

1 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS -LSAD -Diff]:

Local Security Authority (Domain Policy) Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communi ty Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notic e does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events th at are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft progr amming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use i n conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please co ntact dochelp@microsoft.com .

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 2.0 Major Updated and revised the technical content.

7/20/2007 3.0 Major Added new content.

8/10/2007 4.0 Major New content added.

9/28/2007 5.0 Major Updated and revised the technical content.

10/23/2007 5.1 Minor Clarified the meaning of the technical content.

11/30/2007 5.1.1 Editorial Changed language and formatting in the technical content.

1/25/2008 6.0 Major Updated and revised the technical content.

3/14/2008 7.0 Major Updated and revised the technical content.

5/16/2008 8.0 Major Updated and revised the technical content.

6/20/2008 9.0 Major Updated and revised the technical content.

7/25/2008 9.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 10.0 Major Updated and revised the technical content.

10/24/2008 11.0 Major Updated and revised the technical content.

12/5/2008 12.0 Major Updated and revised the technical content.

1/16/2009 13.0 Major Updated and revised the technical content.

2/27/2009 14.0 Major Updated and revised the technical content.

4/10/2009 15.0 Major Updated and revised the technical content.

5/22/2009 16.0 Major Updated and revised the technical content.

7/2/2009 17.0 Major Updated and revised the technical content.

8/14/2009 18.0 Major Updated and revised the technical content.

9/25/2009 19.0 Major Updated and revised the technical content.

11/6/2009 20.0 Major Updated and revised the technical content.

12/18/2009 21.0 Major Updated and revised the technical content.

1/29/2010 22.0 Major Updated and revised the technical content.

3/12/2010 23.0 Major Updated and revised the technical content.

4/23/2010 23.1 Minor Clarified the meaning of the technical content.

6/4/2010 24.0 Major Updated and revised the technical content.

7/16/2010 25.0 Major Updated and revised the technical content.

3 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Date
Revision
History

Revision
Class Comments

8/27/2010 26.0 Major Updated and revised the technical content.

10/8/2010 27.0 Major Updated and revised the technical content.

11/19/2010 28.0 Major Updated and revised the technical content.

1/7/2011 29.0 Major Updated and revised the technical content.

2/11/2011 30.0 Major Updated and revised the technical content.

3/25/2011 31.0 Major Updated and revised the technical content.

5/6/2011 32.0 Major Updated and revised the technical content.

6/17/2011 33.0 Major Updated and revised the technical content.

9/23/2011 33.0 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 34.0 Major Updated and revised the technical content.

3/30/2012 35.0 Major Updated and revised the technical content.

7/12/2012 35.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 36.0 Major Updated and revised the technical content.

1/31/2013 36.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 37.0 Major Updated and revised the technical content.

11/14/2013 37.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 37.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 37.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 38.0 Major Significantly changed the technical content.

10/16/2015 38.0 None
No changes to the meaning, language, or formatting of the

technical content.

7/14/2016 39.0 Major Significantly changed the technical content.

6/1/2017 40.0 Major Significantly changed the technical content.

9/15/2017 41.0 Major Significantly changed the technical content.

12/1/2017 41.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2018 42.0 Major Significantly changed the technical content.

9/12/2018 43.0 Major Significantly changed the technical content.

4 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Table of Contents

1 Introduction 8
1.1 (Updated Section) Glossary 8
1.2 References 13

1.2.1 (Updated Section) Normative References 13
1.2.2 Informative References 14

1.3 Overview 14
1.4 Relationship to Other Protocols 19
1.5 Prerequisites/Preconditions 21
1.6 Applicability Statement 21
1.7 Versioning and Capability Negotiation 22
1.8 Vendor -Extensible Fields 22
1.9 Standards Assignments 22

2 Messages 23
2.1 Transport 23
2.2 Common Dat a Types 23

2.2.1 Constant Value Definitions 26
2.2.1.1 ACCESS_MASK 26

2.2.1.1.1 ACCESS_MASK for All Objects 27
2.2.1.1.2 ACCESS_MASK for Policy Objects 29
2.2.1.1.3 ACCESS_MASK for Account Objects 29
2.2.1.1.4 ACCESS_MASK for Secret Objects 30
2.2.1.1.5 ACCESS_MASK for Trusted Domain Objects 30

2.2.1.2 POLICY_SYSTEM_ACCESS_MODE 31
2.2.1.3 SECURITY_INFORMATION 31

2.2.2 Basic Data Types 33
2.2.2.1 LSAPR_HANDLE 33
2.2.2.2 PLSAPR_HANDLE 33
2.2.2. 3 LSA_UNICODE_STRING 33
2.2.2.4 LSAPR_OBJECT_ATTRIBUTES 33
2.2.2.5 LSAPR_SR_SECURITY_DESCRIPTOR 34

2.2.3 Data Types Referenced by Basic Data Types 34
2.2.3.1 STRING 34
2.2.3.2 LSAPR_ACL 35
2.2.3.3 SECURITY_DESCRIPTOR_CONTROL 35
2.2.3.4 LSAPR_SECURITY_DESCRIPTOR 35
2.2.3.5 SECURITY_IMPERSONATION_LEVEL 36
2.2.3.6 SECURITY_CONTEXT_TRACKING_MODE 36
2.2.3.7 SECURITY_QUALITY_OF_SERVICE 37

2.2.4 Policy Query/Set Data Types 37
2.2.4.1 POLICY_INFORMATION_CLASS 37
2.2.4.2 LSAPR_POLICY_INFORMATION 38
2.2.4.3 POLICY_AUDIT_LOG_INFO 39
2.2.4.4 LSAPR_POLICY_AUDIT_EVENTS_INFO 40
2.2.4.5 LSAPR_POLICY_PRIMARY_DOM_INFO 40
2.2.4.6 LSAPR_POLICY_ACCOUNT_DOM_INFO 41
2.2.4.7 LSAPR_POLICY_PD_ACCOUNT_INFO 41
2.2.4.8 POLICY_LSA_SERVER_ROLE 41
2.2.4.9 POLICY_LSA_SERVER_ROLE_INFO 42
2.2.4.10 LSAPR_POLICY_REPLICA_SRCE_INFO 42
2.2.4.11 POLICY_MODIFICATION_INFO 42
2.2.4.12 POLICY_AUDIT_FULL_SET_INFO 42
2.2.4.13 POLICY_AUDIT_FULL_QUERY_INFO 43
2.2.4.14 LSAPR_POLICY_DNS_DOMAIN_INFO 43
2.2.4.15 POLICY_DOMAIN_INFORMATION_CLASS 44

5 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.4.16 LSAPR_POLICY_DOMAIN_INFORMATION 44
2.2.4.17 POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO 44
2.2.4.18 LSAPR_POLICY_DOMAIN_EFS_INFO 44
2.2.4.19 POLICY_DOMAIN_KERBEROS_TICKET_INFO 45
2.2.4.20 POLICY_AUDIT_EVENT_TYPE 46
2.2.4.21 LSAPR_POLICY_MACHINE_ACCT_INFO 46

2.2.5 Account Query/Set Data Types 47
2.2.5.1 LSAPR_ACCOUNT_INFORMATION 47
2.2.5.2 LSAPR_ACCOUNT_ENUM_BUFFER 47
2.2.5.3 LSAPR_USER_RIGHT_SET 47
2.2.5.4 LSAPR_LUID_AND_ATTRIBUTES 47
2.2.5.5 LSAPR_PRIVILEGE_SET 48

