUST be in the range 0 to 100 inclusive.

67 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

2245 RFX_AVC444 BITMAP_STREAM

The RFX_AVC444 BITMAP_STREAM structure encapsulates regions of a graphics frame
compressed using MPEG -4 AVC/H.264 compression techniques [ITU -H.264 -201201] in YUV444 mode.
The data compressed using these techniques is transported in the bitmapData field of the

RDPGFX_WIRE_TO_SURFACE_ PDU_1 (section 2.2.2.1) message.

To send all the chroma data for a YUV444 frame, two RFX_AVC420_BITMAP_STREAM structures
(section 2.2.4.4) are utilized. The format of the RFX_AVC444_BITMAP_STREAM structure is a four -
byte integer that specifies which subfra mes are encoded and the size of the first YUV420p subframe

encoded bitstream, followed by the first subframe, and then optionally the second subframe. These

bitstreams MUST be decoded by the same MPEG -4 AVC/H.264 decoder as one stream. The method to

combin e the two streams is detailed in section 3.3.8.3.2. Note that the YUV420 and Chroma420 views

(as shown in the figure captioned "A representation of a YUV444 macroblock as two YUV240p

macroblocks" in section 3.3.8.3.2) both have identical MPEG -4 AVC/H.264 b itstream formats.

0(1(2|3|(4|5(6|7(8|9(0|1|2|3|4|5|6|7|8[9|0(1|2(3|4(5|6|7[8|9|0]|1

avc420EncodedBitstreaminfo

avc420EncodedBitstreaml (variable)

avc420EncodedBitstream? (variable)

avc420EncodedBitstreaminfo (4 bytes): A 32 -bit unsigned integer that specifies the size of the
data presentinthe avc420EncodedBitstreaml1 field and which subframes are encoded.
The format of the avc420EncodedBitstreaminfo field is described by the following bitmask
diagram.
1 2 &

cbAvc420EncodedBitstreaml LC
cbAvc420EncodedBitstreaml (30 bits): A 30 -bit unsigned integer that specifies the size, in
bytes, of the luma frame present in the avc420EncodedBitstreaml1 field. If no luma frame

is present, then this field MUST be set to zero.

LC (2 bits): A 2 -bit unsigned integer that specifies how data is encoded in the

avc420EncodedBitstream1 and avc420EncodedBitstream?2 fields.

Value Meaning

0x0 A YUV420 frame is conta ined in the avc420EncodedBitstreaml field, and a Chroma420
frame is contained in the avc420EncodedBitstream?2 field.

68 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Value Meaning
0x1 A YUV420 frame is contained in the avc420EncodedBitstreaml1 field, and no data is
present in the avc420EncodedBitstream2 field. No Chroma420 frame is present.
0x2 A Chroma420 frame is contained in the avc420EncodedBitstream1 field, and no data is
present in the avc420EncodedBitstream2 field. No YUV420 frame is present.
0x3 An invalid state that MUST NOT occur.
avc420Enco dedBitstreaml (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the first YUV420p subframe of a single frame that was encoded using the MPEG -4

AVC/H.264 codec in YUV444 mode.

avc420EncodedBitstream?2 (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the second YUV420p subframe (if it exists) of a single frame that was encoded using the
MPEG-4 AVC/H.264 codec in YUV444 mode.

2246 RFX_AVC444V2_BITMAP_STREAM

The RFX_AVC444V2_BITMAP_STREAM structure encapsulates regions of a graphics fr ame
compressed using MPEG -4 AVC/H.264 compression techniques [ITU -H.264 -201201] in YUV444v2
mode. The data compressed using these techniques is transported in the bitmapData field of the
RDPGFX_WIRE_TO_SURFACE_PDU_1 (section 2.2.2.1) message.

To send all the chroma data for a YUV444 frame, two RFX_AVC420_BITMAP_STREAM structures
(section 2.2.4.4) are used. The format of the RFX_AVC444V2_BITMAP_STREAM structure is a
four -byte integer that specifies which subframes are encoded, and the size of th e first YUV420p
subframe encoded bitstream, followed by the first subframe, and then, optionally, the second

subframe. These bitstreams MUST be decoded by the same MPEG -4 AVC/H.264 decoder as one
stream. The method to combine the two streams is detailed in section 3.3.8.3.3. Note that the

YUV420 and Chroma420 views (as shown in the figure captioned "A representation of a YUV444 frame

as two YUV240p frames" in section 3.3.8.3.3) both have identical MPEG -4 AVC/H.264 bitstream
formats.

Note thatthe RFX_AVC444 V2_BITMAP_STREAM structure is identical to the
RFX_AVC444 BITMAP_STREAM structure except for the combination method of the YUV420 and
Chroma420 views.

0(1(2|3|4|5|6|7(8[9|0(1|2|3|4|5[(6(7|8|9|0]|1|2|3|4[|5|6|7|8|9|0]1

avc420EncodedBitstreaminfo

avc420EncodedBitstreaml (variable)

avc420EncodedBitstream?2 (variable)

avc420EncodedBitstreaminfo (4 bytes): A 32 -bit unsigned integer that specifies the size of the
data presentinthe avc420EncodedBitstreaml1 field and which subframes are encoded.
The format of the avc420EncodedBitstreaminfo field is described by the following bitmask
diagram.
69 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

0(1(2|3|4|5(6|7(8]|9(0|1|2|3|4|5|6|7|8[9|0(1]|2(3|4|5|6(|7|8|9]|0

cbAvc420EncodedBitstreaml LC
cbAvc420EncodedBitstreaml (30 bits): A 30 -bit unsigned integer that specifies the size, in
bytes, of the luma frame present in the avc420EncodedBitstreaml1 field. If no luma frame

is present, then this field MUST be set to zero.

LC (2 bits): A 2 -bit unsigned integer that specifies how data is encoded in the

avc420EncodedBitstream1 and avc420EncodedBitstream2 fields.
Value Meaning
0x0 A YUV420 frame is contained in the avc420EncodedBitstream1 field, and a Chroma420
frame is contained in the avc420EncodedBitstream?2 field.
Ox1 A YUV420 frame is contained in the avc420EncodedBitstream1 field, and no data is
present in the avc420EncodedBitstream2 field. No Chroma420 frame is present.
0x2 A Chroma420 frame is contained in the avc420EncodedBitstr eaml field, and no data is
present in the avc420EncodedBitstream2 field. No YUV420 frame is present.
0x3 An invalid state that MUST NOT occur.
avc420EncodedBitstreaml (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the first YUV420p subfr ame of a single frame that was encoded using the MPEG -4
AVC/H.264 codec in YUV444v2 mode.
avc420EncodedBitstream?2 (variable): An RFX_AVC420_BITMAP_STREAM structure that
contains the second YUV420p subframe (if it exists) of a single frame that was encoded using the

MPEG-4 AVC/H.264 codec in YUV444v2 mode.

2.25 Data Packaging

2251 RDP_SEGMENTED_DATA

The RDP_SEGMENTED_DATA structure is used to wrap one or more RDP_DATA_SEGMENT
(section 2.2.5.2) structures. Each segment contains data that has been encoded using RDP 8.0 Bulk
Compression techniques (section 3.1.9.1).

uncompressedSize

descriptor segmentCount (optional) (optional)

bulkData (variable)

segmentArray (variable)

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

descriptor (1 byte): An 8 -bit unsigned integer that specifies whether the
RDP_SEGMENTED_DATA structure wraps a single segment or multiple segments.

Value Meaning
SINGLE The segmentCount , uncompressedSize, and segmentArray fields MUST NOT be
OXEO present, and the bulkData field MUST be present.

MULTIPART | The segmentCount , uncompressedSize ,and segmentArray fields MUST be present, and
OXE1 the bulkData field MUST NOT be present.

segmentCount (2 bytes, optional): An optional 16 -bit unsigned integer that specifies the number
of elementsinthe segmentArray field.

uncompressedsSize (4 bytes, optional): An optional 32 -bit unsigned integer that specifies the size,
in bytes, of the data present in the segmentArray field once it has been reassembled and
decompressed.

bulkData (variable): An optional variable -length RDP8_BULK_ENCODED_DATA structure (section
2.2.5.3).

segmentArray (variable): An optional variable -length array of RDP_DATA_SEGMENT structures.
The number of elements in this array is specified by the segmentCount field.

2252 RDP_DATA_SEGMENT

The RDP_DATA_SEGMENT structure contains data that has been en coded using RDP 8.0 Bulk
Compression techniques (section 3.1.9.1).

size

bulkData (variable)

size (4 bytes): A 32 -bit unsigned integer that specifies the size, in bytes, of the bulkData field.

bulkData (variable): Avariable -length RDP8_BULK_ENCODED_DATA structure (section 2.2.5.3).

2253 RDP8 BULK_ENCODED_DATA

The RDP8_BULK_ENCODED_DATA structure contains a header byte and data that has been
encoded using RDP 8.0 Bulk Compression techniques (section 3.1.9.1).

71/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

1 2 3
0|1|2(3|4|5|6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1|2|3|4|5(6|7|8[9]0
header data (variable)
header (1 byte): An 8 -bit, unsigned integer that specifies the compression type and flags.
Flag Meaning

CompressionTypeMask
O0xOF

Indicates the package which was used for compression. See the following table for
a list of compression packages.

PACKET_COMPRESSED
0x20

The payload data inthe data field is compressed.

Possible compression types are as follows.

Value

Meaning

PACKET_COMPR_TYPE_RDP8 | RDP 8.0 bulk compression (see section 3.1.9.1).

0x4
data (variable): A variable -length array of bytes that contains data encoded using RDP 8.0 Bulk
Compression techniques. If the PACKET_COMPRESSED (0x20) flag is specified in the header field,
then the data is compressed.
2.3 Directory Service Schema Elements
None.
72 [143

[MS -RDPEGFX-Diff] - v20180316
Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3 Protocol Details
3.1 Common Details

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher -Layer Triggered Events

None.
3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 Processing a Graphics Message
All graphics messages are prefaced by the RDPGFX_HEADER (section 2.2.1.5) structure.

