
1 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[MS -MQQB]:

Message Queuing (MSMQ): Message Queuing Binary
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,

file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute po rtions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Á Patents . Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise . If you would prefer a written license, or if the te chnologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks . T he names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, e -mail

addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associat ion with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than specif ically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to M icrosoft

programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and

network programming art, and assumes that the reader eit her is familiar with the aforementioned
material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

5/11/2007 0.1 Version 0.1 release

8/10/2007 1.0 Major Updated and revised the technical content.

9/28/2007 2.0 Major Updated and revised the technical content.

10/23/2007 2.0.1 Editorial Changed language and formatting in the technical content.

11/30/2007 2.0.2 Editorial Changed language and formatting in the technical content.

1/25/2008 2.0.3 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 4.0 Major Updated and revised the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 5.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 7.0 Major Updated and revised the technical content.

12/5/2008 7.1 Minor Clarified the meaning of the technical content.

1/16/2009 7.2 Minor Clarified the meaning of the technical content.

2/27/2009 7.3 Minor Clarified the meaning of the technical content.

4/10/2009 8.0 Major Updated and revised the technical content.

5/22/2009 9.0 Major Updated and revised the technical content.

7/2/2009 9.1 Minor Clarified the meaning of the technical content.

8/14/2009 10.0 Major Updated and revised the technical content.

9/25/2009 11.0 Major Updated and revised the technical content.

11/6/2009 11.1 Minor Clarified the meaning of the technical content.

12/18/2009 12.0 Major Updated and revised the technical content.

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 14.0 Major Updated and revised the technical content.

4/23/2010 14.1 Minor Clarified the meaning of the technical content.

6/4/2010 15.0 Major Updated and revised the technical content.

7/16/2010 16.0 Major Updated and revised the technical content.

8/27/2010 17.0 Major Updated and revised the technical content.

10/8/2010 18.0 Major Updated and revised the technical content.

11/19/2010 19.0 Major Updated and revised the technical content.

3 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Date
Revision
History

Revision
Class Comments

1/7/2011 20.0 Major Updated and revised the technical conten t.

2/11/2011 21.0 Major Updated and revised the technical content.

3/25/2011 22.0 Major Updated and revised the technical content.

5/6/2011 23.0 Major Updated and revised the technical content.

6/17/2011 23.1 Minor Clarified the meaning of the technical content.

9/23/2011 24.0 Major Updated and revised the technical content.

12/16/2011 25.0 Major Updated and revised the technical content.

3/30/2012 25.0 None No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 25.1 Minor Clarified the meaning of the technical content.

10/25/2012 26.0 Major Updated and revised the technical content.

1/31/2013 26.0 None No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 27.0 Major Updated and revised the technical content.

11/14/2013 27.0 None No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 27.0 None No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 27.0 None No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 28.0 Major Significantly changed the technical content.

4 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Table of Contents

1 Introduction 8
1.1 Glossary 8
1.2 References 10

1.2.1 Normative References 11
1.2.2 Informative References 12

1.3 Overview 12
1.3.1 Message Queuing 12
1.3.2 User Messages 13

1.3.2.1 User Message Types 13
1.3.2.1.1 Express Message 13
1.3.2.1.2 Recoverable Message 13
1.3.2.1.3 Transactional Message 14

1.3.2.2 Message Security 14
1.3.3 Queues 14

1.3.3.1 System Queues 14
1.3.4 Source Journaling 15

1.3.4.1 Positive Source Journaling 15
1.3.4.2 Negative Source Journaling 15

1.3.5 Acknowledgments 15
1.3.5.1 Internal Acknowledgments 15
1.3.5.2 Administratio n Acknowledgments 16

1.3.6 Message Tracing 16
1.3.7 Message Routing 16
1.3.8 Typical Scenario 17

1.4 Relationship to Other Protocols 18
1.5 Prerequisites/Preconditions 19
1.6 Applicability Statement 19
1.7 Versioning and Capability Negotiation 19
1.8 Vendor -Extensible Fields 20
1.9 Standards Assignments 20

2 Messages 21
2.1 Transport 21

2.1.1 Protocol Session 21
2.1.2 Ping Message 21

2.2 Message Syntax 21
2.2.1 InternalHeader 22
2.2.2 ConnectionParameters Packet 23

2.2.2.1 ConnectionParametersHeader 24
2.2.3 EstablishConn ection Packet 24

2.2.3.1 EstablishConnectionHeader 25
2.2.4 OrderAck Packet 27

2.2.4.1 OrderAck Body 28
2.2.5 FinalAck Packet 29

2.2.5.1 FinalAck Body 30
2.2.6 SessionAck Packet 31
2.2.7 Ping Packet 32

2.3 Directory Service Schema Elements 33
2.4 Cryptograph ic Data Structures 34

2.4.1 PUBLICKEYBLOB 34
2.4.2 SIMPLEBLOB 34

3 Protocol Details 36
3.1 Common Details 36

3.1.1 Abstract Data Model 36

5 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.1.1 Protocol State 36
3.1.1.1.1 State Diagrams 36

3.1.1.1.1.1 Session State - I nitiator 36
3.1.1.1.1.2 Session State - Acceptor 37
3.1.1.1.1.3 Express Message State - Sender 38
3.1.1.1.1.4 Express Message State - Receiver 39
3.1.1.1.1.5 Recoverable Message State - Sender 40
3.1.1. 1.1.6 Recoverable Message State - Receiver 41
3.1.1.1.1.7 Transactional Message State - Sender 42
3.1.1.1.1.8 Transactional Message State - Receiver 43
3.1.1.1.1.9 Ping Mechanism State - Initiator 44

3.1.1. 2 Shared Data Elements 45
3.1.1.3 Queue Manager State 45

3.1.1.3.1 Session State 47
3.1.1.3.1.1 OutgoingTransferSequence 50
3.1.1.3.1.2 OutgoingMessagePosition 51
3.1.1.3.1.3 NextHop 51

3.1.1.3.2 Persistent State Storage 51
3.1.1.3.3 CachedSymmetricKey 52
3.1.1.3.4 CachedUserCert 52

3.1.1.4 Session Message Seque nce 52
3.1.1.5 Transactional Message Sequence 53
3.1.1.6 Acknowledgments 54

3.1.1.6.1 Session Acknowledgment 54
3.1.1.6.2 Transactional Acknowledgment 55

3.1.1.7 Sequence Diagrams 55
3.1.1.7.1 Session Initialization 56
3.1.1.7.2 Session with Express Messages Sent 56
3.1.1.7.3 Session with Transactional Messages Sent 57

3. 1.2 Timers 58
3.1.2.1 Session Initialization Timer 59
3.1.2.2 Session Cleanup Timer 59
3.1.2.3 Session Retry Connect Timer 59
3.1.2.4 Session Ack Wait Timer 59
3.1.2.5 Session Ack Send Timer 59
3.1.2.6 Transactional Ack Wait Timer 60
3.1.2.7 Order Ack Send Timer 60
3.1.2.8 MessageIDHistory Cleanup Timer 60
3.1.2.9 Ping Re sponse Timer 60
3.1.2.10 ReceiveSymmetricKeyCache Cleanup Timer 60
3.1.2.11 SendSymmetricKeyCache Cleanup Timer 60
3.1.2.12 SendBaseSymmetricKeyCache Cleanup Timer 61
3.1.2.13 UserCertCache Cleanup Timer 61

3.1.3 Initialization 61
3.1.3.1 Global Initializati on 61
3.1.3.2 Session Initialization 62

3.1.4 Higher -Layer Triggered Events 63
3.1.4.1 Queue Man ager Started Event 63
3.1.4.2 Queue Manager Stopped Event 63

3.1.5 Processing Events and Sequencing Rules 64
3.1.5.1 Receiving Any Packet 64

3.1.5.1.1 Identifying Packet Type 64
3.1.5.1.2 Verifying the Signature 64
3.1.5.1.3 Handling Incorrectly Fo rmatted Messages 65

3.1.5.2 Establish a Protocol Session 65
3.1.5.2.1 Resolve Host Address 65
3.1.5.2.2 Ping Mechanis m 67
3.1.5.2.3 Sending an EstablishConnection Request Packet 67

6 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.5.3 Receiving an EstablishConnection Packet 68
3.1.5.3.1 Request Packet 68
3.1.5.3.2 Response Packet 69

3.1.5.4 Receiving a ConnectionParameters Packet 69
3.1.5.4.1 Request Packet 70
3.1.5.4.2 Response Packet 70

3.1.5.5 Receiving a SessionAck Packet 71
3.1.5.5.1 Mark Acknowledged Messages 71
3.1.5.5.2 Delete Acknowledged Express Messages 71
3.1.5.5.3 Delete Acknowledged Recoverable Messages 72
3.1.5.5.4 Source Journaling 72
3.1.5.5.5 Validate Message Counts 72

3.1.5.6 Receiving a n OrderAck Packet 72
3.1.5.7 Receiving a FinalAck Packet 74
3.1.5.8 Receiving a UserMessage Packet 75

3.1.5.8.1 Duplicate Detection 75
3.1.5.8.2 General Proce ssing 75
3.1.5.8.3 Security 78
3.1.5.8.4 SessionHeader Processing 84
3.1.5.8.5 Determining Message Destination 84
3.1.5.8.6 Transactional Message Processing 84
3.1.5.8.7 Recoverable Message Processing 85
3.1.5.8.8 Inserting a Message into a Local Queue 86
3.1.5.8.9 Sending a Trace Message 88
3.1.5.8.10 Sending Administration Acknowledgments 89

3. 1.5.9 Closing a Session 89
3.1.5.10 Handling an Incoming Transport Connection 90
3.1.5.11 Receiving Administration Acknowledgments 90

3.1.6 Timer Events 90
3.1.6.1 Session Retry Connect Timer Event 90
3.1.6.2 Session Cleanup Timer Event 91
3.1.6.3 Session Ack Wai t Timer Event 91
3.1.6.4 Session Ack Send Timer Event 91
3.1.6.5 Transactional Ack Wait Timer Event 92
3.1.6.6 Session Initialization Timer Event 92
3.1.6.7 MessageIDHistory Cleanup Timer Event 92
3.1.6.8 Ping Response Timer Event 93
3.1.6.9 Order Ack Send Timer Event 93
3.1.6.10 ReceiveSymmetricKeyCache Cleanup Timer Event 93
3.1.6.11 SendSymmetricKeyCache Cleanup Timer Event 93
3.1.6.12 SendBaseSymmetricKeyCache Cleanup Timer Event 93
3.1.6.13 UserCertCache Cleanup Timer Event 94

3.1.7 Other Local Events 94
3.1.7.1 Send User Message Event 94

3.1.7.1.1 General Processing 95
3.1.7.1.2 Checking for Message Expiration 95
3.1.7.1.3 Updating the UserMessage Packet 96
3.1.7.1.4 Signing the Packet 97
3.1.7.1.5 Encrypting the Message Body 97

3.1.7.1.5.1 Handling Encr yption Errors 100
3.1.7.1.5.2 Converting MQDSPUBLICKEY to PUBLICKEYBLOB 100

3.1.7.1.6 Sending the Packet 101
3.1.7.1.7 Sending Trace M essage 101

3.1.7.2 Message Position Deleted 102
3.1.7.2.1 Administration Acknowledgment 102
3.1.7.2.2 Final Acknowledgment 103

3.1.7.3 Handling a Network Disconnect 103
3.1.7.4 Get Destination Info 103

7 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.7.5 Get Next Hops 104
3.1.7.6 Send Ping Request 105
3.1.7.7 Receive Ping Request 105
3.1.7.8 Receive Ping Response 106
3.1.7.9 Ping Response P rocessed 106
3.1.7.10 Get Message Data Element From Buffer 106
3.1.7.11 Construction of a UserMessage Packet 107
3.1.7.12 Message Position Available Event 107
3.1.7.13 Pause Queue Event 108
3.1.7.14 Resume Queue Event 109
3.1.7.15 Send Administration Acknowledgment 109
3.1.7.16 Send User Message Wrapper 113
3.1.7.17 Send Trans actional Acknowledgment 113

4 Protocol Examples 117
4.1 Session Initialization and Express Message Example 117

4.1.1 FRAME 1: Ping Request 117
4.1.2 FRAME 2: Ping Respo nse 118
4.1.3 FRAME 3: Establish Connection Request 118
4.1.4 FRAME 4: Establish Connection Response 119
4.1.5 FRAME 5: Connection Parameters Request 121
4.1.6 FRAME 6: Connection Parameters Response 121
4.1.7 FRAME 7: User Message 122
4.1.8 FRAME 8: Session Acknowledgment 125

5 Security 126
5.1 Security Considerations for Implementers 126
5.2 Index of Security Parameters 126

6 Appendix A: Product Behavior 127

7 Change Tracking 135

8 Index 137

8 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1 Introduction

This document specifies the Message Queuing (MSMQ): Message Queuing Binary Protocol, which
defines a mechanism for reliably transferring me ssages between two message queues located on two
different hosts. The protocol uses TCP or SPX to transport the data, but augments it with additional
levels of acknowledgment that ensure that th e messages are reliably transferred regardless of TCP or
SPX connection failures, application failures, or node failures.

Familiarity with public key infrastructure (PKI) concepts such as asymmetric and symmetric
cryptography, asymmetric and symmetric encr yption techniques, digital certificate concepts, and
cryptographic key establishment is required for a complete understanding of this specification. In
addition, a comprehensive understanding of the [X509] standard is required for a complete
understanding of the protocol and its usage.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,

MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119] . Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are

informa tive.

1.1 Glossary

The following terms are specific to this document:

acceptor : A queue manager that accepts a protocol session initiated by a remote queue manager.

administration queue : A messaging queue that receives Message Queuing (MSMQ) system -
generated acknowledgment messages . An administration queue is available to MSMQ
applications for checking message status.

big - endian : Multiple -byte values that are byte -ordered with the most significant byte stored i n the
memory location with the lowest address.

certificate : When referring to X.509v3 certificates, that information consists of a public key, a

distinguished name (DN) (3) of some entity assumed to have control over the private key
corresponding to the pu blic key in the certificate, and some number of other attributes and
extensions assumed to relate to the entity thus referenced. Other forms of certificates can bind
other pieces of information.

Coordinated Universal Time (UTC) : A high -precision atomic tim e standard that approximately

tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) a nd Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC -0 (or GMT).

dead - letter queue : A queue that contains messages that were sent from a host with a request
for negative source journaling and that could not be delivered. Message Queuing provides a
transactional dead - letter que ue and a non - transactional dead - letter queue.

direct format name : A name that is used to reference a public queue or a private queue without

accessing the MSMQ Directory Service. Message Queuing can use the physical, explicit location
information provided by direct format names to send messages directly to their destinations.
For more information, see [MS -MQMQ] section 2.1.

format name : A name that is used to reference a queue when making calls to API functions.

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microso ft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

http://go.microsoft.com/fwlink/?LinkId=90590
http://go.microsoft.com/fwlink/?LinkId=90317

9 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[RFC4122] or [C706] must be used for generating the GUID . See also universally unique
identifier (UUID).

initiator : A queue manager that establishes a protocol session to a remote queue manager .

little - endian : Multiple -byte values that are byte -ordered with the least significant byte stored in

the memory location with the lowest address.

local queue : For a queue manager , a queue hosted by the queue manager itself. For an
application, a queue hosted by the queue manager with which the application communicates.

message : A data structure representing a unit of data transfer between distributed applications. A
message has message properties, which m ay include message header properties, a message
body property, and message trailer properties.

message body : A distinguished message property that represents the application payload.

message que ue : A data structure containing an ordered list of zero or more messages . A queue
has a head and a tail and supports a first in, fir st out (FIFO) access pattern. Messages are

appended to the tail through a write operation (Send) that appends the message and
increm ents the tail pointer. Messages are consumed from the head through a destructive read
operation (Receive) that deletes the message and increments the head pointer. A message at
the head may also be read through a nondestructive read operation (Peek).

Microsoft Message Queuing (MSMQ) : A communications service that provides asynchronous
and reliable message passing between distributed applications. In Message Queuin g ,
applications send messages to queues and consume messages from queues . The queues
provide persistence of the messages , enabling the sendi ng and receiving applications to
operate asynchronously from one another.

MSMQ 1.0 digital signature : A digital signature based on a hash of the MSMQ 1.0 Digital
Signature Properties section in [MS -MQMQ]. This signature type is supported by all versions of

Message Queuing .

MSMQ 2.0 digital signature : A digital signature that is more robust than the MSMQ 1.0 digital

signature and is bas ed on a hash of the MSMQ 2.0 Digital Signature Properties section in [MS -
MQMQ]. This signature type is not supported by MSMQ version 1.

MSMQ 3.0 digital signature : A digital signature that is us ed only for messages sent to
distribution lists or multiple -element format names and is based on a hash of the MSMQ 3.0
Digital Signature Properties section in [MS -MQMQ]. This signature type is not supported by

MSMQ version 1 nor MSMQ version 2.

network byte order : The order in which the bytes of a multiple -byte number are transmitted on a
network, most significant byte first (in big - endian storage). This may or may not match the
order in which numbers are normally stored in memory for a particular processor.

notification queue : A private Microsoft Message Queuing (MSMQ) queue to which
notifications are sent and from which notifications are received.

order queue : A messaging queue that is used to monitor the arrival order of messages that are

sent as part of a transa ction.

outgoing queue : A temporary internal queue that holds messages for a remote destination
queue . The path name of an outgoing queue is identical to the path name of the corresponding
destination qu eue . An outgoing queue is distinguished from its corresponding destination
queue by the fact that the outgoing queue is located on the sending computer. The format
name of an outgoing queue is identical to the format name used by the messages to

reference the destination queue . Messages that reference the destination queue using a
different format name are placed in a different outgoing queue .

http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824

10 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

private key : One of a pair of keys used in public -key cryptography. The private key is kept secret
and is used to decrypt data that has been encrypted with the corresponding public key. For an

introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

private queue : An application -defined message queue that is not registered in the MSMQ

Directory Service. A private queue is deployed on a particular queue manager .

queue : An object that holds messages passed between applications or messages passed
between Message Queuing and applications. In general, applications can sen d messages to
queues and read messages from queues.

queue manager (QM) : A message queuing service that manages queues deployed on a
computer. A queue manager may also provide asynchronous transfer of messages to queues
deployed on other queue managers.

routing server : See MSMQ routing server.

security identifier (SID) : An identifier for security principals in Windows that is used to identify
an account or a group. Conceptually, the SID is composed of an account authority portion

(typically a domain) and a smaller integer representing an identity relative to the account
authority, termed the relative identifier (RID). The SID format is specified in [MS -DTYP] section
2.4.2; a string representation of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD]

section 1.1.1.2.

sequence : The set of message packets sent over a session that represent a message sequence . A
message is associated with a sequence number that corresponds to its position within the
sequence . Sequence numbers begin with 1 and increment by 1 with each subsequent
message.

source journaling : The process of storing copies of outgoing messages on the source computer.
Source journaling is configured on a per -message basis and can be used to t rack messages that

were sent successfully, messages that could not be delivered, or both.

transactional message : A message sent as part of a transaction. Transaction messages must

be sent to transactional queues .

transactional queue : A queue that contains only transactional messages .

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16

BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

UTC (Coordinated Universal Time) : A high -precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and n egative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC ï0 (or GMT).

X.509 : An ITU -T standard for public key infrastructure subseq uently adapted by the IETF, as

specified in [RFC3280] .

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

http://go.microsoft.com/fwlink/?LinkId=89841
http://go.microsoft.com/fwlink/?LinkId=89899
%5bMS-DTYP%5d.pdf
%5bMS-AZOD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90317

11 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct sectio n numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure the ir continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[FIPS180 -2] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180 -

2, August 2002, http://csrc.nist.gov/publications/fips/fips180 -2/fips180 -2.pdf

[FIPS197] FIPS PUBS, "Advanced Encryption Stand ard (AES)", FIPS PUB 197, November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips -197.pdf

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry", November 2006,
http://www.iana.org/assignments/service -names -port -numbers/service -names -port -numbers.xhtml

[MS -ADTS] Microsoft Corporation, " Active Directory Technical Speci fication ".

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[MS -LSAT] Microsoft Corporation, " Local Security Authority (Translation Methods) Remote Protocol ".

[MS -MQBR] Microsoft Corporation, " Message Queuing (MSMQ): Binary Reliable Message Routing
Algorithm ".

[MS -MQDMPR] Microsoft Corporation, " Message Queuing (MSMQ): Common Data Model and
Processing Rules ".

[MS -MQDSSM] Microsoft Corporation, " Message Queuing (MSMQ): Directory Service Schema
Mapping ".

[MS -MQDS] Microsoft Corporation, " Message Queuing (MSMQ): Directory Service Protocol ".

[MS -MQMQ] Microsoft Corporation, " Message Queuing (MSMQ): Data Structures ".

[MS -PAC] Microsoft Corporation, " Privilege Attribute Certifica te Data Structure ".

[MS -SFU] Microsoft Corporation, " Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol ".

[PKCS1] RSA Laboratories, "PKCS #1: RSA Cryptography Standard", PKCS #1, Version 2.1, June
2002, http://www.emc.com/emc -plus/rsa - labs/standards - initiatives/pkcs - rsa -cryptography -
standard.htm

[RFC1319] Kaliski, B., "The MD2 Message -Digest Algorithm", RFC 1319, April 1992, http://www.rfc -

editor.org/rfc/rfc1319.txt

[RFC1320] Rivest, R., "The MD4 Message -Digest Algorithm", RFC 1320, April 1992,
http://www.i etf.org/rfc/rfc1320.txt

[RFC1321] Rivest, R., "The MD5 Message -Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89868
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=89888
%5bMS-ADTS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-LSAT%5d.pdf
%5bMS-MQBR%5d.pdf
%5bMS-MQBR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-SFU%5d.pdf
%5bMS-SFU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90248
http://go.microsoft.com/fwlink/?LinkId=90248
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90317

12 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[RFC2212] Shenker, S., Partridge, C., and Guerin, R., "Specification of Guaranteed Qualit y of Service",
RFC 2212, September 1997, http://www.ietf.org/rfc/rfc2212.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.rfc -editor.org/rfc/rfc2268.txt

[RFC3110] Eastlake III, D., "RSA/SHA -1 SIGs and RSA KEYs in the Domain Name System (DNS)", RFC
3110, May 2001, http://www.ietf.org/rfc/rfc3110.txt

[RFC3447] Jonsson, J. and Kaliski, B., "Public -Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC3986] Berners -Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, January 2005, http:/ /www.ietf.org/rfc/rfc3986.txt

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4 -HMAC Kerberos Encryption Types Used
by Microsoft Windows", RFC 4757, December 2006, http://www.ietf.org/rfc/rfc4757.txt

[SP800 -38A] National Institute of Standards and Technology., "Special Publication 800 -38A,
Recommendation for Block Cipher Modes of Operation: Methods and Techniques", December 2001,
http://csrc.nist.gov/publications/nistpubs/800 -38a/sp800 -38a.pdf

[X509] ITU -T, "Information Technology - Open Systems Interconnection - The Directory: Public -Key
and Attribute Certificate Frameworks", Recommendation X.509, Augus t 2005,
http://www.itu.int/rec/T -REC-X.509/en

1.2.2 Informative References

[LDAP] Microsoft Corporation, "About Lightweight Directory Ac cess Protocol",
http://msdn.microsoft.com/en -us/library/aa366075.aspx

[MS -MQOD] Microsoft Corporation, " Message Queuing Protocols Overview ".

1.3 Overview

The Message Queuing (MSMQ): Message Queuing Binary Protocol is used by a client to reliably
transfer a message to a server. The protocol is stateful wherein the client establishes a connection to
a server and t hen sends a variety of packets to transfer messages. The protocol defines additional

behaviors such as administration acknowledgments and message source journaling . The protocol
uses UDP or SPX to determine server availability and TCP or SPX to transport the data but augments it
with additional levels of acknowledgment that ensure that the messages are reliably transferred
regardless of TCP or SPX connection failures, application failures, or nod e failures.

1.3.1 Message Queuing

Message Queuing is a communications service that provides asynchronous and reliable message
passing between client applications running on different hosts. In Message Queuing, clients send

application messages to a queue and/or consume application messages from a queue. The queue
provides persistence of the messages, th ereby enabling them to survive across application restarts
and allowing the sending and receiving client applications to operate asynchronously from each other.

Queues are hosted by a communications service called a queue manager .

Implementing the queue manager as a separate service allows client applications to exchange queued
messages asynchronously and eliminates the need for the client applications to ex ecute at the same
time.

http://go.microsoft.com/fwlink/?LinkId=90321
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90406
http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=128809
http://go.microsoft.com/fwlink/?LinkId=90590
http://go.microsoft.com/fwlink/?LinkId=89932
%5bMS-MQOD%5d.pdf

13 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Message Queuing is designed for the possibility of sending messages asynchronously to computers
that are temporarily unavailable. When sending a message, the queue manager indicates to the client

application that the sending operat ion has succeeded as soon as the message is created with valid
properties and is placed in an outgoing queue, where the message remains until it is delivered to its

destination or the message expires. Note that the sending operation does not immediately de liver the
message but just stores it in a queue to be delivered asynchronously by the queue manager.

Queue managers handle the delivery of messages by continually checking for messages in all the local
outgoing queues and attempting to transmit the found m essages to their destinations. The queue
manager on the sending side does not return any information to the sending application if the
message does not reach its destination queue or if the message is discarded before being retrieved by
a receiving applica tion. Applications can obtain information from acknowledgment messages sent back

from the destination host and can also examine the dead letter and journal queues for information on
messages sen t.

The Message Queuing (MSMQ): Message Queuing Binary Protocol defines a mechanism for reliably
transferring messages between queue managers that are located on two different hosts. The protocol
does not define the queue manager or its interface to client applications.

1.3.2 User Messages

A typical message exchanged in a message queuing system has a set of message properties that
contain metadata about the message and a distinguished property, called a message body , that
contains the application payload.

The protocol does not place restrictions on the contents of the message body. Applications may pass

arbitrary data in the message body, and applicatio n frameworks layered above the protocol may
provide object serialization to allow objects to be exchanged using this protocol.

1.3.2.1 User Message Types

Messages sent using the Message Queuing (MSMQ): Message Queuing Binary Protocol are either
express or recoverable. The choice between the two delivery options is essentially a choice between

better performance with minimal resource use (express messaging) and reliability and recovery after a
failure (recoverabl e messaging).

1.3.2.1.1 Express Message

When express messaging is used to send messages, the messages are stored in RAM during transfer

and after delivery to the destination queue until they are received. This provides fast performance, but
the messages are not recoverable if any computer where the messages reside fails. Notably, this
means that express messages can be lost when the queue manager service is stopped. Express
messages are not guaranteed to be delivered only once or in order.

Express messages can, like recoverable messages, survive a network failure. For example, if the client
sends express messages and the link between the queue manager and the target computer fails, the
queue manager continues to store the messages in its memory and will retry the connection.

However, if the client process fails before the link is restored, the undelivered express messages are

lost. Likewise, express messages on a server will be lost in the event of a process failure.

1.3.2.1.2 Recoverable Message

When recoverable messaging is used to send messages, they are written to disk on both the sending
and receiving computer. After delivery to the destination queue, recoverable messages are stored on
disk until they are consumed by a user application. This process makes delivery somewhat slower than

express messaging, but it is ideal when persistence through service restart or failure is required. If a
computer fails or is shut down while sending messages, they are stored on disk. Then whe n the
computer is restarted and the queue manager service restarts, the sending process is automatically

14 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

resumed. Recoverable messages are not guaranteed to be delivered only once or in order except when
they are transactional messages .

1.3.2.1.3 Transactional Message

A transactional message is a recoverable message that has exactly once and in order (EOIO) delivery
guarantees. When delivering transactional messages, the proto col utilizes an additional level of
acknowledgment to guarantee that messages arrive only once and in the correct order.

Transactional messaging is intended to be used in situations where the queue manager has captured
one or more messages under a transact ion and subsequently delivers the messages to a queue
manager on a remote host with EOIO delivery guarantees. This protocol is not a participant in the
transaction under which the messages are captured; instead, it is used to transfer the messages after

th e transaction is committed.

This protocol does not mandate the implementation details of the transactional capture of messages
as long as the external behavior of a queue manager is consistent with that specified in this
document.

1.3.2.2 Message Security

Messages sent using the Message Queuing (MSMQ): Binary Messaging Protocol can be digitally signed
and/or encrypted using a variety of technologies. The MD2 [RFC1319] , MD4 [RFC1320] , MD5
[RFC1321] , SHA -1 [RFC3110] , SHA-256 [FIPS180 -2] , and SHA -512 [FIPS180 -2] hashing algorithms
are supported <1> for generating digital signatures, and the RC2 [RFC2268] , RC4 [RFC4757] , and AES
[FIPS197] algorithms are supported for encrypting messages .

Sender identity can be specified by including an X.509 digital certificate in a message. A receiver can
authenticate a message by validating the digital signature by using the sender public ke y.

1.3.3 Queues

A queue is a logical data structure containing an ordered list of zero or more messages. A queue

manager maintains a set of queues that hold messages. The queue manager requires a set of
predefined or system queues (defined following) that are referenced throughout this document. A
queue manager configuration defines a set of user queues that are the typical targets for messages
sent via the Message Queuing (MSMQ): Message Queuing Binary Protocol.

Messages transferr ed using this protocol are addressed to specific queues by name. This protocol
identifies queues by using the formats specified in [MS -MQMQ] section 2.1. This protocol does not

mandate the implementation details of queues a s long as their external behaviors are consistent with
those described in this document.

A queue can be transactional or non - transactional. A transactional queue accepts only transactional
messa ges, while a non - transactional queue accepts only express and recoverable messages. A
transactional queue requires persistent storage of messages and guaranteed consistency through
process or node failure, while a non - transactional queue requires persisten t storage of messages but
does not require guaranteed consistency through process or node failures.

1.3.3.1 System Queues

A queue manager has a set of built - in queues called system queues. System queues include the
following types of queues:

Dead - Letter Queues: Contain messages that were sent from a host with a request for negative
source journaling and could not be delivered. Dead - letter queues can be implemented as
transactional or nontransactional.

http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90406
http://go.microsoft.com/fwlink/?LinkId=89868
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=89870
%5bMS-MQMQ%5d.pdf

15 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Connector Queues: Temporary locations to s tore messages that are forwarded to foreign
messaging systems. Typically, a connector service running on a server waits for messages to

arrive in one or more connector queues and forwards them to the foreign messaging systems. A
connector service is applic ation -defined and is not specified by this protocol.

Journal Queues: Contain copies of the messages sent from hosts when positive source journaling
is requested by message queuing applications.

OrderAck Queue: An order queue that is used by the message transfer protocols to implement
exactly -once delivery assurance.

1.3.4 Source Journaling

Source journaling is the process of storing copies of outgoing messages on a s ource computer. It is
configured on a per -message basis and is implemented as a property set programmatically by a
message queuing application. Source journaling can be used to track messages that were sent
successfully, that could not be delivered, or bot h. Source journaling is disabled by default. <2>

There are two types of source journaling: positive source journaling and negative source journaling.

1.3.4.1 Positive Source Journaling

Positive source journaling tracks successfully sent messages by placing message copies in the local
host journal queue.

1.3.4.2 Negative Source Journaling

Negative source j ournaling tracks unsuccessfully sent messages by placing message copies in the local
host dead - letter queue. When a message queuing application requests negative source journaling,
messages are processed differently, depending on the message type.

For non - transactional messages, a copy of the message is placed in the local host dead - letter queue.

Failure indicates that the source queue manager on the host cannot transfer the message to the
destination host queue manager.

For transactional messages, a copy of the message is placed in the transactional dead - letter queue of
the local host only if Message Queuing does not confirm that the message was retrieved from its
destination queue.

1.3.5 Acknowledgments

1.3.5.1 Internal Acknowledgments

Internal acknowledgments are system -generated protocol packets sent from a receiving queue
manager to a sending queue manager to acknowledge receipt (or other processing) of a user
message. Internal acknowledgments are used b y the protocol to enforce guarantees such as exactly
once and in order delivery. Retransmission of messages may occur when an internal acknowledgment

is not received within a specific period of time.

Order and Final Acknowledgment packets are sent by usin g an existing active session to the queue

manager on the original sender, or, if no such session exists, the messages are sent by establishing a
new session to the queue manager on the original sender.

The protocol utilizes the following types of internal acknowledgments:

Session Acknowledgment: This packet acknowledges receipt of express and recoverable user
message packets. Session Acknowledgments are acknowledgments within the context of a

16 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

particular transfer session that is scoped to that TCP connection ; they are sent back to the
initiating port on which the session was established.