2.2.6 Secret Query/Set Data Types 48
2.2.6.1 LSAPR_CR_CIPHER_VALUE 48

2.2.7 Trusted Domain Query/Set Data Types 49
2.2.7.1 LSAPR_TRUST_INFORMATION 49
2.2.7.2 TRUSTED_INFORMATION_CLASS 49
2.2.7.3 LSAPR_TRUSTED_DOMAIN_INFO 50
2.2.7.4 LSAPR_TRUSTED_DOMAIN_NAME_INFO 51
2.2.7.5 LSAPR_TRUSTED_CONTROLLERS_INFO 52
2.2.7.6 TRUSTED_POSIX_OFFSET_INFO 52
2.2.7.7 LSAPR_TRUSTED_PASSWORD_INFO 52
2.2.7.8 LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC 53
2.2.7.9 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX 53
2.2.7.10 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 55
2.2.7.11 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION 55
2.2.7.12 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL 56
2.2.7.13 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION 56
2.2.7.14 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL 57
2.2.7.15 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 57
2.2.7.16 LSAPR_TRUSTED_DOMAIN_AUTH_BLOB 57
2.2.7.17 LSAPR_AUTH_INFORMATION 60
2.2.7.18 TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES 61
2.2.7.19 LSAPR_TRUSTED_ENUM_BUFFER 61
2.2.7.20 LSAPR_TRUSTED_ENUM_BUFFER_EX 61
2.2.7.21 LSA_FOREST_TRUST_RECORD 62
2.2.7.22 LSA_FOREST_TRUST_RECORD_TYPE 63
2.2.7.23 LSA_FOREST_TRUST_BINARY_DATA 63
2.2.7.24 LSA_FOREST_TRUST_DOMAIN_INFO 64
2.2.7.25 LSA_FOREST_TRUST_INFORMATION 64
2.2.7.26 LSA_FOREST_TRUST_COLLISION_RECORD_TYPE 64
2.2.7.27 LSA_FOREST_TRUST_COLLISION_RECORD 65
2.2.7.28 LSA_FOREST_TRUST_COLLIS ION_INFORMATION 65

2.2.8 Privilege Data Types 65
2.2.8.1 LSAPR_POLICY_PRIVILEGE_DEF 65
2.2.8.2 LSAPR_PRIVILEGE_ENUM_BUFFER 66

2.3 Directory Service Schema Elements 66

3 Protocol Details 67
3.1 Server Details 67

3.1.1 Abst ract Data Model 67
3.1.1.1 Policy Object Data Model 67
3.1.1.2 Accounts Rights Data Model 69

3.1.1.2.1 Privilege Data Model 69
3.1.1.2.2 System Access Rights Data Model 72

3.1.1.3 Account Object Data Model 73
3.1.1.4 Secret Object Data Model 73
3.1.1.5 Trusted Domain Object Data Model 75

6 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.1.6 Configuration Settings 76
3.1.1.6.1 Block Anonymous Access to Objects 76

3.1.1.7 LsaContextHandle Data Model 76
3.1.1.8 Attribute Listing 77
3.1.1.9 Object Class Listing 78
3.1.1.10 Access for Public Abstract Data Model Elements 78

3.1.1.10.1 Example Patterns for Direct Access of Policy Object ADM Elements 78
3.1.1.10.1.1 Query Pattern for Policy Object ADM 78
3.1.1.10.1.2 Set Pattern for Policy Object ADM 79

3.1.2 Timers 79
3.1.3 Initialization 79
3.1.4 Message Processing Events and Sequencing Rules 79

3.1.4. 1 Obtaining Handles 84
3.1.4.2 Access Rights and Access Checks 85

3.1.4.2.1 Access Checks Applied on Handle Open 86
3.1.4.2.2 Access Checks Applied for Object Operations 87
3.1.4.2.3 Determining If Requestors Are Anonymous 87

3.1.4.3 Closing Handles 88
3.1.4.4 Policy Object Methods 88

3.1.4.4.1 LsarOpenPolicy2 (Opnum 44) 88
3.1.4.4.2 LsarOpenPolicy (Opnum 6) 90
3.1.4.4.3 LsarQueryInformationPolicy2 (Opnum 46) 90
3.1.4.4.4 LsarQueryInformationPolicy (Opnum 7) 92
3.1.4.4.5 LsarSetInformationPolicy2 (Opnum 47) 93
3.1.4.4.6 LsarSetInformationPolicy (Opnum 8) 95
3.1.4.4.7 LsarQueryDomainInformationPolicy (Opnum 53) 96
3.1.4.4.8 LsarSetDomainInformationPolicy (Opnum 54) 97

3.1.4.5 Account Object Methods 99
3.1.4.5.1 LsarCreateAccount (Opnum 10) 99
3.1.4.5.2 LsarEnumerateAccounts (Opnum 11) 101
3.1.4.5.3 LsarOpenAccount (Opnum 17) 102
3.1.4.5.4 LsarEnumeratePrivilegesAccount (Opnum 18) 103
3.1.4.5.5 LsarAddPrivilegesToAccount (Opnum 19) 104
3.1.4.5.6 LsarRemovePrivilegesFromAccount (Opnum 20) 105
3.1.4.5.7 LsarGetSystemAccessAccount (Opnum 23) 106
3.1.4.5.8 LsarSetSystemAccessAccount (Opnum 24) 106
3.1.4.5.9 LsarEnumerateAccountsWithUserRight (Opnum 35) 107
3.1.4.5.10 LsarEnumerateAccountRights (Opnum 36) 108
3.1.4.5.11 LsarAddAccountRights (Opnum 37) 109
3.1.4.5.12 LsarRemoveAccountRights (Opnum 38) 110

3.1.4.6 Secret Object Methods 111
3.1.4.6.1 LsarCreateSecret (Opnum 16) 112
3.1.4.6.2 LsarOpenSecret (Opnum 28) 114
3.1.4.6.3 LsarSetSecret (Opnum 29) 115
3.1.4.6.4 LsarQuerySecret (Opnum 30) 116
3.1.4.6.5 LsarStorePrivateData (Opnum 42) 117
3.1.4.6.6 LsarRetrievePrivateData (Opnum 43) 118

3.1.4.7 Trusted Domain Object Methods 119
3.1.4.7.1 LsarOpenTrustedDomain (Opnum 25) 120
3.1.4.7.2 LsarQueryTrustedDomainInfo (Opnum 39) 121
3.1.4.7.3 LsarSetTrustedDomainInfo (Opnum 40) 123
3.1.4.7.4 LsarDeleteTrustedDomain (Opnum 41) 125
3.1.4.7.5 LsarQueryTrustedDomainInfoByName (Opnum 48) 126
3.1.4.7.6 LsarSetTrustedDomainInfoByName (Opnum 49) 127
3.1.4.7.7 LsarEnumerateTrustedDomainsEx (Opnum 50) 128
3.1.4.7.8 LsarEnumerateTrustedDomains (Opnum 13) 129
3.1.4.7.9 LsarOpenTrustedDomainByName (Opnum 55) 131
3.1.4.7.10 LsarCreateTrustedDomainEx2 (Opnum 59) 132

7 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.7.11 LsarCreateTrustedDomainEx (Opnum 51) 134
3.1.4.7.12 LsarCreateTrustedDomain (Opnum 12) 136
3.1.4.7.13 LsarQueryInfoTrustedDomain (Opnum 26) 137
3.1.4.7.14 LsarSetInformationTrustedDomain (Opnum 27) 139
3.1.4.7.15 LsarQueryForestTrustInformation (Opnum 73) 142
3.1.4.7.16 LsarSetForestTrustInformation (Opnum 74) 143

3.1.4.7.16.1 Forest Trust Collision Generation 145
3.1.4.8 Privilege Methods 146

3.1.4.8.1 LsarEnumeratePrivileges (Opnum 2) 147
3.1.4.8.2 LsarLookupPrivilegeValue (Opnum 31) 148
3.1.4.8.3 LsarLookupPrivilegeName (Opnum 32) 149
3.1.4.8.4 LsarLookupPrivilegeDisplayName (Opnum 33) 150