During processing of a graphics message, the cmdld field in the header MUST first be examined to
determine if the message is wi thin the subset of expected messages. If the message is not expected,
it SHOULD be ignored.

If the message is in the correct sequence, the pduLength field MUST be examined to make sure that
it is consistent with the amount of data read from the "Microsoft: ‘Windows::RDS::Graphics" dynamic
virtual channel (section 2.1). If this is not the case, the connection SHOULD be dropped.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.
3.1.8 Bitmap Compression

3.1.8.1 RemoteFX Progressive Codec Compression

The RemoteFX Progressive Codec extends the RemoteFX Codec ([MS -RDPRFX] sections 2.2.2 and
3.1.8) by adding sub -band diffing and the ability to progressively encode an image. Sub -band diffing
is a compression technique that entails transmitting the differences between the DWT coefficients of

consecutive frames, while progressi ve encoding involves the transmission of low -quality images that
are gradually refined and improved in quality.

73/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.1.8.1.1 General Terms and Concepts

Assume that F1, F2, F3, ... are the frames being encoded. Further, for simplicity, assume that every
frame contains only one tile and the same component from the YCbCr color -space.

DwtQ represents a tile after DWT transformation and quantization, and DwtQn correspondsto Fn.

DwtQ is composed of 10 bands: LL3, LH3, HL3, HH3, LH2, HL2, HH2, LH1, HL1, and HH1 ([MS -
RDPRFX] section 2.2.2.1.5). The LL3 band is designated as DwtQ -LL, and the remaining 9 bands as
DwtQ -NonLL .

3.1.8.1.2 Sub -Band Diffing

Sub -band diffing is used to determine whether a difference tile or an original tile is sent to the RLGR
Entropy Encoder (MS -RDPRFX] sectio n 3.1.8.1.7).

The sending of an original tile entails dispatching the nine non -LL3 bands and the deltas of the LL3
band to the RLGR Entropy Encoder. An LL3 delta is defined as the difference between a given LL3

element and the previous element within the same tile. The first LL3 element is transmitted without
modification. The differences in the LL3 band are denoted as DwtQ -LL-Deltas .

Sending an original tile to the RLGR Entropy Encoder is represented as:
DwtQ -NonLL , DwtQ -LL-Deltas -> RLGR Entropy Encoder

A difference ti le is defined as the difference between the DwtQ elements of two consecutive frames
Fm and Fn (where m > n):

Diffm = DwtQm - DwtQn

Diff is composed of Diff -LL and Diff -NonLL . All the bands of a diff tile are sent to the RLGR Entropy
Encoder:

Diff -NonLL , Diff -LL -> RLGR Entropy Encoder

3.1.8.1.3 Extra Quantization

When performing progressive encoding, an extra quantization step is performed on the data resulting
from the Sub -Band Diffing Stage. Quantization is expressed in terms of the number of bits that are
shifted. The number of bits is a function of:

>

The regular quality (low, medium -low, medium -high, high)

>

The color component (Y, Cb or Cr)

A The band (HH1 to LL3)

A The progressive chunk (0% to 100%)

Assume the following:

BitPos (quality, component, band, 0%) = 15

BitPos (quality, component, band, 100%) = 0

0 <= BitPos (quality, component, band, chunk) < 15; where (chunk > 0%)

If SB is the result of the sub -band diffing decision engine, the progressive quantized value is
calculated as follows:

if (SB >=0)then ProgQ (chunk) = SB >> BitPos (chunk)

74 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

if (SB <0)then ProgQ (chunk)= -((-SB)>> BitPos (chunk))

This can also be expressed as:

ProgQ (chunk) = SB/PQF (chunk); division MUST round the result toward zero
Where PQF (chunk) is the Progressive Quantization Factor:

PQF (chunk) = 1 << BitPos (chunk)

However, the progressive quantized value of the LL3 band is calculated differently. The quantization of
the elements is performed toward negative infinity, resulting in the following formula:

ProgQ -LL(chunk)= SB >> BitPos (chun k)

3.1.8.1.4 State Tracking

To correctly perform sub ~ -band diffing and progressive encoding, the decoder's state MUST be tracked,
specifically the following:

A The current DWT/quantized bits (in non -progressive mode, this matches the encoder's DwtQ).
A The current progressive chunk.

The current DWT/quantized bits of the decoder are referred to as the "reference bits" (Ref). Whenever
the encoder sends a difference, it MUST be based on Ref , notonthe DwtQ of the previous frame,
because the decoder might not have rece ived all of the associated progressive chunks. Maintaining

Ref is specified in section 3.2.8.1.5.2.1.

3.1.8.1.5 Simplified Run -Length (SRL)

The Simplified Run -Length (SRL) Encoder uses the same zero run -length engine as the RLGR entropy
encoder ((MS -RDPRFX] section 3.1.8.1.7). However, it differs when encoding nonzero elements,
because these elements are unary -encoded (there is no Golomb -Rice coding). An extra zero byte is

always emitted after the last SRL byte.

3.18.151 Zero Run -Length Encoding

Runs of zeros are encoded usin g the same techniques as RLGR. The KP state value defines the
likelihood of encountering long runs of zeros.

A Theinitial value of KP is 8.

A K isdefinedas KP /8 (rounded down) and indicates the number of bits that MUST be used to
encode the number of zero s (nz).

A If nz >=(1<< K)then:
A One "0" bit is written
A nz=nz-(1<< K)
A KP = KP +4;if KP >80then KP =80
A K=KP/8
A Repeatuntii nz <(1<< K)
A Otherwise,

A One "1" bit is written

75/ 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

A The count of zeros is written using K bits
A KP = KP - 6;if KP <Othen KP =0
A K=KP/8

Note that, contrary to RLGR, it is possible to encode a run of zeros with K = 0. If the length of the run
is zero, a single "1" bit is written.

3.1.8.1.5.2 Unary Encoding

Unary encoding is based on the number of bits of magnitude that the current upg rade pass (section
3.2.8.1.5.2) is encoding. The value to encode MUST be nonzero, positive or negative, and the

magnitude (absolute value) MUST NOT exceed (1 << nBits) - 1, where nBits is the number of bits of

magnitude that the upgrade pass is encoding.

A First, the sign is written as a single bit.

A Next, a sequence of "magnitude - 1" zeros is written.
A Finally, a "1" bit terminates the sequence, except if the magnitude equals (1 << nBits) - 1.
Once this value has been encoded, the encoder returns to encoding a zero run -length. If the next

value is nonzero, a zero run of length zero is encoded, and the next value is unary encoded.

Consider the case where nBits = 3. In this scenario, the magnitude MUST be between 1 and 7
(inclusive). After writing the sign, the following encodings are used for the seven possible magnitudes:

A 1isencoded as "1"

A 2isencoded as "01"

A 3isencoded as "001"

A 4is encoded as "0001"

A 5isencoded as "00001"
A 6is encoded as "000001"
A 7 is encoded as "000000"

In the case where nBits =1, onl y the sign would be written, because the magnitude cannot exceed 1.

3.1.8.1.6 Summary of Terms

DwtQ : A tile after DWT transformation and quantization.

DwtQ -LL:The LL3 band of DwtQ .

DwtQ -NonLL :The non -LL3 bands of DwtQ .

DwtQ -LL-Deltas : The difference between two consecutive LL3 elements from DwtQ .
Ref : The reference tile, which reflects the current DWT/quantized bits of the decoder.

Diff , Diff -LL, Diff -NonLL : The difference between Ref and DwtQ of the current tile.
SB: The result oft he sub -band diffing decision engine.

BitPos : A function that returns a bit position used for progressive encoding.

76 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

PQF: The Progressive Quantization Factor, defined as (1 << BitPos).

ProgQ : Datafrom SB that has been "extra quantized" using PQF.
3.1.9 BulkData Compression

3191 RDP8.0

RDP 8.0 lossless compression is a specialization of the Lempel -Ziv ("LZ77") technique ([SAYOOD]
section 6.2.3.2.2) paired with static Huffman encoding ([SAYOOD] sections 4.1 to 4.7). It is most -
easily explained by detailing the operatio n of a decompressor. A compliant data compressor MUST
encode input data, and a compliant data decompressor MUST decode compressed data, according to

the format defined in section 3.1.9.1.2 and its subsections.

Any given input data could have many valid but different compressed representations. Whether the
"compressed" representation is actually smaller than the original is dependent on the characteristics of
the input data and on the compressor implementation. A compliant decompressor MUST accept any
confor ming compressed encoding and produce output that exactly matches the original input to the
compressor. This document specifies at least one way to decode RDP 8.0 compressed data, although
numerous implementation approaches are possible.

3.1.9.1.1 Overview

The essent ial elements of a decompressor include de -blocking, Huffman decoding, and maintaining a
history of recent output.

To accommodate input blocks of an arbitrary size, multiple segments can be used. The de -blocking
header from compressed input indicates whethe r that input is to be decoded in a single pass or in
multiple passes, with the output from each segment concatenated to recover the original input data.

Each frame of compressed input data, with de -blocking headers excluded, is passed through a
Huffman decoder using a static model to translate multibit sequences into tokens. The decoder MUST
identify each variable -length token, which represents either a "literal" or a "match”. The value of a

literal token is presented as the next byte of output. The valu e of a match token conveys the match
"distance", indicating how far back to reach into the output history to locate the required bytes. A

match token is followed by an encoded length, indicating the number of bytes to output.

As decompressed data is presen ted, it MUST be stored into a "history" buffer, which tracks the most -
recent bytes of output, which could be referenced by a subsequent match token.

3.1.9.1.2 Detailed Description

This section describes a method to accept a compressed stream of data of a given lengt h and to
output the decompressed bytes and a byte count.