Order Acknowledgment: This packet acknowledges in -order receipt of a transactional message.
This acknowledgment is required to guarantee exactly once in -order delivery of tra nsactional

messages. This acknowledgment is sent from the final destination queue manager to the original
sender.

Final Acknowledgment: This packet acknowledges that a transactional message has been
rejected by the receiver or that a delivered transactiona l message has been removed from the
destination queue. Removal from the destination queue could be the result of a user - level
application reading the message from the queue or of an administrative action such as deleting
the message or queue. The packet ca n represent a positive or negative acknowledgment. This

acknowledgment is sent from the final destination queue manager to the original sender.

1.3.5.2 Administration Acknowledgments

Administration acknowledgment messages are system -generated messages that are sent to

administration queues specified in a packet. These messages are express or recoverable depending on
the message being acknowledged.

Administration acknowledgment message s are sent by using an existing active session to the queue
manager on the original sender, or, if no such session exists, the messages are sent by establishing a
new session to the queue manager on the original sender.

New sessions, if any, are establish ed over the transport type that is specified in the
UserHeader.AdminQueue format name of the original message if the Flags.AQ field is 0x7. When

the Flags.AQ field is not 0x7, the default transport is TCP/IP.

These messages can indicate whether a message has reached its destination queue or whether the
message has been retrieved. Additionally, these messages can indicate the reason for the loss of a
rejected message. Administration acknowledgment messages are used by application logic to identify
the statu s of sent messages.

1.3.6 Message Tracing

Message tracing is the process of generating report messages when a user message leaves or arrives
at a queue manager. Message tracing is an option that can be specified by the original sender of a
message. The sender must specify the queue to receive the system -generated report messages.
Report messages are utilized by application logic to track the delivery of sent messages.

A report message contains the following information:

Á Source queue manager

Á Destination queue manager

Á Target queue name

Á Received or sent time

Á Message identifier

1.3.7 Message Routing

Message Queuing always attempts to establish a direct connection, or session, with the destin ation
queue manager using the underlying TCP or SPX network protocol. If a direct connection is not
possible due to lack of IP connectivity, Message Queuing servers with routing enabled (routing

17 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

servers) can temporarily store messages and subsequently forw ard them to the destination computer
or to another routing server.

Routing servers utilize this protocol to forward messages, via direct connections, to queue managers
that are part of the route to a destination queue manager. This protocol utilizes the Bi nary Reliable

Message Routing Algorithm specified in [MS -MQBR] to process messages that require routing.

1.3.8 Typical Scenario

A typical scenario for Message Queuing is to achieve reliable, asynchronous m essaging between a

client computer and server application. The client application might be an order application used for
entering orders from customers. This application could be installed on a laptop computer, moving with
the salesperson from customer sit e to customer site. Connectivity from those customer sites to the
head office might be unavailable or unreliable. In these cases, the order application on the
salesperson's laptop computer would use Message Queuing to queue a message containing the order
information to a local queue on the laptop computer.

When the salesperson returned to his branch office, he would establish connectivity with the head

office, and the queued message would then b e transferred using the Message Queuing (MSMQ):
Message Queuing Binary Protocol from the local message queue on the laptop computer to the
message queue server computer at the head office. At th at point, the order would be retrieved from
the message queue on the server and processed by the server application.

%5bMS-MQBR%5d.pdf

18 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 1 : Queues and queue managers

The preceding diagram shows the relationship between the branch office lapto p and the head office
server. Messages containing orders are transferred from the outgoing queue on the laptop to the

destination queue on the server.

1.4 Relationship to Other Protocols

The Message Queuing (MSMQ): Message Queuing Binary Protocol depends upon direct TCP/IP or
IPX/SPX to provide a reliable stream -oriented transport for messages. The protocol uses UDP or SPX
to determine server availability.

19 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This protocol uses shared state and processing rules defined in Message Queuing (MSMQ): Common
Data Model and Processing Rules [MS -MQDMPR] .

The protocol may rely upon the Binary Reliable Message Routing Algorithm specified in [MS -MQBR] to
process messages sent using public and private format names .

The protocol relationships are described in the following diagram.

Figure 2 : Relationships between MSMQ binary and transport protocols

1.5 Prerequisites/Preconditions

It is assumed that the protocol client has obtained the name of a ser ver computer that supports this

protocol and the name of a queue hosted on the server before this protocol is invoked. This
specification does not mandate how a client acquires this information.

It is assumed that the protocol client has access to a priva te encryption key used to decrypt
messages. A private key typically is stored in a secure location on the local host.

1.6 Applicability Statement

The serve r side of this protocol is applicable for implementation by a queue manager providing
message queuing communication services to clients. The client side of this protocol is applicable for
implementation by client libraries providing message queue managers to applications or by a queue
manager delegating requests on behalf of a client.

The protocol is not applicable for distributed applications that require message delivery within a

predefined amount of time and not for scenarios that require message data greater than 4 MB in size.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Á Supported Transports: The Message Queuing (MSMQ): Message Queuing Binary Protocol can be
implemented on top of TCP/IP with UDP or over IPX/SPX, as specified in section 2.1 . This protocol
uses both TCP/IP and UDP or SPX a nd IPX simultaneously.

Á Capability Negotiation: There is a single version of this protocol at this time.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQBR%5d.pdf

20 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.8 Vendor -Extensible Fields

The Message Queuing (MSMQ): Message Queuing Binary Protocol does not define any vendor -
extensible fields.

1.9 Standards Assignments

This protocol uses the following assignments.

Parameter Value Reference

Microsoft -DS TCP Port 1801 (0x709) As specified in [IANAPORT] .

http://go.microsoft.com/fwlink/?LinkId=89888

21 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2 Messages

The following sections specify the message transport and the common data types of the Message
Queuing (MSMQ): Message Queuing Binary Protocol.

2.1 Transport

A client exchanges messages with a server over a protocol session to perform ac tions such as session
establishment, user message transfer, and message acknowledgment. A client MAY <3> use a Ping
Message (section 2.1.2) to determine if a serv er is available.

2.1.1 Protocol Session

A protocol session is a TCP or an SPX connection used to send UserMessage Packet s ([MS -MQMQ]
section 2.2.20), which contain application -defined messages and internal packets between a local and
remote queue manager. The protocol session begins with an EstablishConnecti on

Packet (section 2.2.3) and ConnectionParameters Packet (section 2.2.2) exchange to initialize the
session. From that point, UserMessage Packet s can be sent in either direction and are

acknowled ged by SessionAck Packets (section 2.2.6) , OrderAck Packets (section 2.2.4) , and FinalAck
Packets (section 2.2.5) as required.

The packets supported within a protocol session are the ConnectionParameters Packet, the
EstablishConnection Packet, the UserMessage Packet , the SessionAck Packet, the OrderAck Packet,
and the FinalAck Pac ket. Each of these packets MUST begin with a BaseHeader ([MS -MQMQ] section
2.2.19.1), which contains information such as packet type, signature, and packet size. The header is
followed by one or more headers, depending on the packet type.

The protocol MUST use direct TCP or SPX for a protocol session. <4> The protocol initiator MUST
establish a connection to TCP port 1801 or SPX port 876 on the acceptor . The TCP or SPX source port
used by the initiator MAY <5> be any TCP or SPX port value. The protocol acceptor MUST listen for
connections on TCP port 180 1 or SPX port 876. <6>

2.1.2 Ping Message

A Ping Message can be a Ping Request or a Ping Response . A Ping Request MAY<7> be sent from
an initiator to an acceptor to determine whether the acceptor is available and can accept a binary
protocol sequence connection. An acceptor responds to a Ping Request by sending a Ping Response
back to the initiator. All Ping Messages use the Ping Packet (section 2.2.7) .

Ping Messages MAY <8> be sent using the UDP or the SPX protocol.

Ping Requests are sent to UDP or SPX port 3527 on the acceptor. <9> The source port used by the
initiator can be any UDP or SPX port value. The initiator MUST listen on that source port for the Ping
Response .

The acceptor MAY <10> liste n for Ping Requests . If an acceptor listens for Ping Requests , it
MAY<11> do so on UDP or SPX port 3527. A Ping Response MUST be sent to the UDP or SPX source

address and port from which the corresponding Ping Request wa s sent.

2.2 Message Syntax

The Message Queuing (MSMQ): Message Queuing Binary Protocol uses little - endian byte order .

This protocol uses the following data types:

1. GUID ([MS -DTYP] section 2.3.4.2)

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

22 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2. TxSequenceID ([MS -MQMQ] section 2.2.18.1 .2)

3. MessageIdentifier ([MS -MQMQ] section 2.2.18.1.3)

4. MQFFormatNameElement ([MS -MQMQ] section 2.2.18.1.4)

This protocol uses the following headers:

1. BaseHeader ([MS -MQMQ] section 2.2.19.1)

2. UserHeader ([MS -MQMQ] section 2.2.19.2)

3. MessagePropertiesHeader ([MS -MQMQ] section 2.2.19.3)

4. MultiQueueFormatHeader ([MS -MQMQ] section 2.2.20.1)

5. MQFAddressHeader ([MS -MQMQ] section 2.2.20.2)

6. MQFSignatureHeader ([MS -MQMQ] section 2.2.20.3)

7. SessionHeader ([MS -MQMQ] section 2.2.20.4)

8. TransactionHeader ([MS -MQMQ] section 2.2.20.5)

9. SecurityHeader ([MS -MQMQ] section 2.2.20.6)

10. DebugHeader ([MS -MQMQ] section 2.2.20.8)

This protocol uses the UserMessage Packet ([MS -MQMQ] section 2.2.20).

2.2.1 InternalHeader

The InternalHeader contains packet type and state information for the session. This header is used by
internal packets.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved Flags

Reserved (2 bytes): A 16 -bit unsigned short integer reserved for future use. MUST be set to zero
when sent and MUST be ignored on receipt.

Flags (2 bytes): A 16 -bit unsigned short integer that contains a set of options that provide additional
information about the packet. Any combinat ion of these values is acceptable unless otherwise
noted following.

Where the bits are defined as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PT A B C D E F G H I J K L

PT (4 bits): Specifies the packet type. These fields MUST be set to one of the following value

combinations.

%5bMS-MQMQ%5d.pdf

23 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x1 SessionAck Packet (section 2.2.6)

0x2 EstablishConnection Packet (section 2.2.3)

0x3 ConnectionParameters Packet (section 2.2.2)

Any value not specified in the preceding table MUST be treated as an error by closing the
session.

A - CS (1 bit): Specifies connection state. This field is used during the session negotiation to
establish a connection. When set, CS indicates that the connection is refused. This field MUST
NOT be set in any packet other than an EstablishConnection Packe t or a
ConnectionParameters Packet. This bit MUST be set when the
EstablishConnectionHeader.ServerGuid field is zero or not equal to the receiving queue

manager's GUID. This bit SHOULD <12> be set when the connection viol ates server policies
such as connection quotas.

B - X5 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

C - X6 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

D - X7 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

E - X8 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

F - X9 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

G - X10 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

H - X11 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

I - X12 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

J - X13 (1 bit): Reserved. SH OULD NOT be set when sent and MUST be ignored on receipt.

K - X14 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

L - X15 (1 bit): Reserved. SHOULD NOT be set when sent and MUST be ignored on receipt.

2.2.2 ConnectionParameters Pac ket

The ConnectionParameters Packet is used to communicate connection parameters between an initiator
and an acceptor during session initialization.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BaseHeader (16 bytes)

...

...

InternalHeader

ConnectionParametersHeader

24 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

BaseHeader (16 bytes): A BaseHeader ([MS -MQMQ] section 2.2.19.1). The BaseHeader.Flags.IN
field MUST be set to indicate that this packet is an internal message.

InternalHeader (4 bytes): An InternalHeader (section 2.2.1) . The InternalHeader.F lags.PT field

MUST be set to 0x3.

ConnectionParametersHeader (12 bytes): A ConnectionParametersHeader (section 2.2.2.1) that
contains parameters for the acknowledgment timeout and sliding window s ize.

2.2.2.1 ConnectionParametersHeader

The ConnectionParametersHeader contains parameters for acknowledgment timeout and sliding

window size.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RecoverableAckTimeout

AckTimeout

Reserved WindowSize

RecoverableAckTimeout (4 bytes): A 32 -bit unsigned long integer that specifies the minimum
time, in milliseconds, that the protocol waits before sending a SessionAck Packet (section 2.2.6)
acknowledgment after receiving a recoverable UserMessage Packet ([MS -MQMQ] section

2.2.20). This field has a valid range from 0x000001F4 to 0x0001D4C0, inclusive.

AckTimeout (4 bytes): A 32 -bit unsigned long integer that specifies the time, in milliseconds, that
the protocol waits for a SessionAck Packet before closing the session. This field has a valid range
from 0x00004E20 to 0x0001D4C0, inclusive.

Reserved (2 bytes): A 16 -bit unsigned integer reserved for future use. MUST be set to 0x0000 by
the sender, and MUST be ignored by the receiver.

WindowSize (2 bytes): A 16 -bit unsigned integer containing a sliding window size, based on the

number of unacknowledged packets received , for sending session acknowledgments. This field has
a valid range from 0x0000 to 0xFFFF.

2.2.3 EstablishConnection Packet

The initiator sen ds an EstablishConnection Packet to an acceptor to initiate a protocol session. The

acceptor sends an EstablishConnection Packet back to the sender in response to indicate acceptance
or rejection of the session request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BaseHeader (16 bytes)

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

25 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

InternalHeader

EstablishConnectionHeader (552 bytes)

...

...

BaseHeader (16 bytes): A BaseHeader ([MS -MQMQ] section 2.2.19.1). The BaseHeader.Flags.IN
field MUST be set to indicate that this packet is an internal message.

InternalHeader (4 bytes): An InternalHeader (section 2.2.1) . The InternalHeader.Flags.PT field

MUST be set to 0x2.

EstablishConnectionHeader (552 bytes): An EstablishConnectionHeader (section 2.2.3.1) that
contains information to identify the initiator and acceptor, a time stamp set by the initiator, and a
fla gs field.

2.2.3.1 EstablishConnectionHeader

The EstablishConnectionHeader contains queue manager GUID s ([MS -DTYP] section 2.3.4.1) that
identify the initiator and acceptor, a time stamp set b y the initiator, and flags.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ClientGuid (16 bytes)

...

...

ServerGuid (16 bytes)

...

...

TimeStamp

OperatingSystem Reserved

Padding (512 bytes)

...

...

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

26 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ClientGuid (16 bytes): The GUID for the queue manager of the initiator that is requesting the
connection. In a connection request, the initiator sets this field. In a connection response, the

acceptor sets this field to the queue manager GUID provided in the connection request.

ServerGuid (16 bytes): The GUID that identifies the queue manager of the acceptor responding to

the connection request. In a connection request, the initiator MUST specify the acceptor queue
manager GUID or MUST zero fill this field if a direct format name is used. In a connection
response, the acceptor MUST set this field to the GUID provided in the connection request or to
the acceptor queue manager GUID if a direct format name is used.

TimeStamp (4 bytes): A 32 -bit unsigned integer that identifies when t he connection request was
made. This value represents the number of milliseconds since the operating system was started.
In a connection request, the initiator sets this field. In a connection response, the acceptor sets

this field to the time stamp provid ed in the connection request.

OperatingSystem (2 bytes): A 16 -bit unsigned integer field containing flags related to the
connection request. The field MUST be set to a combination of the following values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RE A B C D E F G H

RE (1 byte): This field is reserved. MUST be set to 0x10.

A - SE (1 bit): Session flag. If a Ping Request , as specified in Ping Message (section 2.1.2) , is

sent when the session is being created (section 3.1.5.2.2), the sender MUST set this bit to 0;
otherwise, the sender MUST set it to 1. The receiver MUST send the same value back to the
sender in the Response Packet (section 3.1.5.3.2) .

Value Meaning

0 A Ping Request packet is sent when the session is being created.

1 A Ping Request packet is not sent when the session is being create d.

B - OS (1 bit): Indicates the type of the initiator operating system. The acceptor MAY use this
parameter to impose a limit on the number of unique callers. <13> This field MUST be set to a

value specified following: <14>

Value Meaning

0 Initiator operating system is not a server -class operating system.

1 Initiator operating system is a server -class operating system.

C - QS (1 bit): Quality of Service (QOS) flag. This field SHOULD be set to a value specified
following: <15>

Value Meaning

0 None.

1 Indicates that the underlying transport supports Guaranteed Quality of Service (GQoS). Details are as
specified in [RFC2212] .

D - X11 (1 bit): Unused bit field. SHOULD NOT be set when sent and MUST be ignored on

receipt.

http://go.microsoft.com/fwlink/?LinkId=90321

27 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

E - X12 (1 bit): Unused bit field. SHOULD NOT be set when sent and MUST be ignored on r eceipt.

F - X13 (1 bit): Unused bit field. SHOULD NOT be set when sent and MUST be ignored on receipt.

G - X14 (1 bit): Unused bit field. SHOULD NOT be set when sent and MUST be ignored on
receipt.

H - X15 (1 bit): Unused bit field. SHOULD NOT be set when sent and MUST be ignored on
receipt.

Reserved (2 bytes): A 16 -bit unsigned integer field reserved for future use. MUST be set to zero
when sent and MUST be ignored on receipt.

Padding (512 bytes): A fixed - length array of 512 bytes of padding to fill the re mainder of the
EstablishConnectionHeader packet. When the EstablishConnectionHeader is part of a response
packet from a server, each byte of this array MUST be filled with the value 0x5A. When the

EstablishConnectionHeader is not part of a response packet from a server, each byte in this field
contains an uninitialized value.

2.2.4 OrderAck Packet

The OrderAck Packet (section 2.2.4) contains a stand -alone transactional acknowl edgment message.
The packet acknowledges the transactional messages that have been received (accepted or rejected)
by the receiver so that the sender can remove the messages from its outgoing qu eue and, if
requested, add them to the wait list for receiving final acknowledgments. The OrderAck Packet is an
end - to -end acknowledgment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BaseHeader (16 bytes)

...

...

UserHeader (variable)

...

MessagePropertiesHeader (variable)

...

BaseHeader (16 bytes): A BaseHeader ([MS -MQMQ] section 2.2.19.1). The BaseHeader.Flags

field MUST have all bits set to 0.

UserHeader (variable): A UserHeader ([MS -MQMQ] section 2.2.19.2). The Flags.MP flag MUST be
set to 0x1 to indicate that a MessagePropertiesHeader ([MS -MQMQ] section 2.2.19.3) is included.
All other bits MUST be set to 0 except Flags.DQ , which MUST be set either to 0x3 or to 0x7. If
Flags.DQ is 0x3, the DestinationQueue field MUST be a PrivateQueueFormatNameId ([MS -
MQMQ] section 2.2.18.1.5.1) with PrivateQueueIdentifier set to 0x00000004. If Flags.DQ is

0x7, the DestinationQueue field MUST be a DirectQueueFormatName ([MS -MQMQ] section
2.2.18.1. 5.2) with DirectFormatName set to a string in the format specified by the following
ABNF rules.

%5bMS-MQMQ%5d.pdf

28 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 orderQueueName = ("TCP:" ip - address / "SPX:" ipx - address)

 " \ PRIVATE$\ order_queue$"

 ip - address=(IPv6address / IPv4address)

 ipx - addr ess= 8HEXDIG "." 12HEXDIG ; network.node

 HEXDIG = Digit | "A" | "B" | "C" | "D" | "E" | "F"

 Digit = %x30 - 39

The use of TCP or SPX depends on whether TCP or SPX transport is supported. <16> The value for
IPv4address [RFC3986] , IPv6address [RFC3986], or ipx -address MUST represent the IP or IPX
address of the queue manager to receive the message.

MessagePropertiesHeader (variable): A MessagePropertiesHeader. The Label field MUST be set to
"QM Ordering Ack". The MessageSize field MUST be set to 0x00000024. The Flags field MUST
have all bits set to 0. The MessageClass field MUST be set to MQMSG_CLASS_ORDER_ACK .

For more details about message class identifiers, s ee [MS -MQMQ] section 2.2.18.1.6.

The BodyType field MUST be set to the value VT_EMPTY ([MS -MQMQ] section 2.2.12). The

MessageBody field MUST be in the OrderAck Body (section 2.2.4.1) format.

2.2.4.1 Order Ack Body

The OrderAck Body is used to acknowledge transactional messages as part of an OrderAck
Packet (section 2.2.4) .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TxSequenceID

...

TxSequenceNumber

TxPreviousSequenceNumber

Reserved (20 bytes)

...

...

TxSequenceID (8 bytes): A transactional sequence identifier, TxSequenceID ([MS -MQMQ] section
2.2.18.1.2). This value MUST be set to the transactional sequence identifier of the message being
acknowledged.

TxSequenceNumber (4 bytes): A 32 -bit unsigned integer specifying a transactional sequence
numb er that represents the order of a message within a transactional sequence. This value MUST
be set to the transactional sequence number of the message being acknowledged. This field has a
valid range from 0x00000001 to 0xFFFFFFFF.

TxPreviousSequenceNumber (4 bytes): A 32 -bit unsigned integer specifying a transactional
sequence number. This value MUST be set to (TxSequenceNumber - 1). This field has a valid
range from 0x00000000 to 0xFFFFFFFE.

http://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-MQMQ%5d.pdf

29 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Reserved (20 bytes): This field SHOULD <17> be set to hexadecimal zeros (0x00) when sent and
MUST be ignored on receipt.

2.2.5 FinalAck Packet

The FinalAck Packet contains a stand -alone transactional ackno wledgment message that is sent to the
original sender in one of two situations: either when a transactional message is rejected by the
receiver; or when an accepted transactional message with a UserHeader.Flags.JN or a
UserHeader.Flags.JP field set to 0x1 is removed from the destination queue.

The packet can represent a positive or negative acknowledgment. The MessageClass field of the
contained MessagePropertiesHeader ([MS -MQMQ] section 2.2.19.3) packet defines the type of
acknowledgment. The FinalAck Packet is an end - to -end acknowledgment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BaseHeader (16 bytes)

...

...

UserHeader (variable)

...

MessagePropertiesHeader (variable)

...

BaseHeader (16 bytes): A BaseHeader ([MS -MQMQ] section 2.2.19.1). The BaseHeader.Flags
field MUST have all bits set to 0.

UserHeader (variable): A UserHeader ([MS -MQMQ] section 2.2.19.2). The Flags.MP flag MUST be

set to 0x1 to indicate that a MessagePrope rtiesHeader is included. The Flags.DM flag MUST be set
to 0x1 to request recoverable messaging. All other bits MUST be set to 0 except Flags.DQ , which
MUST be set either to 0x3 or to 0x7. If Flags.DQ is 0x3, the DestinationQueue field MUST be a
PrivateQueu eFormatNameId ([MS -MQMQ] section 2.2.18.1.5.1) with PrivateQueueIdentifier set
to 0x00000004. If Flags.DQ is 0x7, the DestinationQueue field MUST be a
DirectQueueFormatName ([MS -MQMQ] section 2.2.18.1.5.2) with DirectFormatName set to a
string in the format specified by the following ABNF rules.

 orderQueueName = ("TCP:" ip - address / "SPX:" ipx - address)

 " \ PRIVATE$\ order_queue$"

 ip - address=(IPv6address / IPv4address)

 ipx - address= 8HEXDIG "." 12HEXDIG ; network. node

 HEXDIG = Digit | "A" | "B" | "C" | "D" | "E" | "F"

 Digit = %x30 - 39

The use of TCP or SPX depends on whether TCP or SPX transport is supported. <18> The value for
IPv4address [RFC3986] , IPv6address [RFC3986], or ipx -address MUST represent the IP or IPX
address of the queue manager to receive the message.

%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90453

30 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

MessagePropertiesHeader (variable): A MessagePropertiesHeader. The Label field MUST be set to
"QM Order ing Ack". The MessageSize field MUST be set to 0x00000024. The Flags field MUST

have all bits set to 0.

For a positive acknowledgment, the MessageClass field MUST be set to

MQMSG_CLASS_ACK_RECEIVE. For a negative acknowledgment, the MessageClass field MUST
be set to one of the following message class identifiers:

Á MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q

Á MQMSG_CLASS_NACK_BAD_DST_Q

Á MQMSG_CLASS_NACK_ACCESS_DENIED

Á MQMSG_CLASS_NACK_BAD_ENCRYPTION

Á MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER

Á MQMSG_CLASS_NACK_BAD_SIGNATURE

Á MQMSG_CLASS_NACK_Q_EXCEED_QUOTA

Á MQMSG_CLASS_NACK_Q_DELETED

Á MQMSG_CLASS_NACK_Q_PURGED

Á MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

For more details on message class identifiers, see [MS -MQMQ] section 2.2.18.1.6.

The BodyType field MUST be set to the value VT_EMPTY ([MS -MQMQ] section 2.2.12). The
MessageBody field MUST be in the FinalAck Body (section 2.2.5.1) format.

2.2.5.1 FinalAck Body

The FinalAck Body is used to acknowledge transactional messages as part of a FinalAck

Packet (section 2.2.5) .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TxSequenceID

...

TxSequenceNumber

TxPreviousSequenceNumber

SourceGUID (16 bytes)

...

...

MessageID

31 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

TxSequenceID (8 bytes): A TxSequenceID specifying a transactional sequence identifier. This value
MUST be the transactional sequence identifier of the message being acknowledged. For mor e

details, see the definition of TxSequenceID in [MS -MQMQ] section 2.2.18.1.2.

TxSequenceNumber (4 bytes): A 32 -bit unsigned integer specifying a transactional sequence

number that represents the order of a message within a transactional sequence. This value MUST
be set to the transactional sequence number of the message being acknowledged. This field has a
valid range from 0x00000001 to 0xFFFFFFFF, inclusive.

TxPreviousSequenceNumber (4 bytes): A 32 -bit unsigned integer spe cifying a transactional
sequence number. This value MUST be set to the transactional sequence number of the previous
message received in the transactional sequence. This field has a valid range from 0x00000000 to
0xFFFFFFFE, inclusive.

SourceGUID (16 bytes): The GUID for the source queue manager GUID .

MessageID (4 bytes): A 32 -bit unsigned integer specifying a message identifier.

2.2.6 SessionAck Packet

The SessionAck Packet contains a session acknowledgment. This packet acknowledges express and
recoverable UserMessage Packets ([MS -MQMQ] section 2.2.20) that have been received on the
session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BaseHeader (16 bytes)

...

...

InternalHeader

SessionHeader (16 bytes)

...

...

BaseHeader (16 bytes): A BaseHeader ([MS -MQMQ] section 2.2.19.1). The BaseHeader.Flags.IN
and BaseHeader.Flags.SH bit fields MUST be set.

InternalHeader (4 bytes): An InternalHeader . The InternalHeader.Flags.PT field MUST be set to

0x1.

SessionHeader (16 byt es): A SessionHeader ([MS -MQMQ] section 2.2.20.4) that contains
acknowledgment and window size information.

A session acknowledgment can also be included within a UserMessage Packet. For more
information about session acknowledgments, see section 3.1.1.6.1 .

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

32 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.7 Ping Packet

The Ping Packet is used by Ping Messag es (section 2.1.2) to allow an initiator to determine whether an
acceptor is available and can accept a binary protocol sequence connection.

0
1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags Signature

Cookie

QMGuid (16 bytes)

...

...

Flags (2 bytes): A 16 -bit unsigned short integer field that provides additional information about the
packet.

Fields marked X are unused. They MAY be set when sent. They MUST be ignored on receipt. <19>

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

R

C

R

F

X X X X X X X X X X X X X X

Where the bits are defined as:

Value Description

RC

Specifies the type of the initiator. An initiator MUST set this field in a Ping Request , as defined in
Ping Message (section 2.1.2), if the OperatingSystemType ADM attribute of the QueueManager
([MS -MQDMPR] section 3.1.1.1) ADM element is neither WinServer nor WinEnt ; otherwise, this
field MUST NOT be set. An acceptor MUST set this field in a Ping Response , as defined in Ping
Message (section 2.1.2), to the value of this field in the Ping Request from the initiator.

RF

An acceptor MUST set this field in a Ping Response if it would currently refuse a protocol session
over TCP o r SPX from this initiator; otherwise, the field MUST be clear if a protocol session would
be accepted. An initiator MUST clear this field in a Ping Request .

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MA Y be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

%5bMS-MQDMPR%5d.pdf

33 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Description

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

X

Unused bit field. MAY be set when sent and MUST be ignored on receipt.

Signature (2 bytes): A 16 -bit unsigned short integer field that identifi es the packet as a Ping
Message packet. This value MUST be set to 0x5548. A receiver MUST ignore the packet if the
signature is not set to this value.

Cookie (4 bytes): A 32 -bit unsigned long integer that specifies a value used to correlate Ping

Requests and Ping Responses . This value is generated by the initiator to uniquely identify the
Ping Request . This field has a valid range from 0x00000000 to 0xFFFFFFFF.

When sending a Ping Response , an acceptor MUST set this field to the Cookie field value from
the received Ping Request . When an initiator receives a Ping Response , it uses the Cookie field
to correlate it to a Ping Request . An initiator MUST disregard a Ping Response that contains a
Cookie field that does not correspond to the Cookie field in the mos t recent Ping Request that it
has sent.

QMGuid (16 bytes): The GUID ([MS -DTYP] section 2.3.4.1) that identifies the queue manager
where this packet was created, which is the initiator for Ping Requests and the acceptor for Ping
Responses .

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1 . A subset of these elements can be
published in a directory. This protocol SHOULD <20> access the dire ctory using the algorithm specified
in [MS -MQDSSM] and using LDAP as specified in [LDAP] and [MS -ADTS] . The Directory Service
schema elements for ADM elements published in the directory are defined in [MS -MQDSSM] section
2.4. <21>

%5bMS-DTYP%5d.pdf
%5bMS-MQDSSM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89932
%5bMS-ADTS%5d.pdf

34 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.4 Cryptographic Data Structures

2.4.1 PUBLICKEYBLOB

The PUBLICKEYBLOB t ype is used to export public keys for use with the RSA key exchange algorithm
([PKCS1] , [RFC3447]) from a receiver to senders fo r use in sending encrypted messages to that
receiver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x06 0x02 0x00 0x00

0x00 0xA4 0x00 0x00

0x52 0x53 0x41 0x31

bitLen

pubExp

modulus (variable)

...

bitLen (4 bytes): A 32 -bit unsigned number in little -endian format. MUST be the bit length of the
RSA modulus, defined as k*8 in the terminology of [RFC3447] section 2.

pubExp (4 bytes): A 32 -bit unsigned number in little -endian format. MUST be the public exponent of
the key pair, referred to as e in [RFC3447] section 2.

modulus (variable): The RSA modulus, referred to as n in [RFC3447] section 2. This field MUST be
encoded in little -endia n format. Its length in bits MUST be equal to the value in the bitLen field.

2.4.2 SIMPLEBLOB

The SIMPLEBLOB type is used for transferring cryptographic session keys from a sender to a receiver
in a secure manner.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x01 0x02 0x00 0x00

sessionKeyAlgorithm

0x00 0xA4 0x00 0x00

encryptedKey (256 bytes)

...

...

http://go.microsoft.com/fwlink/?LinkId=90248
http://go.microsoft.com/fwlink/?LinkId=90422

35 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

sessionKeyAlgorithm (4 bytes): A 32 -bit integer in little -endian format that identifies the algorithm
with which the session key is associated. This field MUST be assigned according to the following

table.

Algorithm Name Field Value

AES-128 0x0000660e

AES-192 0x0000660f

AES-256 0x00006610

RC2 0x00006602

RC4 0x00006801

encryptedKey (256 bytes): The session key, encrypted with one of the receiver's public keys using
the RSAES -PKCS1-v1_5 encryption scheme specified in [RFC3447] section 7.2 and encoded in
little -endian format. See secti on 3.1.7.1.5 for more information on how the receiver's public keys

are retrieved and how a specific key is chosen.

http://go.microsoft.com/fwlink/?LinkId=90422

36 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3 Protocol Details

The Message Queuing (MSMQ): Message Queuing Binary Protocol is often described as a
communication between a "client" and "server"; however, for the purpose of this section the terms
"local host" and "remote/destination host" are used to refer to these role s, respectively. Before a
protocol session is initialized as specified in section 3.1.5.4.2 , these roles are referred to as "initiator"
and "acceptor", respectively. After a protocol session is in itialized, the protocol behaves in a typical

peer - to -peer mode where either participant sends and receives messages over the established
protocol session. The participant sending a message is termed the "sender", while the participant
receiving a message i s termed the "receiver".

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described i n this
document.

The abstract data model for this protocol comprises elements that are private to this protocol and
others that are shared between multiple MSMQ protocols that are co - located at a common queue
manager. The shared abstract data model is defi ned in [MS -MQDMPR] section 3.1.1, and the
relationship between this protocol, a queue manager, and other protocols that share a common queue

manager is described in [MS -MQOD] .