3.1.4.9 Common Object Methods 151
3.1.4.9.1 LsarQuerySecurityObject (Opnum 3) 151
3.1.4.9.2 LsarSetSecurityObject (Opnum 4) 153
3.1.4.9.3 LsarDeleteObject (Opnum 34) 154
3.1.4.9.4 LsarClose (Opnum 0) 155

3.1.4.10 Data Validation 156
3.1.5 Timer Events 160
3.1.6 Other Local Events 160

3.1.6.1 LSAPR_HANDLE_rundown 161

4 Protocol Examples 162
4.1 Manipulating Account Objects 162
4.2 Manipulating Secret Objects 165
4.3 Manipulating Trusted Domain Objects 168
4.4 Structure Example of LSAPR_TRUSTED_DOMAIN_AUTH_BLOB 170

5 Security 174
5.1 Security Considerations for Implementers 174

5.1.1 RC4 Cipher Usage 174
5.1.2 Secret Encryption and Decryption 174
5.1.3 DES-ECB-LM Cipher Definition 176
5.1.4 Encryption and Decryption Examples 176

5.1.4.1 Encryption Example 177
5.1.4.2 Decryption Example 177

5.2 Index of Security Parameters 178

6 Appendix A: Full IDL 179

7 (Updated Section) Appendix B: Product Behavior 195

8 Change Tracking 218

9 Index 219

8 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1 Introduction

The Local Security Authority (Domain Policy) Remote Protocol is used to manage various machine and
domain security policies. All versions of Windows NT operating system ïbased products, in all
configurations, implem ent and listen on the server side of this protocol. However, not all operations
are meaningful in all configurations.

This protocol, with minor exceptions, enables remote policy -management scenarios. Therefore, the

majority of this interface does not need to be implemented to achieve Windows client - to -server
(domain controller configuration and otherwise) interoperability, as defined by the ability for Windows
clients to retrieve policy settings from servers.

Policy settings controlled by this protocol rel ate to the following:

Á Account objects : The rights and privileges that security principals have on the server.

Á Secret objects : Mechanisms that securely store data on the server.

Á Trusted domain objects : Mechanisms that the Windows operating system uses for d escribing
trust relationships between domains and forests.

Á Other miscellaneous settings, such as lifetimes of Kerberos tickets, states of domain controller
(backup or primary), and other unrelated pieces of policy.

All of these types of policy are addresse d in sections of this document that specify the server data
model.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 (Updated Section) Glossary

This document uses the following terms:

64 - bit Network Data Representation (NDR64) : A specific instance of a remote procedure call

(RPC) transfer syntax. For more information about RPC transfer syntax, see [C706] section 14.

access control list (ACL) : A list o f access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

account domain : A domain, identified by a security identifier (SID), that is the SID namespace for
which a given machine is authoritative. The account domain is the same as the primary domain
for a domain controller (DC) and is its default domain. For a machine that is joined to a domain,

the account domain is the SID namespace defined by the local Security Accounts Manager [MS -
SAMR].

account object : An element of a Local Security Authority (LSA) policy database that describes the
rights and privileges granted by the server to a security principal. The security identifier (SID) of
the security princi pal matches that of the account object.

ACID : A term that refers to the four properties that any database system must achieve in order to
be considered transactional: Atomicity, Consistency, Isolation, and Durability [GRAY].

Active Directory : A The Windows implementation of a general -purpose network directory service .
Active Directory also refers to the Windows implementation of a directory service. , which uses
LDAP as its primary access protocol. Active Directory stores information about a variety of
objec ts in the network . User such as user accounts, computer accounts, groups, and all related
credential information used by the Windows implementation of Kerberos are stored in Active
Directory. [MS -KILE]. Active Directory is either deployed as Active Director y Domain Services

9 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

(AD DS) or Active Directory Lightweight Directory Services (AD LDS). [MS -ADTS] describes both
forms. For more information, see [MS -AUTHSOD] section 1.1.1.5.2, Lightweight Directory

Access Protocol (LDAP) versions 2 and 3, Kerberos, and DN S), which are both described in [MS -
ADOD]: Active Directory Protocols Overview .

backup domain controller (BDC) : A domain controller (DC) that receives a copy of the domain
directory database from the primary domain controller (PDC). This copy is synchronized
periodically and automatically with the primary domain controller (PDC). BDCs also authenticate
user logons and can be promoted to function as the PDC. There is only one PDC or PDC
emulator in a domain, and the rest are backup domain controlle rs.

Coordinated Universal Time (UTC) : A high -precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones

around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC -0 (or GMT).

directory : The database that stores information about objects such as users, groups, computers,

printers, and the directory service that makes this information available to users and
applications.

directory service (DS) : A service that stores and organizes information about a computer
network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

discretionary access control list (DACL) : An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particula r users or groups can have to the
object.

DNS name : A fully qualified domain name (FQDN).

domain : A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting

the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an ident ifier that is shared among its members.
For more information, see [MS -AUTHSOD] section 1.1.1.5 and [MS -ADTS].

domain controller (DC) : The service, running on a server, that implements Active Directory, or

the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its

forest. For more information, see [MS -AUTHSOD] section 1.1.1.5.2 and [MS -ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC

in its forest. The domain controller is the server side of Authenticati on Protocol Domain Support
[MS -APDS].

domain member (member machine) : A machine that is joined to a domain by sharing a secret
between the machine and the domain.

domain name : A domain name or a NetBIOS name that identifies a domain.

domain naming context (domain NC) : A specific type of naming context (NC), or an instance of
that type, that represents a domain. A domain NC can contain security principal objects; no

10 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

other type of NC can contain security principal objects. Domain NCs appear in the global cata log
(GC). A domain NC is hosted by one or more domain controllers (DCs) operating as AD DS. In

AD DS, a forest has one or more domain NCs. A domain NC cannot exist in AD LDS. The root of
a domain NC is an object of class domainDNS; for directory replicatio n [MS -DRSR], see

domainDNS.

endpoint : A network -specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

forest : One or more domains that share a common schema and trust each other transitively. An
organization can have multiple forests. A forest establishes the security and administrative
boundary for all the objects that reside within the domains that belong to the forest. In contrast,
a domain establishes the administrative boundary for managing objects, such as users, groups,
and computers. In addition, each domain has individual security policies and trust relationships

with other domains.

forest functional level : A specific ation of functionality available in a forest. It must be less than
or equal to the domain controller (DC) functional level of every DC in the forest. See [MS -ADTS]
section 6.1.4.4 for information on how the forest functional level is determined.

forest tru st : A type of trust where the trusted party is a forest, which means that all domains in
that forest are trusted.

forest trust information : Information about namespaces, domain names, and security identifiers
(SIDs) owned by a trusted forest.

global catalo g server (GC server) : A domain controller (DC) that contains a naming context
(NC) replica (one full, the rest partial) for each domain naming context in the forest.

globally unique identifier (GUID) : A term used interchangeably with universally unique

ide ntifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

interdomain trust account : An account that stores information associated with a domain trust in
the domain controllers (DCs) of the domain that is trusted to perform authentication.

local account domain : A domain, identified by a security identifier (SID), that is a SID
namespace for which a given machine is authoritative. The local account domain is the same as
the account domain for any non ïdomain controller (DC). On a DC, the local account domain is

an account domain local to the DC.

locally unique identifier (LUID) : A 64 -bit value guaranteed to be unique within the scope of a
single machine.

Network Data Representation (NDR) : A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

opnum : An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS -RPCE].