Any compressor can encounter input data that cannot be reduced further. There are two different
paths that allow input data to be passed "raw" or with minimal encoding overhead. All output bytes
MUST be recorded in the history buffer, even bytes from unencoded segments or runs, because a
match operation could subsequently appear and reference these bytes.

RDP 8.0 compressor limits:

A Maximum number of uncompressed bytes in a single segment: 65,535.
A Maxi mum match distance / minimum history size: 2,500,000 bytes.

A Maximum number of segments: 65,535.
A

Maximum expansion of a segment (when compressed size exceeds uncompressed): 1,000 bytes.

77 1 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

A Minimum match length: 3 bytes.

The compression type code to identify RD P 8.0 compressed data is PACKET_COMPR_TYPE_RDP8
(0x04).

3.191.21 De - Blocking

Each compressed stream MUST begin with an RDP_SEGMENTED_DATA (section 2.2.5.1) structure.
A descriptor field value of SINGLE (0xEO) indicates that the original input was processed as one

segment. The segmentCount and uncompressedSize fields are omitted, and the entire remainder
of the input is passed as one segment to the decoder.

If the value of the descriptor field is MULTIPART (OXE1), the input was possibly too large to be

represented in a single segment, typically because the uncompressed byte count exceeds 65,535 or a

smaller count due to compressor implementation limits. The 16 -bit segmentCount field indicates the
number of segments whose decompressed output will be concatenated to rec onstruct the entire

output. The 32 -bit uncompressedSize field MUST equal the total number of decompressed bytes

(the sum of the decompressed size of all segments). The value in the uncompressedSize field can be
used by the decompressor to allocate a reassembly buffer.

Each segment of compressed data appears in an RDP_DATA_SEGMENT (section 2.2.5.2) structure.
When the value of the descriptor field is MULTIPART (OxE1), the size field of the

RDP_DATA_S EGMENT structure indicates the number of encoded bytes to be decoded. When the

descriptor field value is SINGLE (OxEQ), the size field is omitted, and the number of encoded bytes

can be derived from the total size of the provided RDP_SEGMENTED_DATA structu re (the total input
size minus the size ofthe 1 ~ -byte descriptor field).

3.1.9.1.22 Compressed Segment Header

The PACKET_COMPRESSED bit (0x20) in the header field of each RDP8_BULK_ENCODED_DATA
(section 2.2.5.3) structure indicates that the stream of bytes that follo wsinthe data fieldis a bit
stream to be Huffman -decoded. If this bit is not set, the bytes are not Huffman -encoded and are
copied directly to the output. The four low -order bits of the header field contain the compression type
identifier, which is alway s four (0x04) for the format described in this document. The remaining bits in

the header field are reserved.

3.19.1.23 Compressed Segment Bit Stream

Huffman decoding views the input bytes as a stream of bits. The input bits are examined until a token

is recognized. The first bit to decode is the most -significant bit of the first byte, followed by the next
most - significant bit, and so on. In Huffman decoding, the number of bits in each token is not known

until the leading bits in that token are examined. A decoder ty pically reads one to several bits at a
time, until the next token is recognized.

3.19.124 Compressed Segment Trailer

The bit stream can end with some number of unused bits (0 -7) in the last byte, which MUST NOT be
decoded. (Attempting to decode can overrun input an d produce too many bytes of output). The value
of the last byte in the compressed segment indicates the number of unused bits in the final byte

(some value between 0 and 7, inclusive). The five high -order bits in the last byte of the compressed
segment are reserved.

For example, if the encoding of a stream produces 217 bits, the stream is 29 bytes in length. The first
27 bytes plus the most -significant bit of the 28th byte comprise the bit stream. The 29th byte has the

value 7, indicating that 7 bits (of th e 28th byte) are to be ignored. The total length of a segment's bit
stream is:
NumberOfBitsToDecode = ((NumberOfBytesToDecode - 1)*8) - ValueOfLastByte.

78 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

There is no "end of block" token or other marker. The decoder MUST stop when this number of bits
has been decoded.

Huffman symbols or "tokens" are defined for:

A Aliteral (a single byte to be output).

A A match, including the distance back into the history from which to copy.

A Anunencoded sequence, introducing some number of bytes to copy directly from input.

Most literals are encoded with a "0" prefix, followed by 8 bits containing the byte to output, most -
significant bit first. Some selected literals MUST be represented using a shorter token varying between

5 and 8 bits, all beginning with a "11" prefi X. The nine -bit encodings that would otherwise represent
these literals are reserved and MUST NOT be used to encode these literal values.

A match token is followed by some number of bits indicating the number of bytes output since the

needed bytes orthe " distance" backward. Each token has been assigned a different base distance and
number of additional value bits to be added to compute the full distance. Additional value bits are

presented most -significant bit first. A match length prefix follows the token and indicates how many
additional bits will be needed to get the full length (the number of bytes to be copied). Most of the

match length prefixes have been defined so that a decoder can simply count the number of "1" bits

until a "0" bit appears to deter mine how many value bits follow.

The distance is not a buffer offset, but instead indicates the number of bytes that have been output

since the first of the bytes to be copied. A linear buffer is often used to record recent history, with a

“"cursor" indicat ing the buffer offset where the next byte will be placed, wrapped around to the

beginning of the buffer when the end is reached (also known as a "ring buffer"). With this approach,

the distance can be subtracted from the cursor offset, while compensating f or any buffer wrap -around,
if applicable, which might have occurred since the needed bytes were decoded.

A match distance of zero is a special case, which indicates that an unencoded run of bytes follows. The

count of bytes is encoded as a 15 -bit value, mo st significant bit first. After decoding this count, any
bits remaining in the current input byte are ignored, and the unencoded run will begin on a whole -byte
boundary. The ignored bits, plus 8 bits for each unencoded byte, are also considered part of the total

number of bits in the input stream. If any bits remain after an unencoded run of bytes, decoding
continues with the most -significant bit of the first byte following the run.

The following table contains all the defined tokens. Any token or bit seque nce that is not defined in
this table is reserved.
Bit Value
Prefix Decimal Bits Purpose
0 0 8 Literal xxxxxxxx (excluding those literals with shorter codes described in this
table for which their 9 -bit representation is reserved)
10001 17 5 Unencoded literal sequence (10001 00000), or
Match distance 1...31 (10001 XXXxXx)
10010 18 7 Match distance 32...159
10011 19 9 Match distance 160...671
10100 20 10 Match distance 672...1695
10101 21 12 Match distance 1696...5791
101100 44 14 Match distance 5792...22175
101101 45 15 Match distance 22176...54943

79 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

Bit Value

Prefix Decimal Bits Purpose

1011100 92 18 Match distance 54944...317087

1011101 93 20 Match distance 317088...1365663
10111100 188 20 Match distance 1365664...2414239
10111101 189 21 Match distance 2414240...2500000
11000 24 Literal 0x00 (000000000 is reserved)
11001 25 Literal 0x01 (000000001 is reserved)
110100 52 Literal 0x02 (000000010 is reserved)
110101 53 Literal 0x03 (000000011 is reserved)
110110 54 Literal OxFF (011111111 is reserved)
1101110 110 Literal 0x04 (000000100 is reserved)
1101111 111 Literal Ox05 (000000101 is reserved)
1110000 112 Literal 0x06 (000000110 is reserved)
1110001 113 Literal 0x07 (000000111 is reserved)
1110010 114 Literal 0x08 (000001000 is reserved)
1110011 115 Literal 0x09 (000001001 is reserved)
1110100 116 Literal OxOA (000001010 is reserved)
1110101 117 Literal OxOB (000001011 is reserved)
1110110 118 Literal Ox3A (000111010 is reserved)
1110111 119 Literal 0x3B (000111011 is reserved)
1111000 120 Literal Ox3C (000111100 is reserved)
1111001 121 Literal Ox3D (000111101 is reserved)
1111010 122 Literal Ox3E (000111110 is reserved)
1111011 123 Literal Ox3F (000111111 is reserved)
1111100 124 Literal 0x40 (001000000 is reserved)
1111101 125 Literal 0x80 (010000000 is reserved)
11111100 252 Literal OxOC (000001100 is reserved)
11111101 253 Literal 0x38 (000111000 is reserved)
11111110 254 Literal O0x39 (000111001 is reserved)
11111111 255 Literal Ox66 (001100110 is reserved)

Match tokens are followed by a length token:

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

80 / 143

Bit Prefix Value Bits Definition

0 Length 3

10 2 Length 4...7

110 3 Length 8...15

1110 4 Length 16...31

11110 5 Length 32...63
111110 6 Length 64...127
1111110 7 Length 128...255
11111110 8 Length 256...511
111111110 9 Length 512...1023
1111111110 10 Length 1024...2047
11111111110 11 Length 2048...4095
111111111110 12 Length 4096...8191
1111111111110 13 Length 8192...16383
11111111111110 14 Length 16384...32767
111111111111110 15 Length 32768...65535

A single compressed segment MUST NOT translate to more than 65,535 uncompressed bytes.

3.19.1.25 Bit Stream Encoding Examples
The following example bit streams contain spaces added for clarity:
0 0100 1001 is the encoding for a single byte 0x49

10010 0001100 is a match with a distance of 44 (base value of 32 + 7 bits with a value of 12). This
would be followed by a length prefix such as 110 (which indicates a base value of 8), followed by 3
bits with a value of 101, resulting in a length of 13.

00100 1001 10001 00001 110 001 decodes to ten bytes of 0x49 (one byte 0x49, followed by a match
with distance = 1 and length = 8 + 1 = 9, which replicates the first 0x49 nine more times).

3.2 Server Detalls

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their extern al behavior is consistent with that described in this
document.