Section 3.1.1.2 specifies the elements from the shared data model that are manipulated by this
protocol. Sections 3.1.1.3 through 3.1.1.5 specify the data model elements that are private to this
protocol.

Abstract Data Model Syntax

Throughout this document, the following standard syntactic conventions are observed:

1. Unqualified and scalar abst ract data model (ADM) element names are suffixed with "ADM
element".

2. Unqualified ADM attribute names are suffixed with "ADM attribute".

3. Non -scalar ADM <element name>.<attribute name> constructions are unsuffixed.

4. Definitions :

Á An attribute is a property of an ADM element.

Á A scalar ADM element does not define attributes.

Á A non -scalar ADM element defines at least one attribute. Attributes can be nested to an
arbitrary depth within a non -scalar ADM element.

3.1.1.1 Protocol State

3.1.1.1.1 State Diagrams

3.1.1.1.1.1 Session State - Initiator

%5bMS-MQDMPR%5d.pdf
%5bMS-MQOD%5d.pdf

37 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 3 : Initiator session state

3.1.1.1.1.2 Session State - Acceptor

38 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 4 : Acceptor session state

3.1.1.1.1.3 Express Message State - Sender

39 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 5 : Sender express message state

3.1.1.1.1.4 Express Message State - Receiver

40 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 6 : Receiver express message state

3.1.1.1.1.5 Recoverable Message State - Sender

41 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 7 : Sender recoverable message state

3.1.1.1.1.6 Recoverable Message State - Receiver

42 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 8 : Receiver recoverable message state

3.1.1.1.1.7 Transactional Message State - Sender

43 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 9 : Sender transactional message state

3.1.1.1.1.8 Transactional Message State - Receiver

44 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 10 : Receiver transactional message state

3.1.1.1.1.9 Ping Mechanism State - Initiator

45 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 11 : Initiator ping mechanism state

3.1.1.2 Shared Data Elements

This protocol manipulates t he following ADM elements and ADM attributes from the shared abstract
data model defined in [MS -MQDMPR] section 3.1.1.

The QueueManager ([MS -MQDMPR] section 3.1.1.1) ADM element.

The Identifier ADM attribute of the QueueM anager ADM element.

The OutgoingTransferInfo ([MS -MQDMPR] section 3.1.1.4) ADM element.

The IncomingTransactionalTransferInfo ([MS -MQDMPR] section 3.1.1.5) ADM element.

3.1.1.3 Queue Manager State

The protocol MUST maintain these global ADM elements:

UserCertCache: A list of CachedUserCert (section 3.1.1.3.4) ADM element instances. Receivers
use this list to cache verified user certificates.

UserCertCacheSize: An integer indicating the maximum number of CachedUserCert ADM
element instances that can be placed in the UserCertCache ADM element.

UserCertLifetime: An integer indicating the lifetime in milliseconds of CachedUserCert ADM
element instances.

ReceiveSymmetricKeyCache: A list of CachedSymmetricKey (section 3.1.1.3.3) ADM element
instances. Acceptors use this list to store symmetric keys used for decrypting messages.

ReceiveBaseSymmetric KeyCache: A list of CachedSymmetricKey ADM element instances. The
acceptor MAY <22> cache some decrypted symmetric keys in this list instead of in the
ReceiveSymmetricKeyCache ADM element.

%5bMS-MQDMPR%5d.pdf

46 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ReceiveSymmetricKeyCacheSize: An integer indicating the maximum number of entries in the
ReceiveSymmetricKeyCache ADM element and in the ReceiveBaseSymmetricKeyCache

ADM element.

SendSymmetricKeyCache: A list of CachedSymmetricKey ADM element instances. Initiators

use this list to store symmetric keys used for encrypting messages.

SendBaseSymmetricKeyCache: A list of CachedSymmetricKey ADM element instances.
Initiators MAY <23> use this list instead of the SendSymmetricKeyCache ADM element to
store some symmetric keys.

SendSymmetricKeyCacheSize: An integer indicating the maximum number of entries in the
SendSymmetricKeyCache ADM element and in the SendBaseSymmetricKeyCache ADM
element.

SymmetricKeyShortLifetime: An integer indicating the lifetimes in mill iseconds of
CachedSymmetricKey ADM element instances, as described in sections 3.1.6.10 through
3.1.6.12 , section 3.1.5.8.3 , and section 3.1.7.1.5 .

SymmetricKeyLongLifetime: An integer indicating the lifetimes in milliseconds of
CachedSymmetricKey ADM element instances.

PreferredAdvancedAlgorithm: An unsigned 32 -bit integer indicating the preferred encryption

algorithm to be used when encrypting a message where Message.PrivacyLevel is Advanced .
Valid values are listed in the following table.

Integer value Encryption Algor ithm

0x00006610 AES256

0x0000660E AES128

0x0000660F AES192

PreferredEnhancedAlgorithm: An unsigned 32 -bit integer indicating the preferred encryption

algorithm to be used when encrypting a message where Message.PrivacyLevel is Enhanced .

Integer value Encryption Algorithm

0x00006602 RC2

0x00006801 RC4

PreferredBaseAlgorithm: An unsigned 32 -bit integer indicating the preferred encryption
algorithm to be used when encrypting a message where Message.PrivacyLevel is Base .

Integer value Encryption Algorithm

0x00006602 RC2

0x00006801 RC4

SendEnhancedRC2Using40BitKeys: A Boolean that is TRUE if the effective symmetric encryption

key length in bits MUST be reduced when encrypting messages with a Message.PrivacyLevel
of Enhanced and a Message.Encrypt ionAlgorithm of RC2.

RejectEnhancedRC2Using40BitKeys: A Boolean that is TRUE if messages using a reduced
symmetric encryption key length MUST be rejected.

47 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ResendTimerTable: A table that contains the duration of the resend times for transactional
messages. <24>

MessageIDHistoryTable: A table that contains MessageIDHistoryEntry ADM element
instances. This table provides a lightweight duplicate elimination mechanism. For more

information, see Duplicate Detection (section 3.1.5.8.1) . The length of history that this table
maintains is implementation -dependent; however, it MUST NOT contain more than
4,294,967,296 entries, because that is th e point at which the MessageIdOrdinal ADM element
value rolls over, and values may be reused. This table MUST be initialized to an empty table.
This value SHOULD <25> survive process and node failures.

MessageIDHistoryEn try: An ADM element that contains information about a UserMessage
Packet ([MS -MQMQ] section 2.2.20) that has been received by the protocol host. This ADM

element MUST contain the following ADM attributes:

Á MessageIdentifier : A MessageIdentifier ([MS -MQMQ] section 2.2.20) field.

Á TimeStamp : A 32 -bit unsigned integer that represents the time at which a UserMessage Packet

was received.

MessageIdOrdinal: A monotonically increasing value used in the MessageIdentifier ADM
attribute . This value MUST be incremented by 1 for each UserMessage Packet sent by the

protocol and MUST be unique only within the scope of the local queue before a rollover occurs.
When a rollover occurs, values MAY <26> be reuse d. Rollover of this value will not affect
message delivery guarantees, provided that the MessageIDHistoryTable ADM element
maximum history length is not exceeded. This value MUST be initialized to 0x00000000 and
MUST survive process and node failures.

PingCookie: An integer value that MUST uniquely identify individual Ping Requests , as defined in
Ping Message (section 2.1.2) , from this host. <27> For more info rmation, see Ping

Packet (section 2.2.7) .

SendInsecureNacks: A Boolean that indicates whether insecure Nacks are sent, as discussed in
section 5.1 . Insecure Nacks are sent if this value is TRUE, and are not sent if this value is

FALSE. This value SHOULD <28> be initialized to FALSE and SHOULD <29> survive process and
nod e failures.

ResendTimeoutsShort: A DWORD that indicates the number of seconds used to set up the
ResendTimerTable ADM element in section 3.1.3.1 . The value SHOULD <30> be 30 seconds

and MUST survive process and node failures.

ResendTimeoutsMedium: A DWORD that indicates the number of seconds used to set up the
ResendTimerTable ADM element in section 3.1.3.1. The value SHOULD <31> be 300 seconds
(five minutes) and MUST survive process and node failures.

ResendTimeoutsLong: A DWORD that indicates the number of seconds used to set up the
ResendTimerTable ADM element in section 3.1.3.1. The value SHOULD <32> be 1800 seconds

(30 minutes) and MUST survive process and node failures.

ResendTimeoutsFinal: A DWORD that indicates the number of seconds used to set up the

ResendTimerTable ADM element in section 3.1.3.1. The valu e SHOULD <33> be 21,600
seconds (6 hours) and MUST survive process and node failures.

3.1.1.3.1 Session State

The sender and receiver MUST independently maintain the following ADM elements for each session.

Rem oteQMGuid: The GUID ([MS -DTYP] section 2.3.4) of the remote queue manager. This value
represents the destination queue manager if a direct connection is possible or the next hop if
routing is required. This value uniquely i dentifies the remote host. <34>

%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

48 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NextHopCollection: A list of the possible next hops that can be used to create a session to the
destination queue manager.

NextHopIndexer: A reference to the current item in the NextHopColl ection ADM element that is
used to try to establish a protocol session.

RemoteQMPublicKey: An MQDSPUBLICKEYS ([MS -MQMQ] section 2.2.2) structure that contains
the public encryption keys of the remote queue manager.

MessageS entCount: A 16 -bit unsigned integer that is the count of all UserMessage Packets
([MS -MQMQ] section 2.2.20) sent on a session. This value is incremented by 1 for each express,
recoverable, and transacted UserMessage Packet sent.

RecoverableMessageSentCount : A 16 -bit unsigned integer that is the count of recoverable
UserMessage Packets sent on a session. This value is incremented by 1 for each recoverable

message sent.

MessageReceivedCount: A 16 -bit unsigned integer that is the count of all UserMessage
Packe ts received on a session.

RecoverableMessageReceivedCount: A 16 -bit unsigned integer that is the count of recoverable
UserMessage Packets received on a session.

LastAckedRecoverableMsgSeqNumber: A 16 -bit unsigned integer that is the sequence number

of the last recoverable UserMessage Packet acknowledged by the last SessionAck
Packet (section 2.2.6) .

RecoverableMsgAckFlags: A 32 -bit unsigned integer, as specified in [MS -MQMQ] section
2.2.20.4 , representing up to 32 recoverable UserMessage Packets that are acknowledged as
written to disk.

UnackedReceivedMsgCount: A 16 -bit unsigned integer that is the count of UserMessage
Packets received on a session that have not been acknowledged.

OutgoingTxS equenceID: A TxSequenceID ([MS -MQMQ] section 2.2.18.1.2) structure that

identifies the current outgoing sequence of transactional messages. Only one sequence is valid
at a given time. When updating this value, the queue manager MUST guarantee that the new
value is greater than any previously assigned value. This requirement allows the unique
identification of an outgoing sequence of transactional messages. The value of
OutgoingTxSequenceID.Ordinal MUST be set to 0x00000001, and the value of
OutgoingTxSequen ceID.Timestamp MUST be set to an implementation -dependent <35>

value that is guaranteed to be greater than any previously generated value. This value MUST
survive process and node failures.

TxMessageRejectCount: Identifie s the number of times that the last Message ([MS -MQDMPR]
section 3.1.1.12) ADM element instance sent by the remote queue manager was rejected before
finally being accepted and placed in the local Queue ([MS -MQDMPR] secti on 3.1.1.2) ADM
element instance. This value MUST be initialized to 0x00000000 and MUST survive process and

node failures.

OutgoingTxSequenceNumber: A 32 -bit unsigned integer. This ADM element is the sequence
number of the next outgoing transactional UserM essage Packet to be sent on a session. This
value MUST be initialized to 0x00000001 and MUST survive process and node failures.

IncomingTxSequenceID: A TxSequenceID ([MS -MQMQ] section 2.2.18.1.2) structure that
identifies the last incoming transactional me ssages sequence on a session. An
IncomingTxSequenceID.Ordinal value of 0x00000000 indicates that no transactional

sequence has existed on a session. The value of IncomingTxSequenceID.Ordinal MUST be
initialized to 0x00000000, and the value of IncomingTxSeq uenceID.Timestamp MUST be
initialized to 0x00000000. This value MUST survive process and node failures.

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

49 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

IncomingTxSequenceNumber: A 32 -bit unsigned integer that identifies the sequence number of
the last transactional UserMessage Packet received on a sessi on. This value MUST be

initialized to 0x00000000 and MUST survive process and node failures.

OutgoingQueueReference: A reference to the OutgoingQueue ([MS -MQDMPR] section 3.1.1.3)

ADM element instance associated with the session. This value MUST survive pr ocess and node
failures, and the default value is NULL.

TxOutgoingSequence: A reference to an OutgoingTransferSequence (section 3.1.1.3.1.1) ADM
element instance.

WindowSize: This ADM element repr esents the session acknowledgment window size. <36> The
window size controls when the protocol sends session acknowledgments for received messages
and sets a limit on the number of unacknowledged outgoing messages.

Receiv edWindowSize: This ADM element represents the session acknowledgment window size of
the other queue manager participating in the session. For the local queue manager, the
ReceivedWindowSize ADM element represents the WindowSize ADM element of the

destinati on queue manager. For the destination queue manager, the ReceivedWindowSize
ADM element represents the WindowSize ADM element of the local queue manager.

SessionState: A value that indicates the current state of the protocol. Valid values are as follows.

Value Meaning

OPEN The protocol has completed session initialization.

CLOSED Indicates that the session is closed.

WAITING_CP_MSG The protocol is waiting for a ConnectionParameters Packet .

WAI TING_CPR_MSG The protocol is waiting for a ConnectionParameters Packet response packet.

WAITING_EC_MSG The protocol is waiting for an EstablishConnection Packet .

WAITING_ECR_MSG The protocol is waiting for an EstablishConnection Packet response packet.

WAITING_RECONNECT The protocol is waiting for the Session Retry Connect Timer Event (section 3.1.6.1) .

SessionActive: A Boolean value that is set to TRUE when there is activity on the session. This
value is used by the Session Cleanup Timer (section 3.1.2.2) to identify when there has been
message activity since t he last Session Cleanup Timer Event (section 3.1.6.2) .

ReceivedAck: A Boolean value that is set to TRUE when there is activity on the session. This value
is used by the Session Ack Wait Timer (section 3.1.2.4) to identify when there has been
message activity since the last Session Ack Wait Timer Event (section 3.1.6.3) .

AckWaitTim eout: Time, in milliseconds, that the protocol waits before closing the session because

its messages are not acknowledged.

RecoverableAckSendTimeout: Time, in milliseconds, that the protocol waits before transmitting

a session acknowledgment.

RemoteQMAddre ss: The address of the remote queue manager. This value MUST be a textual
IPv4, IPv6, or SPX address.

RemoteQMHostName: A string representing the name of the destination host.

UnAckedMessageCount: The count of sent UserMessage Packets that have not been
acknowledged by the remote queue manager.

50 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

OutgoingMessageTable: An ordered list of OutgoingMessagePosition ADM element instances.
This table contains unsent messages and/or messages awaiting acknowledgment. The messages

are listed in th e order in which they are added to the list. This table MUST be initialized to an
empty table and MUST survive process and node failures by saving each

OutgoingMessagePosition ADM element instance containing recoverable or transactional
messages in the ord er in which it is listed.

AwaitingFinalACKTable: A list of OutgoingMessagePosition ADM element instances. This table
contains a list of messages that have been successfully delivered but that are awaiting final
acknowledgment. Messages in this table have UserMessage.UserHeader.Flags.JN or
UserMessage.UserHeader.Flags.JP bit fields set to values other than 0. This value MUST be
initialized to an empty list and MUST survive process and node failures.

DirectFormatSession: A Boolean value that is set to TRUE wh en transactional messages are sent
with a direct queue format name. This value is used to populate the sender order queue when
an OrderAck Packet (section 2.2.4) or a FinalAck Packet (section 2.2.5) is sent from the receiver
to the sender.

OrderAckTimeout: Time, in milliseconds, that the protocol waits before transmitting an order
acknowledgment.

LastOrderAckSendTime: The time when the las t order acknowledgment was sent to the sender.
This value is the number of seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC)
according to the system clock.

MaximumOrderAckDelay: The maximum time, in seconds, that the protocol allows to lapse since
LastOrderAckSendTime when determining whether to delay the transmission of an order
acknowledgment.

Note The values of the OutgoingTxSequenceID , OutgoingTxSequenceNumber ,

IncomingTxSequenceID , TxMessageRejectCount , and IncomingTxSequenceNumber ADM
elements apply only to transactional messages that originate from this host or are addressed to a final
destination queue on this host. Transactional messages forwarded through this host are not processed
as part of the incoming or outgoing transactional s equence.

The preceding conceptual data can be implemented by using a variety of techniques.

3.1.1.3.1.1 OutgoingTransferSequence

OutgoingTransferSequence: This ADM element contains the following ADM attributes:

TimeOfLastAck : A datetime value that contains the date and time when the last order
acknowledgment for a message sent to the destination queue manager was received.

LastAckCount : A numeric value that contains the number of times that the last order
acknowledgment has b een received from the destination queue manager.

ResendIntervalIndex : A numeric value that contains the index of the element in the

ResendTimerTable used for setting ResendInterval .

ResendInterval : A numeric value that contains the number of seconds that t he local queue
manager waits for an order acknowledgment before resending the message.

LastAck : A SEQUENCE_INFO structure ([MS -MQMQ] section 2.2.5) that contains sequence
information about the last message sent from the lo cal queue manager to the destination queue
manager for which an order acknowledgment has been received.

ResendTime : A datetime value that contains the date and time when the local queue manager

will attempt to send a message to the destination queue manage r again.

%5bMS-MQMQ%5d.pdf

51 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

UnackedSequence : A list of SEQUENCE_INFO structures sorted by the SeqNo field. This list
contains sequence information about messages sent from the local queue manager to the

destination queue manager for which an order acknowledgment has not been received.

3.1.1.3.1.2 OutgoingMessagePosition

OutgoingMessagePosition: This ADM element contains the following ADM attributes:

Á MessagePosition : A MessagePosition ([MS -MQDMPR] section 3.1.1.11) ADM element instance.

Á UserMessage : A UserMessage Packet ([MS -MQMQ] section 2.2.20) structure.

Á SequenceNumber : A 16 -bit unsigned integer representing the session sequence number.

Á RecoverableSequenceNumber : A 16 -bit unsigned integer that specifies the sequence number
of the recoverable UserMessage Packet referenced by the UserMessage ADM attribute within a

stream of recoverable UserMessage Packet s that are sent on the same session identified by the
SequenceNumber ADM attribute. This ADM attribute, along with the SequenceNumber ADM

attribute, uniquely identifies a UserMessage Packet sent on a particular session. A value of zero
indicates that the UserMessage Packet is not recoverable.

Á TxSequenceNumber : A 32 -bit unsigned integer. This ADM attribute is the sequence number of
the last outgoing transactional UserMessage Packet sent on a session. The value zero indicates

that no transactional UserMessage Packets have been sent on the current sequence. This value
MUST survive process and node failures.

Á AwaitingAck : A Boo lean value indicating whether the message has been sent and is awaiting
session acknowledgment.

Á ReceivedSessionAck : A Boolean value indicating that the message has received a session
acknowledgment.

Á ReceivedOrderAck : A Boolean value indicating that the mes sage has received an order

acknowledgment.

Á Transmitted : A Boolean value indicating that the message has been sent at least once.

Note The OutgoingMessagePosition.TxSequenceNumber state value applies only to
transactional messages that originate from this host or are addressed to a final destination queue on
this host. Transactional messages that are forwarded through this host are not processed as part of
the incoming or outgoing transactional sequence.

3.1.1.3.1.3 NextHop

NextHop: This ADM element contains the follo wing ADM attributes:

Á QMGuid : The GUID ([MS -DTYP] section 2.3.4) of the remote queue manager. This value
represents the destination queue manager if a direct connection is possible or the next hop if
routing is required. Thi s value uniquely identifies the remote host. <37>

Á HostName : A string representing the name of the destination host in the form of the canonical

fully qualified DNS name of the computer.

Á Address : The address of the destination host. This value MUST be a textual IPv4, IPv6, or SPX
address.

3.1.1.3.2 Persistent State Storage

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

52 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Some protocol ADM elements MUST be saved in a persistent location that will survive process and
node failure. A persistent storage requirement is indicated with a "This value MUST survive process

and node failures" note in the ADM element description.

3.1.1.3.3 Cac hedSymmetricKey

Used by senders and receivers, this ADM element stores information about symmetric encryption keys
and contains the following ADM attributes:

RemoteQMGuid: The GUID ([MS -DTYP] section 2.3.4) of the remote q ueue manager. This value
represents the destination queue manager if a direct connection is possible or the next hop if
routing is required. This value uniquely identifies the remote host.

CryptoServiceProvider: A 16 -bit null - terminated Unicode string indicating the cryptography

service provider (CSP) that is used to perform encryption.

CryptoAlgorithm: A 32 -bit unsigned integer.

EncryptedSymmetricKey: A SIMPLEBLOB (section 2.4.2) that contains the session symmetric key
encrypted with the receiver's public key.

SymmetricKey: An array of BYTEs that contains the unencrypted session symmetric key
generated by the sender.

CachedTime: A dateti me value that contains the date and time that this ADM element instance
was created.

3.1.1.3.4 CachedUserCert

This ADM element stores information about a user certificate and contains the following ADM
attributes:

UserCert: An MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22) structure.

SecurityID: A security identifier (SID) ([MS -DTYP] section 2.4.2) that identifies the owner of
the certificate.

CachedTime: A datetime value that contains the date and time that this ADM element instance
was created.

3.1.1.4 Session Message Sequence

The set of UserMessage Packets ([MS -MQMQ] section 2.2.20) sent over a session represents a
message sequence. There is a local - to - remote and remote - to - local sequence. These bidirectional
message sequences exist for the lifetime of the session. Both the sender and receiver maintain counts
of the UserMessage Packets sent and received. A message is associated with a sequence number
that corresponds to its position within the sequence. Sequence numbers MUST begin with 1 and

increment by 1 with each subsequent message. For example, the third message sent on the session
will have a sequence number of 3.

Both the sender and receiver also maintain counts of recoverable UserMessage Packets transferred
and associate recoverable sequence numbers to those messages. For example, the fifth recoverable
message sent on a session will h ave a sequence number of 5.

Transactional messages are recoverable and are included in the recoverable sequence message count.

Both the sender and receiver maintain the following sequence message counts per session:

MessageSentCount: A count of all UserMessage Packets sent.

%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf

53 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

RecoverableMessageSentCount: A count of recoverable UserMessage Packets sent.

MessageReceivedCount: A count of all UserMessage Packets received.

RecoverableMessageReceivedCount: A count of recoverable UserMessage Packets received.

RecoverableMsgAckFlags: A 32 -bit variable of flags representing recoverable UserMessage

Packets received on a session.

UnackedReceivedMsgCount: A count of all received UserMessage Packets that have not been
acknowledged.

A UserMessage Packet does not contain a field that specifies its sequence number, except when the
UserMessage Packet includes a SessionHeader ([MS -MQMQ] section 2.2.20.4). Instead, the
sender and receiver associate sequence numbers with UserMessage Packets based on the order in
which they are sent and received, respectively.

The receiver utilizes session sequence numbers when acknowledging receipt of express and
recoverable messages. Sequence numbers are specified in the SessionHeader , which can appear in a

stand -alone SessionAck Packet (section 2.2.6) or as part of a UserMessage Packet .

3.1.1.5 Transactional Message Sequence

To provide EOIO guarantees for transactional messages, the prot ocol organizes transactional
UserMessage Packet s ([MS -MQMQ] section 2.2.20) into transactional sequences. A transactional
message sequence is independent of the session message sequence of section 3.1.1.4 . A transactional
message is identified by a sequence number and a transactional sequence identifier pair. The
transactional sequence identifier identifies the transaction, and the sequence number identifies the
ord er of the message in that transaction. The first message within a transactional sequence is

assigned a sequence number of 1. Only one transactional sequence is active at a given time.

The protocol maintains the following transactional sequence state for ea ch session, as specified in
section 3.1.1.3.1 :

Á OutgoingTxSequenceID : A TxSequenceID ([MS -MQMQ] section 2.2.18.1.2) that identifies the
current outgoing sequence of transactional messages.

Á Outgoin gTxSequenceNumber : A 32 -bit unsigned integer. This ADM element is the sequence

number of the next outgoing transactional UserMessage Packet to be sent on this session.

Á IncomingTxSequenceID : A value that identifies the last incoming transactional message
sequence.

Á IncomingTxSequenceNumber : A 32 -bit unsigned integer that identifies the sequence number
of the last transactional UserMessage Packet received on this session.

Á TxMessageRejectCount : The number of times that the last Message ([MS -MQDMPR] section
3.1.1.12) sent by the remote queue manager was rejected before finally being accepted and

placed in the local Queue ([MS -MQDMPR] section 3.1.1.2).

A transactional UserMessage Packet contains a Transactio nHeader ([MS -MQMQ] section 2.2.20.5)
that specifies the message sequence ID, sequence number, and the sequence number of the previous
message in the sequence. This information allows the receiver to determine whether a message is in
order and to identify d uplicates.

Because messages can expire, gaps are allowed in the transactional sequence numbers. The
TransactionHeader includes the previous sequence number so that the receiver can determine

whether the received message follows the prior transactional mes sage that was received.

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

54 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Whenever a transactional message is sent for the first time, the protocol MUST create a new
SEQUENCE_INFO ([MS -MQMQ] section 2.2.5) structure instance and set its values as follows:

SeqID to OutgoingTxSequenceID

SeqNo to OutgoingTxS equenceNumber

PrevNo to OutgoingTxSequenceNumber - 1

The new instance MUST be inserted into TxOutgoingSequence.UnackedSequence . When all the
messages within a transactional sequence have been acknowledged, the protocol MUST increment the
OutgoingTxSequence ID.Ordinal by 1 and MUST reset OutgoingTxSequenceNumber to 1. This
process creates a new transactional sequence. Subsequent transactional messages MUST be sent
using the new OutgoingTxSequenceID . Messages MUST NOT be sent on prior transactional
sequences.

The receiver utilizes transactional sequence numbers when acknowledging receipt of transactional
messages. Transactional sequence ID and sequence number values are specified in the OrderAck
Packet to acknowledge receipt of transactional messages.

The transactional message sequence mechanism exists alongside the session message sequence
specified in section 3.1.1.4. Because transactional messages are recoverable, they are treated as
recoverable mess ages in the session message sequence.

Transactional sequences are end - to -end. Processing of transactional sequences MUST be done only by
the original sender queue manager and the final destination queue manager as defined by the queue
manager identifier in the UserMessage Packet . An intermediate queue manager that receives a
transactional message MUST pass the TransactionHeader to the next destination but perform no
processing related to the transactional sequence.

3.1.1.6 Acknowledgments

The Message Queuing (MSMQ): Message Queuing Binary Protocol augments the underlying transport
with additional levels of acknowledgment that ensure that messages are reliably transferred

regardless of transport connection failures, application failure s, or node failures.

Message acknowledgment provides a mechanism for the receiver to notify the sender that it has

received a message and, optionally, that the receiver has saved the message to disk. When the sender
receives an acknowledgment, it can disca rd the acknowledged message or messages that it has stored
locally.

The sender retransmits unacknowledged messages if it does not receive an acknowledgment within a
time -out. This protocol implements message acknowledgments at both the session sequence and
transactional sequence layers.

3.1.1.6.1 Session Acknowledgment

Session acknowledgments related to the session message sequence are specified in Session Message
Sequence (section 3.1.1.7) .

A session acknowledgment is sent from the receiver to the sender either as a stand -alone SessionAck
Packet or as a SessionHeader ([MS -MQMQ] section 2.2.20.4) included inside a UserMessage Packet
([MS -MQMQ] section 2.2.20). The purpose of a session acknowledgment is to notify the sender that
the receiver has received messages from the sender, and, in the case of recover able messages, has

persisted them for reliable recovery.

The SessionHeader.AckSequenceNumber field specifies the total number of messages that have
been received on the session. The sender SHOULD <38> discard its local copy of express messages up
to the position in the sequence specified by the receiver.

%5bMS-MQMQ%5d.pdf

55 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SessionHeader.RecoverableMsgAckSeqNumber and
SessionHeader.RecoverableMsgAckFlags fields specify the recoverable messages that the receiver

has successfully saved to disk since the last session acknowledgment. The sender SHOULD <39>
discard its local copy of the specified recoverable messages if they are not transactional. The sender

MUST set SessionHeader.RecoverableMsgAckSeqNumber to 0x0000. The sender MUST set
SessionHeader.RecoverableMsgAckFlags to 0x00000000.

The receiver sends session acknowledgments to the sender at intervals defined by an acknowledgment
timer or based on message coun t and session window size.

3.1.1.6.2 Transactional Acknowledgment

Transactional acknowledgments related to the Transactional Message Sequence are specified in

Transactional Message Sequence (section 3.1.1.5) .

Transactional acknowledgments are end - to -end acknowledgments. Processing of transactional
sequences MUST be done only by the original sender queue manager and the final destinati on queue
manager. An intermediate queue manager that receives a Transactional Message MUST pass the

TransactionHeader ([MS -MQMQ] section 2.2.20.5) to the next dest ination but MUST NOT perform
any processing related to the transactional sequence.

A transactional acknowledgment is sent from the final destination to the sender in the form of an
OrderAck Packe t (section 2.2.4) . The purpose of a transactional acknowledgment is to notify the
original sender that the final destination has received a Transactional Message and has persisted it for
reliable recovery.

An OrderAck Packet includes a TxSequenceID ([MS -MQMQ] section 2.2.18.1.2) and
TxSequenceNumber that specify the Transactional Message being acknowledged. The receiver MUST
acknowledge transactional messages in sequence order. For example, if the receiver has received

messages 1, 2, and 4 within a sequence , it cannot send an acknowledgment for message 4 until it has
received, saved to disk, and acknowledged message 3.

The receiver MUST schedule sending an OrderAck Packet based on the state of the Order Ack Send
Timer (section 3.1.2.7) and the values of the LastOrderAckSendTime and

MaximumOrderAckDelay ADM elements. If the timer is active and the time elapsed from the
LastOrderAckSendTime ADM element is less than the MaximumOrderAckDelay ADM element, the
timer MUST be restarted with the duration set to the OrderackTimeout ADM element. If the timer is

inactive, it MUST be started with the duration set to the OrderackTimeout ADM element. When the
timer expires, an OrderAck Packet MUST be sent as specifi ed in section 3.1.6.9 .

A transactional acknowledgment MAY acknowledge multiple messages if multiple messages have been
received since the last OrderAck Packet was sent. For example, if the last me ssage acknowledged is 5
and the receiver has received and saved to disk messages 6, 7, and 8, then the receiver MAY set the
TxSequenceID field to 0x0000000000000008.

The TxSequenceID field specifies to the sender the highest message sequence number that ha s been
received by the receiver and saved to disk. The sender SHOULD <40> discard its local copy of the
acknowledged transactional messages up to the position in the sequence specified by the sender.

Transactional acknowledgments are independent of session acknowledgments. Although transactional

messages are processed by the session acknowledgment mechanism as recoverable messages, they
MUST NOT be discarded by the sender as a result of a session ackno wledgment. Transactional
messages MUST be retained by the sender at least until the sender receives a matching transactional

OrderAck Packet. If the sender requests a final acknowledgment, the sender MUST retain the message
until it receives the FinalAck Packet (section 2.2.5) .

3.1.1.7 Sequence Diagrams

This section contains sequence diagrams that illustrate several common scenarios.

%5bMS-MQMQ%5d.pdf

56 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.1.7.1 Session Initialization

The following sequence d iagram demonstrates session initialization.

Figure 12 : Sequence for session initialization

The initiator MAY <41> begin session initialization by sending a Ping Request , as specified in Ping
Message (section 2.1.2) , on the UDP or SPX transport to the acceptor to determine whether it is
available and can accept a connection. In that case, the acceptor MAY <42> respond with a Ping
Response , as specified in section 2.1.2, indicating that it is available.

Next, the initiator initiates a protocol session by sending an EstablishConnection Packet (sect ion 2.2.3)
to the acceptor. The acceptor accepts the connection and responds with an EstablishConnection

Packet. The initiator sends a ConnectionParameters Packet (section 2.2.2) to the acceptor t o
communicate session parameters such as timeouts and window size. The acceptor confirms the
session parameters by responding with a ConnectionParameters Packet response packet.

3.1.1.7.2 Session with Express Messages Sent

The following sequence diagram demonstrates the sending of express messages between two queue
managers after a session has been established.