11 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

original e quipment manufacturer (OEM) code page : A code page used to translate between
non -Unicode encoded strings and UTF -16 encoded strings.

primary domain : A domain (identified by a security identifier (SID)) that the server is joined to.
For a domain controller (DC), the primary domain is that of the domain itself.

primary domain controller (PDC) : A domain controller (DC) designated to track changes made
to the accounts of all computers on a domain. It is the only computer to receive these changes
directly, and i s specialized so as to ensure consistency and to eliminate the potential for
conflicting entries in the Active Directory database. A domain has only one PDC.

primary domain controller (PDC) role owner : The domain controller (DC) that hosts the
primary doma in controller emulator FSMO role for a given domain naming context (NC).

privilege : The capability of a security principal to perform a type of operation on a computer

system regardless of restrictions placed by discretionary access control.

RC4 : A variabl e key - length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

read - only domain controller (RODC) : A domain controller (DC) that does not accept originating
updates. Additionally, an RODC does not perform outbound replicati on. An RODC cannot be the
primary domain controller (PDC) for its domain.

remote procedure call (RPC) : A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request -and - response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more informati on, see [C706].

root domain : The unique domain naming contexts (domain NCs) of an Active Directory forest that
is the parent of the forest's config NC. The config NC's relative distinguished name (RDN) is

"cn=Configuration" relative to the root object of t he root domain. The root domain is the domain
that is created first in a forest.

RPC client : A computer on the network that sends messages using remote procedure call (RPC) as
its transport, waits for responses, and is the initiator in an RPC exchange.

RPC protocol sequence : A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS -RPCE].

RPC server : A computer on the network that waits for messages, processes them when they
arrive, and sends responses using RPC as its transport acts as the responder during a remote
procedure call (RPC) exchange.

RPC transport : The underlying network services used by the remote procedu re call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

secret object : An element of the Local Security Authority (LSA) Policy Database, which contains a

value that is secret in that access to it is stric tly controlled through cryptographic protections

and restrictive access control mechanisms.

security descriptor : A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or
denied access. Applications use this structu re to set and query an object's security status. The

security descriptor is used to guard access to an object as well as to control which type of
auditing takes place when the object is accessed. The security descriptor format is specified in

12 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS -DTYP] sec tion 2.4.6; a string representation of security descriptors, called SDDL, is
specified in [MS -DTYP] section 2.5.1.

security identifier (SID) : An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is com posed of an account authority portion (typically a

domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS -DTYP] section 2.4.2; a string
representati on of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD] section 1.1.1.2.

security principal : A unique entity, also referred to as a principal, that can be authenticated by
Active Directory. It frequently corresponds to a human user, but also can b e a service that offers
a resource to other security principals. Other security principals might be a group, which is a set
of principals. Groups are supported by Active Directory.

Server Message Block (SMB) : A protocol that is used to request file and pri nt services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS -SMB].

server role : The state of a domain controller (DC), which can be one of two values -- primary DC or
backup DC.

service : A process or agent that is available on the network, offering resources or services for

clients. Examples of services include file servers, web servers, and so on.

system access control list (SAC L) : An access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's
SACL is controlled by a privilege typically held only by system administrators.

trust : To accep t another authority's statements for the purposes of authentication and
authorization, especially in the case of a relationship between two domains. If domain A trusts
domain B, domain A accepts domain B's authentication and authorization statements for

pr incipals represented by security principal objects in domain B; for example, the list of groups
to which a particular user belongs. As a noun, a trust is the relationship between two domains
described in the previous sentence.

trust attributes : A collectio n of attributes that define different characteristics of a trust within a
domain or a forest.

trusted domain : A domain that is trusted to make authentication decisions for security principals
in that domain.

trusted domain object (TDO) : A collection of pro perties that define a trust relationship with
another domain, such as direction (outbound, inbound, or both), trust attributes, name, and
security identifier of the other domain. For more information, see [MS -ADTS].

trusted forest : A forest that is trusted to make authentication statements for security principals in
that forest. Assuming forest A trusts forest B, all domains belonging to forest A will trust all
domains in forest B, subject to policy configuration.

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple

purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross -process communication such as client and server interfaces, manager
entry -point vectors, an d RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

13 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

MAY, SHOULD, MUST, SHOULD NOT, M UST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the corr ect section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section nu mbering by checking the Errata .

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with fi nding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[FIPS81] F IPS PUBS, "DES Modes of Operation", December 1980,
http://csrc.nist.gov/publications/fips/fips81/fips81.htm

[GRAY] Gray, J., and Reuter, A., "Transaction Processing: Concepts and Techniques", The Morgan
Kaufmann Series in Data Management Systems, San Francisco: Morgan Kaufmann Publishers, 1992,
Hardcover ISBN: 9781558601901.

[MS -ADA1] Microsoft Corporation, "Active Directory Schema Attributes A -L".

[MS -ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS -ADA3] Microsoft Corporation, "Active Directory Schema Attributes N -Z".

[MS -ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS -ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS -DTYP] Microsoft Corporation, "Windows Data Types".

[MS -ERREF] Microsoft Corporation, "Windows Error Codes".

[MS -GPEF] Microsoft Corporation, "Group Policy: Encrypting File System Extension".

[MS -GPSB] Microsoft Corporation, "Group Policy: Security Protocol Extension".

[MS -KILE] Microsoft Corporation, "Kerb eros Protocol Extensions".

[MS -LSAT] Microsoft Corporation, "Local Security Authority (Translation Methods) Remote Protocol".

[MS -NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS -RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Exte nsions".

[MS -SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client - to -
Server)".

[MS -SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS -SMB] Microsoft Corporation, "Server Message Block (S MB) Protocol".

14 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

[MS -WKST] Microsoft Corporation, "Workstation Service Remote Protocol".

[MSKB -3149090] Microsoft Corporation, "MS16 -047: Description of the security update for SAM and

LSAD remote protocols", April 2016, https://support.microsoft.com/en -us/k b/3149090

[MSKB -3155495] Microsoft Corporation, "You can't use the Active Directory shadow principal groups
feature for groups that are always filtered out in Windows", revision 2.0, May 2016,
https://support.microsoft.com/en -us/kb/3155495

[RFC1088] McLaug hlin III, L., "A Standard for the Transmission of IP Datagrams over NetBIOS
Networks", RFC 1088, February 1989, http://www.ietf.org/rfc/rfc1088.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1 997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961,
February 2005, http://www.ietf.org/rfc/rfc3961.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Ker beros Network Authentication
Service (V5)", RFC 4120, July 2005, http https ://www.rfc -editor.org/rfc/rfc4120.txt

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4 -HMAC Kerberos Encryption Types Used

by Microsoft Windows", RFC 4757, December 2006, http://www.ietf.org/rfc/rfc4757.txt

1.2.2 Informative References

[MS -DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol".

[MSFT -LSA- IDL] Microsoft Corporation, "Local Se curity Authority Merged IDL File", December 2015,
http://www.microsoft.com/downloads/details.aspx?displaylang=en&familyID=7700ad04 -866b -447a -
9e08 -21dbda94460f

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:

0471117099, http://www.wiley.com/WileyCDA/WileyTitle/productCd -0471117099.html

1.3 Overview

The Local Security Authority (Domain Policy) Remote Protocol provides a remote procedure call (RPC)
interface used for providing remote management for policy settings related to account objects, secret
objects, trusted domain objects (TDOs), and other miscellaneous security - related policy settings. The
client end of the Local Security Authority (Domain P olicy) Remote Protocol is an application that issues
method calls on the RPC interface. The server end of the Local Security Authority (Domain Policy)
Remote Protocol is a service that implements support for this RPC interface.

The following represent prim ary use cases for remote management:

Á Creating, deleting, enumerating, and modifying trusts, account objects, and secret objects.

Á Querying and modifying policy settings unrelated to TDOs, account objects or secret objects, such

as lifetimes of Kerberos tick ets.