Note Itis possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

81 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.2.1.1 Bitmap Cache Map

The Bitmap Cache Map abstract data model (ADM) element stores a list of keys and slot indices.
Each key uniquely identifies a bitmap stored in the client -side bitmap cache in an assigned slot
(identified by a slot index). The specific slot in which a bitmap is stored is deter mined by the server.

3.2.1.2 Unacknowledged Frames

The Unacknowledged Frames ADM element contains a list of logical frames (each represented by a

frame ID) that have been sent to the client but that have not yet been acknowledged by the
RDPGFX_FRAME_ACKNOWLEDGE_PD U (section 2.2.2.13) message. Logical frames are delineated

by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and RDPGFX_END_FRAME_PDU (section
2.2.2.12) messages.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.24 Higher -Layer Triggered Events

None.

3.25 Message Processing Even ts and Sequencing Rules

3.25.1 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_1 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_1 message are specified in
section 2.2.2.1. The command fields MU ST be populated in accordance with this description.
Furthermore, the RDPGFX_WIRE_TO_SURFACE_PDU 1 message MUST be part of a logical frame
delineated by the = RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the target surface identified in the
surfaceld field MUST exist on the client.

3.25.2 Sending an RDPGFX_WIRE_TO_SURFACE_PDU_2 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_2 message are specified in
section 2.2.2.2. The command fields MUST be populated in accordance with this description.

Furthermore, the RDPGFX_WIRE_TO_SURFACE_PDU 2 message MUST be part of a logical frame
(delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages), and the target surface identified in the
surfaceld field MUST exist on the client. The codecContextld field MUST also contain a valid ID that
is associated with a bitmap that is being progressively tra nsferred to the client.

3.25.3 Sending an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message

The structure and fields of the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message are
specified in se ction 2.2.2.3. The command fields MUST be populated in accordance with this

description. Both the codec context specified in the codecContextld and the surface identified in the
surfaceld field MUST exist on the client.

82 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.25.4 Sending an RDPGFX_SOLIDFILL_PDU mes sage

The structure and fields of the RDPGFX_SOLIDFILL_PDU message are specified in section 2.2.2.4.
The command fields MUST be populated in accordance with this description. Furthermore, the
RDPGFX_SOLIDFILL_PDU message MUST be part of a logical frame delineated by the
RDPGFX_START_FRAME_PDU (section 2.2.2.11) and RDPGFX_END_FRAME_PDU (section
2.2.2.12) messages, and the target surface identified in the surfaceld field MUST exist on the client.
The format of the datainthe fillPixel field MUST match the pixel format of the target surface.

3.255 Sending an RDPGFX_SURFACE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_SURFACE_PDU me ssage are specified in
section 2.2.2.5. The command fields MUST be populated in accordance with this description.

Furthermore, the RDPGFX_SURFACE_TO_SURFACE_PDU message MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2 .11) and
RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the source and target surfaces

identified in the surfaceldSrc and surfaceldDest fields, respectively, MUST exist on the client.

3.25.6 Sending an RDPGFX_SURFACE_TO_CACHE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_CACHE_PDU message are specified in
section 2.2.2.6. The command fields MUST be populated in accordance with this description.

Furthermore, the RDPGFX_SURFACE_TO_CACHE_P DU message MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and

RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages, and the source surface identified in the

surfaceld field MUST exist on the client. Once the RDPGFX_ SURFACE_TO_CACHE_PDU message
has been sent to the client, the Bitmap Cache Map (section 3.2.1.1) ADM element MUST be updated
with the key (cacheKey field) and slot index (cacheSlot field) that were transmitted to the client.

3.25.7 Sending an RDPGFX_CACHE_TO_SURF ACE_PDU message

The structure and fields of the RDPGFX_CACHE_TO_SURFACE_PDU message are specified in

section 2.2.2.7. The command fields MUST be populated in accordance with this description.

Furtherm ore, the RDPGFX_CACHE_TO_SURFACE_PDU message MUST be part of a logical frame
delineated by the RDPGFX_START_FRAME_PDU (section 2.2.2.11) and

RDPGFX_END_FRAME_PDU (section 2.2.2.12) messages. Additionally, the target surface identified

inthe surfaceld fiel d MUST exist on the client, and the bitmap cache slot identified by the cacheSlot
field MUST contain a valid bitmap entry on the client.

3.25.8 Sending an RDPGFX_EVICT_CACHE_ENTRY_PDU message

The structure and fields of the RDPGFX_EVICT_CACHE_ENTRY_PDU message are specified in
section 2.2.2.8. The command fields MUST be populated in accordance with this description.

Furthermore, the bitmap cache slot identified by the cacheSlot field MUST conta in a valid bitmap
entry on the client. Once the RDPGFX_EVICT_CACHE_ENTRY_PDU message has been sent to the
client, the key and slot index associated with the bitmap MUST be removed from the Bitmap Cache
Map (section 3.2.1.1) ADM element.

3.25.9 Sending an RDPGFX_C REATE_SURFACE_PDU message

The structure and fields of the RDPGFX_CREATE_SURFACE_PDU message are specified in section
2.2.2.9. The command fields MUST be populated in accordance with this description. Furtherm ore, the
value specified inthe surfaceld field MUST NOT collide with an ID assigned to an existing surface on

the client.

83 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.2.5.10 Sending an RDPGFX_DELETE_SURFACE_PDU message

The structure and fields of the RDPGFX_DELETE_SURFACE_PDU message are specified in section
2.2.2.10. The command fields MUST be populated in accordance with this description. Furthermore,
the surfaceld field MUST identify a surface that exists on the client.

32511 Sending an RDPGFX_START_FRAME _PDU message

The structure and fields of the RDPGFX_START_FRAME_PDU message are specified in section
2.2.2.11. The command fields MUST be populated in accordance with this description. Logical frames
SHOULD NOT be nested within each other.

3.25.12 Sending an RDPGFX_END_FRAME_PDU message

The structure and fields of the RDPGFX_END_FRAME_PDU message are specified in section

2.2.2.12. The command fields MUST be populated in accordance with this descriptio n. The frameld
field SHOULD be identical to the frame ID that was transmitted in the most recently transmitted
RDPGFX_START_FRAME_PDU (section 2.2.2.11) message. Once the RDPGFX_END_FRAME_PDU
message has been sent to the client, the frame ID MUST be added to the Unacknowledged Frames
(section 3.2.1.2) ADM element.

3.25.13 Processing an RDPGFX_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_FRAME_ACKNOWLEDGE_PDU message are specified in
section 2.2.2.13. The header field MUST be processed as specified in section 3.2.5.1. Once the
RDPGFX_FRAME_ACKNOWLEDGE_PDU message has been successfully processed, the frame ID
specified inthe frameld field MUST be removed from the Unacknowledged Frames (section
3.2.1.2) ADM element.

If the queueDepth field is less than OXFFFFFFFF, the server MUST expect that
RDPGFX_FRAME_ACKNOWLEDGE_PDU messages will continue to be sent by the client.
Furthermore, ifthe queueDepth fieldisint he range 0x00000001 to OxFFFFFFFE the server SHOULD
use this value to determine how far the client is lagging in terms of graphics decoding and then

attempt to throttle the graphics frame rate accordingly.

If the queueDepth field is set to SUSPEND_FRAME_AC KNOWLEDGEMENT (OXFFFFFFFF), the server

MUST clear the Unacknowledged Frames (section 3.2.1.2) ADM element and MUST NOT expect any
further RDPGFX_FRAME_ACKNOWLEDGE_PDU messages from the client. In this mode, the server
MUST NOT wait or block on unacknowledg ed frames (as the
RDPGFX_FRAME_ACKNOWLEDGE_PDU message is not sent by the client) and MUST assume that

the client is able to decode graphics data at a rate faster than it is receiving frames.

3.25.14 Sending an RDPGFX_RESET_GRAPHICS PDU message

The structure and fields of the RDPGFX_RESET_GRAPHICS_PDU message are specified in section
2.2.2.14. The command fields MUST be populated in accordance with this description.

3.25.15 Sending an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message are specified
in section 2.2.2.15. The command fields MUST be populated in accordance with this description.
Furthermore, t he surface identified in the surfaceld field MUST exist on the client.

84 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.25.16 Processing an RDPGFX_CACHE_IMPORT_OFFER_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_OFFER_PDU message are specified in
section 2.2.2.16. The header field MUST be processed as specified in section 3.1.5.1. If the message

is valid, then the cache keys specified in the cacheEntries field and the cache slot assigned by the
server to each entry SHOULD be added to the Bitmap Cache Map (section 3.2.1.1) ADM element.
Once the RDPGFX_CACHE_IMPORT_OFFER_PDU message has been processed, the server MUST
respond by sending the RDPGFX_CACHE_IMPORT_REPLY_PDU (section 2.2.2.17) message to the
client (section 3.2.5.17).

3.25.17 Sending an RDPGFX _CACHE_IMPORT_REPLY_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_REPLY_PDU message are specified in
section 2.2.2.17. The command fields MUST be populated in accordance with this description. The
importedEntriesCount field MUST be initialized with the number of entries that were imported into

the Bitmap Cache Map (section 3.2.1.1) ADM element while processing the most recent
RDPGFX_CACHE_IMPORT_OFFER_PDU (section 2.2.2.16) message, as specified in section
3.2.5.16. Furthermore, the cache slot assigned to each entry imported by the server MUST be

enumerated inthe cacheSlots field.

3.2.5.18 Processing an RDPGFX_CAPS_ADVERTISE_PDU message

The structure and fields of the RDPGFX_CAPS_ADVERTISE_PDU message are specified in section
2.2.2.18. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_CAPS_ADVERTISE_PDU message has been successfully processed, the server MUST
respond by sending the RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) message to the client, as
specified in section 3.2.5.19.