57 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 13 : Sequence for express messages

The sender sends three express UserMessage Packe ts ([MS -MQMQ] section 2.2.20) to the receiver.
The receiver acknowledges receipt of the UserMessage Packets by sending a SessionAck
Packet (section 2.2.6) after a delay to allow batching of the session acknowledgments.

After an inactivity time -out, the session is closed by either side by performing the steps listed in
section 3.1.5.9 . The protocol does not exchange packets as part of session closure.

3.1.1.7.3 Session with Transactional Messages Sent

The following sequence diagram demonstrates the sending of a transactional message between two
queue managers with positiv e source journaling enabled after a session has been established.

%5bMS-MQMQ%5d.pdf

58 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 14 : Sequence for transactional messages

The sender sends a transactional UserMessage Packet ([MS -MQMQ] section 2.2.20) to the receiver

with positive source journaling enabled. The receiver responds by sending an OrderAck
Packet (section 2.2.4) . The purpose of the OrderAck Packet is to acknowledge that the transa ctional
message was received in the correct order and was not a duplicate. The sender sends another
transactional UserMessage Packet and the receiver acknowledges it with an OrderAck Packet response.

The receiver sends a SessionAck Packet (section 2.2.6) that contains a session acknowledgment of

both UserMessage Packets. It is important to note that session acknowledgments and transactional
acknowledgments are separate mechanisms that serve differe nt purposes.

The receiver sends a FinalAck Packet (section 2.2.5) to the sender for each of the messages. A
FinalAck Packet is sent when the message is consumed from the destination queue by a hig her - layer
application.

The sender sends a SessionAck Packet that contains a session acknowledgment of both FinalAck

Packets.

After an inactivity time -out, the session is closed by either side by performing the steps listed in
section 3.1.5.9 . The protocol does not exchange packets as part of session closure.

3.1.2 Timers

The Message Queuing (MSMQ): Message Queuing Binary Protocol MUST maintain the following timers,
described in th e following sections:

Á Session Initialization Timer (section 3.1.2.1)

%5bMS-MQMQ%5d.pdf

59 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á Session Cleanup Timer (section 3.1.2.2)

Á Session Retry Connect Timer (section 3.1.2.3)

Á Session Ack Wait Timer (section 3.1.2.4)

Á Session Ack Send Timer (section 3.1.2.5)

Á Transactional Ack Wait Timer (section 3.1.2.6)

Á Order Ack Send Timer (section 3.1.2.7)

Á MessageIDHistory Cleanup Timer (section 3.1.2.8)

Á Ping Response Timer (section 3.1.2.9)

3.1.2.1 Session Initialization Timer

This timer regulates the amount of time that both the initiator and the acceptor wait for each other to

respond to session initialization messages. A queue manager employs a single instance of this timer.
On the initia tor, this timer is started after an EstablishConnection Packet (section 2.2.3) message is
sent and is stopped after a ConnectionParamete rs Packet (section 2.2.2) is received. On the acceptor,
this timer is started after the EstablishConnection Packet response is sent and is stopped after the

ConnectionParameters Packet is received. The duration of this timer MUST be set based on the system
configuration, which is implementation -dependent. <43>

3.1.2.2 Session Cleanup Timer

This session -specific timer regulates the amount of time that the protocol waits bef ore closing an idle

protocol session. If the value of the SessionActive ADM element is FALSE when the timer expires,
the session is closed. The SessionActive ADM element is set to TRUE when a UserMessage Packet
([MS -MQMQ] section 2.2.20) is sent or received by the protocol. The duration of this timer MUST be
set based on the system configuration, which is implementation -dependent. <44>

3.1.2.3 Session Retry Connect Timer

This session -specific timer regulates the amount of time that the protocol waits until it tries to re -
establish a connection to a remote host. The duration of this timer MAY be set based on system
configuration, which is implementation -dependent. <45> The protocol MAY implement an adaptive
mechanism for reconnection time -outs.

3.1.2.4 Session Ack Wait Timer

This session -specifi c timer regulates the amount of time that the protocol waits for a session
acknowledgment before closing the session. The session is closed if the timer elapses while at least
one packet is awaiting acknowledgment, and no packet has been received since the previous timer
event. Closing the session will cause the queue manager to establish a new session and to retransmit

the unacknowledged messages. This timer is started when updating a UserMessage Packet ([MS -

MQMQ] section 2 .2.20). See section 3.1.7.1.3 . The duration of this timer MUST be set to a
multiple <46> of the AckWaitTimeout ADM element.

3.1.2.5 Session Ack Send Timer

This session -specific timer regulates the amount of time that the protocol waits before sending a
session acknowledgment to the remote host. This timer is started when the queue manager receives a
UserMessage Packet ([MS -MQMQ] section 2.2.20) while this timer is not running. This timer is
restarted when the queue manager processes a recoverable message (section 3.1.5.8.7). Upon

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

60 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

expiration of this timer, the protocol triggers a Session Ack Send Timer Event (section 3.1.6.4) . During
the processing of this event, this timer is started if the UnackedReceived MsgCount ADM element

does not equal 0x0000.

3.1.2.6 Transactional Ack Wait Timer

This session -specific timer regulates the amount of time that the protocol waits for an OrderAck
Packet before resending transactional messages to the receiver. This timer is started after sending a
transactional UserMessage Packet ([MS -MQMQ] section 2. 2.20). The duration of this timer MUST be

TxOutgoingSequence.ResendInterval . When this timer is set, the value of the scheduled time for
the next resend, which is the current time plus TxOutgoingSequence.ResendInterval , is stored in
TxOutgoingSequence.Rese ndTime .

3.1.2.7 Order Ack Send Timer

This session -specific timer regulates the amount of time that the protocol waits before sending an
Order acknowledgment to the sender. This timer is started when a UserMe ssage Packet ([MS -MQMQ]

section 2.2.20) containing a Transaction Header ([MS -MQMQ] section 2.2.20.5) is received. This timer
is restarted when additional transactional messages are received and the time elapsed since the va lue
of the LastOrderAckSendTime ADM element is less than the value of the
MaximumOrderAckDelay ADM element.

The duration of this timer MUST be set to OrderAckTimeout .

3.1.2.8 MessageIDHistory Cleanup Timer

This timer regulates the amount of time that the protocol waits before removing expired entries from
the MessageIDHistoryTable ADM element. This timer is set during Global

Initialization (section 3.1.3.1) when the MessageIDHistoryTable ADM element is no nempty, when a
new MessageIDHistoryEntry ADM element instance is added to a previously empty
MessageIDHistoryTable ADM element, or when this timer expires and the
MessageIDHistoryTable ADM element is nonempty even after stale entries have been deleted, as

specified in section 3.1.6.7 . The duration of this timer MUST be set based on the system configuration,
which is implementation -dependent. <47>

3.1.2.9 Ping Response Tim er

Instances of this timer regulate the amount of time that the protocol waits for a Ping Response , as
defined in Ping Message (section 2.1.2) , to arrive after sending a Ping Request , as specified in Ping
Message (section 2.1.2). A new instance of this timer is started when a Send Ping
Request (section 3.1.7.6) event occurs. The duration of the timer is always one second.

3.1.2.10 Rec eiveSymmetricKeyCache Cleanup Timer

This timer regulates the amount of time that the protocol waits before removing expired entries from
the ReceiveSymmetricKeyCache ADM element. This timer is set either when a

CachedSymmetricKey (section 3.1.1.3.3) ADM element instance is added to the
ReceiveSymmetricKeyCache ADM element, as specified in section 3.1.5.8.3 , or when the
ReceiveSymmetricKeyCache Cleanup Timer Event (section 3.1.6.10) is processed.

3.1.2.11 SendSymmetricKeyCache Cleanup Timer

This timer regulates the amount of time that the protocol waits before removing expired entries from
the SendSymmetricKeyCache ADM element. This timer is set either when a
CachedSymmetricKey (section 3.1.1.3.3) ADM element instance is added to the

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

61 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SendSymmetricKeyCache ADM element, as specified in section 3.1.7.1.5 , or by the
SendSymmetricKeyCache Cleanup Timer Event (section 3.1.6.11) .

3.1.2.12 SendBaseSymmetricKeyCache Cleanup Timer

This timer regulates the amount of time that the protocol waits before removing expired entries from
the SendBaseSymmetricKeyCache ADM element. This timer is set either when a
CachedSymmetricKey (sect ion 3.1.1.3.3) ADM element instance is added to the
SendBaseSymmetricKeyCache ADM element, as specified in section 3.1.7.1.5 , or when the

SendBaseSymmetricKeyCache Cleanup Timer Event (section 3.1.6.12) is processed.

3.1.2.13 UserCertCache Cleanup Timer

This timer regulates the amount of time that the protocol waits before removing expired
CachedUserCert (section 3.1.1.3.4) ADM element instances from the UserCertCache ADM element.

This timer is set either when a CachedUserCert ADM element instance is added to the
UserCertCache ADM element, as specified in section 3.1.5.8.3 , or when the UserCertCache Cleanup

Timer Event (section 3.1.6.13) is processed.

3.1.3 Initialization

3.1.3.1 Global Initialization

The processing rules described in this section are executed when the queue manager starts.

The ResendTimerTable ADM element MUST be populated sequentially with the following values:

Á The first three entries are set to the ResendTimeoutsShort ADM element.

Á The next three entries are set to the ResendTimeoutsMedium ADM element.

Á The next three entries are set to the ResendTimeoutsLong ADM element.

Á The last entry is set to the ResendTimeoutsFinal ADM element.

The MessageIDHistory Cleanup Timer (section 3.1.2.8) MUST be stopped.

If the MessageIDHistoryTable ADM element is not empty, the MessageIDHistory Cleanup Timer
MUST be started.

The UserCertCache ADM elem ent MUST be initialized to be empty. The UserCertCacheSize ADM
element SHOULD be set to 53.

The UserCertLifetime ADM element SHOULD be set to 1,200,000 milliseconds (20 minutes).

The ReceiveSymmetricKeyCache ADM element MUST be initialized to be empty. The
ReceiveBaseSymmetricKeyCache ADM element MUST be initialized to be empty. The
ReceiveSymmetricKeyCacheSize ADM element SHOULD be set to 127.

The SendSymmetricKeyCache ADM element MUST be initialized to be e mpty. The

SendBaseSymmetricKeyCache ADM element MUST be initialized to be empty. The
SendSymmetricKeyCacheSize ADM element SHOULD be set to 53.

The SymmetricKeyShortLifetime ADM element SHOULD be set to 600,000 milliseconds (10
minutes). The SymmetricKeyLo ngLifetime ADM element SHOULD be set to 43,200,000 milliseconds
(12 hours).

62 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The PreferredAdvancedAlgorithm ADM element SHOULD be set to 0x00006610, indicating the AES
256 algorithm as specified in [FIPS197] . The PreferredEnhancedAlgorithm ADM element SHOULD

be set to 0x00006801, indicating the RC4 algorithm as specified in [RFC4757] . The
PreferredBaseAlgorithm ADM element SHOULD be set to 0x00006801, indicating the RC4

algorithm.

The SendEnhancedRC2Using40BitKeys ADM element SHOULD be set to FALSE. <48>

The RejectEnhancedRC2Using40BitKeys ADM element SHOULD <49> be set to FALSE.

3.1.3.2 Session Initialization

The following values MUST be initialized for each session:

Á The value of the MessageSentCount ADM element MUST be set to 0x0000.

Á The val ue of the RecoverableMessageSentCount ADM element MUST be set to 0x0000.

Á The value of the MessageReceivedCount ADM element MUST be set to 0x0000.

Á The value of the RecoverableMessageReceivedCount ADM element MUST be set to 0x0000.

Á The value of the Recoverab leMsgAckFlags ADM element MUST be set to 0x00000000.

Á The value of the LastAckedRecoverableMsgSeqNumber ADM element MUST be set to 0x0000.

Á The value of the UnackedReceivedMsgCount ADM element MUST be set to 0x0000.

Á The Session Ack Wait Timer (section 3.1.2.4) MUST be stopped.

Á The Session Ack Send Timer (section 3.1.2.5) MUST be stopped.

Á The Transactional Ack Wait Timer (section 3.1.2.6) MUST be stopped.

Á The Order Ack Send Timer (section 3.1.2.7) MUST be stopped.

Á The Session Cleanup Timer (section 3.1.2.2) MUST be started.

Á If the OutgoingMessageTable ADM element is not empty, the Session Retry Connect
Timer (section 3.1.2.3) MUST be started.

Á The TxOutgoingSequence ADM element MUST be set to a new instance of the
OutgoingTransferSequence ADM element and initialized as follows:

Á LastAck.SeqNo MUST be set to 0x00000000.

Á The TimeOfLastAck ADM attribute MUST be set to the local system time.

Á The LastAckC ount ADM attribute MUST be set to zero.

Á The ResendIntervalIndex ADM attribute MUST be set to the index of the first entry in the

ResendTimerTable ADM element.

Á The ResendInterval ADM attribute MUST be set to the value of the first entry in the
ResendTimerTa ble ADM element.

Á The ResendTime ADM attribute MUST be set to zero.

Á The AwaitingAck , ReceivedSessionAck , ReceivedOrderAck , and Transmitted ADM attributes

of each OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance entry in the
OutgoingMessageTable ADM element MUST be set to FALSE.

http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=90488

63 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The value of the UnAckedMessageCount ADM element MUST be set to the count of
OutgoingMessagePosition ADM element instance s with ReceivedSessionAck ADM attributes

equal to FALSE in the OutgoingMessageTable ADM element.

Á The value of the WindowSize ADM element SHOULD <50> be set to 64.

Á The value of the SessionActive ADM element MUST be set to FALSE.

Á The value of the ReceivedAck ADM element MUST be set to FALSE.

Á The value of the AckWaitTimeout ADM element MUST be set based on the system configuration,
which is implementation -dependent. <51>

Á The OrderAckTimeout ADM element MUST be set to a value of 500 milliseconds.

Á The DirectFormatSession ADM element MUST be set to FALSE.

Á The value of the MaximumOrderAckDelay ADM element SHOULD <52> be set to 10 seconds.

Á The value of the LastO rderAckSendTime ADM element MUST be set to the current system time,
the number of seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC) according to
the system clock.

Á The value of the RecoverableAckSendTimeout ADM element MUST be set to 0xFFFFFF FF.

Á The RemoteQMPublicKey ADM element MUST be filled with zeroes (0x00) to indicate that it is
not initialized.

Á The value of QueueManager.Identifier MUST be globally unique and set based on system
configuration, which is implementation -dependent. <53>

Á The value of the PingCookie ADM element SHOULD <54> be set to 0x00000000.

Á The value of the SessionState ADM element MUST be set to WAITING_EC_MSG .

3.1.4 Higher -Layer Triggered Events

In addition to the local events listed in section 3.1.7 , the operation of the Message Queuing (MSMQ):
Message Queu ing Binary Protocol is initiated and subsequently driven by the following higher - layer
triggered events:

Á Queue Manager Started ([MS -MQDMPR] section 3.1.4.1).

Á Queue Manager Stopped ([MS -MQDMPR] section 3.1.4.2).

3.1.4.1 Queue Mana ger Started Event

The queue manager service on startup MUST perform protocol initialization as spec ified in section
3.1.3 . For each session, if the OutgoingMessageTable ADM element is not empty, the protocol
MUST establish a connection to the remote queue manager. Protocol session establishment is specified

in Establish a Protocol Session (section 3.1.5.2) .

3.1.4.2 Queue Manager Stopped Event

When the queue manager service is stopped, the protocol MUST be closed as specified in Closing a
Session (section 3.1.5.9) .

%5bMS-MQDMPR%5d.pdf

64 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.5 Processing E vents and Sequencing Rules

3.1.5.1 Receiving Any Packet

The ReceivedAck session state ADM element MUST be set to TRUE o n receipt of any packet. Unless
specifically noted in a subsequent section, the following actions MUST be applied to any session
message received:

Á Identifying Packet Type (section 3.1.5.1.1)

Á Verifying the Signature (section 3.1.5.1.2)

Á Handling Incorrectly Formatted Messages (section 3.1.5.1.3)

3.1.5.1.1 Identifying Packet Type

A packet is identified by inspecting the BaseHeader ([MS -MQMQ] section 2.2.19.1) and possibly
subsequent packet headers. The following list describes how to identify each packet type.

EstablishConnection Packet (section 2.2.3) : The BaseHea der.Flags.IN field MUST be set, and the

InternalHeader.Flags.PT field MUST be set to 0x2.

ConnectionParameters Packet (section 2.2.2) : The BaseHeader.Flags.IN field MUST be set, and
the InternalHe ader.Flags.PT field MUST be set to 0x3.

SessionAck Packet (section 2.2.6) : The BaseHeader.Flags.IN and BaseHeader.Flags.SH fields
MUST be set, and the InternalHeader.Flags.PT field MUST be set to 0x1.

OrderAck Packet (section 2.2.4) : All bits in the BaseHeader.Flags field MUST be set to 0. The
UserMessage.UserHeader.DestinationQueue field MUST address the message to the local

private queue named "order_queue$". The UserMessage.MessagePropertiesHeader.Label
field MUST be set to "QM Ordering Ack". The
UserMessage.MessagePropertiesHeader.MessageSize field MUST be set to 0 x00000024.
The UserMessage.MessagePropertiesHeader.MessageClass field MUST be set to

MQMSG_CLASS_ORDER_ACK.

FinalAck Packet (section 2.2.5) : All bits in the BaseHeader.Flags field MUST be set to 0 . The
UserMessage.UserHeader.DestinationQueue field MUST address the local private queue

named "order_queue$". The UserMessage.MessagePropertiesHeader.Label field MUST be
set to "QM Ordering Ack". The UserMessage.MessagePropertiesHeader.MessageClass field
MUST be set to one of the values that is not less than 0x4000, as specified in [MS -MQMQ]
section 2.2.18.1.6.

UserMessage Packet ([MS -MQMQ] section2.2.20) : The BaseHeader.Flags.IN bit field MUST be set
to 0, and the UserMessage.MessagePropertiesHeader.Messa geClass field MUST be set to

MQMSG_CLASS_NORMAL.

Ping Messages (section 2.1.2) are generated and handled separately from other packets and are sent
to different ports from other packets, as descri bed in section 2.1.2. Only Ping Packets (section 2.2.7)
can be received on these ports.

3.1.5.1.2 Verifying the Signature

A packet signature is validated by evaluating the BaseHeader.VersionNumber and

BaseHeader.Signature fields. A packet is valid when the BaseHeader.VersionNumber fi eld is set
to 0x10 and the BaseHeader.Signature field is set to 0x524F494C (big - endian order). Any other
value indicates an invalid packet.

%5bMS-MQMQ%5d.pdf

65 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If signature validation fails, the protocol MUST disca rd the received packet, perform no further
processing for it, and then close the session as specified in Closing a Session (section 3.1.5.9) . If

signature verification succeeds, the protocol conti nues processing on the packet as specified in
subsequent sections.

3.1.5.1.3 Handling Incorrectly Formatted Messages

If the protocol receives a request that does not conform to the structures specified in
Messages (section 2) , the protocol MUST discard the received packet, perform no further processing
for it, and then close the session as specified in Closing a Session (section 3.1.5.9) .

3.1.5.2 Establish a Protocol Session

The queue manager establishes a session to a remote queue manager to transfer messages. Thi s
action could be the result of the queue manager receiving a message from a higher - layer application
or of the queue manager retrying a connection to a remote queue manager, or of a session with
outgoing messages during the queue manager startup.

Establis hing a session to a remote queue manager consists of the following sequence of operations:

Á Resolve Host Address (section 3.1.5.2.1)

Á Ping Mechanism (section 3.1.5.2.2)

Á Sending an EstablishConnection Request Packet (section 3.1.5.2.3)

If the session cannot be established with the remote queue manager due to an error in these steps,
the protocol MUST append an entry to the OutgoingQueueReference.ConnectionHistory array.
The Status ADM attribute of the array entry MUST be set to the value specified in [MS -MQDMPR]

section 3.1.1.3 that describes the err or. If no appropriate value can be used, the Status ADM
attribute of the array entry MUST be set to UnknownFailure . The ConnectionHistoryTime ADM
attribute of the array entry MUST be set to the current time; the Error ADM attribute of the array
entry MUST be set to an HRESULT value indicating the error; and the AddressList ADM attribute of

the array entry MUST be set to the RemoteQMAddress ADM element.

3.1.5.2.1 Resolve Host Address

The queue manager MUST provide a queue format name that specifies the destination queue manager
and queue.

The protocol MUST find the OutgoingQueue ([MS -MQDMPR] section 3.1.1.3) ADM element instance in
the local QueueManager.QueueCollection with a DestinationFormatName equal to the provided
queue format name.

The protocol MUST set the OutgoingQueueReference ADM element to the found OutgoingQueue

ADM element instance.

The protocol MUST declare the destinationHostName and destinationQmGuid variables.

The protocol MUST obtain the value of destinationHostName and destinationQmGuid by
perfor ming the following steps:

Á The protocol MUST raise a Get Destination Info (section 3.1.7.4) event with the following
argument:

Á iFormatName : The provided queue format name

Á If the value in rStatus does not equal TRUE, the protocol MUST perform the following steps:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

66 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á If the OutgoingMessageTable ADM element is not empty and the
OutgoingQueueReference.State is not OnHold :

Á Start the Session Re try Connect Timer (section 3.1.2.3) .

Á Set the OutgoingQueueReference.State to NeedValidation.

Á Take no further action.

Á Set destinationHostName equal to the returned rHostName .

Á Set destinationQmGuid equal to the returned rQueueManagerGuid .

If destinationQmGui d is not equal to all zero bytes, the protocol MUST obtain the host name and the
GUID of the QueueManager ADM element instance at the next hop to the destination by performing
the following steps:

Á The protocol MUST raise a Get Next Hops (section 3.1.7.5) event with the following argument:

Á iQmGuid : destinationQmGuid

Á If the value in rStatus does not equal TRUE, the protocol MUST perform the following steps:

Á If the OutgoingMessageTable ADM element is not empty and the
OutgoingQueueReference.State is not OnHold :

Á Start the Session Retry Connect Timer (section 3.1.2.3).

Á Set the OutgoingQueueReference.State to NeedValidation.

Á Take no further action.

Á Clear the OutgoingQueueReference.NextHops collection.

Á For each QueueManager ADM element instance, referred to as rQueueManager , in the returned
rQueueManager 's collection, perform the following:

Á Resolve destinationHostName to addresses, referred to as destinationAddresses , which are
usable by the transports specified in section 2.1 .<55>

Á For each successfully resolved destinationAddress in destinationAddresses , perform the

follow ing:

Á Format the destinationAddress , as specified in [MS -MQMQ] section 2.3.12.12, and add it
to the OutgoingQueueReference.NextHops collection.

Á Create a NextHop (se ction 3.1.1.3.1.3) ADM element instance and perform the following:

Á Set NextHop.HostName to rQueueManager .QualifiedComputerName .

Á Set NextHop.QMGuid to rQueueManager .Identifier .

Á Set NextHop.Address to destinationAddress .

Á Add the NextHop ADM element instance to the NextHopCollection ADM element.

Á Set the NextHopIndexer ADM element to the first element in the NextHopCollection ADM
element.

Á Get the reference to the NextHop ADM element instance referenced by the NextHopIndexer
ADM element in the NextHopCollection ADM element and perform the following:

%5bMS-MQMQ%5d.pdf

67 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á Set the RemoteQMAddress ADM element to NextHop.Address .

Á Set the RemoteQMHostName ADM element to NextHop.HostName .

Á Set the RemoteQMGuid ADM element to NextHop.QMGuid .

3.1.5.2.2 Ping Mechanism

If the session is not being created in response to a Session Retry Connect Timer
Event (section 3.1.6.1) , the initiator MAY send a Ping Request , as specified in Ping
Message (section 2.1.2) to t he acceptor and receive a Ping Response , as specified in Ping
Message (section 2.1.2), before attempting to establish a session. <56> This mechanism provides the
initiator with information about whether a connection is lik ely to be accepted. The result in the Ping
Response is not a guarantee, because the acceptor state could change before it receives the

EstablishConnection Packet (section 2.2.3) from the initiator . If the initiator sends a Ping Request , it
MUST do the following:

Á Raise a Send Ping Request (section 3.1.7.6) event with the following argument:

Á iAddress : the address resolved in destinationHostN ame as specified in Resolve Host
Address (section 3.1.5.2.1) .

Á If the value of rStatus returned by the Send Ping Request event is TRUE, proceed to Sending an

EstablishConnection Request Packet (section 3.1.5.2.3) .

Á If the value of rStatus returned by the Send Ping Request event is FALSE:

Á Append an entry to the OutgoingQueueReference.ConnectionHistory array. The Status
ADM attribute of the ar ray entry MUST be set to PingFailure ; the ConnectionHistoryTime
ADM attribute of the array entry MUST be set to the current time; the Error ADM attribute of
the array entry MUST be set to an HRESULT value indicating the error; and the AddressList
ADM attri bute of the array entry MUST be set to the RemoteQMAddress ADM element.

Á Start the Session Retry Connect Timer (section 3.1.2.3) if the OutgoingMessageTable ADM

element is not empty, and take no further action.

3.1.5.2.3 Sending an EstablishConnection Request Packet

If the Session Initialization Timer (section 3.1.2.1) is running, the protocol MUST stop the timer before
sending an EstablishConnection Packet (section 2.2.3) .

The EstablishConnection Packet MUST be sent to the acceptor by using the transport settings specified

in Protocol Session (sec tion 2.1.1) . The following fields MUST be set in the EstablishConnection
Packet:

Á BaseHeader.Flags.IN MUST be set.

Á InternalHeader.Flags.PT field MUST be set to 0x2.

Á InternalHeader.Flags.CS MUST be set to 0.

Á EstablishConnectionHeader.ClientGuid MUST be set t o QueueManager.Identifier .

Á EstablishConnectionHeader.ServerGuid MUST be set to RemoteQMGuid if a direct format
name was not used. EstablishConnectionHeader.ServerGuid MUST be zero - filled if a di rect
format name was used.

Á EstablishConnectionHeader.TimeStamp MUST be set to the time, in milliseconds, since the
operating system was started.

68 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á EstablishConnectionHeader.OperatingSystem.SE MUST be set to 0 if a Ping Request (section
2.1.2) was sent, as described in section 3.1.5.2.2 ; otherwise, it MUST be set to 1.

Á The remaining fields of EstablishConnectionHeader MUST be initialized as specified in section
2.2.3.1 .

The SessionState value MUST be set to WAITING_ECR_MSG. An entry MUST be appended to the
OutgoingQueueReference.ConnectionHistory array; the Status ADM attribute of the array entry
MUST be set to InProcess ; the ConnectionHistoryTime ADM attribute of the array entry MUST be
set to the current time; the Error ADM attribute of the array entry MUST be set to zero; and the
AddressList ADM attribute of the array entry MUST be set to the RemoteQMAddress ADM element.

After the EstablishConnection Packet is sent, the protocol MUST start the Session Initialization Timer.

See Receiv ing an EstablishConnection Packet (section 3.1.5.3) for the next step in session

initialization.

If the OutgoingQueueReference.State is not OnHold , OutgoingQueueReference.State MUST be
set to Waiting .

3.1.5.3 Receiving an EstablishConnection Packet

If the SessionState ADM element is not set to WAITING_EC_MSG or WAITING_EC R_MSG, the
protocol MUST close the session as specified in Closing a Session (section 3.1.5.9) .

An EstablishConnection Packet (section 2.2.3) is a connection request from the initiator or a response
to an EstablishConnection Packet sent from this protocol, as specified in Sending an
EstablishConnection Request Packet (section 3.1. 5.2.3) .

3.1.5.3.1 Request Packet

The packet is proc essed as a connection request if SessionState is WAITING_EC_MSG.

The value of RemoteQMGuid MUST be set to EstablishConnectionHeader.ClientGuid .

If the EstablishConnectionHeader.Flags.SE field is set to 1, the protocol MAY <57> attempt to
determine whether allowing this new connection would exceed an implementation -specific limit on the
number of open connections. If the connection is rejected, the protocol closes the session as described
in section 3.1.5.9 .

The protocol MUST reply to a connection request by sending an EstablishConnection Packet response
with the following values:

Á The BaseHeader.Flags.IN bit field MUST be set.

Á The InternalHeader.Flags.PT field MUST be set to 0x2.

Á The packet is valid if the EstablishConnectionHeader.ServerGuid field is equal to
QueueManager.Identifier or the EstablishConnectionHeader.ServerGuid field is GUID_NULL

({0000000 0-0000 -0000 -0000 -000000000000}). If the packet is valid, the

InternalHeader.Flags.CS bit field MUST be set to 0. If the packet is invalid, the
InternalHeader.Flags.CS bit field MUST be set to 1.

Á The EstablishConnectionHeader.ClientGuid field MUST be set to the
EstablishConnectionHeader.ClientGuid field value in the original packet.

Á The EstablishConnectionHeader.ServerGuid field MUST be set to QueueManager.Identifier .

Á The EstablishConnectionHeader.TimeStamp field MUST be set to the

EstablishConnectionHeader. TimeStamp field value in the original packet.

69 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The EstablishConnectionHeader.OperatingSystem.SE field MUST be set to the value of this
field in the request packet.

Á The remaining fields of the EstablishConnectionHeader MUST be initialized as specified in
section 2.2.3.1 .

The SessionState ADM element value MUST be set to WAITING_CP_MSG.

3.1.5.3.2 Response Packet

The packet is processed as a connection response if SessionState is WAITING_ECR_MSG.

The packet is valid if EstablishConnectionHeader.Clie ntGuid is equal to
QueueManager.Identifier and EstablishConnectionHeader.ServerGUID is equal to
RemoteQMGuid and InternalHeader.Flags.CS is set to 0. If the packet is invalid, the protocol

MUST discard the packet and close the session as specified in Closing a Session (section 3.1.5.9) .

The protocol MUST set the RecoverableAckSendTimeout ADM element as follows:

Á Get the current system time, in milliseconds, since the operating system was started.

Á Calculate the round - trip time of the EstablishConnection Packet (section 2.2.3) by subtracting the
EstablishConnectionHeader.TimeStamp field value from the current time.

Á Set the RecoverableAckSendTimeout ADM element to the round - trip time multiplied by 8. If

the RecoverableAckSendTimeout ADM element is out of the range of 0x000001F4 to
0x0001D4C0, inclusive, set it to the closest limit.

The protocol MUST reply to a connection resp onse by sending a ConnectionParameters Packet with the
following field values:

Á The BaseHeader.Flags.IN field MUST be set.

Á The InternalHeader.Flags.PT field MUST be set to 0x3.

Á The InternalHeader.F lags.CS field MUST be set to 0.

Á The ConnectionParametersHeader.RecoverableAckTimeout field MUST be set to the
RecoverableAckSendTimeout ADM element.

Á The ConnectionParametersHeader.AckTimeout field MUST be set to the AckWaitTimeout
ADM element.

Á The Connecti onParametersHeader.WindowSize field MUST be set to the WindowSize ADM
element.

The SessionState ADM element value MUST be set to WAITING_CPR_MSG. An entry MUST be

appended to the OutgoingQueueReference.ConnectionHistory array; the Status ADM attribute of
the array entry MUST be set to EstablishPacketReceived ; the ConnectionHistoryTime ADM
attribute of the array entry MUST be set to the current time; the Error ADM attribute of the array
entry MUST be set to zero; and the AddressList ADM attribute of the arra y entry MUST be set to the

RemoteQMAddress ADM element.

See Receiving a ConnectionParameters Packet (section 3.1.5.4) for the next step in session

initialization.

3.1.5.4 Receiving a ConnectionParameters Packet

If SessionState is not set to WAITING_CP_MSG or W AITING_CPR_MSG, the protocol MUST close the
session as specified in Closing a Session (section 3.1.5.9) .

70 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

A ConnectionParameters Packet (section 2.2.2) is either a request from an initiator to an acceptor or a
response from an acceptor to an initiator for a ConnectionParameters Packet received during protocol

session initialization.

3.1.5.4.1 Request Packet

The packet is processed as a request if the SessionState ADM element is WAITING_CP_MSG.

Á The ReceivedWindowSize ADM element MUST be set to the
ConnectionParametersHeader.WindowSize field value.

Á The AckWaitTimeout ADM element MUST be set to the
ConnectionParametersHeader.AckTimeout field value.

Á The duration of t he Session Ack Wait Timer MUST be set as specified in section 3.1.2.4.

Á The RecoverableAckSendTimeout ADM element MUST be set to the
ConnectionParametersHeader.RecoverableAckTimeout field value.

The protocol MUST reply to a connection request by sending a ConnectionParameters Packet response
with the following values:

Á The BaseHeader.Flags.IN bit field MUST be set.