This protocol is used by Windows clients for the "domain join" operation (as specified in [MS -ADTS]
section 6.4) as an implementation choice to achieve the end state, as specified in [MS -ADTS]. The
specific profile of the Local Security Authority (Dom ain Policy) Remote Protocol for the "domain join"
scenario is specified in section 1.6 as "Retrieval of policy settings by clients".

The server end of the Local Security Authority (Domain Policy) Remote Protocol can be implemented
on a domain controller (D C), including primary domain controllers (PDCs), backup domain controllers
(BDCs), global catalog servers (GC servers), and read -only domain controllers (RODCs), or on a non ï

15 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

domain controller. In the case of a DC, including PDCs, BDCs, GC servers, and RODC s, the server end
of this protocol can be in one of the forest functional levels. The behavior of the server end of the

Local Security Authority (Domain Policy) Remote Protocol is the same in these cases, except when
noted in the message processing descrip tions for the methods of this protocol. See sections 3.1.4.4.1,

3.1.4.4.3, 3.1.4.4.5, 3.1.4.7, 3.1.4.7.3, 3.1.4.7.4, 3.1.4.7.10, 3.1.4.7.14, and 3.1.4.7.16 for details.

This protocol is a simple request/response -based RPC protocol. Typically, there are no long - lived
sessions, although clients can cache the RPC connection and reuse it over time. A sample sequence of
requests and responses is specified in section 4.

It is helpful to consider two perspectives when understanding and implementing this protocol: an
object -based perspective and a method -based perspective.

The object -based perspective shows that the protocol exposes four main object abstractions: a policy

object, an account object, a secret object, and a trusted domain object. A requester obtains a "handle"
(an RPC context handle) to one of these objects and then performs one or more actions on the object.
The following is a brief listing of methods that operate on each of the respective object types.

Policy object:

Á LsarOpenPolicy2

Á LsarQueryInformationPolicy2

Á LsarSetInformationPolicy2

Á LsarClose

Á LsarQueryDomainInformationPolicy

Á LsarEnumeratePrivileges

Á LsarLookupPrivilegeName

Á LsarLookupPrivilegeValue

Á LsarLookupPrivilegeDisplayName

Á LsarSetDomainInformationPolicy

Á LsarQuerySecurityObject

Á LsarSetSecurityObject

Account object:

Á LsarCreateAccount

Á LsarOpenAccount

Á LsarEnumerateAccounts

Á LsarClose

Á LsarDeleteObject

Á LsarSetSystemAccessAccount

Á LsarQuerySecurityObject

Á LsarAddAccountRights

16 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á LsarRemoveAccountRights

Á LsarAddPrivilegesToAccount

Á LsarRemovePrivilegesFromAccount

Á LsarEnumerateAccountsWithUserRight

Á LsarGetSystemAccessAccount

Á LsarSetSecurityObject

Á LsarEnumeratePrivilegesAccount

Á LsarEnumerateAccountRights

Secret object:

Á LsarCreateSecret

Á LsarOpenSecret

Á LsarClos e

Á LsarDeleteObject

Á LsarRetrievePrivateData

Á LsarStorePrivateData

Á LsarSetSecret

Á LsarQuerySecret

Á LsarQuerySecurityObject

Á LsarSetSecurityObject

Trusted domain object:

Á LsarCreateTrustedDomainEx2

Á LsarOpenTrustedDomain

Á LsarClose

Á LsarDeleteObject

Á LsarOpenTrustedDomainByName

Á LsarDeleteTrustedDomain

Á LsarEnumerateTrustedDomainsEx

Á LsarQueryInfoTrustedDomain

Á LsarSetInformationTrustedDomain

Á LsarQueryForestTrustInformation

Á LsarSetForestTrustInformation

Á LsarQueryTrustedDomainInfo

17 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á LsarSetTrustedDomainInfo

Á LsarQueryTrustedDomainInfoByName

Á LsarSetTrustedDomainInfoByName

For example, to set a policy that controls the lifetime of Kerberos tickets, a requester opens a handle

to the Policy object and updates the maximum service ticket age policy setting via a parameter called
MaxServiceTicketAge . The call sequence from the requester appears as follows (with the parameter
information removed for brevity):

1. Send LsarOpenPolicy2 request; receive LsarOpenPolicy2 reply.

2. Send LsarQueryDomainInfor mationPolicy request; receive LsarQueryDomainInformationPolicy
reply.

3. Send LsarSetDomainInformationPolicy request; receive LsarSetDomainInformationPolicy reply.

4. Send LsarClose request; receive LsarClose reply.

The following is a brief explanation of the ca ll sequence:

1. Using the network address of a responder that implements this protocol, a requester makes an
LsarOpenPolicy2 request to obtain a handle to the policy object. This handle is necessary to
examine and manipulate domain policy information.

2. Using t he handle returned from LsarOpenPolicy2, the requester makes an

LsarQueryDomainInformationPolicy request to retrieve the current policy settings that affect
Kerberos tickets.

3. After modifying the portions of the Kerberos ticket policy information to suit th e requester, the
requester makes the LsarSetDomainInformationPolicy request to set the policy to the new values.

4. The requester closes the policy handle returned from LsarOpenPolicy2. This releases responder
resources associated with the handle.

In the meth od-based perspective, there is a common set of operations for each object type. The

operations fall into patterns. The following is a list of the patterns and associated methods, along with
a description of the pattern.

Á Open pattern : This pattern returns a n RPC context handle that references a specific object type.
A requester uses this pattern by specifying a specific access for the handle in the request and
using the returned handle to call other methods that require the returned handle and the
associated access. For example, calling the LsarSetSecret method requires a secret object handle
that has been opened with SECRET_WRITE access.

LsarOpenPolicy2 is distinguished from the other methods in this pattern in two ways. First, the
requestor calls this metho d before calling any other handle -based methods. Second, a network
address, rather than a context handle, is required to indicate the responder.

The following are the methods that follow the open pattern:

Á LsarOpenPolicy2

Á LsarOpenPolicy

Á LsarOpenAccount

Á LsarOpenSecret

Á LsarOpenTrustedDomain

18 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á LsarOpenTrustedDomainByName

Á Enumerate pattern : This pattern enables a requester to obtain a complete listing of all objects of

a certain type (account or trusted domain) or to get all values of a cert ain type out of an object
(for example, privileges known to the server).

The following are the methods that follow the enumerate pattern:

Á LsarEnumerateTrustedDomainsEx

Á LsarEnumerateAccounts

Á LsarEnumeratePrivileges

Á LsarEnumeratePrivilegesAccount

Á LsarEnu merateAccountRights

Á LsarEnumerateAccountsWithUserRight

Á Create pattern : Methods in this pattern enable specified objects to be created. A handle to the
newly created object is also returned.

The following are the methods that follow the create pattern:

Á LsarCreateAccount

Á LsarCreateSecret

Á LsarCreateTrustedDomainEx2

Á Query pattern : This pattern enables specified attributes of an object to be returned. The
requester indicates which attributes to return by specifying an "information class". This is an
enumerati on that the responder understands and translates to a specific structure to return (the
structure contains the attributes indicated by the information class).

For example, to retrieve the name of a trusted domain, a requester would specify the information
level "TrustedDomainNameInformation" to the LsarQueryTrustedDomainInfo method.

The following are the methods that follow the query pattern:

Á LsarQueryDomainInformationPolicy

Á LsarQueryForestTrustInformation

Á LsarQueryInformationPolicy2

Á LsarQuerySecret

Á LsarQueryTrustedDomainInfo

Á LsarQueryTrustedDomainInfoByName

Á LsarQueryInfoTrustedDomain

Á Set pattern : This pattern enables specified object attributes to be set. The requester makes a
request for which attributes to update by specifying an "information class". Similar to the Query
pattern, this information level allows the caller to specify to the responder which attributes are
being sent in the request.