Ifthe RDPGFX_CAPS_ADVERTISE_PDU is received again during the session after the initial
RDPGFX_CAPS_CONFIRM_PDU message h as been sent with the version field set to
RDPGFX_CAPSET_VERSION103 or later, the server MUST resend the
RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) message to the client. The server MUST also

reset the protocol to the initial state and assume that the clie nt has disregarded all the messages sent
by the server prior to RDPGFX_CAPS_CONFIRM_PDU in this channel.

3.25.19 Sending an RDPGFX_CAPS_CONFIRM_PDU message

The structure and fields of the RDPGFX_CAPS_CONFIRM_PDU mess age are specified in section
2.2.2.19. The command fields MUST be populated in accordance with this description. The server

MUST populate the capsSet field with a single instance of a correctly initialized
RDPGFX_CAPSET_VERSIONS (section 2.2.3.1) or RDPGFX _CAPSET_VERSION81 (section
2.2.3.2) structure.

3.2.5.20 Sending an RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message are
specified in section 2.2.2.20. The command fields MUST be populated in accordanc e with this
description. Furthermore, the surface identified in the surfaceld field MUST exist on the client.

3.25.21 Processing an RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message are specified
in section 2.2.2.21. The header field MUST be processed as specified in section 3.2.5.1. The

timestamp , timeDiffSE , and timeDiffEDR fields describe metrics associated with the frame

identified by the frameld field and SHOULD only be used for informational and debugging purposes.

85 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.2.5.22 Sending an RDPGEX MAP_SURFACE TO SCALED OUTPUT PDU
message
The structure and fields of the RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU message are

specified in section 2.2.2.22. The command fields MUST be populated in accordance with this
description. Furthermore, the surface identified in the surfaceld field MUST exist on the client.

3.2.5.23 Sending an RDPGEX _MAP_SURFACE _TO SCALED WINDOW_PDU
me ssage

The structure and fields of the RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message
are specified in section 2.2.2.23. The command fields MUST be populated in accordance with this
description. Furthermore, the surface identified in the surfaceld field MUST exist on the client.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.
3.2.8 Bitmap Compression

3.28.1 RemoteFX Progressive Codec Compression

The functional stages involved in the encoding path are illustrated in the following figure. Each of
these stages is described in the following subsections.

Input) .
. Color conversion . Quantization and
Irn;gl%-if (RGB to YCbCr) . BT : linearization

Progressive
Encoded tiles --— entropy l—— Sub-band diffing
encoding

Reference bits

Figure 2: RemoteFX Progressive Codec encoding stages
When this encoding path is compared to [MS -RDPRFX] section 3.1.8.1, differencing has been

removed, sub -band diffing has been added, and progressive enco ding has been incorporated into the
entropy encoder.

3.2.8.1.1 Color Conversion (RGB to YCDbCr)

Color conversion is identical to the technique specified in [MS -RDPRFX] section 3.1.8.1.3.

86 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

32812 DWT

The discrete wavelet transform (DWT) is performed as specified in [MS -RDPRFX] section 3.1.8.1.4
with one exception. To improve the quality around tile edges, a variation has been added to the
transform, which modifies the behavior on pixel boundaries and changes the size of the bands.

328121 Original Method

DWT results are calculated usi ng an input coefficient and the surrounding coefficients. Tile boundaries
are handled by mirroring the input coefficients. The coefficients to the right of the leftmost input
coefficient are mirrored on the left side. For example, if there are eight input coefficients:

[0,1,2,3,4,5,6,7]

After mirroring, the coefficients are logically extended as follows:
[....7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,6,5,4,3,2,1,0, ..]

This technique is also used on the right edges and for vertical transfo rms.

The first pass for a given direction (horizontal or vertical) takes an input of 64 coefficients and

produces 32 low -frequency results and 32 high -frequency results.
3.28.1.2.2 Reduce -Extrapolate Method
The Original Method (section 3.2.8.1.2.1) for dealing with boundaries when encoding tiles introduces

tile artifacts. The result is that users can perceive where the tile boundaries are in a decoded image.
The Reduce -Extrapolate method removes this artifact.

The first pass for a given direction (horizontal or verti cal) takes an input of 64 coefficients and
produces 33 low -frequency results and 31 high -frequency results.

A 65th input coefficient is introduced by extrapolating from the last two input coefficients. Note that

the subscripts used in the equations that fo llow are 1 -based (in contrast to the equations in [MS -
RDPRFX] section 3.1.8.1.4, which are O T based). It is possible for the extrapolated 65th coefficient to
lie outside of the normal pixel range. Furthermore, extrapolation is only required for the first le vel.

1665 — ZICM - 1663

The first -pass DWT is performed on the 65 coefficients, mirroring around the first and the sixty -fifth
boundary elements. As a result, 33 low -frequency and 32 high -frequency results are obtained. The
final frequency result is zero and is dropped.

87 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

H;, = 1IC +1IC 1IC
32 = T3 T 5 064 T 4 tTeS

1 1 1
—ZIC63 +§IC64 —Z(Z-IC64 — ICq3)

1 1 1 1
- —ZIC63 +§IC64 —51C64 +Z]C63

Il
o

The second -pass DWT takes the 33 low -frequency results from the first pass and performs a DWT with
normal mirroring, producing in turn 17 low -frequency elements and 16 high -frequency elements.

Finally, the third -pass DWT takes the 17 low -frequency results and produces (using the same
techniques as the previous pass) 9 low -frequency elements and 8 high -frequency elements.

The resulting bands and the sizes are illustrated in the following figure.

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

88 / 143

9 LL3 HL3
HLZ
8 LH3 HH3
HL1 33
16 LHZ2 HH2
31 LH1 HH1 31
33 31
Figure 3: Bands resulting from the Reduce -Extrapolate DWT Method
3.2.8.1.3 Quantization and Linearization
Quantization is performed as specified in [MS -RDPRFX] section 3.1.8.1.5, while linearization is

performed as specified in [MS -RDPRFX] section 3.1.8.1.6. Ordering of the bands is identical to the
ordering specified in [MS -RDPRFX] section 3.1.8.1.6.

3.2.8.1.4 Sub -Band Diffing

Sub - band diffing enables increased compression without any further quality loss by sending the
differences of the quantized values between frames.

To compress each tile in a surface, the encoder stores the quantized DWT coefficients that the decoder
most likely possesses. These coefficients differ slightly from the quantized coefficients of the previous
frame due to the progressive entropy encoder and are known as the reference bits. See section
3.1.8.1.4 and the figure captioned "RemoteFX Progressive Codec encoding stages" in section 3.2.8.1.

The first phase of the Sub -Band Diffing Stage decides between sending the quantized DWT coefficients
that have been calculated (section 3.2.8.1.3) o r sending the differences with respect to the reference
bits. This decision is made for each tile being encoded. If the quantized DWT coefficients of the tile are

to be sent, then the tile is called an "original tile"; otherwise, it is referred to as a "di fference tile".

89 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

A tile that is being encoded for the first time is always sent as an original tile.

The calculation to determine the difference is performed on all three color components. Each of the
1024 coefficients from the tile contained in the referen ce bits are subtracted from each of the 1024
coefficients from the most recently calculated tile. This data is used to construct the difference tile.

QCpr = QCor — QCpy

In the preceding formula, "QC" stands for "Quantized Coefficient", "DT" for "Difference Tile", "OT" for
"Original Tile", and "RB" for "Reference Bits".

Zeros are counted in both the difference tile and the original tile in the Luma (Y) component and in all
of the bands except for the LL3 band. The tile with the most number of zeros is selected to be sent to
the RLGR Entropy Encoder. In the case of a tie, the original tile is preferred. If an original tile is
selected over a difference tile, the reference bits MUST be cleared and filled with zeros.

3.2.8.1.5 Progressive Entropy Encoding

The progressive encoder either ca n send a complete tile or can transmit multiple versions of the same

tile over a period of time, with each subsequent version becoming more refined and improving in

quality. The input to the Progressive Entropy Encoding Stage is generated by the Sub -Band D iffing
engine (section 3.2.8.1.4) and is either an original tile or a difference tile.

If a tile is to be transmitted in its entirety, then the tile data is dispatched to the RLGR1 Entropy
Encoder ((MS -RDPRFX] section 3.1.8.1.7.1), and the output forms the payload to be sent to the
decoder.

If a tile is to be transmitted progressively, the Progressive Entropy Encoding Stage is exercised

numerous times with the same input tile to generate multiple payloads that are consumed by the
decoderto re -create theti leinits entirety. Sending a tile progressively is accomplished by executing a
First Progressive Pass (section 3.2.8.1.5.1) followed by subsequent Upgrade Progressive Passes

(section 3.2.8.1.5.2).

SB represents the data output from the Sub -Band Diffing St age. This data is sent through multiple
progressive stages.

SB=D1+D2 +D3 +'"+Dﬂ_

Where D 1, D, Dg, ..., D is the data that is transmitted via n progressive passes.

When a progressive pass is performed, DAS ("Data Already Sent") represents the cumulated data that
has been transmitted through the previous passes, DTS ("Data To Send") represents the data to be
transmitted in the current pass, and DRS ("Data Remaining to be Sent") represents the data that
remai ns to be sent after the current pass.

When performing pass i:

90 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

DTS = D,

i
DRS = E D,
J=it1
Each time a progressive pass is performed, DRS is reduced by the current DTS, and DAS isincreased

by the current DTS for the next pass.

3.28.15.1 Performing the First Progressive Pass

The first progressive pass for a tile occurs when the encoder receives new pixels to encode and send
to the decoder.

The encoder first performs the DWT (section 3.2.8.1.2), Quantization and Linearization (section

3.2.8.1.3) stages to obtain DwtQ . At this point, the Sub - Band Diffing (section 3.2.8.1.4) stage
determines whether to send DwtQ or the difference (Diff). Diff is computed based on the "reference
bits" (Ref) specified in section 3.1.8.1.4.