Á The InternalHeader.Flags.P T field MUST be set to 0x3.

Á The InternalHeader.Flags.CS bit field MUST be set to 0.

Á The ConnectionParametersHeader.RecoverableAckTimeout field MUST be set to the value of
the ConnectionParametersHeader.RecoverableAckTimeout field in the received packet.

Á The ConnectionParametersHeader.AckTimeout field MUST be set to the value of the
ConnectionParametersHeader.AckTimeout field in the received packet.

Á The ConnectionParametersHeader.WindowSize field MUST be set to the value of the

WindowSize ADM element.

The Session Initialization Timer MUST be stopped. The value of the SessionState ADM element MUST
be set to OPEN. The session is now initialized and is ready to send or receive UserMessage Packets
([MS -MQMQ] section 2.2.20).

3.1.5.4.2 Response Packet

The packet is processed as a response if the value of the SessionState ADM element is
WAITING_CPR_MSG.

The ReceivedWindowSize ADM element MUST be set to the value of the
ConnectionParametersHeader.WindowSize field. The protocol MUST perform the following:

Á Clear the OutgoingQueueReference.NextHops collection.

Á Get the NextHop (section 3.1.1.3.1.3) ADM element instance of the NextHopCollection ADM
eleme nt, referred to as iNextHop and referenced by the NextHopIterator .

Á Format iNextHop .Address , as specified in [MS -MQMQ] section 2.3.12.12, and add it to the

OutgoingQueueReference.NextHops collection.

The Session Initialization Timer (section 3.1.2.1) MUST be stopped. The value of the SessionState
ADM element MUST be set to OPEN. An element MUST be appended to the
OutgoingQueueReference.ConnectionHistory array; the St atus ADM attribute of the array
element MUST be set to Established ; the ConnectionHistoryTime ADM attribute of the array

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

71 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

element MUST be set to the current time; the Error ADM attribute of the array element MUST be set
to zero; and the AddressList ADM attr ibute of the array element MUST be set to the

RemoteQMAddress ADM element. The session is now initialized and is ready to send or receive
UserMessage Packet s ([MS -MQMQ] section 2.2.20).

If the OutgoingQueueReference.State is not OnHold , the OutgoingQueueRe ference.State
MUST be set to Connected .

3.1.5.5 Receiving a SessionAck Packet

If the SessionSt ate ADM element is not set to the value OPEN, the protocol MUST close the session
as specified in Closing a Session (section 3.1.5.9) .

A SessionHeader ([MS -MQMQ] section 2.2.20.4) contains a session acknowledgment that
acknowledges express and recoverable messages. A SessionHeader can appear in a SessionAck Packet
or can be piggy -backed onto a UserMessage Packet ([MS -MQMQ] section 2.2.20). A SessionHeader is
present in the packet when the Flags.SH bit field of the BaseHeader ([MS -MQMQ] section 2.2.19.1) is
set.

The protocol MUST perform the following steps to process a SessionHeader:

Á Mark Acknowledged Messages

Á Delete Acknowledged Express Messages

Á Delete Acknowledged Re coverable Messages

Á Source Journaling

Á Validate Message Counts

3.1.5.5.1 Mark Acknowledged Messages

The protocol MUST set the ReceivedSessionAck ADM attribute to TRUE for each

OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance rOutgoingMessagePosition in the
OutgoingMessageTable ADM element where rOutgoingMessagePosition .SequenceNumber is less
than or equal to the SessionHeader.AckSequenceNumber field.

The UnAckedMessageCount ADM element MUST be decremented by the number of
OutgoingMessagePosition ADM element instances with ReceivedSessionAck ADM attributes that

were set to TRUE by the preceding ope ration.

For each OutgoingMessagePosition ADM element instance sOutgoingMessagePosition in the
OutgoingMessageTable ADM element where sOutgoingMessagePosition .ReceivedSessionAck is
FALSE, the Add Message To Dispatch Collection ([MS -MQDMPR] section 3.1.7.1.28) event MUST be
raised with the following arguments.

Á iPosition := A reference to sOutgoingMessagePosition .MessagePosition .

Á iData := A reference to sOutgoingMessagePosition .

The order in which each OutgoingMessagePosition ADM element instance
sOutgoingMessagePosition is passed to the Add Message To Dispatch Collection event MUST match the
order in which the instance is listed in the OutgoingMessageTable ADM element.

3.1.5.5.2 Delete Acknowledged Express Messages

The protocol MUST delete each OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance

rOutgoingMessagePosition from the OutgoingMessageTable ADM element where
rOutgoingMessagePosition .SequenceNumber is less than or equal to the

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

72 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SessionHeader.AckSequenceNumber field and
rOutgoingMessagePosition .RecoverableSequenceNumber is set to 0x0000.

3.1.5.5.3 Delete Acknowledged Recoverable Messages

The protocol MUST delete each OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance
rOutgoingMessagePosition from the OutgoingMessageTable ADM element where
rOutgoingMessagePosition .Recov erableSequenceNumber is less than or equal to the
SessionHeader.RecoverableMsgAckSeqNumber field and
rOutgoingMessagePosition .TxSequenceNumber is set to 0x00000000.

The protocol MUST delete each OutgoingMessagePosition ADM element instance
sOutgoingMessage Position from the OutgoingMessageTable ADM element where

sOutgoingMessagePosition .RecoverableSequenceNumber is represented in the
SessionHeader.RecoverableMsgAckFlags field with a bit set to 1 and
sOutgoingMessagePosition .TxSequenceNumber is set to 0x00000 000. Details of the
SessionHeader.RecoverableMsgAckFlags field bit representation are specified in [MS -MQMQ]
section 2.2.20.4.

The protocol MUST delete each OutgoingMessagePosition ADM element instance

tOutgoingMessagePosit ion from the OutgoingMessageTable ADM element where
tOutgoingMessagePosition .RecoverableSequenceNumber is represented in the
SessionHeader.RecoverableMsgAckFlags field with a bit set to 1 and where
tOutgoingMessagePosition .ReceivedOrderAck is TRUE. Details of the
SessionHeader.RecoverableMsgAckFlags field bit representation are specified in [MS -MQMQ]
section 2.2.20.4.

3.1.5.5.4 Source Journaling

An acknowledged message that is deleted from the OutgoingMessageTable ADM element and that
has the UserMessage.UserHeader.Flags.JP field set MUST be logged locally b y generating a Move
Message ([MS -MQDMPR] section 3.1.7.1.16) event with the following arguments:

Á iMessagePos : A MessagePosition ([MS -MQDMPR] section 3.1.1.11) ADM element instance
referenced by the MessagePosition ADM att ribute of the
OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance that was removed from the

OutgoingMessageTable ADM element.

Á iTargetQueue : A QueueManager.SystemJournalQueue ([MS -MQDMPR] section 3.1.1.1).

3.1.5.5.5 Validate Message Counts

If the SessionHeader.UserMsgSequenceNumber field is not equal to the
MessageReceivedCount ADM element or the SessionHeader.RecoverableMsgSeqNumber field is
not equal to the RecoverableMessageReceivedCount ADM element, the protocol MUST close t he

session as specified in Closing a Session (section 3.1.5.9) .

If the OutgoingMessageTable ADM element contains any message where the AwaitingAck ADM
attribute of the corresponding OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance is

true, the Session Ack Wait Timer (section 3.1.2.4) MUST be restarted.

Each recov erable transactional message MUST be retained until receipt of the corresponding OrderAck
Packet (section 2.2.4) .

3.1.5.6 Receiving an OrderAck Packet

If the SessionState ADM element is not set to the value OPEN, the protocol MUST close the session
as specified in Closing a Session (section 3.1.5.9) .

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

73 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The ADM elements and ADM attributes defined in Session State (section 3.1.1.3.1) MUST be updated
as follows:

Á TxOutgoingSequence.TimeOfLast Ack MUST be set to the local system time.

Á TxOutgoingSequence.ResendIntervalIndex MUST be incremented by 1. If the new value is

greater than the number of entries in the ResendTimerTable ADM element, it MUST be set to
the index of the last entry. TxOutgoing Sequence.ResendInterval MUST be set to the value at
the index corresponding to TxOutgoingSequence.ResendIntervalIndex in the
ResendTimerTable ADM element.

Á The incoming OrderAck.MessagePropertiesHeader.MessageBody.TxSequenceNumber field
MUST be compared aga inst the stored value of TxOutgoingSequence.LastAck.SeqNo . When
the stored value is less, it is replaced with the value of the incoming

OrderAck.MessagePropertiesHeader.MessageBody.TxSequenceNumber field. The
TxOutgoingSequence.UnackedSequence list MUST be iterated over, and all stored instances of
SEQUENCE_INFO ([MS -MQMQ] section 2.2.5) MUST be deleted from the
TxOutgoingSequence.UnackedSequence list for which the value of the SeqNo field is less

than or equal to the TxOutg oingSequence.LastAck.SeqNo . The stored values MUST be deleted
in a manner such that the relative ordering of the undeleted SEQUENCE_INFO instances is

unaltered.

Á If TxOutgoingSequence.UnackedSequence is empty, indicating that there are no remaining
messages to be resent, TxOutgoingSequence.ResendIntervalIndex MUST be set to the index
of the first entry of the ResendTimerTable ADM element.

Á TxOutgoingSequence.LastAckCount MUST be incremented by 1.

Á The protocol MUST delete each OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element
instance rOutgoingMessagePosition from the OutgoingMessageTable ADM element where

rOutgoingMessagePosition .TxSequenceNumber is greater than 0x00000000 and is less than or
equal to the OrderAck.MessagePropertiesHeader.MessageBody.TxSequenceNumber field
and where rOutgoingMessagePosition .ReceivedSessionAck is set to TRUE.

Á A message that is deleted from the OutgoingMessageTable ADM element and that has the
UserMessage.UserHeader.Flags.JN field bit set or the UserMessage.UserHeader.Flags.JP
field bit set MUST be copied to the AwaitingFinalACKTable ADM element.

Á If the OutgoingMessageTable ADM element contains no OutgoingMessagePosition ADM

element instances wh ere OutgoingMessagePosition.TxSequenceNumber is nonzero, the
protocol MUST increment OutgoingTxSequenceID.Ordinal by 1 and MUST set the
OutgoingTxSequenceNumber ADM element to the value 0x00000001.

The attributes of the OutgoingTransferInfo ([MS -MQDMPR] section 3.1.1.4) ADM element instance
referenced by OutgoingQueueReference.OutgoingTransferInfoReference from the Session
State (section 3.1.1.3.1) MUST be set as follows:

Á EodLastAckTime : This ADM attribute value MUST be se t to
TxOutgoingSequence.TimeOfLastAck .

Á EodLastAckCount : This ADM attribute value MUST be set to
TxOutgoingSequence.LastAckCount .

Á EodNoAckCount : This ADM attribute value MUST be set to the number of entries in
TxOutgoingSequence.UnackedSequence .

Á EodResendInterval : This ADM attribute value MUST be set to the value of

TxOutgoingSequence.ResendInterval .

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

74 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á EodFirstNonAck : This ADM attribute value MUST be set to the value of the first entry in the
TxOutgoingSequence.UnackedSequence list.

Á EodLastNonAck : T his ADM attribute value MUST be set to the value of the last entry in the
TxOutgoingSequence.UnackedSequence list.

Á EodLastAck : This ADM attribute value MUST be set to the value of
TxOutgoingSequence.LastAck .

Á EodNoReadCount : This ADM attribute value MUST be set to the number of
OutgoingMessagePosition ADM element instances in the AwaitingFinalACKTable ADM
element instance that corresponds to the sequence represented by the per -session
TxOutgoingSequence ADM element instance.

Á EodResendCount : This ADM attribut e value MUST be set to the value of

TxOutgoingSequence.ResendIntervalIndex .

Á EodResendTime : This ADM attribute value MUST be set to the value of
TxOutgoingSequence.ResendTime .

3.1.5.7 Receiving a FinalAck Packet

If the SessionState ADM element is not set to the value OPEN, the protocol MUST close the session
as specified in Closing a Session (section 3.1.5.9) .

A FinalAck Packet (section 2.2.5) indicates that the message represented by the
FinalAck.MessagePrope rtiesHeader.MessageBody.MessageID field has been rejected by the
receiver or removed from the destination queue.

The message where the UserMessage.UserHeader.MessageID field is equal to the

FinalAck.MessagePropertiesHeader.MessageBody.MessageID field in th e
OutgoingMessageTable ADM element or the AwaitingFinalACKTable ADM element MUST be
moved to the system journal queue if the UserMessage.UserHeader.Flags.JP bit field is set and the
FinalAck.MessagePropertyHeader.MessageClass field is equal to MQMSG_CLASS_ ACK_RECEIVE.

The Move Message ([MS -MQDMPR] section 3.1.7.1.16) event MUST be raised with the following
arguments:

iMessagePos : A MessagePosition ([MS -MQDMPR] section 3.1.1.11) ADM element instance
referenced by the Messag ePosition ADM attribute of the OutgoingMessagePosition ADM element
instance in the OutgoingMessageTable ADM element or in the AwaitingFinalACKTable ADM
element that contains the Message ([MS -MQDMPR] section 3.1.1.12) ADM element instance that is
moved to t he QueueManager.SystemJournalQueue ([MS -MQDMPR] section 3.1.1.1).

iTargetQueue : The target Queue ([MS -MQDMPR] section 3.1.1.2) ADM element instance MUST be set
to the QueueManager.SystemJournalQueue .

The message where the UserMessage.UserHeader.MessageID field is equal to the
FinalAck.MessagePropertiesHeader.MessageBody.MessageID field in the
OutgoingMessageTable ADM element or in the AwaitingFinalACKTable ADM element MUST be
moved to the dead letter Queue ADM element instance if the UserMessage.UserHeader. Flags.JN

bit field is set and the FinalAck.MessagePropertyHeader.MessageClass field is not equal to
MQMSG_CLASS_ACK_RECEIVE. The Move Message ([MS -MQDMPR] section 3.1.7.1.16) event MUST be
raised with the following arguments:

iMessagePos : A MessagePosition ADM element instance referenced by the MessagePosition ADM
attribute of the OutgoingMessagePosition ADM element instance in the OutgoingMessageTable
ADM element or in the AwaitingFinalACKTable ADM element that contains the Message ADM
element instance that is moved to the dead letter Queue ADM element instance.

%5bMS-MQDMPR%5d.pdf

75 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

iTargetQueue : The target Queue ADM element instance MUST be set to the
QueueManager.SystemTransactionalDeadletterQueue or to

iMessagePos .MessageReference.ApplicationDeadlett erQueue ([MS -MQDMPR] section 3.1.1.12) if
it is specified.

3.1.5.8 Receiving a UserMessage Packet

A UserMessage Packet ([MS -MQMQ] section 2.2.20) contains an application -defined or system -
generated message sent from the sender. A received message can be addressed to a queue on the

local host or to a queue on anot her remote host.

If the SessionState ADM element is not set to the value OPEN, the protocol MUST close the session
as specified in Closing a Session (section 3.1.5.9) .

Processing a UserMessage Pac ket consists of the following sequence of operations. The protocol MUST
perform the following steps to process a UserMessage Packet:

Á Duplicate Detection

Á General Processing

Á Security

Á SessionHeader Processing

Á Messag e Expiration

Á Transactional Message Processing

Á Recoverable Message Processing

Á Inserting a Message into a Local Queue

Á Sending a Trace Message

Á Sending Administration Acknowledgments

3.1.5.8.1 Duplicate Detection

If the UserMessage Packet ([MS -MQMQ] section 2.2.20) contains a TransactionHeader ([MS -MQMQ]
section 2.2.20.5), the message is transactional, and duplicate detection is done using the sequence
numbers in the UserMessage.TransactionHeader , as specified in 3.1.5.8.6 .

If the message is not transactional and the MessageIDHistoryTable ADM element table contains a

MessageIDHistoryEntry.MessageIdentifier.Ordinal that matches the
UserMessage.UserHeader .MessageID field, the protocol MUST perform the following logic:

Á The protocol MUST update the matching
MessageIDHistoryEntry.MessageIdentifier.TimeStamp by setting it equal to the current
system time. This value is the number of seconds elapsed since midni ght (00:00:00), January 1,

1970 (Coordinated Universal Time (UTC)) according to the system clock.

Á The protocol MUST discard this message and perform no further processing.

3.1.5.8.2 General Processing

If the value of the UserMessage.UserHeader.QueueManagerA ddress field is not equal to the
Identifier ADM attribute of the local QueueManager ADM element instance and is not filled with the
value 0x00 and the protocol is unable to save the message locally (for example, insufficient disk
space), the protocol MUST disregard the message and perform no further processing.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

76 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The value of the MessageReceivedCount ADM element MUST be incremented by 1.

The value of the UnackedReceivedMsgCount ADM element MUST be incremented by 1.

If the UserMessage.UserHeader.Flags.DQ field is 0x7, The DirectFormatSession ADM element
MUST be set to TRUE.

A new MessageIDHistoryEntry ADM element instance MUST be created with the following
attributes:

Á MessageIDHistoryEntry.MessageIdentifier = A MessageIdentifier consisting of the
UserMessage.Us erHeader.MessageID field and the
UserMessage.UserHeader.SourceQueueManager field.

Á MessageIDHistoryEntry.TimeStamp = The current system time. This value is the number of
seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC) according to the syste m clock.

If the MessageIDHistoryTable ADM element is already at its maximum size, the table entry with the
earliest MessageIDHistoryEntry.TimeStamp MUST be deleted.

The newly created MessageIDHistoryEntry ADM element MUST be inserted into the
MessageIDHist oryTable ADM element.

The MessageIDHistory Cleanup Timer MUST be started if it is in a stopped state.

The Session Ack Send Timer (section 3.1.2.5) MUST be started with the duration set to

(AckWaitTimeout / 2) if it is in a stopped state.

The value of the SessionActive ADM element MUST be set to TRUE.

If the value of the UserMessage.UserHeader.QueueManagerAddress field is equal to the
Identifier ADM attribute of the local QueueManager ADM element instance, the protocol MUST
perform the following logic:

Á The protocol MUST disregard a message if it is addressed to a nonexistent queue. If the

UserMessage.UserHeader.DestinationQueue field does not correspond to a queue in

QueueManager.QueueCollection , the protocol MUST reject the message using the following
logic:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administration ack nowledgment by raising a Send Administration
Acknowledgment (section 3.1.7.15) event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_BAD_DST_Q ([MS -MQMQ] section 2.2.18.1.6)

Á If the packet contains a TransactionHeader ([MS -MQMQ] section 2.2.20.5), the protocol MUST
send a negative FinalAck Packet (sectio n 2.2.5) by raising a Send Transactional
Acknowledgment (section 3.1.7.17) event with the following arguments:

Á iMessageClass : MQMSG_CLASS_NACK_BAD_DST_Q

Á iUserMessagePacket : UserMessage

Á The protoco l MUST disregard the message and perform no further processing.

Á A transactional message can be delivered only to a transactional queue. If the UserMessage Packet
([MS -MQMQ] section 2.2.20) contains a TransactionHeader and
UserMessage.UserHeader.Destination Queue corresponds to a nontransactional queue in

%5bMS-MQMQ%5d.pdf

77 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

QueueManager.QueueCollection , the protocol MUST reject the message using the following
logic:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administr ation acknowledgment by raising a Send Administration

Acknowledgment event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q ([MS -MQMQ] section
2.2.18.1.6)

Á The protocol MUST send a neg ative FinalAck Packet (section 2.2.5) by raising a Send
Transactional Acknowledgment event with the following arguments:

Á iMessageClass : MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q ([MS -MQMQ] section

2.2.18.1.6)

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

Á A nontransactional message can be delivered only to a nontransactional queue. If the
UserMessage Packet does not contain a TransactionHeader and
UserMessage.UserHeader.DestinationQueue corresponds to a transactional queue in

QueueManager.QueueCollection , the protocol MUST reject the message using the following
logic:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administration acknowledgment by raising a Send Administration
Acknowledgment event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG ([MS -MQMQ] section

2.2.18.1.6)

Á The protocol MUST disregard the message and perfo rm no further processing.

If the value of the UserMessage.UserHeader.QueueManagerAddress field is not equal to the
Identifier ADM attribute of the local QueueManager ADM element instance, the protocol MUST
perform the following logic:

Á The protocol MUST inc rement the value of the UserMessage.UserHeader.Flags.RC field by 1. If
the incremented value exceeds the valid range of the field, the protocol MUST reject the message

using the following logic:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administration acknowledgment by raising a Send Administration
Acknowledgment event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED ([MS -MQMQ] section

2.2.18.1.6)

Á If the packet contains a TransactionHeader, the protocol MUST send a negative FinalAck
Packet (section 2.2.5) by raising a Send Transactional Acknowledgment event with the
following arguments:

78 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á iMessageClass : MQMSG_CLASS_NACK_HOP_COUN T_EXCEEDED ([MS -MQMQ] section
2.2.18.1.6)

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

If the UserMessage.UserHeader.Flags.DM field is set to 0x1, the protocol MUST perform additional
actions as specified in section 3.1.5.8.7 .

3.1.5.8.3 Security

If UserMessage.UserHeader.QueueManagerAddress is equal to QueueManager.Identifier and
a SecurityHeader is present in the UserMessage Packet ([MS -MQMQ] section 2.2.20), the following
logic MUST be applied to the message:

If the UserMessage.SecurityHeader.SecurityData.Signature field is set or the
UserMessage.MultiQueueFormatHeader.Signature field is set, the protocol MUST perform the

following steps to authenticate the packet:

Á If the UserMessage.SecurityHeader.SecurityData.Signature field is set:

Á Let RecreatedSignature equal the value obtained by computing the hash of the fields specified
in [MS -MQMQ] section 2.5.2 for an MSMQ 2.0 digital signature , using the hash algorithm

specified by the UserMessage.MessagePropertiesHeader.HashAlgorithm field.

Á Let OriginalSignature equal the val ue obtained by using Rivest -Shamir -Adleman (RSA)
[RFC3447] and the public key contained in the
UserMessage.SecurityHeader.SecurityData.SenderCert certificate to decrypt the value of
the UserMe ssage.SecurityHeader.SecurityData.Signature field.

Á If RecreatedSignature and OriginalSignature match, set the
UserMessage.SecurityHeader.Flags.AS field to 0x3.

Á If the two signatures do not match:

Á Set RecreatedSignature equal to the value obtained by comput ing the hash of the fields
specified in [MS -MQMQ] section 2.5.1 for an MSMQ 1.0 digital signature , using the hash
algorithm specified by the UserMessage.MessagePropertiesHeader.HashAlgorithm
fie ld.

Á If RecreatedSignature and OriginalSignature match, set the
UserMessage.SecurityHeader.Flags.AS field to 0x1.

Á Else if the UserMessage.MultiQueueFormatHeader.Signature field is set:

Á Let RecreatedSignature equal the value obtained by computing the hash of the fields specified
in [MS -MQMQ] section 2.5.3 for an MSMQ 3.0 digital signature , using the hash algorithm
specified by the UserMessage.MessagePropertiesHeader.HashAlgorithm field.

Á Let Origina lSignature equal the value obtained by using Rivest -Shamir -Adleman (RSA)

[RFC3447] and the public key contained in the

UserMessage.SecurityHeader.SecurityData.SenderCert certificate to decrypt the value of
the UserMessage.MultiQueueFormatHeader.Signature field.

Á If RecreatedSignature and OriginalSignature match, set the
UserMessage.SecurityHeader.Flags.AS field to 0x5.

Á If RecreatedSignature and OriginalSignature do not match, the protocol MUST reject the message
using the following logic:

%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90422

79 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administration acknowledgment by raising a Send Administration

Acknowledgment (section 3.1.7.15) event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_BAD_SIGNATURE ([MS -MQMQ] section 2.2.18.1.6)

Á If the rejected message contains a TransactionHeader ([MS -MQMQ] section 2.2.20.5), the
protocol MUST send a negative FinalAck Packet (section 2.2.5) by raising a Send Transactional
Acknowledgment (section 3.1.7.17) event with the following a rguments:

Á iMessageClass : MQMSG_CLASS_NACK_BAD_SIGNATURE

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

Á If the UserMessage.SecurityHeader.Flags.ST field is nonzero, the protocol MUST perform the

fo llowing steps to verify the identity of the sender:

Á The protocol MUST search the UserCertCache ADM element for a
CachedUserCert (section 3.1.1.3.4) ADM element instance where
CachedUserCert.UserCe rt.Certificate is bytewise identical to the certificate in the
UserMessage.SecurityHeader.SecurityData.SenderCert field and

CachedUserCert.SecurityID is equal to the
UserMessage.SecurityHeader.SecurityData.SecurityID field.

Á If no such instance is found, th e protocol MUST raise a Read Directory ([MS -MQDMPR] section
3.1.7.1.20) event with the following arguments:

Á iDirectoryObjectType : "User"

Á iFilter : "SecurityIdentifier" EQUALS
UserMessage.SecurityHeader.SecurityData.SecurityID

Á If the query returns an rStatus value equal to DirectoryOperationResult.Success , the
protocol MUST compare each of the certificates in rDirectoryObject .Certificates with the
UserMessage.SecurityHeader.Secu rityData.SenderCert field.

Á If a matching certificate is found in rDirectoryObject .Certificates , the protocol MUST perform
the following steps:

Á Create a new CachedUserCert ADM element instance and initialize it as follows:

Á UserCert : A copy of the matching MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22)

from rDirectoryObject .Certificates .

Á SecurityID : The value of the
UserMessage.SecurityHeader.SecurityData.SecurityID field.

Á CachedTime : The current system time. This value is the number of seconds elapsed
since midn ight (00:00:00), January 1, 1970 (UTC) according to the system clock.

Á Add the newly created CachedUserCert ADM element instance to the UserCertCache

ADM element. If doing so would cause the number of entries in the list to exceed the value
of the UserCertC acheSize ADM element, the protocol MUST create space in the list by
sorting the entries by the CachedTime ADM attribute of each CachedUserCert ADM
element instance and discarding the oldest (UserCertCacheSize / 2) entries.

%5bMS-MQDMPR%5d.pdf

80 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á Start the UserCertCache Cleanup Timer (section 3.1.2.13) with a duration of
UserCertLifetime milliseconds if it is not already running.

Á If no matching certificate is found, or if the query returns an rStatus value not equal to
Di rectoryOperationResult.Success , the protocol MUST reject the message using the

following logic:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol
MUST send a negative administration acknowledgment by raising a Send Administ ration
Acknowledgment event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_BAD_SIGNATURE

Á If the rejected message contains a TransactionHeader ([MS -MQMQ] section 2.2.20.5), the

protocol MUST send a nega tive FinalAck Packet by raising a Send Transactional
Acknowledgment event with the following arguments:

Á iMessageClass : MQMSG_CLASS_NACK_BAD_SIGNATURE

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

If the UserMessage.SecurityHeader.Flags.EB bit field is set, the protocol MUST perform the

following steps to decrypt the message body:

Á Let SelectedCSP be a 16 -bit NULL -terminated Unicode string that is initialized to a cryptography
service provider (CSP) name based on the value of the
UserMessage.MessagePropertiesHeader.PrivacyLevel field according to the following table.
If the value of the UserMessage.MessagePropertiesHeader.PrivacyLevel field does not
appear in the table, the protocol MUST reject the m essage using the following logic:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST

send a negative administration acknowledgment by raising a Send Administration
Acknowledgment event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_BAD_ENCRYPTION ([MS -MQMQ] section
2.2.18.1.6)

Á If the rejected message contains a TransactionHeader ([MS -MQMQ] section 2.2.20.5), the
protocol MUST send a negative FinalAck Packet by raisin g a Send Transactional

Acknowledgment event with the following arguments:

Á iMessageClass : MQMSG_CLASS_NACK_BAD_ENCRYPTION

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

PrivacyLevel Value SelectedCSP Value

0x00000001 "Microsoft Base Cryptographic Provider v1.0"

0x00000003 "Microsoft Enhanced Cryptographic Provider v1.0"

0x00000005 "Microsoft Enhanced RSA and AES Cryptographic Provider" <58>

81 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The protoco l SHOULD <59> search the ReceiveSymmetricKeyCache ADM element for a
CachedSymmetricKey (section 3.1.1.3.3) ADM element instance where

CachedSymmetricKey.CryptoSe rviceProvider is the same as SelectedCSP ,
CachedSymmetricKey.CryptoAlgorithm is the same as the

UserMessage.MessagePropertiesHeader.EncryptionAlgorithm field,
CachedSymmetricKey.RemoteQMGuid is the same as the
UserMessage.UserHeader.SourceQueueManager fiel d, and
CachedSymmetricKey.EncryptedSymmetricKey is the same as the
UserMessage.SecurityHeader.SecurityData.EncryptionKey field. If found, let
UseCachedKey be a reference to the matching CachedSymmetricKey ADM element instance. If
one is not found, the prot ocol MUST perform the following steps:

Á Create a new CachedSymmetricKey ADM element instance and initialize it as follows:

Á The RemoteQMGuid ADM attribute set to the value of the
UserMessage.UserHeader.SourceQueueManager field.

Á The CryptoServiceProvider ADM attribute set to the value of SelectedCSP .

Á The CryptoAlgorithm ADM attribute set to the value of the
UserMessage.MessagePropertiesHeader.EncryptionAlgorithm field.

Á The EncryptedSymmetricKey ADM attribute set to the value of the
UserMessage.SecurityHeader.EncryptionKey field. It MUST be a
SIMPLEBLOB (section 2.4.2) generated as described in section 3.1.7.1.5 .

Á The SymmetricKey ADM attribute set to the result of decrypting the encryptedKey field
of the SIMPLEBLOB in the UserMessage.SecurityHeader.EncryptionKey field according
to the RSA key exchange algorithm ([PKCS1] , [RFC3447]). The private key used for the
decryption is selected from implementation -dependent local storage according to the value

of SelectedCSP .

Á The CachedTime ADM attribute set to the current date and time.

Á The newly created CachedSy mmetricKey ADM element instance SHOULD <60> be added to
the ReceiveSymmetricKeyCache ADM element. If doing so would cause the number of
entries in the list to exceed the value of the ReceiveSymmetricKeyCacheSize ADM eleme nt,
the protocol MUST create space in the list by sorting the entries by the CachedTime ADM
attribute and by discarding the (ReceiveSymmetricKeyCacheSize / 2) entries that are

oldest.

Á The protocol SHOULD <61> start the ReceiveSymmetricKeyCache Cleanup
Timer (section 3.1.2.10) with a duration of SymmetricKeyShortLifetime milliseconds if it is
not already running.

Á UseCachedKey MUST be set to refer to the newly creat ed CachedSymmetricKey ADM
element instance.

Á If SelectedCSP is "Microsoft Enhanced Cryptographic Provider v1.0" and the
UserMessage.MessagePropertiesHeader.EncryptionAlgorithm field is 0x00006602 (RC2)

and the RejectEnhancedRC2Using40BitKeys ADM element is TRUE and the final 88 bits of
UseCachedKey.SymmetricKey are 0, the message MUST be rejected by performing the
following steps:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administration acknowledg ment by raising a Send Administration

Acknowledgment event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

http://go.microsoft.com/fwlink/?LinkId=90248

82 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á iMessageClass : MQMSG_CLASS_NACK_BAD_ENCRYPTION

Á If the rejected message contains a TransactionHeader, the protocol MUST send a n egative

FinalAck Packet by raising a Send Transactional Acknowledgment event with the following
arguments:

Á iMessageClass : MQMSG_CLASS_NACK_BAD_ENCRYPTION

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

Á Decrypt the UserMessage.MessagePropertiesHeader.MessageBody field according to the
method specified in the normative reference for the algorithm indicated by the
UserMessage.MessagePropertiesHeader.EncryptionAlgorithm field (see the table in se ction
3.1.7.1.5) and using the key in UseCachedKey.SymmetricKey . For AES encryption, the AES

algorithm specified in [FIPS197] is employed in Cipher Block Chaining (CBC) mode [SP800 -38A]
with a zero Initial Value (IV). If the decryption fails, the message MUST be rejected by performing
the following steps:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the pr otocol MUST
send a negative administration acknowledgment by raising a Send Administration
Acknowledgment event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_BAD_ENCRYPTION

Á If the rejected message con tains a TransactionHeader, the protocol MUST send a negative
FinalAck Packet by raising a Send Transactional Acknowledgment event with the following
arguments:

Á iMessageClass : MQMSG_CLASS_NACK_BAD_ENCRYPTION

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

The protocol MUST perform an access check to authorize the Security Identifier (SID) specified in the
UserMessage.SecurityHeader.SecurityData.SecurityID field against the queue specified by the
User Message.UserHeader.DestinationQueue field, using the following logic:

Á The protocol MUST declare the destinationQueue variable and set it equal to the Queue ([MS -
MQDMPR] section 3.1.1.2) ADM element instance specified by the
UserMessage.UserHeader.Destinati onQueue field.