The following are the methods that follow the set pattern:

19 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á LsarSetDomainInformationPolicy

Á LsarSetForestTrustInformation

Á LsarSetInformationPolicy2

Á LsarSetSecret

Á LsarAddPrivilegesToAccount

Á LsarRemovePrivilegesFromAccount

Á LsarAddAccountRights

Á LsarRemoveAccountRights

Á Delete pattern : This pattern enables a req uester to delete a specified object.

The following are the methods that follow the delete pattern:

Á LsarDeleteObject

Á LsarDeleteTrustedDomain

Á Lookup pattern : This pattern enables a caller to translate between different representations of
an entity (in the ca se of this protocol, names and identifiers of privileges).

The following are the methods that follow the lookup pattern:

Á LsarLookupPrivilegeName

Á LsarLookupPrivilegeValue

Á LsarLookupPrivilegeDisplayName

Á Security pattern : This pattern enables a caller to spec ify or query the access control at the level

of individual objects.

The following are the methods that follow the security pattern:

Á LsarSetSecurityObject

Á LsarQuerySecurityObject

Á Miscellaneous : The following method does not fall into a general pattern. A br ief description is

given here. See the message processing section for details.

LsarClose: This method releases responder resources associated with the RPC context handle that
is passed as a parameter.

1.4 Relationship to Other Protocols

The Local Security Authority (Domain Policy) Remote Protocol is composed of a subset of opnums in
an interface that also includes the Local Security Authority (Translation Meth ods) Remote Protocol
[MS -LSAT].

The Local Security Authority (Domain Policy) Remote Protocol is dependent on RPC, which is used for
communication between domain members and domain controllers.

This protocol shares the Domain Name field of the abstract data Account Domain Information, as

specified in section 3.1.1.1 of this specification, with the Workstation Service Remote Protocol [MS -
WKST].

20 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This protocol depends on Server Message Block (SMB) protocols for sending messages on the wire.

Authentication proto cols like the Kerberos Protocol Extensions [MS -KILE] and translation protocols like

the Directory Replication Service (DRS) Remote Protocol [MS -DRSR] and Local Security Authority
(Translation Methods) Remote Protocol [MS -LSAT] depend on the abstract data m odel introduced by

this protocol in section 3.1.1. These protocols use the information in the Local Security Authority
(Domain Policy) Remote Protocol to locate a domain that can process further requirements on that
protocol.

The Active Directory Technical Specification [MS -ADTS] discusses Active Directory, which is used by
this protocol when running on a domain controller.

The server -side protocol relationships for non -domain controller and domain controller configurations
are illustrated in the following diagrams.

Figure 1 : Server - side protocol relationships for a non - domain controller configuration

21 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Figure 2 : Server - side protocol relationships for a domain controller configuration

1.5 Prerequisites/Preconditions

This protocol has the prerequisites specified in [MS -RPCE] as being common to protocols that depend

on RPC.

1.6 Applicability Statement

This protocol is applicable to the following two high - level scenarios:

1. Remote management of trusted domains, account objects or secret objects, or other
miscellaneous machine and domain policy settings controlled by the pr otocol.

2. Retrieval of policy settings by clients.

To achieve the first scenario, this entire specification has to be implemented.

To achieve the second scenario, only RPC methods LsarOpenPolicy2 (section 3.1.4.4.1),
LsarOpenPolicy (section 3.1.4.4.2), LsarQ ueryInformationPolicy2 (section 3.1.4.4.3),
LsarQueryInformationPolicy (section 3.1.4.4.4), and LsarClose (section 3.1.4.9.4) (and associated

data structures specified in these method definitions) have to be implemented by a listener of this
protocol.

Alth ough significant protocol functionality is not dependent on server configuration, some functionality
might depend on server configuration. Certain aspects of this protocol might depend on the server
being a DC, including PDCs, BDCs, GC servers, and RODCs, or on being a non ïDC, and also on the
server reaching a certain forest functional level. These requirements are explained in their respective

message processing sections.

22 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

1.7 Versioning and Capability Negotiation

Á Supported transports : The protocol runs over RPC -named pipes and TCP/IP, as specified in
section 2.1.

Á Protocol version : This protocol's RPC interface has a single version number, but the interface
has been extended by placing additional methods at the end. The use of these methods is
specified in section 3.1.

Á Structure version : LSAPR_ACL (section 2.2.3.2) structures are versioned using the first field in
the structure. Only one version of those structures i s used in this protocol.

Á Localization : This protocol uses text strings in various functions. Localization considerations for
such strings are specified in section 3.1.1.2.1.

1.8 Vendor -Extensible Fields

This protocol uses NTSTATUS values as specified in [MS -ERREF] section 2.3. Vendors are free to

choose their own values for this field, provided that the C bit (0x20000000) is set, which indicates that

it is a customer code.

1.9 Standards Assignments

This protocol has no standards assignments. It uses private allocations for the RPC interface
universally unique identifier (UUID) and the RPC endpoint.

Parameter Value Reference

lsarpc Interface UUID {12345778 -1234 -ABCD-EF00-0123456789AB} [C706] section A.2.5.

RPC endpoint \ PIPE\ lsarpc section 2.1

23 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2 Messages

This section describes the supported transports and details of the messages defined for this protocol.

2.1 Transport

This protocol MUST use Server Message Block (SMB) RPC protocol sequences.

This protocol MUST use " \ PIPE\ lsarpc" as the RPC endpoint when using RPC over SMB. <1>

For authentication and authorization services, both the requester and responder of this protocol MUST
use the SMB t ransport to communicate the identity of the requester, as specified in [MS -SMB] section
3.2.4.2.4 and [MS -SMB2] section 3.2.4.2.3.

For confidentiality and tamper resistance services, the requester and responder MAY use the

functionality provided by the SMB transport, as specified in [MS -SMB] sections 2.2.3.1 and 2.2.4.5.2.1
and [MS -SMB2] sections 2.2.3 and 2.2.4. <2>

The requester MUST NOT use the RPC -provided security -support -provider mechanisms (for
authentication, authorization, confidentiality, or tamper - resistance services). <3>

The responder MAY use the RPC -provided security -support -provider mechanisms as specified in [MS -
RPCE] section 3.2.1.4.1.1. <4>

The server SHOULD <5> reject calls that do not use an authentication level of

RPC_C_AUTHN_LEVEL_NONE, RPC _C_AUTHN_LEVEL_PKT_INTEGRITY, or
RPC_C_AUTHN_LEVEL_PKT_PRIVACY ([MS -RPCE] section 2.2.1.1.8).

Cryptographic operations (as specified in section 5.1) MUST utilize a session key obtained from the
SMB session on the client or server.

This protocol MUST use th e UUID and version number as follows:

Á UUID: See Standards Assignments in section 1.9.

Á Version number: 0.0.

The security settings used in this protocol vary depending on the role of the RPC client and RPC
server, the function being used, and the specific pa rameters being used. Security settings are
therefore specified in message processing sections for each message.

This protocol SHOULD <6> configure RPC to enforce Maximum Server Input Data Size of 1 MB.
Additional details are available in [MS -RPCE] section 3 .3.3.5.4. This configuration introduces additional
restrictions on the upper limits for the sizes of data types defined under section 2.2 when those data

types are used in RPC messages.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the NDR and NDR64 transfer

syntaxes and provide a negotiation mechanism for determining which transfer syntax will be used, as

specified in [C706] section 12 and in [MS -RPCE] section 3.3.1.5.6.

This protocol contains messages with parameters that do not have any effect on message processing
in any environment; however, the parameters remain for backward compatibility of t he interfaces.
These will be called out as ignored in sections on data type definition, message definition, and
message processing. These values MUST be ignored on receipt and SHOULD be set to zero when sent,
unless specified otherwise.