Diff = DwtQ - Ref
SB = DwtQ or Diff
The progressive encoder performs e xtra quantization as specified in section 3.1.8.1.3:
ProgQ = SB / PQF

Each LL3 element is quantized toward negative infinity, and the result is subtracted from the next

quantized LL3 element. Note that even if the data is a difference tile, each quantized LL3 element,
which is the result of a difference, is subtracted from the next element. All of the bands are then sent

to the RLGR encoder:

ProgQ -NonLL , ProgQ -LL-Deltas ->RLGR Entropy Encoder

Note that all ten bands are entropy -encoded as one block without reset. The RLGR engine is started
with the state K =1and KR =1.

If the chunk is 100%, then PQF =1, and the bits being encoded are DwtQ -NonLL , DwtQ -LL-Deltas
for an original tile, or Diff -NonLL , Diff -LL for a difference tile.

Multiplying ProgQ by PQF yields DTS, the de -quantized progressive data. On the first pass, DAS is
zero,and DRS = SB - DTS.

The data generated by the first pass is written to an RFX_PROGRESSIVE_TILE_FIRST (section
2.2.4.2.1.5.4) structure.

3.2.8.1.5.2 Performing Upgrade Progressive Passes

To upgrade a tile, the encoder uses the previously calculated DRS, quantizes the data, and then (a)
sends it to the Simplified Run -Length (SRL) Encoder (section 3.1.8.1.5) or (b) transmits the raw bits

of each element using the scheme in section 3.2.8.1.5.2. 1.

The SRL Encoder is an entropy encoder that is more suited to the upgrade pass than RLGR and is
based on the fact that the maximum magnitude of any element to be sent is known.

91 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

The progressive chunk that the decoder is being driven toward is referred to as the "target chunk"
("TargetC" for brevity), while the most recent progressive chunk that the decoder has processed is
referred to as the "previous chunk" ("PrevC" for brevity).

UpgradeQ (PrevC, TargetC)= DRS / PQF (TargetC)
DTS = UpgradeQ (PrevC, TargetC) * PQF (TargetC)

For a given element in DTS, the decision to send raw bits or SRL -encoded data depends on what the
client has already decoded. If the corresponding element in DAS is zero, then UpgradeQ (PrevC,
TargetC) is SRL encoded. Otherwise, if the corre sponding elementin DAS is nonzero, the absolute
value of the corresponding UpgradeQ (PrevC, TargetC) element is sent raw. For an LL3 element in an
original tile, the UpgradeQ element, which is always positive, is always sent raw.

If the corresponding eleme ntin DAS is strictly positive (nonzero), the UpgradeQ element lies
between zero and PQF (PrevC)/ PQF (TargetC) - 1. Simplifying further:

PQF (PrevC)/ PQF(TargetC) -1
=(1<< BitPos (PrevC))/(1<< BitPos (TargetC)) - 1

=(1<<(BitPos (PrevC) - BitPos (Targe tC))) -1

For a given tile, the data that has been generated by the SRL encoder is packaged in the ySriData
(Luma), cbSriData (Chroma Blue)and crSriData (Chroma Red) fields of the
RFX_PROGRESSIVE_TILE_UPGRADE (section 2.2.4.2.1.5.5) structure. All of the data that was
written as raw bits is packaged in the yRawData (Luma), cbRawData (Chroma Blue), and

crRawData (Chroma Red) fields of the RFX_PROGRESSIVE_TILE_UPGRADE structure.

3.28.1521 Sending Raw Bits

Raw bits are sent as a simple bit stream. The following sequence of bits "abc", "defg", "hijkl", when
written, would produce the bytes "abcdefgh™" and "ijkl0000".

3.2.8.1.5.3 Maintaining the Decoder Reference
After each progressive pass, the data that has been sent is added to the reference bits:
Ref = Ref + DTS

The reference bits are specified in section 3.1.8.1.4.
3.3 Client Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of howt he protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note Itis possible to implement the following conceptual data by using a variety of techniques as
long as the implementation produces external behavior that is consistent with that described in this
document.

92 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.3.1.1 Codec Contexts

The Codec Contexts ADM element contains a list of codec contexts. Each codec context is associated
with a n offscreen surface and a bitmap that is being progressively rendered to the surface. The
context is used to store state information that is used to iteratively construct the bitmap. Once the

bitmap has been fully rendered, the associated context is no lon ger required. Furthermore, if the
server determines that a specific context will no longer be used, then the
RDPGFX_DELETE_ENCODING_CONTEXT_PDU (section 2.2.2.3) message is sent to the client.

3.3.1.2 Progressive Tile Contexts

The Progressive Tile Contexts ADM ele ment contains a list of progressive tile contexts. Each
progressive tile context is associated with a tile in an off -screen surface and one or more codec
contexts stored in the Codec Contexts (section 3.3.1.1) ADM element. The progressive tile context
cont ains the sign state of each coefficient (described as Sign in section 3.3.8.2.1.1) and the bit
position for each band (described as BitPos in section 3.3.8.2.1.2).

A progressive tile context can be discarded once all of the codec contexts with which it is associated
have been deleted.

3.3.1.3 Sub -Band Diffing Tile Contexts

The Sub -Band Diffing Tile Contexts ADM element contains a list of sub -band diffing tile contexts.
Each sub -band diffing tile context is associated with a tile in an off -screen surface. This conte xt
contains the DWT coefficient data for the tile (described as DecDwtQ in section 3.3.8.2.1.1).

Each sub -band diffing tile context MUST be preserved for the duration of the RDP connection or until
the off -screen surface with which it is associated has bee n deleted.

3.3.1.4 Bitmap Cache

The Bitmap Cache = ADM element is used to store bitmaps of arbitrary dimensions. Each bitmap is
associated with a key and is stored in a variable -length slot (identified by a slot index). The size of the
bitmap cache is capped at 100 MB or 16 MB, depending on whether the
RDPGFX_CAPS_FLAG_THINCLIENT (0x00000001) flag or RDPGFX_CAPS_FLAG_SMALL_CACHE
(0x00000002) flag is specified in the flags field of an RDPGFX_CAPSET_VERSIONS8 (section
2.2.3.1), RDPGFX_CAPSET_VERSION81 (section 2.2.3.2), RDPGFX_CAPSET_VERSION10
(section 2.2.3.3), or RDPGFX_CAPSET_VERSION102 (section 2.2.3.5) structure, which is
encapsulated in the server -to-client RDPGFX_CAPS_CONFIRM_PDU (section 2.2.2.19) message.

The size of the bitmap cache is constrained to 16MB in si ze when the

RDPGFX_CAPSET_VERSION103 (section 2.2.3.6) structure is encapsulated in the server -to -client
RDPGFX_CAPS_CONFIRM_PDU message. The maximum possible number of variable -length slots is
25,600 in the case of a 100 MB cache and 4,096 in the case of a 16 MB cache. The size of the bitmap

data stored across all of the in -use variable -length slots at any point in time MUST NOT e xceed the

total size of the cache.

3.3.1.5 Persistent Bitmap Cache

The Persistent Bitmap Cache ADM element is optional offline storage that is used to selectively
persist bitmaps and any associated metadata that has been cached in the Bitmap Cache (section
3.3.1.4) ADM element.

3.3.1.6 Offscreen Surface

The Offscreen Surface ADM element contains a collection of bitmaps, each bitmap representing an
offscreen surface.

93 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.3.1.7 Graphics Output Buffer

The Graphics Output Buffer ADM element is the end -user visible output bitmap.

3.3.1.8 Surface to Output Mapping

The Surface to Output Mapping ADM element contains a list of where offscreen surfaces in the
Offscreen Surface (section 3.3.1.6) ADM element are mapped to the Graphics Output Buffer
(section 3.3.1.7) ADM element.

3.3.1.9 Decompressor Glyph Stora ge

The Decompressor Glyph Storage ADM element is used to cache bitmaps decompressed using
ClearCodec decompression techniques (section 3.3.8.1). It contains 4,000 storage slots, each of which
can hold a bitmap image no larger than 1,024 square pixels.

3.3.1.10 V-Bar Storage

The V-Bar Storage ADM element is used to cache decompressed pixel columns from

CLEARCODEC_BAND (section 2.2.4.1.1.2.1) structures. These pixel columns (which are the same

height as the containing band) are referred to as "V -Bars". Encoded V -Bars are encapsulated in the
CLEARCODEC_BANDS_DATA (section 2.2.4.1.1.2) structure. The maximum number of V -Bars that
can be stored in the cache is 32,768.

33.111 V-Bar Storage Cursor
The V-Bar Storage Cursor ADM element is used to specify the position in the V-Bar Storage
(section 3.3.1.10) where the next V -Bar MUST be inserted. This element MUST be initialized to zero.
3.3.1.12 Short -V-Bar Storage

The Short -V-Bar Storage = ADM element is used to cache decompressed pixel columns from
CLEARCODEC_BAND (section 2.2.4.1.1.2.1) s tructures. These pixel columns (which are the same or
shorter than the height of the containing band) are referred to as "Short -V-Bars". Encoded Short -V-
Bars are encapsulated in the CLEARCODEC_BANDS_DATA (section 2.2.4.1.1.2) structure. The
maximum number of Short -V-Bars that can be stored in the cache is 16,384.

3.3.1.13 ShortV -Bar Storage Cursor
The ShortV -Bar Storage Cursor ADM element is used to specify the position in the ShortV -Bar
Storage (section 3.3.1.12) ADM element where the next Short V -Bar MUST be in serted. This element

MUST be initialized to zero.

3.3.1.14 Confirmed Graphics Capabilities

The Confirmed Graphics Capabilities ADM element is used to store the set of graphics capabilities
specified by the server in the RDPGFX_CAPS_CONFIRM_PDU (section 3.3.5.19) me ssage.

3.3.1.15 Surface to Window Mapping

The Surface to Window Mapping ADM element contains a list of surfaces and the RAIL window and
rectangular region to which each of these surfaces is mapped.