Á The protocol MUST declare the queueSecurityDescriptor variable and set it equal to
destinationQueue .Security .

Á If destinationQueue .QueueType = Public , the destinationQueue security descriptor MUST be
queried from the directory by raising a Re ad Directory event with the following arguments:

Á iDirectoryObjectType : "Queue"

Á iFilter : "Identifier" EQUALS destinationQueue .Identifier

Á If the query returns an rStatus value equal to DirectoryOperationResult.Success , the protocol
MUST set queueSecurityDescriptor equal to rDirectoryObject .Security .

Á The protocol MUST declare the userSID variable and set it according to the following logic:

http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=128809

83 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á If UserMessage.SecurityHeader.Flags.ST is set to 0x2, indicating that
UserMessage.SecurityHeader.SecurityID contains the queue manager GUID, userSID

MUST be set to the well -known SID with string representation S -1-1-0 (relative identifier
SECURITY_WORLD_RID combined with identifier authority

SECURITY_WORLD_SID_AUTHORITY).

Á Otherwise, userSID MUST be set to the UserMessage.SecurityHeader.SecurityID ([MS -
MQMQ] section 2.2.20.6) field.

Á The protocol MUST perform an access check by invoking the Access Check Algorithm ([MS -DTYP]
section 2.5.3.2) with the following parameters:

Á SecurityDescriptor : queueSecurityDescriptor

Á Token : Perform the following actions to generate a token to represent the sender's

authorization data. If any failure occurs in these actions, the protocol MUST continue as if
access_de nied is returned from the Access Check Algorithm.

Á Construct an RPC binding to the Local Security Authority (Translation Methods) Remote

Protocol server on the local machine ([MS -LSAT] section 2.1).

Á Invoke the LsarOpenPolicy (Opnum 6) method ([MS -LSAT] section 3.1.4.2) to obtain a
policy handle with the DesiredAccess parameter set to POLICY_LOOKUP_NAMES.

Á Invoke the LsarLookupSids (Opnum 15) method ([MS -LSAT] section 3.1.4.11) to
obtain the account name of the message sender w ith the following parameters:

Á PolicyHandle : the policy handle obtained in the preceding step.

Á SidEnumBuffer : contains one SID , which is userSID .

Á ReferencedDomains : a pointer to a PLSAPR_REFERENCED_DOMAIN_LIST
structure ([MS -LSAT] section 2.2.12).

Á Translate dNames : a pointer to a PLSAPR_TRANSLATED_NAMES structure ([MS -

LSAT] section 2.2.20). The sender's account name is placed in this parameter on
successful return from LsarLookupSids .

Á LookupLevel : LsapLookupWksta

Á MappedCount : a pointer to an unsigned long int eger.

Á Invoke the LsarClose (Opnum 0) method ([MS -LSAT] section 3.1.4.3) to close the policy
handle.

Á Use the sender's account name to obtain its Privilege Attribute Certificate (PAC), [MS -

PAC]) as specified in [MS -SFU] section 3.1.5.1.1.1.

Á Create a token and populate its Sids[] field with the SIDs of the user, the user's primary
group and other groups contained in the PAC ([MS -PAC] section 2.5). The
KERB_VALIDATION_INFO.LogonDomainId field is used to construct the SIDs from

relative identifiers.

Á Access Request mask : MQSEC_WRITE_MESSAGE ([MS -MQMQ] section 2.2.25)

Á Object Tree : NULL

Á PrincipalSelfSubst SID : NULL

Á If the Access Check Algorithm does not return success, the protocol MUST reje ct the message
using the following logic:

%5bMS-DTYP%5d.pdf
%5bMS-LSAT%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-SFU%5d.pdf

84 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administration acknowledgment by raising a Send Administration

Acknowledgment event with the following argumen ts:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_ACCESS_DENIED ([MS -MQMQ] section 2.2.18.1.6)

Á If the rejected message contains a TransactionHeader, the protocol MUST send a negative
FinalAck Packet by raising a Send Transactional Acknowledgment event with the following
arguments:

Á iMessageClass : MQMSG_CLASS_NACK_ACCESS_DENIED

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

3.1.5.8.4 SessionHeader Processing

The remote host can include a SessionHeader ([MS -MQMQ] section 2.2.20.4) in the UserMessage
Packet ([MS -MQMQ] section 2.2.20) message. A SessionHeader does not contain information about
the UserMessage Packet message but instead contains session acknowledgment information for
express and recoverable messages.

If a UserMessage Packet contains a SessionHeader, it MUST be processed as specified in Receiving a
SessionAck Packet (section 3.1.5.5) .

3.1.5.8.5 Determining Message Destination

Á Let iTargetQueu e be a Queue ([MS -MQDMPR] section 3.1.1.2) ADM element instance reference
initialized to NULL.

Á If the value of the UserMessage.UserHeader.QueueManagerAddress field is equal to the

Identifier ADM attribute of the local Que ueManager element instance or is filled with the value
0x00, set iTargetQueue to the Queue ADM element instance reference in the QueueCollection
ADM attribute of the local QueueManager ADM element instance that corresponds to the queue
address specified in the UserMessage.UserHeader.DestinationQueue field.

Á If the value of the UserMessage.UserHeader.QueueManagerAddress field is not equal to the
Identifier ADM attribute of the local Queue Manager ADM element instance and is not filled with
the value 0x00, perform the following steps:

Á Open the outgoing queue by raising an Open Queue ([MS -MQDMPR] section 3.1.7.1.5) event
with the following arguments:

Á iFormatName := UserMessage.UserHeader.Dest inationQueue .

Á iRequiredAccess := QueueAccessType.SendAccess .

Á iSharedMode := QueueShareMode.DenyNone .

Á Set iTargetQueue to rOpenQueueDescriptor .QueueReference .

3.1.5.8.6 Transactional Message Processing

If the UserMessage Packet ([MS -MQMQ] section 2.2.20) contains a TransactionHeader ([MS -MQMQ]
section 2.2.20.5) and the value of the UserMesage.UserHeader.QueueManagerAddress field is
equal to QueueManager.Identifier , the following logic must be applied:

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

85 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The receiver MUST schedule sending an OrderAck Packet (section 2.2.4) based on the state of the
Order Ack Send Timer (section 3.1.2.7) and the values of the LastOrderAckSendTime ADM element

and the MaximumOrderAckDelay ADM element. If the timer is active and the time elapsed from the
LastOrderAckSendTime ADM element is less than the MaximumOrderAckDelay ADM element, the

timer MUST be restarted with the duration set to the OrderAck Timeout ADM element. If the timer is
inactive, it MUST be started with the duration set to the OrderAckTimeout ADM element. When the
timer expires, an OrderAck Packet MUST be sent as specified in section 3.1.6.9 .

Transactional messages are accepted only in order and exactly once. The following conditions define
when a message is accepted. A transactional message is accepted if any of the following conditions is
true:

Á The UserMessage.TransactionHeader.TxSequenceID field is equal to the

IncomingTxSequenceID ADM element and the
UserMessage.TransactionHeader.TxSequenceNumber field is greater than the
IncomingTxSequenceNumber ADM element and the
UserMessage.TransactionHeader.Pr eviousTxSequenceNumber field is less than or equal to
the IncomingTxSequenceNumber ADM element.

Á The UserMessage.TransactionHeader.TxSequenceID field is greater than the

IncomingTxSequenceID ADM element and the
UserMessage.TransactionHeader.PreviousTxSequen ceNumber field is equal to 0x00000000.

If the message is not accepted, the TxMessageRejectCount ADM element MUST be incremented by
1. The IncomingTransactionalTransferInfo.RejectCount ADM attribute MUST be set to the
TxMessageRejectCount ADM element. If th e packet is accepted, the TxMessageRejectCount ADM
element MUST be set to zero.

The IncomingTransactionalTransferInfo.LastAccessTime ADM attribute MUST be set to the

current system time.

The protocol MUST set the IncomingTxSequenceID ADM element to the
UserMessage.TransactionHeader.TxSequenceID field and MUST set the
IncomingTxSequenceNumber ADM element to the

UserMessage.TransactionHeader.TxSequenceNumber field.

3.1.5.8.7 Recoverable Message Processing

If the UserMessage.UserHeader.Flags.DM field is set to 0x1, the protocol MU ST perform the
following actions.

If RecoverableMessageReceivedCount - LastAckedRecoverableMsgSeqNumber is equal to or
larger than the number of bits in the RecoverableMsgAckFlags ADM element, the protocol MUST set
the UnackedReceivedMsgCount ADM element t o 0x0000 and MUST immediately send a SessionAck
Packet (section 2.2.6) to the remote host with the following values:

Á The BaseHeader.Flags.IN and BaseHeader.Flags.SH bit fields MUST be set.

Á The Int ernalHeader.Flags.PT field MUST be set to 0x1.

Á The SessionHeader.AckSequenceNumber field MUST be set to the MessageReceivedCount
ADM element.

Á The SessionHeader.RecoverableMsgAckSeqNumber field MUST be set to the lowest
unacknowledged recoverable message se quence number that has been persisted for reliable
recovery.

Á The SessionHeader.UserMsgSequenceNumber field MUST be set to the MessageSentCount
ADM element.

86 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The SessionHeader.RecoverableMsgSeqNumber field MUST be set to the
RecoverableMessageSentCount ADM element.

Á The SessionHeader.RecoverableMsgAckFlags field MUST be set to the
RecoverableMsgAckFlags ADM element.

Á The SessionHeader.WindowSize field MUST be set to WindowSize ADM element.

Á The LastAckedRecoverableMsgSeqNumber ADM element MUST be set to th e
RecoverableMessageReceivedCount ADM element.

The protocol MUST save the message to disk. The value of the RecoverableMessageReceivedCount
ADM element MUST be incremented by 1. If this is the first recoverable message since the last time
that a SessionAck Packet was sent, as indicated by a zero value of the RecoverableMsgAckFlags
ADM element, the protocol MUST cancel the current Session Ack Send Timer (section 3.1.2.5) and

restart it with the dura tion set to the RecoverableAckSendTimeout ADM element.

The bit in the RecoverableMsgAckFlags ADM element corresponding to
RecoverableMessageReceivedCount - LastAckedRecoverableMsgSeqNumber - 1 MUST be set.

3.1.5.8.8 Inserting a Message into a Local Queue

The UserMessage Packet ([MS -MQMQ] section 2.2.20) MUST be deserialized to a Message ([MS -

MQDMPR] section 3.1.1.12) ADM element instance by generating the Get Message Data Element From
Buffer (section 3.1.7.10) event with the following argument:

Á iBuffer : MUST be set to the incoming or outgoing UserMessage Packet .

The Enqueue Message ([MS -MQDMPR] section 3.1.7.1.9) event MUST be generated with the f ollowing
arguments:

Á iQueue : MUST be set to iTargetQueue as declared and initialized in section 3.1.5.8.5 .

Á iMessage : MUST be set to the rMessage that was returned in the call to the Get Message Data

Element From Buffer event.

If the rStatus returned by the Enqueue Message event is not zero:

Á If rStatus is 1, indicating that the QueueManagerQuota ADM attribute of the Queue ADM
element instance referenced by iTargetQueue would be exceeded, the proto col MUST reject the
message using the following logic:

Á If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST
send a negative administration acknowledgment by raising a Send Administration

Acknowledgment (section 3.1.7.15) event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_Q_EXCEED_QUOTA ([MS -MQMQ] section
2.2.18.1.6)

Á If the rejected message contains a UserMessage.UserHeader.Flags.JN bit field that is set
and does not contain a TransactionHeader ([MS -MQMQ] section 2.2.20.5), the message MUST

be inserted into the SystemDeadletterQueue ADM attribute of the local QueueManager
ADM element instance.

Á If the re jected message contains a TransactionHeader , the protocol MUST send a negative
FinalAck Packet (section 2.2.5) by raising a SendTransact ional
Acknowledgment (section 3.1.7.17) event with the following arguments:

Á iMessageClass : MQMSG_CLASS_NACK_Q_EXCEED_QUOTA

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

87 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á iUserMessagePacket : UserMessage

Á The protocol MUST disregard the message and perform no further processing.

Á If rStatus is 2, indicatin g that the QueueManagerQuota ADM attribute of the local
QueueManager ADM element instance would be exceeded, the protocol MUST reject the message

using the following logic:

Á The session MUST be closed, as specified in section 3.1.5.9 .

Á The protocol MUST disregard the message and perform no further processing.

If the value of the UserMessage.UserHeader.QueueManagerAddress field is equal to the
Identifier ADM attribute of the local QueueManager ADM ele ment instance or is filled with the value
0x00, and the UserMessage.UserHeader.Flags.TH bit field is set to 1, the server MUST perform the
following steps:

Á Find an IncomingTransactionalTransferInfo ([MS -MQDMPR] section 3.1.1.5) ADM element
instance in iTargetQueue .IncomingTransactionalTransferInfoCollection where

IncomingTransactionalTransferInfo.SequenceIdentifier equals the
UserMessage.TransactionHeader.TxSequenceID field data.

Á If an IncomingTransactionalTransferInfo ADM element instance does not exis t, it MUST be
created and added to the iTargetQueue .IncomingTransactionalTransferInfoCollection . The

ADM attributes of this newly created ADM element instance MUST be initialized from the incoming
UserMessage Packet as follows:

Á QueueReference : This ADM att ribute MUST be initialized to iTargetQueue .

Á FormatName : This ADM attribute MUST be initialized to the value of the
UserMessage.UserHeader.DestinationQueue field.

Á SenderIdentifier : This ADM attribute MUST be initialized from the RemoteQMGuid ADM
element ins tance.

Á SequenceIdentifier : This ADM attribute MUST be initialized from the
UserMessage.TransactionHeader.TxSequenceID field.

Á SequenceNumber : This ADM attribute MUST be initialized from the
UserMessage.TransactionHeader.TxPreviousSequenceNumber field.

Á LastA ccessTime : This ADM attribute MUST be initialized as specified in section 3.1.5.8.6 .

Á RejectCount : This ADM attribute MUST be initialized as specified in section 3.1.5.8.6.

If the value of the User Message.UserHeader.QueueManagerAddress field is not equal to the

Identifier ADM attribute of the local QueueManager ADM element instance and the
UserMessage.UserHeader.Flags.TH bit field is set to 1, the following ADM attributes of the
OutgoingTransferInfo ([MS -MQDMPR] section 3.1.1.4) ADM element instance referenced by
iTargetQueue .OutgoingTransferInfoReference MUST be set:

Á EodLastAckTime : This ADM attribute value MUST be set to
TxOutgoingSequence.TimeOfLastAck .

Á EodLastAckCount : This ADM attribute value MU ST be set to
TxOutgoingSequence.LastAckCount .

Á EodNoAckCount : This ADM attribute value MUST be set to the number of entries in the
TxOutgoingSequence.UnackedSequence list.

88 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á EodResendInterval : This ADM attribute value MUST be set to the value of
TxOutgoingSeq uence.ResendInterval .

Á EodFirstNonAck : This ADM attribute value MUST be set to the value of the first entry in the
TxOutgoingSequence.UnackedSequence list.

Á EodLastNonAck : This ADM attribute value MUST be set to the value of the last entry in the
TxOutgoingSequence.UnackedSequence list.

Á EodLastAck : This ADM attribute value MUST be set to the value of
TxOutgoingSequence.LastAck .

Á EodNextSeq : This ADM attribute value MUST be set to a new SEQUENCE_INFO ([MS -MQMQ]
section 2.2.5) structure with:

Á The SeqID field set to the OutgoingTxSequenceID ADM element.

Á The SeqNo field set to the OutgoingTxSequenceNumber ADM element.

Á The PrevNo field set to the OutgoingTxSequenceNumber ADM element - 1.

Á EodNoReadCount : This ADM attribute value MUST be set to the numb er of entries in the
AwaitingFinalACKTable ADM element instance that corresponds to the sequence represented by
the TxOutgoingSequence ADM element instance.

Á EodResendCount : This ADM attribute value MUST be set to the value of

TxOutgoingSequence.ResendInter valIndex .

Á EodResendTime : This ADM attribute value MUST be set to the value of
TxOutgoingSequence.ResendTime .

3.1.5.8.9 Sending a Trace Message

If the UserMessage.BaseHeader.Flags.TR bit field is set, the protocol MUST send a report message
to the queue specified by the UserMessage.DebugHeader.QueueIdentifier field. Report messages

are utilized by application logic to track the delivery of sent messages.

To send a report message, the protocol MUST construct a new Message ADM element instance ([MS -
MQDMPR] section 3.1.1.12), ref erred to as TraceMessage , and MUST set the following attributes:

Á TraceMessage .Class is set to Report .

Á TraceMessage .DestinationQueueFormatName is set to a public format name ([MS -MQMQ]
section 2.1.3) constructed using the GU ID in the DebugHeader.QueueIdentifier field.

Á TraceMessage .DeliveryGuarantee is set to Express .

Á TraceMessage .Label is set to a Unicode string in the format specified by the following ABNF rules.

 label = qm - id %x3A message - id %x3A hops SP "received by" SP computer

 SP "at" SP time - date %x0000

 qm- id = 4HEXDIG ; MUST be set to the first four hexadecimal digits

 ; of the source queue identifier

 message - id = 8HEXDIG ; hexadecim al form of the UserHeader.MessageID

 ; field

 hops = 2HEXDIG ; MUST be set to the UserHeader.Flags.RC field

 computer = GUID ; MUST be set to UserHeader.SourceQueueManager field

 time - date = hour SP ("AM" / "PM") SP date

 hour = 2DIGIT ": " 2DIGIT [":" 2DIGIT] ; ANSI and Military

 date = day "," month SP 2DIGIT SP year; day, month day year

 month = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun"

 / "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

89 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 day = "Mon" / "Tue" / "Wed" / "Thu" / "Fr i" / "Sat" / "Sun"

 year = 2DIGIT

 GUID = 8HEXDIG " - " 4HEXDIG " - " 4HEXDIG " - " 4HEXDIG " - " 12HEXDIG

 ; A GUID the form XXXXXXXX - XXXX- XXXX- XXXX- XXXXXXXXXXXX

 ; Where each X is a Hex digit

Á TraceMessage .Body is set to a Unicode string in the format specified by the following ABNF rules.

 Report = "<MESSAGE ID>" id "</MESSAGE ID>" CR LF

 "<TARGET QUEUE>" queue "</TARGET QUEUE>" CR LF

 id = 8HEXDIG ; MUST be set to UserHeader.MessageID field

 queue = queue - format; MUST be s et to UserHeader.DestinationQueue field

The ABNF rule queue - format is as specified in [MS -MQMQ] section 2.1.

The protocol MUST generate an Open Queue ([MS -MQDMPR] section 3.1.7.1.5) event with the
following arguments:

Á iFormatName := TraceMessage .Destinati onQueueFormatName

Á iRequiredAccess := QueueAccessType.SendAccess

Á iSharedMode := QueueShareMode.DenyNone

If the rStatus returned by the Open Queue event is not MQ_OK (0x00000000), the protocol MUST
discard TraceMessage ; otherwise, the protocol MUST generate an Enqueue Message To An Open
Queue ([MS -MQDMPR] section 3.1.7.1.27) event with the following arguments:

Á iOpenQueueDescriptor := the rOpenQueueDescriptor returned by the Open Queue event

Á iMessage := TraceMessage

3.1.5.8.10 Sending Administration Acknowledgments

This section specifies the sending of an administration acknowledgment when a message has reached
its destination queue. Section 3.1.7.2.1 specifies the sending of an administration acknowledgme nt
when a message is retrieved or rejected by the application.

If the UserMessage.UserHeader.QueueManagerAddress field of the received message is equal to
QueueManager.Identifier , the following logic MUST be applied: <62>

Á If the UserMessage.MessagePropertiesHeader.Flags.PA field of the received message is set,
the protocol MUST send a positive administration acknowledgment by raising a Send
Administration Acknowle dgment (section 3.1.7.15) event with the following arguments:

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_ACK_REACH_QUEUE ([MS -MQMQ] section 2.2.18.1.6)

3.1.5.9 Closing a Session

A protocol session is closed by executing the following steps. The protocol does not send a packet to
indicate session closure; instead, the underlying transport connection is simply closed.

Á If the initiator is closing the session and the OutgoingQueueReference.State is not OnHold :

%5bMS-MQMQ%5d.pdf

90 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The OutgoingQueueReference.State MUST be set to Disconnecting .

Á Close the underlying TCP or SPX transport connection.

Á Stop all timers.

Á The SessionS tate ADM element MUST be set to CLOSED.

Á If the initiator is closing a session and the OutgoingQueueReference.State is not OnHold :

Á The OutgoingQueueReference.State MUST be set to Disconnected .

Á If the OutgoingMessageTable ADM element is not empty, the proto col MUST start the
Session Retry Connect Timer (section 3.1.2.3) and set the SessionState ADM element to
WAITING_RECONNECT.

3.1.5.10 Handling an Incoming Transport Connection

When an acceptor accepts an incoming transport connection from a remote initiator according to the
transpo rt settings specified in Protocol Session (section 2.1.1) , it MUST initialize a session as specified
in Session Initialization (section 3.1.3.2) . The SessionState ADM element value MUST be set to
WAITING_EC_MSG.

If the Session Initialization Timer (section 3.1.2.1) is running, it MUST be stopped and then restarted;
otherwise, the protocol MUST start the Session Initialization Timer.

3.1.5.11 Receiving Administration Acknowledgments

Administration acknowledgment messages are system -generated UserMessage Packet s ([MS -

MQMQ] section 2.2.20) that indicate that a sent message has reached its destination queue or that the
message has bee n retrieved from its destination queue.

Administration acknowledgment messages are identified by the
UserMessage.MessagePropertiesHeader.MessageClass field set to one of the positive or negative

arrival acknowledgment classes specified in [MS -MQMQ] section 2.2.18.1.6.

Administration acknowledgment messages MUST be processed as specified in section 3.1.5.8 .

3.1.6 Timer Events

3.1.6.1 Session Retry Connect Timer Event

When the Session Retry Connect Timer (section 3.1.2.3) expires, the protocol MUST perform the
following steps if the OutgoingMessageTable ADM element is non -em pty:

Á If the NextHopCollection ADM element does not contain a list item after the item referenced by
the NextHopIndexer ADM element:

Á Open the session to the remote queue manager as specified in Establish a Protocol
Session (section 3.1.5.2) .

Á Otherwise, advance the NextHopIndexer ADM element to reference the next item in the
NextHopCollection ADM element.

Á Get the reference rNextHop to the NextHop (section 3.1.1.3.1.3) ADM element instance
referenced by the NextHopIndexer ADM element in the NextHopCollection ADM element
and perform the following:

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

91 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á Set the RemoteQMAddress ADM element to rNextHop .Address .

Á Set the RemoteQMHostName ADM element to rNextHop .HostName .

Á Set the RemoteQMGuid ADM element to rNextHop .QMGuid .

Á Open the session to the remote queue manager without resolving new addresses by starting

the session creation at the Ping Mechanism (section 3.1.5.2.2) stage.

Á For each OutgoingMessagePosition ADM element instance iOutgoingMessagePosition in the
OutgoingMessageTable ADM element, the Add Message To Dispatch Collection ([MS -MQDMPR]
section 3.1. 7.1.28) event MUST be raised with the following arguments:

Á iPosition := A reference to iOutgoingMessagePosition .MessagePosition .

Á iData := A reference to iOutgoingMessagePosition .

Initializing the session results in message retransmission, as specified in s ection 3.1.7 .

3.1.6.2 Session Cleanup Timer Event

When the Session Cleanu p Timer (section 3.1.2.2) expires, the protocol SHOULD apply the following
logic to close an idle session:

Á If the SessionActive ADM element is FALSE, the protocol SHOULD close the session as specified
in Closing a Session (section 3.1.5.9) .

Á If the SessionActive ADM element is TRUE, the protocol SHOULD restart the Session Cleanup
Timer and set the SessionActive ADM element to FALSE.

3.1.6.3 Session Ack Wait Timer Event

The Session Ack Wait Timer event indicates a timeout while waiting for a session acknowledgment
from the remote host. When the Session Ack Wait Timer (section 3.1.2.4) expires, the protocol

SHOULD apply the following logic to close an idle session:

If there are no packets awaiting acknowledgment, the protocol MUST set the ReceivedAck ADM
element to FALSE and MUST NOT restart the Session Ack Wait Timer.

Else if the ReceivedAck ADM element is FALSE, the protocol MUST close the session as specified in
section 3.1.5.9 .

Else if the ReceivedAck ADM element is TRUE, the protocol MUST restart the Session Ack Wa it Timer
and set the ReceivedAck ADM element to FALSE.

3.1.6.4 Session Ack Send Timer Event

When the Session Ack Send Timer (sectio n 3.1.2.5) expires, if and only if the
UnackedReceivedMsgCount ADM element does not equal 0x0000, a SessionAck

Packet (section 2.2.6) MUST be sent to the remote host with the following values:

Á The BaseHeader.Flags.IN and BaseHeader.Flags.SH fields MUST be set.

Á The InternalHeader.Flags.PT field MUST be set to 0x1.

Á The SessionHeader.AckSequenceNumber field MUST be set to the MessageReceivedCount

ADM element.

%5bMS-MQDMPR%5d.pdf

92 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The SessionHeader.RecoverableMsgAckSeqNumb er field MUST be set to the lowest
unacknowledged recoverable message sequence number that has been persisted for reliable

recovery.

Á The SessionHeader.UserMsgSequenceNumber field MUST be set to the MessageSentCount

ADM element.

Á The SessionHeader.Recoverabl eMsgSeqNumber field MUST be set to the
RecoverableMessageSentCount ADM element.

Á The SessionHeader.RecoverableMsgAckFlags field MUST be set to the
RecoverableMsgAckFlags ADM element.

Á The SessionHeader.WindowSize field MUST be set to the WindowSize ADM element.

Subsequently, the RecoverableMsgAckFlags ADM element MUST be set to 0x00000000, the

UnackedReceivedMsgCount ADM element MUST be set to 0x0000, and the
LastAckedRecoverableMsgSeqNumber ADM element MUST be set to the
RecoverableMessageReceivedC ount ADM element.

The Session Ack Send Timer MUST be restarted.

3.1.6.5 Transactional Ack Wait Timer Event

The Transactional Ack Wait Timer Event indicates a time -out while waiting for a transactional OrderAck
Packet (section 2.2.4) from the receiver. When the Transactional Ack Wa it Timer (section 3.1.2.6)
expires, the protocol MUST resend all unacknowledged transactional messages.

For each OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance
rOutgoingMessag ePosition in the OutgoingMessageTable ADM element where

rOutgoingMessagePosition .TxSequenceNumber is not set to 0x00000000, the protocol MUST set
rOutgoingMessagePosition .AwaitingAck and rOutgoingMessagePosition .ReceivedSessionAck to
FALSE.

The preceding s tep causes all unacknowledged transactional messages to be resent to the remote
queue manager.

3.1.6.6 Session Initialization Timer Event

For the initiator, the Session Initializ ation Timer Event indicates a time -out while contacting the
acceptor during session initialization. For the acceptor, the Session Initialization Timer Event indicates
a time -out while responding to the initiator during session initialization. When the Session Initialization
Timer (section 3.1.2.1) expires, the protocol MUST close the session as specified in section 3.1.5.9 .

3.1.6.7 MessageIDHistor y Cleanup Timer Event

When the MessageIDHistory Cleanup Timer (section 3.1.2.8) expires, the protocol MUST apply the
following logic, where CURRENT_TIME represents the current system time. This va lue is the number of
seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC) according to the system clock.

Á For each MessageIDHistoryEntry ADM element instance rMessageIDHistoryEntry in the
MessageIDHistoryTable ADM element, if rMessageIDHistoryEn try .TimeStamp is less than
CURRENT_TIME minus the MessageIDHistory Cleanup Timer duration, the
MessageIDHistoryEntry ADM element instance referenced by rMessageIDHistoryEntry MUST be
deleted from the MessageIDHistoryTable ADM element.

Á If the MessageIDHistoryTable ADM element is not empty, the MessageIDHistory Cleanup Timer

MUST be restarted.

93 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.6.8 Ping Response Timer Event

When the Ping Response Timer (section 3.1.2.9) expires, the protocol MUST take the actions
described in step 9 of the Send Ping Request (section 3.1.7.6) event.

3.1.6.9 Order Ack Send Timer Event

When the Order A ck Send Timer (section 3.1.2.7) expires, if the session from which the timer was
started is not closed, the protocol MUST send an OrderAck Packet (section 2.2.4) to the sender by
raising a Send Transactional Acknowledgment (section 3.1.7.17) event with the following argument:

Á iMessageClass : MQMSG_CLASS_ORDER_ACK ([MS -MQMQ] section 2.2.18.1.6)

The LastOrderA ckSendTime ADM element MUST be set to current system time.

3.1.6.10 ReceiveSymmetricKeyCache Cleanup Timer Event

When the ReceiveSymmetricKeyCache Cleanup Timer (section 3.1.2.10) expires, the protocol MUS T
apply the following logic, where CURRENT_TIME represents the current system time. This value is the
number of seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC) according to the
system clock.

Á For each CachedSymmetricKey (section 3.1.1.3.3) ADM element instance rCachedSymmetricKey
in the ReceiveSymmetricKeyCache ADM element, if rCachedSymmetricKey .CachedTime is less
than CURRENT_TIME minus the value of the SymmetricKeyShortLifetime ADM element, the

CachedSymmetricKey ADM element instance referenced by rCachedSymmetricKey MUST be
deleted from the ReceiveSymmetricKeyCache ADM element.

Á If the ReceiveSymmetricKeyCache ADM element is not empty, the CachedSymmetricKey
ADM element instance with the oldest CachedTime ADM attribute value MUST be found. The
ReceiveSymmetricKeyCache Cleanup Timer (section 3.1.2.10) MUST be restarted with a duration
of the value of the SymmetricKeyShortLifetime ADM element plus one minute mi nus the
difference between CURRENT_TIME and the oldest CachedTime ADM attribute value.

3.1.6.11 SendSymmetricKeyCache Cleanup Timer Event

When the SendSymmetricKeyCache Cleanup Timer (section 3.1.2.11) exp ires, the protocol MUST
apply the following logic, where CURRENT_TIME represents the current system time. This value is the

number of seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC) according to the
system clock.

Á For each CachedSymmetricKey (section 3.1.1.3.3) ADM element instance rCachedSymmetricKey
in the SendSymmetricKeyCache ADM element, if rCachedSymmetricKey .CachedTime is less
than CURRENT_TIME minus the value of the Symmetri cKeyShortLifetime ADM element, the
CachedSymmetricKey ADM element instance referenced by rCachedSymmetricKey SHOULD be
deleted from the SendSymmetricKeyCache ADM element. <63>

Á If the SendSymmetricKeyCache ADM element is n ot empty, the CachedSymmetricKey ADM

element instance with the oldest CachedTime ADM attribute value MUST be found. The
SendSymmetricKeyCache Cleanup Timer SHOULD be restarted with a duration of the value of the
SymmetricKeyShortLifetime ADM element plus o ne minute minus the difference between
CURRENT_TIME and the oldest CachedTime ADM attribute value. <64>

3.1.6.12 SendBaseSymmetricKeyCache Cleanup Timer Event

When the SendBaseSymmetricKeyCache Cleanup Timer (section 3.1.2.12) expires, the protocol MUST
apply the following logic, where CURRENT_TIME represents the current system time. This value is the

%5bMS-MQMQ%5d.pdf

94 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

number of seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC) according to the
system clock.

Á For each CachedSymmetricKey (section 3.1.1.3.3) ADM element instance rCachedSymmetricKey
in the SendBaseSymmetricKeyCache ADM element, if rCachedSymmetricKey .CachedTime is

less than CURRENT_TIME minus the value of the SymmetricKeyShortLifetime ADM element,
the CachedSymmetricKey ADM element instance referenced by rCachedSymmetricKey MUST be
deleted from the SendBaseSymmetricKeyCache ADM element.

Á If the SendBaseSymmetricKeyCache ADM element is not empty, the CachedSymmetricKey
ADM element instance with the oldest CachedTime ADM attribute value MUST be found. The
SendBaseSymmetricKeyCache Cleanup Timer MUST be restarted with a duration of the value of
the SymmetricKeyShortLifetime ADM element plus one minute minus the difference between

CURRENT_TIME and the oldest CachedTime ADM attribute value.

3.1.6.13 UserCertCache Cleanup Timer Event

When the UserCertCa che Cleanup Timer (section 3.1.2.13) expires, the protocol MUST apply the

following logic, where CURRENT_TIME represents the current system time. This value is the number of
seconds elapsed since midnight (00:00:00), January 1, 1970 (UTC) according to the system clock.