24 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

In addition to RPC base types and definitions specified in [C706] and [MS -DTYP], other data types are
defined in this specification. <7>

The following lists summarize the types defined in this specification.

Note LUID, NTSTATUS, RPC_SID, and RPC_UNICODE_STRING are specified in [MS -DTYP] sections

2.3.7, 2.2.38, 2.4. 2.4.2.3, and 2.3.10, respectively.

Note The LARGE INTEGER structure, when it represents time in this protocol, is used as a 64 -bit
value that represents the number of 100 -nanosecon d intervals since January 1, 1601, Coordinated
Universal Time (UTC).

Constant value definitions:

Á ACCESS_MASK (section 2.2.1.1)

Á POLICY_SYSTEM_ACCESS_MODE (section 2.2.1.2)

Á SECURITY_INFORMATION (section 2.2.1.3)

Basic data types:

Á LSAPR_HANDLE (section 2.2.2.1)

Á PLSAPR_HANDLE (section 2.2.2.2)

Á LSA_UNICODE_STRING (section 2.2.2.3)

Á LSAPR_OBJECT_ATTRIBUTES (section 2.2.2.4)

Á LSAPR_SR_SECURITY_DESCRIPTOR (section 2.2.2.5)

Data types referenced by basic data types:

Á STRING (section 2.2.3.1)

Á LSAPR_ACL (section 2.2.3.2)

Á SECURITY_DESCRIPTOR_CONTROL (section 2.2.3.3)

Á LSAPR_SECURITY_DESCRIPTOR (section 2.2.3.4)

Á SECURITY_IMPERSONATION_LEVEL (section 2.2.3.5)

Á SECURITY_CONTEXT_TRACKING_MODE (section 2.2.3.6)

Á SECURITY_QUALITY_OF_SERVICE (section 2.2. 3.7)

Policy query/set data types:

Á POLICY_INFORMATION_CLASS (section 2.2.4.1)

Á LSAPR_POLICY_INFORMATION (section 2.2.4.2)

Á POLICY_AUDIT_LOG_INFO (section 2.2.4.3)

Á LSAPR_POLICY_AUDIT_EVENTS_INFO (section 2.2.4.4)

Á LSAPR_POLICY_PRIMARY_DOM_INFO (section 2.2.4.5)

Á LSAPR_POLICY_ACCOUNT_DOM_INFO (section 2.2.4.6)

Á LSAPR_POLICY_PD_ACCOUNT_INFO (section 2.2.4.7)

25 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á POLICY_LSA_SERVER_ROLE (section 2.2.4.8)

Á POLICY_LSA_SERVER_ROLE_INFO (section 2.2.4.9)

Á LSAPR_POLICY_REPLICA_SRCE_INFO (section 2.2.4.10)

Á POLICY_MODIFICATION_INF O (section 2.2.4.11)

Á POLICY_AUDIT_FULL_SET_INFO (section 2.2.4.12)

Á POLICY_AUDIT_FULL_QUERY_INFO (section 2.2.4.13)

Á LSAPR_POLICY_DNS_DOMAIN_INFO (section 2.2.4.14)

Á POLICY_DOMAIN_INFORMATION_CLASS (section 2.2.4.15)

Á LSAPR_POLICY_DOMAIN_INFORMATION (section 2.2.4.16)

Á POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO (section 2.2.4.17)

Á LSAPR_POLICY_DOMAIN_EFS_INFO (section 2.2.4.18)

Á LSAPR_DOMAIN_KERBEROS_TICKET_INFO (section 2.2.4. 19)

Á LSAPR_POLICY_MACHINE_ACCT_INFO (section 2.2.4.21)

Account query/set data types:

Á LSAPR_ACCOUNT_INFORMATION (section 2.2.5.1)

Á LSAPR_ACCOUNT_ENUM_BUFFER (section 2.2.5.2)

Á LSAPR_USER_RIGHT_SET (section 2.2.5.3)

Á LSAPR_LUID_AND_ATTRIBUTES (section 2.2.5.4)

Á LSAPR_PRIVILEGE_SET (section 2.2.5.5)

Secret query/set data types:

Á LSAPR_CR_CIPHER_VALUE (section 2.2.6.1)

Trusted domain query/set data types:

Á LSAPR_TRUST_INFORMATION (section 2.2.7.1)

Á TRUSTED_INFORMATION_CLASS (section 2.2.7.2)

Á LSAPR_TRUSTED_DOMAIN_INFO (section 2.2.7.3)

Á LSAPR_TRUSTED_DOMAIN_NAME_INFO (section 2.2.7.4)

Á LSAPR_TRUSTED_CONTROLLERS_INFO (section 2.2.7.5)

Á TRUSTED_POSIX_OFFSET_INFO (section 2.2.7.6)

Á LSAPR_TRUSTED_PASSWORD_INFO (section 2.2.7.7)

Á LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC (section 2. 2.7.8)

Á LSAPR_TRUSTED_DOMAIN_INFORMATION_EX (section 2.2.7.9)

Á LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 (section 2.2.7.10)

26 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION (section 2.2.7.11)

Á LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL (section 2.2.7.12)

Á LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION (section 2.2.7.13)

Á LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL (section 2.2.7.14)

Á LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 (section 2.2.7.15)

Á LSAPR_TRUSTED_DOMAIN_AUTH_BLOB (section 2.2.7.16)

Á LSAPR_AUTH_INFORMATION (s ection 2.2.7.17)

Á TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES (section 2.2.7.18)

Á LSAPR_TRUSTED_ENUM_BUFFER (section 2.2.7.19)

Á LSAPR_TRUSTED_ENUM_BUFFER_EX (section 2.2.7.20)

Á LSA_FOREST_TRUST_RECORD (section 2.2.7.21)

Á LSA_FOREST_TRUST_RECORD_TYPE (section 2.2. 7.22)

Á LSA_FOREST_TRUST_BINARY_DATA (section 2.2.7.23)

Á LSA_FOREST_TRUST_DOMAIN_INFO (section 2.2.7.24)

Á LSA_FOREST_TRUST_INFORMATION (section 2.2.7.25)

Á LSA_FOREST_TRUST_COLLISION_RECORD_TYPE (section 2.2.7.26)

Á LSA_FOREST_TRUST_COLLISION_RECORD (section 2.2.7 .27)

Á LSA_FOREST_TRUST_COLLISION_INFORMATION (section 2.2.7.28)

Privilege data types:

Á LSAPR_POLICY_PRIVILEGE_DEF (section 2.2.8.1)

Á LSAPR_PRIVILEGE_ENUM_BUFFER (section 2.2.8.2)

The following citation contains a timeline of when each structure, data type, or enumeration was
introduced. <8>

2.2.1 Constant Value Definitions

2.2.1.1 ACCESS_MASK

The ACCESS_MASK data type is a bitmask that defines the user rights that an object is to be granted.
Access types are reconciled with the discretionary access control list (DACL) of the object to determine

whether the access requested is assigned or denied.

The ACCESS_MASK data type is defined in [MS -DTYP] section 2.4.3. The following declaration is an
alternative definition.

This type is declared as follows:

 typedef unsigned long ACCESS_MASK;

27 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1.1.1 ACCESS_MASK for All Objects

Certain ACCESS_MASK flags apply equally to all types of objects. These flags are described in the
following table.

Value Meaning

DELETE

0x00010000

Delete object.

READ_CONTROL

0x00020000

The read value of a DACL and owner in a security descriptor.

WRITE_DAC

0x00040000

The write value of a DACL in a security descriptor.

WRITE_OWNER

0x00080000

The write value of the owner in a security descriptor.

MAXIMUM_ALLOWED

0x02000000

Used in requesting access; get as much access as the server will allow.