94 | 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.3.2 Timers

None.

3.3.3 Initialization

None.

3.34 Higher -Layer Triggered Events

None.
3.3.5 Message Processin g Events and Sequencing Rules

3.3.5.1 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_1 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_1 message are specified in

section 2.2.2.1. The header field MUST be p rocessed as specified in section 3.1.5.1. The surfaceld

field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element,
and the size of the bitmap data specified in the bitmapDatalLength field MUST be consistent with th e
amount of data read from the "Microsoft::Windows::RDS::Graphics" dynamic virtual channel (section

2.1). Once the data in the bitmapData field has been decoded as specified by the encoding type

enumerated inthe codecld field, the bitmap MUST be copied to the target surface.

If the encoding type enumerated in the codecld field is not RDPGFX_CODECID_ALPHA (0x000C):

A If the target surface is listed in the Surface to Window Mapping (section 3.3.1.15) ADM
element, then the alpha channel of the bitmap (if presen t) MUST be ignored when copying to the
target surface, while the red, green, and blue channels MUST all be copied to the target surface
without modification.

A If the target surface is not listed in the Surface to Window Mapping ADM element, then only
the re d, green, and blue channels SHOULD be copied to the target surface.

If the encoding type enumerated in the codecld field is RDPGFX_CODECID_ALPHA:

A Only the alpha channel of the target surface MUST be updated with the contents of the source
bitmap (the red, green, and blue channels of the target surface MUST NOT be changed).

3.3.5.2 Processing an RDPGFX_WIRE_TO_SURFACE_PDU_2 message

The structure and fields of the RDPGFX_WIRE_TO_SURFACE_PDU_2 message are specified in
section 2.2.2.2. The header field MUST be processed as specified in section 3.1.5.1. The surfaceld
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element,
and the size of the bitmap data specified in the bitmapDatalLength field MUST be consistent with the
amount of data read from the "Microsoft::Windows::RDS::Graphics" dynamic virtual channel (section

2.1). If there is no codec context identified by the codecContextld field in the Codec Contexts
(section 3. 3.1.1) ADM element, the client MUST create a new context, place it into the Codec
Contexts ADM element, and begin the process of progressively rendering a bitmap from the data in

the bitmapData field, as specified by the encoding type enumerated value in t he codecld field, using
the context to store intermediate state. The bitmap SHOULD be copied to the target surface using a

SRCCOPY ROP3 operation ((MS -RDPEGDI] section 2.2.2.2.1.1.1.7) once enough data has been

decoded to render a discernible image and SHO ULD then continue to be updated as subsequent
RDPGFX_WIRE_TO_SURFACE_PDU_2 messages are processed. Note that if the type (specified in

the blockType field) of the current RFX_PROGRESSIVE_DATABLOCK structure (section 2.2.4.2.1)
of an RFX_PROGRESSIVE_BITMAP_ STREAM (section 2.2.4.2) is

95 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

WBT_TILE_PROGRESSIVE_UPGRADE (0xCCC?7), then the codecContextld field inthe Codec
Contexts (section 3.3.1.1) ADM element MUST be known.

3.3.5.3 Processing an RDPGFX_DELETE_ENCODING_CONTEXT_PDU message

The structure and fields of the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message are
specified in section 2.2.2.3. The header field MUST be processed as specified in section 3.1.5.1. Once
the RDPGFX_DELETE_ENCODING_CONTEXT_PDU message has been successfully decoded, the
codec context identified by the codecContextld field (which is associated with the surface identified

by the surfaceld field) MUST be removed from the Codec Contexts (section 3. 3.1.1) ADM element.

3.3.54 Processing an RDPGFX_SOLIDFILL_PDU message

The structure and fields of the RDPGFX_SOLIDFILL_PDU message are specified in section 2.2.2.4.
The header field MUST be processed as specified in section 3.1.5.1. The surfaceld field MUST
identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element. Once the
RDPGFX_SOLIDFILL_PDU message has been successfully decoded, the rectangles specified in the
fillRects field MUST be filled with the 32 -bpp color sp ecified by the fillPixel field using an
R2_COPYPEN ROP2 operation ((MS -RDPEGDI] section 2.2.2.2.1.1.1.6).

3.3.5.,5 Processing an RDPGFX_SURFACE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_SURFACE_T O_SURFACE_PDU message are specified in
section 2.2.2.5. The header field MUST be processed as specified in section 3.1.5.1. The

surfaceldSrc and surfaceldDest fields MUST both identify valid offscreen surfaces in the Offscreen
Surface (section 3.3.1.6) ADM element. Once the RDPGFX_SURFACE_TO_SURFACE_PDU

message has been successfully decoded, the pixels in the source rectangle on the source surface

(specified inthe rectSrc field) MUST be copied to the target surface at each of the poin ts specified in

the destPts field using a SRCCOPY ROPS3 operation ((MS -RDPEGDI] section 2.2.2.2.1.1.1.7).

3.3.5.6 Processing an RDPGFX_SURFACE_TO_CACHE_PDU message

The structure and fields of the RDPGFX_SURFACE_TO_CACHE_PDU message are specified in
section 2.2.2.6. The header field MUST be processed as specified in section 3.1.5.1. The surfaceld
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element.
Once the RDPGFX_SURFACE_TO_CA CHE_PDU message has been successfully decoded, the pixels

in the source rectangle on the source surface (specified in the rectSrc field) MUST be copied to the
slot in the Bitmap Cache (section 3.3.1.4) ADM element identified by the cacheSlot field using a
SRCCOPY ROP3 operation ((MS -RDPEGDI] section 2.2.2.2.1.1.1.7) and tagged with the key specified

inthe cacheKey field.

3.3.5.7 Processing an RDPGFX_CACHE_TO_SURFACE_PDU message

The structure and fields of the RDPGFX_CACHE_ TO_SURFACE_PDU message are specified in
section 2.2.2.7. The header field MUST be processed as specified in section 3.1.5.1. The surfaceld
field MUST identify a valid offscreen surface in the Offscreen Surface (section 3.3.1.6) ADM element,
and the cacheSI ot field MUST contain a valid entry in the Bitmap Cache (section 3.3.1.4) ADM
element. Once the RDPGFX_CACHE_TO_SURFACE_PDU message has been successfully decoded,
the bitmap retrieved from the cache MUST be copied to the target surface at each of the point S
specified inthe destPts field using a SRCCOPY ROP3 operation (MS -RDPEGDI] section
2.2221.11.7).

96 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.3.5.8 Processing an RDPGFX_EVICT _CACHE_ENTRY_PDU message

The structure and fields of the RDPGFX_EVICT_CACHE_ENTR Y_PDU message are specified in
section 2.2.2.8. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_EVICT_CACHE_ENTRY_PDU message has been successfully decoded, the entry in the
Bitmap Cache (section 3.3.1.4) ADM element pre sent in the slot identified by the cacheSlot field
MUST be removed from the cache.

3.3.5.9 Processing an RDPGFX_CREATE_SURFACE_PDU message

The structure and fields of the RDPGFX_CREATE_SURFACE_PDU message are specified in section
2.2.29.The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_CREATE_SURFACE_PDU message has been successfully decoded, a bitmap MUST be

created with the appropriate width, height, and pixel format and MUST be placed into the Offscreen
Surface (section 3.3.1.6) ADM element. The entry MUST be tagged with the ID specified in the

surfaceld field.

3.3.5.10 Processing an RDPGFX_DELETE_SURFACE_PDU message

The structure and f ields of the RDPGFX_DELETE_SURFACE_PDU message are specified in section
2.2.2.10. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_DELETE_SURFACE_PDU message has been successfully decoded, the surface identified by
the surfaceld field MUST be deleted from the Offscreen Surface (section 3.3.1.6) ADM element.

33511 Processing an RDPGFX_START_FRAME_PDU message

The structure and fields of the RDPGFX_START_FRAME_PDU message are specified in section
2.2.2.11. The header field MUST be processed as specified in section 3.1.5.1.

3.3.5.12 Processing an RDPGFX_END_FRAME_PDU message

The structure and fields of the RDPGFX_END_FRAME_PDU message are specified in section
2.2.2.12. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_END_FRAME_PDU message has been successfully decoded, the client MUST copy the

contents of every updated off -screen surface that is present in the Surface to Output Mapping
(section 3.3.1.8) ADM element to the Graphics Output Buffer (section 3.3.1.7) ADM element. Once
the copy is complete, the client MUST send the RDPGFX_FRAME_ACKNOWLEDGE_PDU (section

2.2.2.13) message to the server, as specified in section 3.3.5.13.

3.3.5.13 Sending an RDPGFX_FRAME_ACKNOWLEDGE_PDU messag e

The structure and fields of the RDPGFX_FRAME_ACKNOWLEDGE_PDU message are specified in
section 2.2.2.13. The command fields MUST be populated in accordance with this description. The

client MUST populate the frameld field with the ID of the most recently processed logical frame, as
specified in section 3.2.5.12.

3.35.14 Processing an RDPGFX_RESET_GRAPHICS_PDU message

The structure and fields of the RDPGFX_RESET _GRAPHICS P DU message are specified in section
2.2.2.14. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_RESET_GRAPHICS PDU message has been successfully decoded, the client MUST resize
the Graphics Output Buffer (section 3.3.1.7) ADM element.

97 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

3.35.15 Processing an RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message

The structure and fields of the RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message are specified

in section 2.2.2.15. The header field MUST be p rocessed as specified in section 3.1.5.1. Once the
RDPGFX_MAP_SURFACE_TO_OUTPUT_PDU message has been successfully decoded, the surface -
to -output mapping in the Surface to Output Mapping (section 3.3.1.8) ADM element MUST be

updated by mapping the surface i dentified by the surfaceld field to the point on the Graphics

Output Buffer (section 3.3.1.7) ADM element specified by the outputOriginX and outputOriginY
fields.