Á For each CachedUserCert (section 3.1.1.3.4) ADM element instance rCachedUserCert in the
UserCertCache ADM element, if rCachedUserCert .CachedTime is less than CURRENT_TIME
minus the v alue of the UserCertLifetime ADM element, the CachedUserCert ADM element
instance referenced by rCachedUserCert MUST be deleted from the UserCertCache ADM element.

Á If the UserCertCache ADM element is not empty, the CachedUserCert ADM element instance

with the oldest CachedTime ADM attribute value MUST be found. The UserCertCache Cleanup
Timer MUST be restarted with a duration of the value of the UserCertLifetime ADM element plus
one minute minus the difference between CURRENT_TIME and the oldest CachedTime ADM
attribute value.

3.1.7 Other Local Events

In addition to the higher - layer triggered events listed in section 3.1.4 , the operation of the Message
Queuing (MSMQ): Message Queuing Binary Protocol is in itiated and subsequently driven by the
following events:

Á Message Position Deleted ([MS -MQDMPR] section 3.1.7.2.1).

Á Message Position Available ([MS -MQDMPR] section 3.1.7.2.2).

Á Pause Queue ([MS -MQDMPR] section 3.1.7.2.3).

Á Resume Queue ([MS -MQDMPR] section 3.1.7.2.4).

3.1.7.1 Send User Message Event

The Send User Message Event indicates that there exists in the OutgoingMessageTabl e ADM

element an OutgoingMessagePosition ADM element instance with a UserMessage ADM attribute
that has been constructed as described in section 3.1.7.11 and that is ready to be sent to the remote
queue manager. The event provides a reference to the corresponding OutgoingMessagePosition
ADM element.

The following arguments are passed when the Send User Message Event is raised:

Á The iQueue argument: A reference to a Queue ADM element instance.

Á The iPosition argument: A reference to an OutgoingMessagePosition ADM element instance.

%5bMS-MQDMPR%5d.pdf

95 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The following steps MUST be performed to process this event:

Á If iQueue .State is not equal to Connected , take no further action.

Á If the UnAckedMessageCount ADM element is gr eater than or equal to the WindowSize ADM
element, take no further action.

Á If the OutgoingQueueReference ADM element of the session is NULL, set it to iQueue .

Á General Processing (section 3.1.7.1.1) .

Á Checking for Message Expiration (section 3.1.7.1.2) .

Á Signing the Packet (section 3.1.7.1.4) .

Á Encrypting the Message Body (section 3.1.7.1.5) .

Á Updating the UserMessage Packet (section 3.1.7.1.3) .

Á Sending the Packet (section 3.1.7.1.6) .

Á Sending Trace Message (section 3.1.7.1.7) .

Unless specifically noted in a subsequent section, this logic MUST be applied to any UserMessage
Packet ([MS -MQMQ] section 2.2.20) sent.

3.1.7.1.1 General Processing

The protocol MUST serialize the message to be sent by performing the following actions:

Á If iPosition .MessagePosition .MessageReference . Identifier is set to 0x00000000, the
iPosition .MessagePosition .MessageReference .Identifier MUST be set to the
MessageIdOrdinal ADM element, and the MessageIdOrdinal ADM element MUST be
incremented by 1.

Á Generate a Serialize Message to Buffer ([MS -MQDMPR] section 3.1.7.1.32) event with the
following arguments:

Á iMessage : the Message ([MS -MQDMPR] section 3.1.1.1 2) ADM element instance referenced

by iPosition .MessagePosition.MessageReference .

Á iBuffer : the UserMessage Packet ([MS -MQMQ] section 2.2.20) referenced by
iPosition .UserMessage .

3.1.7.1.2 Checking for Message Expiration

The value of the UserMessage.BaseHeader.TimeToReachQueue field controls the message
lifetime. The protocol MUST check the message for expiration before sending.

For the purpose of this section, CURRENT_TIME is defined as the number of seconds elapsed since
midnight (00:00:00), January 1, 1970 (Coordinated Universal Time).

If CURRENT_TIME minus the UserMessage.UserHeader.SentTime field value is greater than the
UserMessage.BaseHeader.TimeToReachQueue field value, the message has expired. An expired
message MUST be delete d from the OutgoingMessageTable ADM element and MUST NOT be sent to
the remote queue manager.

If the UserMessage.MessagePropertiesHeader.Flags.NA bit field is set, the protocol MUST send a
negative acknowledgment by raising a Send Administration Acknowledgment (section 3.1.7.15) event
with the following arguments:

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

96 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á iReceivedUserMessagePacket : UserMessage

Á iMessageClass : MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT ([MS -MQMQ] section 2.2.18.1.6)

If the UserMessage.UserHeader.Flags.JN bit field is set, then an expired message MUST be logged
locally by generating a Move Message ([MS -MQDMPR] section 3.1.7.1.16) event with the following

arguments :

Á iMessagePos : The MessagePosition ADM attribute of the OutgoingMessagePosition ADM
element instance referenced by the iPosition argument from the Send User Message
Event (section 3.1.7.1) .

Á iTarge tQueue : If a TransactionHeader ([MS -MQMQ] section 2.2.20.5) is present in the message,
this argument is set to QueueManager.SystemTransactionalDeadletterQueue ([MS -
MQDMPR] section 3.1.1.1) or the

iMessagePos.MessageReference.ApplicationDeadletterQueue ([MS -MQDMPR] section
3.1.1.12) if it is specified; otherwise, this argument is set to
QueueManager.SystemDeadletterQueue ([MS -MQDMPR] section 3.1.1.1).

3.1.7.1.3 Updating the UserMessage Packet

If the UserMessage Packet ([MS -MQMQ] section 2.2.20) contains a TransactionHeader ([MS -

MQMQ] secti on 2.2.20.5) and the UserMessage.UserHeader.SourceQueueManager field is equal
to QueueManager.Identifier and iPosition .Transmitted is FALSE, the following steps MUST be
performed:

Á The UserMessage.TransactionHeader.TxSequenceID field MUST be set to the
Out goingTxSequenceID ADM element.

Á The UserMessage.TransactionHeader.PreviousTxSequenceNumber field MUST be set to the
OutgoingTxSequenceNumber ADM element - 1.

Á The UserMessage.TransactionHeader.TxSequenceNumber field MUST be set to the
OutgoingTxSequenceNumbe r ADM element.

Á iPosition .TxSequenceNumber MUST be set to the OutgoingTxSequenceNumber ADM element.

Á A new SEQUENCE_INFO ([MS -MQMQ] section 2.2.5) structure instance MUST be created and
inserted into TxOutgoingSequence.UnackedSequence . The SEQUENCE_INFO structure MUST
be created and set as specified in section 3.1.1.5 .

Á The OutgoingTxSequenceNumber ADM element value MUST be incremented by 1.

Á The Transactional Ack Wait Timer (section 3.1.2.6) MUST be started.

If the UserMessage Packet contains a TransactionHeader and iPosition .Transmitted is TRUE, the
TransactionHeader.PreviousTxSequenceNumber field MUST be set to the TxSequenceNumber
ADM element of the previous transactional message in the OutgoingMessageTable ADM element.
This action is necessary to bridge gaps left by transactional messages that were removed from the
table (for example, TimeToReachQueue expired) since the message was fi rst sent.

The value of the MessageSentCount ADM element MUST be incremented by 1.

iPosition .SequenceNumber MUST be set to the MessageSentCount ADM element.

If the UserMessage.UserHeader.Flags.DM field is set to 0x1, the value of the
RecoverableMessageSentC ount ADM element MUST be incremented by 1, and
iPosition .RecoverableSequenceNumber MUST be set to the RecoverableMessageSentCount ADM
element.

The value of the UnAckedMessageCount ADM element MUST be incremented by 1.

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

97 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the UserMessage Packet contains a SessionHeader ([MS -MQMQ] section 2.2.20.4), the following
fields MUST be set:

Á The SessionHeader.AckSequenceNumber field MUST be set to the MessageReceivedCount
ADM element.

Á The SessionHeader.RecoverableMsgAckSeqNumber field MUST be set to the lowest
unackno wledged recoverable message sequence number that has been persisted for reliable
recovery.

Á The SessionHeader.UserMsgSequenceNumber field MUST be set to the MessageSentCount
ADM element.

Á The SessionHeader.RecoverableMsgSeqNumber field MUST be set to the
Rec overableMessageSentCount ADM element.

Á The SessionHeader.RecoverableMsgAckFlags field MUST be set to the
RecoverableMsgAckFlags ADM element. Subsequently, the RecoverableMsgAckFlags ADM
element MUST be set to 0x00000000.

Á The SessionHeader.WindowSize field MUST be set to the WindowSize ADM element.

If the UserMessage Packet contains a SessionHeader , the protocol MUST perform the following
actions:

Á The UnackedReceivedMsgCount ADM element MUST be set to 0x0000.

Á The LastAckedRecoverableMsgSeqNumber ADM e lement MUST be set to the
RecoverableMessageReceivedCount ADM element.

iPosition .AwaitingAck MUST be set to TRUE.

The protocol MUST start the Session Ack Wait Timer (section 3.1.2.4) if it is in t he stopped state.

The value of the SessionActive ADM element MUST be set to TRUE.

3.1.7.1.4 Signing the Packet

If Message.AuthenticationLevel is not None , the packet MUST be signed. The following steps MUST
be performed to sign the packet:

Á If Message.DestinationMultiQueueFormatName is set:

Á The protocol MUST compute a hash of the fields specified in [MS -MQMQ] section 2.5.3 for an
MSMQ 3.0 digital signature, using the hash algorithm specified by the
UserMessage.MessagePropertiesHeader.HashAlgorithm field.

Á The UserMessage.MultiQueueFormatHeader.Signature field MUST be set to the value of
the hash encrypted using RSA and the sender private key.

Á Otherwise:

Á The protocol MUST compute a hash of the fields specified in [MS -MQMQ] section 2.5 for the
MSMQ digital signature type indicated by the value of the AuthenticationLevel ADM attribute
of the Message ([MS -MQDMPR] section 3.1.1.12) ADM element, using the hash algorithm

specified by the UserMessage.MessagePropertiesHeader.HashAlgorithm field.

Á The UserMessage.SecurityHeader.SecurityData.Sign ature field MUST be set to the value
of the hash encrypted using RSA and the sender private key.

3.1.7.1.5 Encrypting the Message Body

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

98 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the PrivacyLevel ADM attribute of the Message ([MS -MQDMPR] section 3.1.1.12) ADM element is
not None , the message body MUST be encrypted. To encry pt the message, the protocol MUST follow

these steps:

Á If the UserMessage.UserHeader.DestinationQueue field does not contain a public format

name ([MS -MQMQ] section 2.1.3) or a private format name ([MS -MQMQ] section 2.1.4), the
protocol MUST perform the steps in section 3.1.7.1.5.1 .

Á If the RemoteQMPublicKey ADM element is not initialized, the protocol MUST initialize it
according to the following steps:

Á Raise a Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following
arguments:

Á iDirectoryObjectType = "QueueManager"

Á iFilter = an array of attribute - filter expressions that contains one element: "Identifier"
EQUALS RemoteQMGuid

Á iAttributeList = an array of strings that contains one element: "PublicEncryptionKeyList"

Á If the return result rStatus of the Read Directory event is not
DirectoryOperationResult.Success , perform the steps in section 3.1.7.1.5.1.

Á The MQDSPUBLICKEYS ([MS -MQMQ] section 2.2.2) structure in the RemoteQMPublicKey

ADM element SHOULD <65> contain three MQDSPUBLICKEY ([MS -MQMQ] section 2.2.1)
structures, with sProviderName field values of "Microsoft Base Cryptographic Provider v1.0",
"Microsoft Enhanced Cry ptographic Provider v1.0", and "Microsoft Enhanced RSA and AES
Cryptographic Provider" and aBuf.bitlen field values of 512, 1024, and 1024, respectively.
These keys are generated for use with the RSA key exchange algorithm ([PKCS1] ,
[RFC3447]).

Á Let UseCSP be a 16 -bit null - terminated Unicode string representing the cryptography service

provider (CSP) to be used to encrypt the messag e, UseAlgorithm be a 32 -bit unsigned integer
representing the encryption algorithm to be used, UseSymmKeyLength be a 32 -bit unsigned

integer representing the length in bits of the symmetric key to be used, and UsePublicKey be a
PUBLICKEYBLOB (section 2.4.1) . The protocol SHOULD <66> select a CSP, encryption algorithm,
and key length and set the values of UseCSP , UseAlgorithm , and UseSymmK eyLength
according to the following steps:

Á If the MQDSPUBLICKEYS structure in the RemoteQMPublicKey ADM element contains an

MQDSPUBLICKEY structure where the sProviderName field is "Microsoft Enhanced RSA and
AES Cryptographic Provider", set UseCSP to "Mic rosoft Enhanced RSA and AES Cryptographic
Provider"; set UseAlgorithm to the value of PreferredAdvancedAlgorithm ; set
UseSymmKeyLength according to the value of PreferredAdvancedAlgorithm using the
following table; and set UsePublicKey to the PUBLICKEYBLOB (section 2.4.1) that results
when the abuf field of the MQDSPUBLICKEY structure is processed according to the steps in

section 3.1.7.1.5.2 . If Message.PrivacyLevel is Advanced and there is no suc h
MQDSPUBLICKEY structure, then perform the steps in section 3.1.7.1.5.1.

PreferredAdvancedAlgorithm UseSymmKeyLength

0x00006610 256

0x0000660E 128

0x0000660F 192

Á If UseCSP was not set in the preceding step and the MQDSPUBLICKEYS structure in the

RemoteQMPublicKey ADM element contains an MQDSPUBLICKEY structure where the

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90248
http://go.microsoft.com/fwlink/?LinkId=90422

99 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

sProviderName field is "Microsoft Enhanced Cryptographic Provider v1.0", set UseCSP to
"Microsoft Enhanced Cryptographic Provider v1.0"; set UseSymmKeyLength to 128; set

UseAlgorit hm to the value of PreferredEnhancedAlgorithm ; and set UsePublicKey to the
PUBLICKEYBLOB (section 2.4.1) that results when the abuf field of the MQDSPUBLICKEY

structure is processed according to the steps in section 3.1.7.1.5.2. If
PreferredEnhancedAlgorithm is 0x00006602 and SendEnhancedRC2Using40BitKeys is
TRUE, set UseSymmKeyLength to 40. If Message.PrivacyLevel is Enhanced and there is
no such MQDSPUBLICKEY structure, then perform the steps in section 3.1.7.1.5.1.

Á If UseCSP was n ot set in the preceding steps, and the MQDSPUBLICKEYS structure in the
RemoteQMPublicKey ADM element contains an MQDSPUBLICKEY structure where the
sProviderName field is "Microsoft Base Cryptographic Provider v1.0", set UseCSP to

"Microsoft Base Cryptograp hic Provider v1.0"; set UseSymmKeyLength to 40; set
UseAlgorithm to the value of PreferredBaseAlgorithm ; and set UsePublicKey to the
PUBLICKEYBLOB (section 2.4.1) that results when the abuf field of the MQDSPUBLICKEY
structure is processed according to the steps in section 3.1.7.1.5.2.

Á If UseCSP has not been set in the preceding steps, perform the steps in section 3.1.7.1.5.1.

Á The protocol SHOULD <67> search the SendSymmetricKeyCache ADM element for a

CachedSymmetricKey (section 3.1.1.3.3) ADM element instance where
CachedSymmetricKey.CryptoServiceProvider is the same as UseCSP ,
CachedSymmetricKey.CryptoAlgorithm is the same as UseAlgorithm , and
CachedSymmetricKey. RemoteQMGuid is the same as the RemoteQMGuid ADM element. If
found, let UseCachedKey be a reference to the matching CachedSymmetricKey ADM element
instance. If one is not found, the protocol MUST perform the following steps:

Á Create a new CachedSymmetricKey ADM element instance rCachedSymmetricKey and

initialize it as follows:

Á rCachedSymmetricKey .RemoteQMGuid is set to the value of the RemoteQMGuid
session Abstract Data Model (ADM) element.

Á rCachedSymmetricKey .CryptoServiceProvider is set to the value of Use CSP .

Á rCachedSymmetricKey .CryptoAlgorithm is set to the value of UseAlgorithm .

Á rCachedSymmetricKey .SymmetricKey is a session symmetric key generated for use with
the algorithm indicated by UseAlgorithm according to the following table and of length in

bits indicated by UseSymmKeyLength . If UseCSP is "Microsoft Enhanced Cryptographic
Provider v1.0" and UseAlgorithm is 0x00006602 and UseSymmKeyLength is 40, then
the 40 -bit key generated MUST be padded wit h 88 zero bits for a total of 128 bits.

UseAlgorithm value Algorithm

0x0000660e, 0x0000660f, 0x00006610 AES [FIPS197]

0x00006602 RC2 [RFC2268]

0x00006801 RC4 [RFC4757]

Á rCachedSymmetricKey .EncryptedSymmetricKey is set to a SIMPLEBLOB (section 2.4.2)
containing the session symmetric key encrypted by the RSA key exchange algorithm
([PKCS1], [RFC3447]) using the public key in UsePublicKey .

Á rCachedSymmetricKey .CachedTime is set to the current date and time.

Á The newly created CachedSymmetricKey ADM element instance rCachedSymmetricKey
SHOULD<68> be added to the SendSymmetricKeyCache ADM element. If doing so would

cause the number of entries in the list to exceed the value of the

http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90488

100 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SendSymmetricKeyCacheSize ADM element, then the protocol MUST create space in the list
by sorting the entries by the CachedTime ADM attribute values and discarding the

(SendSymmetricKeyCacheSize / 2) entries that are oldest.

Á The protocol SHOULD <69> start the SendSymmetricKeyCache Cleanup

Timer (section 3.1.2.11) with a duration of the value of the SymmetricKeyShortLifetime
ADM element in milliseconds if it is not already running.

Á UseCachedKey MUST be set to refer to the newly created CachedSymmetricKey ADM
element instance rCachedSymmetricKey .

Á Encrypt the MessagePropertiesHeader.MessageBody field according to the method spe cified in
the normative reference for the algorithm indicated by UseAlgorithm , using the key in
UseCachedKey.SymmetricKey , and place the encrypted data in the

MessagePropertiesHeader.MessageBody field. For AES encryption, the AES algorithm
described in [FI PS197] is employed in Cipher Block Chaining (CBC) mode [SP800 -38A] with a zero
Initial Value (IV). The size of the MessagePropertiesHeader.MessageBody field MUST be
adjusted if the encrypted data is a different size than the original data, and the

MessagePropertiesHeader.AllocationBodySize field MUST be set to the size of the encrypted
data. If the encryption fails, perform the steps in section 3.1.7.1.5.1.

Á The MessagePropertiesHeader.Encrypti onAlgorithm field MUST be set to the value of
UseAlgorithm .

Á The SecurityHeader.ProviderName field MUST be set to the value of UseCSP , and the
SecurityHeader.ProviderNameSize field MUST be set to the size, in bytes, of the
ProviderName field.

Á The SecurityHeader.EncryptionKey field MUST be set to the contents of
UseCachedKey.EncryptedSymmetricKey , and the SecurityHeader.EncryptionKeySize field

MUST be set to the size, in bytes, of UseCachedKey.EncryptedSymmetricKey .

3.1.7.1.5.1 Handling Encryption Errors

If an error occurs while encrypting a message, the message MUST be deleted from the
OutgoingMessageTable ADM element and MUST NOT be sent to the remote queue manager. If the
UserMessage.UserHeader.Flags.JN field is set, the message MUST be logged locally by gene rating
a Move Message event ([MS -MQDMPR] section 3.1.7.1.16) with the following arguments:

Á iMessagePos : The MessagePosition ([MS -MQDMPR] section 3.1.1.11) ADM element instance
referenced by the MessagePosition ADM attribu te of the OutgoingMessagePosition ADM
element instance that was removed from the OutgoingMessageTable ADM element.

Á iTargetQueue : If a TransactionHeader ([MS -MQMQ] section 2.2.20.5) is present in the message,
this argument is set to QueueManager.SystemTransactionalDeadletterQueue ; otherwise, it
is set to QueueManager.SystemDeadletterQueue .

An entry MUST be appended to the OutgoingQueueReference.ConnectionHistory array; the
Status ADM attribute of the array entry MUST be set to CertificateValidationFailure ; the
ConnectionHistoryTime ADM attribute of the array entry MUST be set to the current time; the Error

ADM attribute of the array entry MUST be set to an HRESULT value indicating the error; and the
AddressList ADM attribute of the array entry MUST be set to the RemoteQMAddress ADM element.

3.1.7.1.5.2 Converting MQDSPUBLICKEY to PUBLICKEYBLOB

Let source be the MQDSPUBLICKEY ([MS -MQMQ] section 2.2.1) structure to be converted. Let
result be the PUBLICKEYBLOB (section 2.4.1) that is being constructed. The following steps MUST be
performed to construct result from source :

http://go.microsoft.com/fwlink/?LinkId=128809
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

101 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á Initialize the constant fields of result as shown in section 2.4.1.

Á Set the result.bitLen field to the source.abuf.bitlen field.

Á Set the result.pubExp field to the source.abuf.pubExp field.

Á Set the result.modulus field to the source.abuf.modulus field.

3.1.7.1.6 Sending the Packet

The UserMessage Packet ([MS -MQMQ] section 2.2.20) MUST be sent to the remote q ueue manager
using the TCP or SPX connection associated with the protocol session.

If the transmission succeeds, the protocol MUST set iPosition .Transmitted to TRUE. Otherwise, if the
TCP or SPX connection is closed while the UserMessage Packet is being s ent, the protocol MUST
perform the following steps:

Á Raise a Remove Messages From Dispatch Collection By Queue ([MS -MQDMPR] section 3.1.7.1.34)
event with the following argument:

Á iOutgoingQueue := iQueue

Á Perform the steps in Closing a Session (section 3.1.5.9) , and then take no further action.

3.1.7.1.7 Sending Trace Message

If the Flags.TR field of the BaseHeader ([MS -MQMQ] section 2.2.19.1) is set, the protocol M UST
send a report message to the queue specified by the QueueIdentifier field of the DebugHeader
([MS -MQMQ] section 2.2.20.8). Report messages are utilized by application logic to track the delivery
of sent messages.

To send a report message, the protocol MUST send a UserMessage Packet ([MS -MQMQ] section
2.2.20) with the following field values:

The MessagePropertiesHeader.MessageClass field MUST be set to MQMSG_CLASS_REPORT; the

UserHeader.DestinationQueue field MUST be set to DebugHeader.QueueIdentifier ; a nd the
UserHeader.Flags.DM field MUST be set to 0x0.

The MessagePropertiesHeader.Label field MUST be set to a Unicode string in the format specified
by the following ABNF rule.

 label = qm - id %x3A message - id %x3A hops SP "received by" SP computer

 SP "at" SP time - date %x0000

 qm- id = 4HEXDIG ; MUST be set to the first four hexadecimal digits

 ; of the source queue identifier

 message - id = 8HEXDIG ; hexadecimal form of the UserHeader.MessageID

 ; field

 hops = 2HEXDIG ; MUST be set to the UserHeader.Flags.RC field

 computer = GUID ; MUST be set to UserHeader.SourceQueueManager field

 time - date = hour SP ("AM" / "PM") SP date

 hour = 2DIGIT ":" 2DIGIT [":" 2DIGIT] ; ANSI and Military

 date = day "," month SP 2DIGI T SP year; day, month day year

 month = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun"

 / "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"

 day = "Mon" / "Tue" / "Wed" / "Thu" / "Fri" / "Sat" / "Sun"

 year = 2DIGIT

 GUID = 8HEXDIG " - " 4HEXDIG " - " 4HEXDIG " - " 4HEXDIG " - " 12HEXDIG

 ; A GUID the form XXXXXXXX - XXXX- XXXX- XXXX- XXXXXXXXXXXX

 ; Where each X is a Hex digit

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

102 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The MessagePropertiesHeader.MessageBody field MUST be set to a Unicode string in the format
specified by the following ABNF rul e.

 Report = "<MESSAGE ID>" id "</MESSAGE ID>" CR LF

 "<TARGET QUEUE>" queue "</TARGET QUEUE>" CR LF

 "<NEXT HOP>" address "</NEXT HOP>" CR LF

 "<HOP COUNT>" hops " </HOP COUNT>" CR LF

 id = 8HEXDIG ; MUST be set to UserHeader.Mess ageID field

 queue = queue - format; MUST be set to UserHeader.DestinationQueue

 ; field

 address = ip - address; MUST be set to IP address of remote host.

 hops = 2HEXDIG ; MUST be set to the UserHeader.Flags.RC field

 ip - address=(IPv6address / IPv4address) ; as defined in [RFC3986]

The ABNF rule queue - format is as specified in [MS -MQMQ] section 2.1.

3.1.7.2 Message Position Deleted

This event is triggered when the Message Position Deleted ([MS -MQDMPR] section 3.1.7.2.1) event is
raised.

Whenever a message is removed from a final destination queue, the protocol MUST send an
acknowledgmen t message under the conditions described in this section.

Message removal from a destination queue could be the result of the message being read by a higher -

layer application or the queue being deleted. Operations that occur on messages in a destination
queue are outside the definition of this protocol; however, the protocol must ensure that messages
are tracked and that the following acknowledgment logic is applied.

3.1.7.2.1 Administration Acknowledgment

If administration acknowledgments are requested, a message is sent to the adminis tration queue
specified in the message when it is removed from a destination queue. Administration

acknowledgment messages are system -generated UserMessage Packet s ([MS -MQMQ] section
2.2.20). If the retrieved message is a r ecoverable message, the acknowledgment MUST be sent as a
recoverable message. If the retrieved message is an express message, the acknowledgment MUST be
sent as an express message.

This section specifies the sending of an administration acknowledgment when a message is retrieved
or rejected by the application. Section 3.1.5.8.10 specifies the sending of an administration

acknowledgment when a message has reached its destination queue.

If iPosition .MessageReference.AcknowledgementsRequested is one of AckPosReceive or
AckFullReceive and iMessageClass is AckReceive , or if
iPosition .MessageReference.AcknowledgementsRequested is one of AckNegReceive ,
AckNackReceive , or AckFullReceive and iMessageClass is not AckReceive , the protocol MUST
send an administrative acknowledgment by raising a Send Administration

Acknowledgment (section 3.1.7.15) event with the following arguments:

Á iReceivedUserMessage Packet : NULL

Á iMessageClass : the value from the following table indicated by iReason

Á iReceivedMessage : iPosition .MessageReference

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

103 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

iReason iMessageClass (constants defined in [MS -MQMQ])

AckReceive MQMSG_CLASS_ACK_RECEIVE ([MS -MQMQ] section 2.2.18.1.6)

NackQueueDeleted MQMSG_CLASS_NACK_Q_DELETED ([MS -MQMQ] section 2.2.18.1.6)

NackQueuePurged MQMSG_CLASS_NACK_Q_PURGED ([MS -MQMQ] section 2.2.18.1.6)

NackReceiveTimeout MQMSG_CLASS_NACK_RECEIVE_TIMEOUT ([MS -MQMQ] section 2.2.18.1.6)

NackReceiveRejected MQMSG_CLASS_NACK_RECEIVE_REJECTED ([MS -MQMQ] section 2.2.18.1.6)

3.1.7.2.2 Final Acknowledgment

If iPosition .MessageReference.PositiveJournalingRequested is TRUE, or
iPosition .MessageReference.NegativeJournalingRequested is TRUE, or

iPosition .MessageReference.FinalAckRequired is TRUE, the protocol MUST send a FinalAck
Packet (section 2.2.5) when the message is removed from the destination queue by raising the Send
Transactional Acknowledgment (section 3.1.7.17) event with the following arguments:

Á iMessageClass : the iReason column value in the table in section 3.1.7.2.1

Á iUserMessage : iPosition .MessageReference

3.1.7.3 Handling a Network Disconnect

When the underlying transport indicates a disconnect, the protocol MUST close the session as specified

in Closing a Session (section 3.1.5.9) .

3.1.7.4 Get Destination Info

The Get Destination Info event MUST be generated with the following argument:

Á iFormatName : A queue format name as specified in [MS -MQMQ] section 2.1.

Return Values :

Á rStatus : A Boolean value indicating success.

Á rHostName : A string representing the name of the destination host.

Á rQueueManagerGuid : A GUID corresponding to the destination QueueManager.Identifier .

The server MUST perform the following actions to process this event, using the definitions of MSMQ
queue format names in [MS -MQMQ] section 2.1:

Á If a direct format name ([MS -MQMQ] section 2.1.2) is specified, the protocol MUST perform the

following steps:

Á Parse the queue format name and set rHostName equal to the ProtocolAddressSpecification
component of the direct format name.

Á Set rQueueManagerGuid equal to all zero bytes.

Á If a public format name ([MS -MQMQ] section 2.1.3) or a connector format name ([MS -MQMQ]
section 2.1.6) is specified, the protocol MUST perform the following steps:

%5bMS-MQMQ%5d.pdf

104 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á Parse the queue format name and let Pub licQueueGuid be a GUID that is initialized to the
value of the QueueGuid component of the public format name.

Á Raise a Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following
arguments:

Á iDirectoryObjectTyp e: "Queue"

Á iFilter = "Identifier" EQUALS PublicQueueGuid

Á If the value in rStatus returned by the Read Directory event does not equal
DirectoryOperationResult.Success , set the rStatus variable of this event equal to FALSE,
and take no further action.

Á Set rHostName equal to the returned rDirectoryObject .QualifiedComputerName .

Á Set rQueueManagerGuid equal to the returned rDirectoryObject .Identifier .

Á If a private format name ([MS -MQMQ] section 2.1.4) is specified, the protocol MUST perform the

following steps:

Á Set rHostName equal to an empty string.

Á Parse the queue format name and set rQueueManagerGuid equal to the ComputerGuid
component of the direct format name.

Á Set the rStatus variable of this event to TRUE.

3.1.7.5 Get Next Hops

The Get Next Hops event MUST be gen erated with the following arguments:

Á iQmGuid : A GUID corresponding to an Identifier ADM attribute of a QueueManager ([MS -
MQDMPR] section 3.1.1.1) ADM element instance.

Return Values:

Á rStatus : A Boolean value indicating success.

Á rQueueManagers : A collection of QueueManager ADM element instances.

The server MUST perform the following actions to process this event:

Á Declare the nextHopQmGuids variable.

Á Use the Binary Reliable Message Routing Algorithm specified in [MS -MQBR] to obtain a list of

queue manager GUIDs and set nextHopQmGuids equal to it. The queue manager GUIDs
computed by the algorithm represent the possible next hop queue managers to reach the required
destination. The alg orithm takes as input the value of the QueueManager.Identifier state
variable and the iQmGuid argument.

Á For each GUID, referred to as rNextHopGuid :

Á Raise a Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following
arguments:

Á iDirectoryObject Type : "QueueManager"

Á iFilter = "Identifier" EQUALS nextHopQmGuid

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQBR%5d.pdf

105 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á If the rStatus returned by the Read Directory event equals
DirectoryOperationResult.Success , append the returned rDirectoryObject to

rQueueManagers .

Á If the rQueueManagers collection is empty, set rStatus equal to FALSE and take no further action.

3.1.7.6 Send Ping Request

The Send Ping Request event MUST be generated with the following argument:

Á iAddress : A UDP or an SPX address for the acceptor to which the Ping Request , as defined in

Ping Message (section 2.1.2) , will be sent.

Return Value :

Á rStatus : A Boolean value indicating whether the acceptor will accept a connection.

The protocol MUST perform the following actions to process this event:

1. The value of the PingCookie ADM element MUST be incremented by 1.

2. Let Request be a new instance of a Ping Packet (section 2.2.7) .

3. The Request .QMGuid field MUST be set to the value of QueueManager.Identifier .

4. The Request .Cookie field MUST be set to the value of the PingCookie ADM element.

5. The remaining fields of Request MUST be initialized as specified in section 2.2.7 for an initiator.

6. Request MUST be sent as a Ping Request to the acce ptor specified by the iAddress argument as
specified in section 2.1.2.

7. Start a new instance of the Ping Response Timer (section 3.1.2.9) .

8. Wait for either the Ping Response Timer Event (section 3.1.6.8) raised by the instance of the Ping

Response Timer started in the previous step or a Ping Response Processed (section 3.1.7.9) even t.

9. If the Ping Response Timer Event is raised, set rStatus to FALSE and take no further action.

10. Otherwise, if a Ping Response Processed event is raised, determine the value of rStatus based on
the Response processed by the Receive Ping Response (section 3.1.7.8) event. If the
Response .Flags.RF field is 0x0, rStatus MUST be set to TRUE; otherwise, rStatus MUST be set to
FALSE. The instance of the Ping Response Timer is canceled.