3.3.5.16 Sending an RDPGFX_CACHE_IMPORT_OFFER_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_OFFER_PDU message are specified in
section 2.2.2.16. The command fields MUST be populated in accordance with this description. The

client MUST populate the cacheEntries field by enumer ating the bitmaps stored in the Persistent
Bitmap Cache (section 3.3.1.5) ADM element.

3.3.5.17 Processing an RDPGFX_CACHE_IMPORT_REPLY_PDU message

The structure and fields of the RDPGFX_CACHE_IMPORT_REPLY_PDU message are specified in
section 2.2.2.17. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_CACHE_IMPORT_REPLY_PDU message has been successfully decoded, the client MUST
copy the number of entries specified in the import edEntriesCount field from the Persistent Bitmap
Cache (section 3.3.1.5) ADM element to the assigned slots in the Bitmap Cache (section 3.3.1.4)
ADM element.

3.3.5.18 Sending an RDPGFX_CAPS_ADVERTISE_PDU message

The structure and fields of the RDPGFX_CAPS_ADVERTISE_PDU message are specified in section
2.2.2.18. The command fields MUST be populated in accordance with this description. The client MUST
correctly populate the capsSet field with one or more of the capa bility sets specified in section 2.2.3.
Each capability set type MUST NOT appear more than once.

3.3.5.19 Processing an RDPGFX_CAPS_CONFIRM_PDU message

The structure and fields of the RDPGFX_CAPS_CONFIRM_PDU message are specifiedi n section
2.2.2.19. The header field MUST be processed as specified in section 3.1.5.1. The graphics

capabilities specified by the server SHOULD be stored in the Confirmed Graphics Capabilities

(section 3.3.1.14) ADM element and MUST be adhered to by the c lient.

If the capability set received in the RDPGFX_CAPS_CONFIRM_PDU message is
RDPGFX_CAPSET_VERSION103 . RDPGEX_CAPSET_ VERSION104 ,or

RDPGFX_CAPSET_ VERSISMN484—VERSION105 , then the client can resend the
RDPGFX_CAPS_ADVERTISE_PDU message during the connectio n to reset the protocol. The client

MUST reset the channel state after sending the RDPGFX_CAPS_ADVERTISE_PDU message and
MUST ignore any messages sent by the server until RDPGFX_CAPS_CONFIRM_PDU message is
received.
3.3.5.20 Processing an RDPGFX_MAP_SURFACE_TO_WIN DOW_PDU message
The structure and fields of the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message are
specified in section 2.2.2.20. The header field MUST be processed as specified in section 3.1.5.1.
Once the RDPGFX_MAP_SURFACE_TO_WINDOW_PDU message has been succe ssfully decoded,
the surface -to-window mapping in the Surface to Window Mapping (section 3.3.1.15) ADM element
MUST be updated by associating the rectangular region (specified by the mappedWidth and

98 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

mappedHeight fields) on the surface identified by the sur faceld field to the RAIL window specified
by the windowld field.

33521 Sending an RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message

The structure and fields of the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU message are specified
in section 2.2.2.21. The command fields MUST be popu lated in accordance with this description. The

client MUST populate the frameld field with the ID of the most recently processed logical frame, as

specified in section 3.2.5.12.

If the client has opted in to sending the RDPGFX_FRAME_ACKNOWLEDGE_PDU (sectio n 2.2.2.13)
message, then, with respect to sequencing, the RDPGFX_QOE_FRAME_ACKNOWLEDGE_PDU
message SHOULD only be sent after the RDPGFX_FRAME_ACKNOWLEDGE_PDU message has been

transmitted.

3.3.5.22 Processing an RDPGEX_MAP_SURFACE_TO SCALED OUTPUT_PDU
message

The structure and fields of the RDPGFX_MAP_SURFACE_TO OUTPUT_ PDU message are specified
in section 2.2.2.22. The header field MUST be processed as specified in section 3.1.5.1. Once the
RDPGFX_MAP_SURFACE_TO_SCALED_OUTPUT_PDU message has been successfully d ecoded,
the surface -to-output mapping in the Surface to Output Mapping (section 3.3.1.8) ADM element
MUST be updated by mapping the surface identified by the surfaceld field to the point on the
Graphics Output Buffer (section 3.3.1.7) ADM element specified by the outputOriginX and
outputOriginY fields, and scaled to the targetWidth and targetHeight fields specified.

3.3.5.23 Processing an RDPGEFX MAP_SURFACE _TO_SCALED WINDOW_PDU

message
The structure and fields of the RDPGFX_MAP_SURFACE_TO_SCALED_WINDOW_PDU message
are specified in section 2.2.2.23. The header field MUST be processed as specified in section 3.1.5.1.
Once the RDPGFX_MAP_SURFACE _TO_SCALED_WINDOW_PDU message has been successfully
decoded, the surface -to-window mapping in the Surface to Window Mapping (section 3.3.1.15)
ADM element MUST be updated by associating the rectangular region (specified by the mappedWidth
and mappedHeight fields) on the surface identified by the surfaceld field to the RAIL window

specified by the windowld field with the entire sur face scaled to the targetWidth and targetHeight
fields specified.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

3.3.8 Bitmap Compression

3.3.8.1 ClearCodec Compression

The ClearCodec Codec is used to encode bitmaps sent in the RDPGFX_WIRE_TO_SURFACE_PDU_1
(section 2.2.2.1) message. T he encoded bitmap data MUST be transported in the bitmapData field of
the RDPGFX_WIRE_TO_SURFACE_PDU_1 message, and the codecld field MUST be set to

RDPGFX_CODECID_CLEARCODEC (0x0008).

99 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

The ClearCodec bitmap stream is described in section 2.2.4.1 and is composed of a maximum of three

layers. Each layer is optional and is encoded using different techniques.
A The residual layer (section 2.2.4.1.1.1)
A The bands layer (section 2.2.4.1.1.2)

A The subcodec layer (section 2.2.4.1.1.3)

3.3.8.1.1 ClearCodec Run -Length Encoding

ClearCodec run -length encoding uses a standard RLE compression scheme that parses a pixel stream
and encodes run lengths.

For example, an initial stream containing the following 12 ANSI characters:
AAAABBCCCCCD

would be transformed after encoding into the following stream:
A4B2C5D1

Note that in the real case, each ANSI character is a pixel represented by 3 bytes (R, G, B
components). This type of encoding is suitable for the content in the residual layer (section
2.2.4.1.1.1).

3.3.8.1.2 Decompressing a Bitmap

The fol lowing flowchart shows how to decompress a bitmap that is compressed using ClearCodec
compression techniques.

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

100 / 143

Start Decompress
Bitmap

Read flags field from
ClearCodec bitmap
stream header

Is "glyph
index"” flag
set?

Yes

y

Read glyphIndex field

Is "glyph hit”
flag set?

Yes

v

Copy pixels from the
Decompressor Glyph
Storage position
specified by the
glyphindex field to the
output bitmap

B

Read composite
payload header
parameters

Is
residual byte
count > 07

Yes —p

Decompress residual
layer and write to
output bitmap

No

Is
bands bytes
count > 07

Yes —p|

Decompress bands
layer and write to
output bitmap

No

subcodec byte
count > 07

Yes —pp|

Decompress subcodec
layer and write to
output bitmap

No
Y

Set alpha channel in
output bitmap to fully
opaque (0xFF)

Is
"glyph index"
flag set?

No

Finished

Copy decompressed
bitmap to the
Decompressor Glyph
Storage position
specified by the
glyphindex field

Decompress
Bitmap

Figure 4: Decompressing a bitmap using ClearCodec Bitmap Compression

3.3.8.2

The functio nal stages involved in the decoding path are illustrated in the following figure. Compared to

RemoteFX Progressive Codec Compression

the encoding stages, the decoding stage operations are the operations of the encoding stage in

reverse order.

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension

Copyright © 2018 Microsoft Corporation
Release: March 16, 2018

Figure 5:RemoteFX Progre ssive Codec decoding stages
When compared to [MS -RDPRFX] section 3.1.8.2, the codec now maintains state. "Current frame"

contains the DWT coefficients of the tiles, and "Persistent progressive state" is used to maintain
information pertinent to tiles that have been received in progressive chunks.

3.3.8.2.1 Progressive Entropy Decode
The first stage of decoding aims to reconstruct the DWT data of a tile.

The decoder MUST maintain a copy of the unquantized DWT data ("Current frame" in the figure

captioned "RemoteFX Pro gressive Codec decoding stages" in section 3.3.8.2) as well as a tri - state
value for each element in a tile that has not yet been fully upgraded ("Persistent progressive state" in
the same figure). The tri - state value records whether the data that has been received for an element

sums up to a positive value, a negative value, or zero.

A coefficient either is encoded with the SRL encoder, or its absolute value is written as raw bits

(section 3.2.8.1.5). The decoder MUST determine which of these two methods w as used and what sign
to apply to the decoded element. The sign can be determined by using the tri -state value associated
with each element.

If the input data is for the first progressive chunk of a tile (or it contains all of the data for a tile), then
th e Persistent progressive state MUST be cleared. Furthermore, if the tile is an original tile (not a
difference tile), then the tile MUST be zeroed out in the current frame. The result of the entropy
decode operation MUST be added to the current frame.

338211 Perf orming the First Progressive Pass

For the first pass, the data received is sent to the RLGR entropy decoder to produce the progressively
quantized coefficients DecProgQ

For each element being decoded, except elements in the LL band, the sign is recorded (positive,
negative, or zero). This tri - state (referred to as Sign) is used for successive upgrade passes.

Sign = -1if DecProgQ -NonLL <0

102 / 143

[MS -RDPEGFX-Diff] - v20180316

Remote Desktop Protocol: Graphics Pipeline Extension
Copyright © 2018 Microsoft Corporation

Release: March 16, 2018