3.1.7.7 Receive Ping Request

The Receive Ping Request event is triggered when a packet is received on the UDP or SPX port on
which the acceptor is listening, as described in section 2.1.2 . When this occurs, the protocol MUST
perform the following actions:

Á Let Request be a reference to a Ping Packet (section 2.2.7) , initialized to refer to the Ping Request

(section 2.1.2) received.

Á If the Request .Signature field is not 0x5548, the protocol MUST ignore the packet and take no
further action.

Á Let Response be a new instance of a Ping Packet (section 2.2.7).

106 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The Response .Flags.RF field MUST NOT be set if the protocol will accept a session and MUST be
set if the protocol will not accept a connection. The decision to accept or refuse a connection is

implementation -dependent. <70>

Á The Response .Flags.RC field MUST be set to the value of the Request .Flags.RC field.

Á The Response .Cooki e field MUST be set to the value of the Request .Cookie field.

Á The Response .QMGuid field MUST be set to the value of QueueManager.Identifier .

Á The Response .Signature field MUST be set to 0x5548, as specified in section 2.2.7.

Á Response MUST be sent as a Ping Response , as defined in Ping Message (section 2.1.2).

3.1.7.8 Receive Ping Response

The Receive Ping Response event is triggered when a packet is received on the UDP or SPX port on
which the initiator is listening, as described in section 2.1.2 . When this occurs, the protocol MUST

perform the following actions:

Á Let Response be a reference to a Ping Packet (section 2.2.7) , initialized to refer to t he Ping
Response (section 2.1.2) received.

Á If the Response .Signature field is not 0x5548, the protocol MUST ignore the packet and take no
further action.

Á If the Response .Cookie field has a different value from the PingCookie ADM element, the
protocol MUST ignore the packet and take no further action.

Á If a Send Ping Request (section 3.1.7.6) event is waiting for a Ping Response Timer
Event (section 3.1.6.8) as specified in step 8 of section 3.1.7.6, the protocol MUST raise a Ping
Response Processed (section 3.1.7.9) event. Otherwise, the protocol MUST ignore the packet and

tak e no further action.

3.1.7.9 Ping Response Processed

When this event is raised, the protocol MUST take the actions specified in step 10 of the Send Ping

Request (section 3.1.7.6) event.

3.1.7.10 Get Message Data E lement From Buffer

The Get Message Data Element From Buffer event MUST be generated with the following input
argument:

Á iBuffer : A UserMessage Packet ([MS -MQMQ] section 2.2.20) structure.

Return Values:

Á rMessage: A Message ([MS -MQDMPR] section 3.1.1.12) ADM element instance that corresponds

to the UserMessage Packet structure stored in iBuffer .

The protocol MUST generate a Deserialize Message From Buffer ([MS -MQDMPR] section 3.1.7.1.31)
even t with the following argument:

Á iBuffer := iBuffer of this event

The protocol MUST set rMessage to the rMessage returned by the Deserialize Message From Buffer
event.

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

107 / 14 0

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.7.11 Construction of a UserMessage Packet

The Queue Manager MUST generate a Construc t a UserMessage Packet ([MS -MQDMPR] section
3.1.7.1.30) event with the following argument:

Á iMessage : the Message ([MS -MQDMPR] section 3.1.1.12) ADM element instance that is being
processed.

The Queue Manager MUST perform further processing of the returned UserMessage Packet structure
as follows.

If more than 75 percent of the time on the Session Ack Send Timer (section 3.1.2.5) has elapsed and
the UnackedReceivedMsgCount ADM element does not equal 0x0000, the following processing
steps MUST be performed:

Á A SessionHeader ([MS -MQMQ] section 2.2.20.4) MUST be included in the UserMessage Packet
structure and MUST be popu lated as follows:

Á The SessionHeader.AckSequenceNumber field MUST be set to the

MessageReceivedCount ADM element.

Á The SessionHeader.RecoverableMsgAckSeqNumber field MUST be set to the lowest
unacknowledged recoverable message sequence number that has been p ersisted for reliable

recovery.

Á The SessionHeader.UserMsgSequenceNumber field MUST be set to the
MessageSentCount ADM element.

Á The SessionHeader.RecoverableMsgSeqNumber field MUST be set to the
RecoverableMessageSentCount ADM element.

Á The SessionHeader.Rec overableMsgAckFlags field MUST be set to the
RecoverableMsgAckFlags ADM element.

Á The SessionHeader.WindowSize field MUST be set to the WindowSize ADM element.

Á The BaseHeader.Flags.SH bit field MUST be set.

Á The RecoverableMsgAckFlags ADM element MUST be set to 0x00000000.

Á The UnackedReceivedMsgCount ADM element MUST be set to 0x0000.

Á The LastAckedRecoverableMsgSeqNumber ADM element MUST be set to the
RecoverableMessageReceivedCount ADM element.

Á The Session Ack Send Timer MUST be restarted.

3.1.7.12 Message Position A vailable Event

This event is triggered when the Message Position Available ([MS -MQDMPR] section 3.1.7.2.2) event is
raised and processes the same arguments as that event:

Á iQueue : A reference to the Queue ([MS -MQDMPR] section 3.1.1.2) ADM element instance in
which the MessagePosition ([MS -MQDMPR] s ection 3.1.1.11) ADM element instance has become
available.

Á iPosition : A reference to the MessagePosition ADM element instance that has become available.

Return Value :

Á None.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

108 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This event MUST be processed as follows:

Á If iQueue is not an OutgoingQueue ([MS -MQDMPR] section 3.1.1.3) ADM element instance, take

no further action.

Á If iQueue .Multicast is True , take no further action.

Á If iQueue .State is Locked or OnHold , take no further action.

Á If iQueue .DestinationFormatName is a direct format name ([MS -MQMQ] section 2.1.2) and
specifies usage of the HTTP or HTTPS protocol, take no further action.

Á If the iQueue .ConnectionHistory array is empty, the protocol MUST establish a connection to the
remote queue manager, as spec ified in section 3.1.5.2 .

Á An OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance MUST be constructed as
follows and then added to the OutgoingMessageTable ADM element:

Á The MessagePosition ADM attribute MUST be set to the available MessagePosition ADM

element instance.

Á The UserMessage ADM attribute MUST be set to a UserMessage Packet ([MS -MQMQ]
section 2.2.20) structure as co nstructed by an invocation of the Construction of a
UserMessage Packet (section 3.1.7.11) event with an iMessage input argument set to
iPosition .MessageReference .

Á The AwaitingAck , ReceivedSessionA ck , ReceivedOrderAck , and Transmitted ADM
attributes MUST be set to FALSE.

Á The SequenceNumber ADM attribute MUST be set to 0x0000.

Á The RecoverableSequenceNumber ADM attribute MUST be set to 0x0000.

Á The TxSequenceNumber ADM attribute MUST be set to 0x00000000.

Á The Add Message To Dispatch Collection ([MS -MQDMPR] section 3.1.7.1.28) event MUST be raised
with the following arguments.

Á iPosition := A reference to OutgoingMessagePosition .MessagePosition .

Á iData := A reference t o OutgoingMessagePosition .

3.1.7.13 Pause Queue Event

This event is triggered when the Pause Queue ([MS -MQDMPR] section 3.1.7.2.3) event is raised. Upon
this event, the Session Ack Send Timer (section 3.1.2.5) MUST be stopped. A SessionAck
Packet (section 2.2.6) MUST be sent to the remote host with the following values:

Á The SessionHeader.AckSequenceNumber field MU ST be set to the MessageReceivedCount
ADM element.

Á The SessionHeader.RecoverableMsgAckSeqNumber field MUST be set to the lowest
unacknowledged recoverable message sequence number that has been persisted for reliable

recovery.

Á The SessionHeader.UserMsgSeque nceNumber field MUST be set to the MessageSentCount
ADM element.

Á The SessionHeader.RecoverableMsgSeqNumber field MUST be set to the
RecoverableMessageSentCount ADM element.

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

109 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The SessionHeader.RecoverableMsgAckFlags field MUST be set to the
RecoverableMsgAck Flags ADM element.

Á The SessionHeader.WindowSize field MUST be set to 0x0001.

Subsequently, the Session State (section 3.1.1.3.1) ADM elements MUST be updated as follows:

Á The RecoverableMsgAckFlags ADM element MUST be set to 0x00000000.

Á The UnackedReceivedMsgCount ADM element MUST be set to 0x0000, and the
LastAckedRecoverableMsgSeqNumber ADM element MUST be set to the
RecoverableMessageReceivedCount ADM element.

Á The SessionActive ADM element MUST be set to FALSE.

Finally, iQueue .State MUST be set to OnHold , and a Remove Messages From Dispatch Collection By
Queue ([MS -MQDMPR] section 3.1.7.1.34) event MUST be raised with the following argument:

Á iOutgoingQueue := iQueue

3.1.7.14 Resume Queue Event

This event is triggered when the Resume Queue ([MS -MQDMPR] section 3.1.7.2.4) event is raised.

The queue manager MUST establish a protocol session to the remote queue manager if there are
messages in the iQueue .MessagePositionList . Protocol session establishment is specified in Establish
a Protocol Session (section 3.1.5.2) .

If the session whose OutgoingQueueReference ADM element matches iQueue has messa ges in its
OutgoingMessageTable ADM element, the protocol MUST perform the following:

Á If iQueue .State is Disconnected , the protocol must establish a connection to the remote queue
manager as specified in section 3.1.5.2.

Á For each OutgoingMessagePosition ADM element instance iOutgoingMessagePosition in the

OutgoingMessageTable ADM element, the Add Message To Dispatch Collection ([MS -MQDMPR]
section 3.1.7.1.28) event MUST be raised with the following arguments.

Á iPosition := A reference to iOutgoingMessagePosi tion .MessagePosition .

Á iData := A reference to iOutgoingMessagePosition .

Á The SessionActive ADM element of the session MUST be set to TRUE.

3.1.7.15 Send Administration Acknowledgment

Administration acknowledgment messages are system -generated UserMessage Packets ([MS -MQMQ]
section 2.2.20) that are sent to administration queues specified in the packets. An administration
acknowledgment can indicate whether a message has reached its destination queue or whether the

message has been retr ieved. When a message is rejected, an administration acknowledgment
message can indicate the reason for its loss.

The Send Administration Acknowledgment event MUST be generated with the following arguments:

Á iReceivedUserMessagePacket : The UserMessage Packe t ([MS -MQMQ] section 2.2.20) that triggers
the sending of the acknowledgment. Can be NULL if iReceivedMessage is provided.

Á iMessageClass : A message class identifier as specified in [MS -MQMQ] section 2.2.18.1.6.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

110 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á iReceivedMessage : Optional. A Message ([MS -MQDMPR] section 3.1.1.12) ADM element instance
that triggers the sending of the acknowledgment. If this argument is supplied,

iReceivedUserMessagePacket is ignored.

Return Value :

Á None.

The protocol MUST perform the foll owing actions to process this event:

Á If iReceivedMessage is provided and the iReceivedMessage .AdministrationQueueFormatName
ADM attribute is empty, take no further action. If iReceivedMessage is not provided and the
iReceivedUserMessagePacket .UserHeader.Fl ags.AQ field is 0x0, take no further action.

Á If iMessageClass is one of MQMSG_CLASS_NACK_BAD_DST_Q,
MQMSG_CLASS_NACK_BAD_ENCRYPTION, MQMSG_CLASS_NACK_BAD_SIGNATURE,

MQMSG_CLASS_NACK_ACCESS_DENIED, or
MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER, as defined in [MS -MQMQ] section
2.2.18.1.6, and the SendInsecureNacks ADM element is FALSE, take no further action.

Á Create a Message ([MS -MQDMPR] section 3.1.1.12) ADM element instance
adminAcknowledgment to use as the acknowledgment message.

Á Set the adminAcknowledg ment .Class ADM attribute to a value based the iMessageClass argument

according to the following table.

iMessageClass
enumeration value for
adminAcknowledgment.Class

MQMSG_CLASS_ACK_REACH_QUEUE ([MS -MQMQ] section
2.2.18.1.6)

AckReachQueue

MQMSG_CLASS_ACK_RECEIVE ([MS -MQMQ] section 2.2.18.1.6) AckReceive

MQMSG_CLASS_NACK_BAD_DST_Q ([MS -MQMQ] section
2.2.18.1.6)

NackBadDestQueue

MQMSG_CLASS_NACK_DELETED ([MS -MQMQ] section 2.2.18.1.6) NackPurged

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT ([MS -MQMQ]
section 2.2.18.1.6)

NackReachQueueTimeout

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA ([MS -MQMQ] section
2.2.18.1.6)

NackQueueExceedQuota

MQMSG_CLASS_NACK_ACCESS_DENIED ([MS -MQMQ] section
2.2.18.1.6)

NackAccessDenied

MQMSG_CLASS_NACK_BAD_SIGNATURE ([MS -MQMQ] section
2.2.18.1.6)

NackBadSignature

MQMSG_CLASS_NACK_BAD_ENCRYPTION ([MS -MQMQ] section
2.2.18.1.6)

NackBadEncryption

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q ([MS -MQMQ]
section 2.2.18.1.6)

NackNotTransactionalQueue

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG ([MS -MQMQ]
section 2.2.18.1.6)

NackNotTransactionalMessage

MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER ([MS -
MQMQ] section 2.2.18.1.6)

NackUnsupportedCryptoProvider

%5bMS-MQDMPR%5d.pdf

111 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

iMessageClass
enumeration value for
adminAcknowledgment.Class

MQMSG_CLASS_NACK_Q_DELETED ([MS -MQMQ] section 2.2.18.1.6) NackQueueDeleted

MQMSG_CLASS_NA CK_Q_PURGED ([MS -MQMQ] section 2.2.18.1.6) NackQueuePurged

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT ([MS -MQMQ] section
2.2.18.1.6)

NackReceiveTimeout

MQMSG_CLASS_NACK_RECEIVE_REJECTED ([MS -MQMQ] section
2.2.18.1.6)

NackReceiveRejected

Á Let DestinationForAck be a Unicode string to contain a format name, as defined in [MS -MQMQ]
section 2.1, initialized to be empty. If iReceivedMessage is provided, set DestinationForAck to the
iReceivedMessage .AdministrationQueueFormatName ADM attribute. If iReceivedMessage is not
provided, set DestinationForAck based on the value of the

iReceivedUserMessagePacket .UserHeader.Flags.AQ field:

Á If the iReceivedUserMessagePacket .UserHeader.Flags.AQ field is 0x2, set DestinationForAck
to a Private Format Name ([MS -MQMQ] section 2.1.4) , where ComputerGuid is the value of
the iReceivedUserMessagePacket .UserHeader.SourceQueueManager field and the queue is
identified by the hexadecimal representation of the PrivateQueueIdentifier field of the
PrivateQueueFormatNameId ([MS -MQMQ] section 2.2 .18.1.5.1) found in the

iReceivedUserMessagePacket .UserHeader.AdminQueue field.

Á If the iReceivedUserMessagePacket .UserHeader.Flags.AQ field is 0x3, set DestinationForAck
to a Private Format Name ([MS -MQMQ] section 2.1.4), where ComputerGuid is the value of
the iReceivedUserMessagePacket .UserHeader.QueueManagerAddress field and the queue
is identified by the hexadecimal representation of the PrivateQueueIdentifier field of the
PrivateQueueFormatNameId found in the
iReceivedUserMessagePacket .UserHeader.AdminQ ueue field.

Á If the iReceivedUserMessagePacket .UserHeader.Flags.AQ field is 0x5, set DestinationForAck

to a Public Format Name ([MS -MQMQ] section 2.1.3), where QueueGuid is the value of the
PublicQueueIdentifier field of the PublicQueueFormatName ([MS -MQMQ] section
2.2.18.1.7.1) found in the iReceivedUserMessagePacket .UserHeader.AdminQueue field.

Á If the iReceivedUserMessagePacket .UserHeader.Flags.AQ field is 0x6, set DestinationForAck
to a Private Format Name ([MS -MQMQ] section 2.1.4), where ComputerGuid is the value of
the SourceQueueManager field of the PrivateQueueFormatName ([MS -MQMQ] section

2.2.18.1.7.1) found in the iReceivedUserMessagePacket .UserHeader.AdminQueue field, and
the queue is identified by the hexadecimal representation of the PrivateQueue Identifier
field of that PrivateQueueFormatName .

Á If the iReceivedUserMessagePacket .UserHeader.Flags.AQ field is 0x7, set DestinationForAck
to the Direct Format Name ([MS -MQMQ] section 2.1.2) that is the value of the
DirectFormatName field of the DirectQueu eFormatName ([MS -MQMQ] section 2.2.18.1.5.2)

found in the iReceivedUserMessagePacket .UserHeader.AdminQueue field.

Á If iReceivedMessage is provided, set the adminAcknowledgment .CorrelationIdentifier ADM
attribute to the iReceivedMessage .Identifier ADM attrib ute. If iReceivedMessage is not provided,
construct an OBJECTID ([MS -MQMQ] section 2.2.8) and set the Uniquifier field to the value of
the iReceivedUserMessagePacket .UserHeader.MessageID field and the Lineage field to the
value of the iReceivedUserMessageP acket .UserHeader.SourceQueueManager field. Set the
adminAcknowledgment .CorrelationIdentifier ADM attribute to the constructed OBJECTID .

Á If iReceivedMessage is provided, set the adminAcknowledgment .ResponseQueueFormatName
ADM attribute to the iReceivedMessa ge .DestinationQueueFormatName ADM attribute. If
iReceivedMessage is not provided, set the adminAcknowledgment .ResponseQueueFormatName

112 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ADM attribute based on the value of the iReceivedUserMessagePacket .UserHeader.Flags.DQ
field:

Á If the iReceivedUserMessagePacket .UserHeader.Flags.DQ field is 0x3, set the
adminAcknowledgment .ResponseQueue ADM attribute to a Private Format Name ([MS -

MQMQ] section 2.1.4), where ComputerGuid is the value of the
iReceivedUserMessagePacket .UserHeader.QueueManag erAddress field and the queue is
identified by the hexadecimal representation of the PrivateQueueIdentifier field of the
PrivateQueueFormatNameId found in the
iReceivedUserMessagePacket .UserHeader.DestinationQueue field.

Á If the iReceivedUserMessagePacket .UserHeader.Flags.DQ field is 0x5, set the
adminAcknowledgment .ResponseQueue ADM attribute to a Public Format Name ([MS -

MQMQ] section 2.1.3), where QueueGuid is the value of the PublicQueueIdentifier field of
the PublicQueueFormatName found in the
iReceivedU serMessagePacket .UserHeader.DestinationQueue field.

Á If the iReceivedUserMessagePacket .UserHeader.Flags.DQ field is 0x7, set the

adminAcknowledgment .ResponseQueue ADM attribute to the direct format name ([MS -
MQMQ] section 2.1.2) that is the value of the Dir ectFormatName field of the

DirectQueueFormatName found in the
iReceivedUserMessagePacket .UserHeader.DestinationQueue field.

Á If iReceivedMessage is provided, set the adminAcknowledgment .DeliveryGuarantee ADM
attribute to the iReceivedMessage .DeliveryGuarant ee ADM attribute. If iReceivedMessage is not
provided, if the iReceivedUserMessagePacket .UserHeader.Flags.DM flag is set, set the
adminAcknowledgment .DeliveryGuarantee ADM attribute to Recoverable ; otherwise, set the
adminAcknowledgment .DeliveryGuarantee ADM attribute to Express .

Á Set the additional ADM attributes of adminAcknowledgment as shown in the following table.

ADM Attribute Value

AcknowledgementRequested None

TimeToReachQueue 0xFFFFFFFF

TimeToBeReceived 0xFFFFFFFF

PositiveJournalingRequested FALSE

NegativeJournalingRequested FALSE

PrivacyLevel None

AuthenticationLevel None

Á If iMessageClass is not one of MQMSG_CLASS_ACK_REACH_QUEUE,
MQMSG_CLASS_ACK_RECEIVED, or MQMSG_CLASS_NACK_MESSAGE_TOO_LARGE:

Á If iReceivedMessage is provided and the iReceivedMessage .PrivacyLevel ADM attribute is

None , set the adminAcknowledgment .Body ADM attribute to the iReceivedMessage .Body
ADM attribute.

Á If iReceivedMessage is not provided and the
iReceivedUserMessagePacket .SecurityHeader.Flags.EB bit field is not set, set the
adminAcknowledgment .Body ADM attribute to the bytes contained in the
iReceivedUserMessagePacket .MessagePropertiesHeader.MessageBody field.

113 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The protocol MUST generate an Open Queue ([MS -MQDMPR] section 3.1.7.1.5) event with the
following argume nts:

Á iFormatName := DestinationForAck

Á iRequiredAccess := QueueAccessType.SendAccess

Á iSharedMode := QueueShareMode.DenyNone

Á If the rStatus returned by the Open Queue event is not MQ_OK (0x00000000), the protocol MUST
discard adminAcknowledgment ; otherwise, the protocol MUST generate an Enqueue Message To
An Open Queue ([MS -MQDMPR] section 3.1.7.1.27) event with the following arguments:

Á iOpenQueueDescriptor := the rOpenQueueDescriptor returned by the Open Queue event

Á iMessage := adminAcknowledgment

3.1.7.16 Send User Message Wrapper

This event MUST be generated with the following arguments:

Á iPosition : A reference to an OutgoingMessagePosition (section 3.1.1.3.1.2) ADM element instance.

Á iMessagePosition : A reference to a MessagePosition ([MS -MQDMPR] section 3.1.1.11) ADM

element instance.

Return Value :

Á None.

The following steps MUST be performed to process this event:

Á Raise a Send User Message Event (section 3.1.7.1) with the following arguments:

Á iQueue := iPosition .MessagePosition .QueueReference .

Á iPosition := iPosition .

Á Raise a Remove Message from Dispatch Collection ([MS-MQDMPR] section 3.1.7.1.29) event with
the following argument:

Á iPosition := iMessagePosition .

3.1.7.17 Send Transactional Acknowledgment

The details of transactional acknowledgments are specified in section 3.1.1.6.2 .

The Send Transactional Acknowledgment event MUST be generated with the following arguments:

Á iMessageClass : A message class identifier as specified in [MS -MQMQ] section 2.2.18.1.6. If this
argument is not MQM SG_CLASS_ORDER_ACK ([MS -MQMQ] section 2.2.18.1.6), one of

iUserMessagePacket or iUserMessage is required.

Á iUserMessagePacket : Optional. The UserMessage Packet ([MS -MQMQ] section 2.2.20) to

acknowledge.

Á iUserMessage : Optional. The Message ([MS -MQDMPR] section 3.1.1.12) ADM element instance to
acknowledge.

Return Value :

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

114 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á None.

The protocol MUST perform the following actions to process this event:

Á Create a Message ADM element instance transAcknowledgment to use as the acknowledgment
message.

Á Set the transAcknowledgment .Class ADM attribute to a value based on the iMessageClass
argument according to the following table.

iMessageClass
Enumeration value for
transAcknowledgment.Class

MQMSG_CLASS_ORDER_ACK ([MS -MQMQ] section 2.2.18.1.6) OrderAck

MQMSG_CLASS_ACK_RECEIVE ([MS -MQMQ] section 2.2.18.1.6) AckReceive

MQMSG_CLASS_NACK_BAD_DST_Q ([MS -MQMQ] section
2.2.18.1.6)

NackBadDestQueue

MQMSG_CLASS_NACK_DELETED ([MS -MQMQ] section 2.2.18.1.6) NackPurged

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT ([MS -MQMQ]
section 2.2.18.1.6)

NackReachQueueTimeout

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA ([MS -MQMQ] section
2.2.18.1.6)

NackQueueExceedQuota

MQMSG_CLASS_NACK_ACCESS_DENIED ([MS -MQMQ] section
2.2.18.1.6)

NackAccessDenied

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED ([MS -MQMQ]
section 2.2.18.1.6)

NackHopCountExceeded

MQMSG_CLASS_NACK_BAD_SIGNATURE ([MS -MQMQ] section
2.2.18.1.6)

NackBadSignature

MQMSG_CLASS_NACK_BAD_ENCRYPTION ([MS -MQMQ] section
2.2.18.1.6)

NackBadEncryption

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q ([MS -MQMQ]
section 2.2.18.1.6)

NackNotTransactionalQueue

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG ([MS -MQMQ]
section 2.2.18.1.6)

NackNotTransactionalMessage

MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER ([MS -
MQMQ] sectio n 2.2.18.1.6)

NackUnsupportedCryptoProvider

MQMSG_CLASS_NACK_Q_DELETED ([MS -MQMQ] section 2.2.18.1.6) NackQueueDeleted

MQMSG_CLASS_NACK_Q_PURGED ([MS -MQMQ] section 2.2.18.1.6) NackQueuePurged

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT ([MS -MQMQ] section
2.2.18.1. 6)

NackReceiveTimeout

MQMSG_CLASS_NACK_RECEIVE_REJECTED ([MS -MQMQ] section
2.2.18.1.6)

NackReceiveRejected

Á Set additional ADM attributes of transAcknowledgment as shown in the following table.

115 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ADM Attribute Value

Priority Zero

TracingRequested FALSE

DeliveryGuarantee Recoverable

PositiveJournalingRequested FALSE

NegativeJournalingRequested FALSE

AdministrationQueueFormatName empty string

ResponseQueueFormatName empty string

PrivacyLevel None

AuthenticationLevel None

Label "QM Ordering Ack"

BodyType VT_EMPTY

Á If iMessageClass is MQMSG_CLASS_ORDER_ACK, construct an OrderAck Body (section 2.2.4.1)

with the fields set to the values listed in the following table; then set the
transAcknow ledgment .Body ADM attribute to the bytes representing the OrderAck Body.

OrderAck Body field Value from session ADM element

TxSequenceId OutgoingTxSequenceID

TxSequenceNumber IncomingTxSequenceNumber

TxPreviousSequenceId IncomingTxSequenceNumber - 1

Á Else if iUserMessage is provided, construct a FinalAck Body (section 2.2.5.1) with the fields set to

the values listed in the following table; then set the transAcknowledgment .Body ADM attribute t o
the bytes representing the FinalAck Body.

FinalAck Body field Value

TxSequenceId iUserMessage .TransactionalMessageSequenceIdentifier

TxSequenceNumber iUserMessage .TransactionSequenceNumber

TxPreviousSequenceId iUserMessage .TransactionPreviousSequenceNumber

SourceGUID iUserMessage .SourceMachineIdentifier

MessageId The Uniqifier field of the OBJECTID ([MS -MQMQ] section 2.2.8) found in
iUserMessage .Identifier

Á Else construct a FinalAck Body with the fields set to the values listed in the following table; then
set the transAcknowledgment .Body ADM attribute to the bytes representing the FinalAck Body.

FinalAck Body field Value

TxSequenceId iUserMessagePacket .TransactionHeader.TxSequenceID

TxSequenceNumber iUserMessagePacket .TransactionHeader.TxSequenceNumber

116 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FinalAck Body field Value

TxPreviousSequenceId iUserMessagePacket .TransactionHeader.PreviousTxSequenceNumber

SourceGUID iUserMessagePacket .UserHeader.SourceQueueManager

MessageId iUserMessagePacket .UserHeader.MessageID

Á Let DestinationForAck be a Unicode string to contain a format name, as defined in [MS -MQMQ]
section 2.1, initialized to be empty.

Á If DirectFormatsession is TRUE, perform the following steps:

Á If the address in RemoteQMAddress is an IPv4 or IPv6 address, construct a direct format
name ([MS -MQMQ] section 2.1.2) of the form
"DIRECT=TCP:address \ PRIVATE$ \ order_queue$", where address is the value of
RemoteQMAddress .

Á If the address in RemoteQMAddress is an SPX address, construct a direct format name of
the form "DIRECT=SPX:address \ PRIVATE$\ order_queue$", where address is the value of
RemoteQMAddress .

Á Set DestinationForAck to the constructed format name.

Á Else if DirectFormatsession is FALSE, construct a private format name, as defined in [MS -
MQMQ] section 2.1.4, where ComputerGuid is the va lue of RemoteQMGuid and the queue is

identified by the hexadecimal string "00000004", and set DestinationForAck to that format name.

Á The protocol MUST generate an Open Queue ([MS -MQDMPR] section 3.1.7.1.5) event with the
following arguments:

Á iFormatName := DestinationForAck

Á iRequiredAccess := QueueAccessType.SendAccess

Á iSharedMode := QueueShareMode.DenyNone

Á If the rStatus returned by the Open Queue event is not MQ_OK (0x00000000), the protocol MUST

discard transAcknowledgment ; otherwise, the protocol MUST generate an Enqueue Message To An
Open Queue ([MS -MQDMPR] section 3.1.7.1.27) event with the following arguments:

Á iOpenQueueDescriptor := the rOpenQueueDescriptor returned by the Open Queue event

Á iMessage := transAcknowledgme nt

117 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Message Queuing (MSMQ): Message Queuing Binary Protocol.

4.1 Session Initialization and Express Messa ge Example

The following Message Queuing (MSMQ): Message Queuing Binary Protocol packet sequence
demonstrates session ini tialization and transfer of an express message between two queue managers.
This example follows the "Session with Express Messages Sent" scenario specified in Session
Initialization (section 3.1.1 .7.1) and Session with Express Messages Sent (section 3.1.1.7.2) , except
that only a single UserMessage Packet ([MS -MQMQ] section 2.2.20) is sent. Ping

Messages (section 2.1.2) in the examples are sent over UDP. All other messages are exchanged using
TCP/IP.

The messages follow the sequence shown.

Figure 15 : Session with Express M essages Sent scenario

4.1.1 FRAME 1: Ping Request

From client UDP port 4057 to server UDP port 3527:

 Client - > Server : Ping packet

 - StateFlag: 32001 (0x7D01)

 Client: (...............1) - Client is independent

 Server: (..............0.) - Server will accept new connection

%5bMS-MQMQ%5d.pdf

118 / 140

[MS -MQQB] - v20150630
Message Queuing (MSMQ): Message Queuing Binary Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Reserved: (01111101000000..) - Reserved

 Signature: 21832 (0x5548)

 Cookie: 4 (0x4)

 QMGUID: {C626EA11 - E6B6- 9749 - 9595 - 9150557358D1}

 Hex Dump:

 01 7D 48 55 04 00 00 00 D1 58 73 55 50 91 95 95

 49 97 B6 E6 11 EA 26 C6

4.1.2 FRAME 2: Ping Response

From server port 3527 to client UDP port 4057:

 Server - > Client : Ping packet

 - StateFlag: 45717 (0xB295)

 Client: (...............1) - Client is independent

 Server: (..............0.) - Server will accept new connection

 Reserved: (10110010100101..) - Reserved

 Signature: 21832 (0x5548)

 Cookie: 4 (0x4)

 QMGUID: {FCA09E90 - 7890 - 4544 - 8F11- 394C43CD8907}

 Hex Dump:

 95 B2 48 55 04 00 00 00 0 7 89 CD 43 4C 39 11 8F

 44 45 90 78 90 9E A0 FC

4.1.3 FRAME 3: Establish Connection Request

From client TCP port 49759 to TCP port 1801:

 Client - > Server : EstablishConnection Packet

 - MSMQBaseHeader:

 VersionNumber: 16 (0x10)

 Reserved: 192 (0xC0)

 - FlagsBaseHeader: 11 (0xB)

 MessagePriority: (.............011) - Message prior ity = 3

 InternalMessage: (............1...) - Internal message

 SessionHeader: (...........0....) - Session header not included

 DebugSession: (..........0.....) - Debug header not included

 Reserved1: (........00......) - Reserved

 MessageTraceable: (.......0........) ï Tracing disabled

 Reserved2: (0000000.........) - Reserved

 Signature: 1380927820 (0x524F494C)

 PacketSize: 572 (0x23C)

 TimeToReachQueue: 4294967295 (0xFFFFFFFF)

 - MSMQInternalHeader:

 Reserved: 0 (0x0)

 - FlagsInternalHeader: 2 (0x2)

 PacketType: (............0010) -

 Session: (...........0....) - Session valid

 Reserved: (00000000000.....) - Reserved

 - EstablishConnectionPacket:

 ClientGUID: { C626EA11 - E6B6- 9749 - 9595 - 9150557358D1}

 ServerGUID: { FCA09E90 - 7890 - 4544 - 8F11- 394C43CD8907}

 TimeStamp: 501140046 milliseconds since the operating system was started

 Reserved: 784 (0x310)

 - OperatingSystem: 0 (0x0)

 Reserved: (........................00000000) - Reserved bits

 Session: (.......................0........) - Not a new session

 OperatingSystem: (......................0.........) - Initiator OS is