The four high -order bits in ACCESS_MASK values are translated by the responder into specific
ACCESS_MASK values using the following tables, depending on the type of the object that the
operation is performed on. For numeri c values of the symbolic names used in these tables, refer to
section 2.2.1.1.2 for policy objects, section 2.2.1.1.3 for account objects, section 2.2.1.1.4 for secret

objects, and section 2.2.1.1.5 for trusted domain objects. In the following tables, the symbol '|' is
used to indicate that the value represented by the symbol is to be logically combined by using the
bitwise OR operation with the other operant.

ACCESS_MASK
value to be
translated Translated to when used with policy object

0x80000000 POLICY_VIEW_AUDIT_INFORMATION | POLICY_GET_PRIVATE_INFORMATION |
READ_CONTROL

0x00020006

0x40000000 POLICY_TRUST_ADMIN | POLICY_CREATE_ACCOUNT | POLICY_CREATE_SECRET |
POLICY_CREATE_PRIVILEGE | POLICY_SET_DEFAULT_QUOTA_LIMITS |
POLICY_SET_AUDIT_REQUIREMENTS | POLICY_AUDIT_LOG_ADMIN |
POLICY_SERVER_ADMIN | READ_CONTROL

0x000207F8

0x20000000 POLICY_VIEW_LOCAL_INFORMATION | POLICY_LOOKUP_NAMES | READ_CONTROL

0x00020801

0x10000000 POLICY_VIEW_LOCAL_INFORMATION | POLICY_VIEW_AUDIT_ INFORMATION |
POLICY_GET_PRIVATE_INFORMATION | POLICY_TRUST_ADMIN |
POLICY_CREATE_ACCOUNT | POLICY_CREATE_SECRET | POLICY_CREATE_PRIVILEGE |
POLICY_SET_DEFAULT_QUOTA_LIMITS | POLICY_SET_AUDIT_REQUIREMENTS |
POLICY_AUDIT_LOG_ADMIN | POLICY_SERVER_ADMIN | PO LICY_LOOKUP_NAMES |
DELETE | READ_CONTROL | WRITE_DAC | WRITE_OWNER

0x000F0FFF

28 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ACCESS_MASK value
to be translated Translated to when used with account object

0x80000000 ACCOUNT_VIEW | READ_CONTROL

0x00020001

0x40000000 ACCOUNT_ADJUST_PRIVILEGES | ACCOUNT_ADJUST_QUOTAS |
ACCOUNT_ADJUST_SYSTEM_ACCESS | READ_CONTROL

0x0002000E

0x20000000 READ_CONTROL

0x00020000

0x10000000 ACCOUNT_VIEW | ACCOUNT_ADJUST_PRIVILEGES | ACCOUNT_ADJUST_QUOTAS |
ACCOUNT_ADJUST_SYSTEM_ACCESS | DE LETE | READ_CONTROL | WRITE_DAC |
WRITE_OWNER

0x000F000F

ACCESS_MASK value to be
translated Translated to when used with secret object

0x80000000 SECRET_QUERY_VALUE | READ_CONTROL

0x00020002

0x40000000 SECRET_SET_VALUE | READ_CONTROL

0x00020001

0x20000000 READ_CONTROL

0x00020000

0x10000000 SECRET_QUERY_VALUE | SECRET_SET_VALUE | DELETE | READ_CONTROL |
WRITE_DAC | WRITE_OWNER

0x000F0003

ACCESS_MASK
value to be
translated Translated to when used with trusted domain object

0x80000000 TRUSTED_QUERY_DOMAIN_NAME | READ_CONTROL

 0x00020001

0x40000000 TRUSTED_SET_CONTROLLERS | TRUSTED_SET_POSIX | READ_CONTROL

0x00020014

0x20000000 TRUSTED_QUERY_CONTROLLERS | TRUSTED_QUERY_POSIX | READ_CONTROL

0x0002000A

0x10000000 TRUSTED_QUERY_DOMAIN_NAME | TRUSTED_QUERY_CONTROLLERS |
TRUSTED_SET_CONTROLLERS | TRUSTED_QUERY_POSIX | TRUSTED_SET_POSIX |
TRUSTED_SET_AUTH | TRUSTED_QUERY_AUTH | DELETE | READ_CONTROL |
WRITE_DAC | WRITE_OWNER

0x000F007F

29 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1.1.2 ACCESS_MASK for Policy Objects

The following ACCESS_MASK flags apply to policy objects.

Value Meaning

0x00000000 No access.

POLICY_VIEW_LOCAL_INFORMATION

0x00000001

Access to view local information.

POLICY_VIEW_AUDIT_INFORMATION

0x00000002

Access to view audit information.

POLICY_GET_PRIVATE_INFORMATION

0x00000004

Access to view private information.

POLICY_TRUST_ADMIN

0x00000008

Access to administer trust relationships.

POLICY_CREATE_ACCOUNT

0x00000010

Access to create account objects.

POLICY_CREATE_SECRET

0x00000020

Access to create secret objects.

POLICY_CREATE_PRIVILEGE

0x00000040

Access to create privileges.

Note New privilege creation is not currently a part of the protocol, so
this flag is not actively used.

POLICY_SET_DEFAULT_QUOTA_LIMITS

0x00000080

Access to set default quota limits.

Note Quota limits are not currently a part of the protocol, so this flag
is not actively used.

POLICY_SET_AUDIT_REQUIREMENTS

0x00000100

Access to set audit requirements.

POLICY_AUDIT_LOG_ADMIN

0x00000200

Access to administer the audit log.

POLICY_SERVER_ADMIN

0x00000400

Access to administer policy on the server.

POLICY_LOOKUP_NAMES

0x00000800

Access to translate names and security identifiers (SIDs).

POLICY_NOTIFICATION

0x00001000

Access to be notified of policy changes. <9>

2.2.1.1.3 ACCESS_MASK for Account Objects

The following ACCESS_MASK flags apply to account objects.

 Value Meaning

ACCOUNT_VIEW View account information.

30 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Value Meaning

0x00000001

ACCOUNT_ADJUST_PRIVILEGES

0x00000002

Change privileges on an account.

ACCOUNT_ADJUST_QUOTAS

0x00000004

Change quotas on an account.

ACCOUNT_ADJUST_SYSTEM_ACCESS

0x00000008

Change system access.

2.2.1.1.4 ACCESS_MASK for Secret Objects

The following ACCESS_MASK flags apply to secret objects.

Value Meaning

SECRET_SET_VALUE

0x00000001

Set secret value.

SECRET_QUERY_VALUE

0x00000002

Query secret value.

2.2.1.1.5 ACCESS_MASK for Trusted Domain Objects

The following ACCESS_MASK flags apply to trusted domain objects. <10>

Value Meaning

TRUSTED_QUERY_DOMAIN_NAME

0x00000001

View domain name information.

TRUSTED_QUERY_CONTROLLERS

0x00000002

View "Domain Controllers" information.

TRUSTED_SET_CONTROLLERS

0x00000004

Change "Domain Controllers" information.

TRUSTED_QUERY_POSIX

0x00000008

View POSIX information.

TRUSTED_SET_POSIX

0x00000010

Change POSIX information.

TRUSTED_SET_AUTH

0x00000020

Change authentication information.

TRUSTED_QUERY_AUTH

0x00000040

View authentication information.

31 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.1.2 POLICY_SYSTEM_ACCESS_MODE

The POLICY_SYSTEM_ACCESS_MODE data type determines the way in which a user (member of a
group or alias) is allowed to access the system. All values can be combined in any way by using

bitwise OR operations.

Value Meaning

0x000000 00 No access

The user is not granted any access to the system.

POLICY_MODE_INTERACTIVE

0x00000001

The user can logon locally to the system.

POLICY_MODE_NETWORK

0x00000002

The user can logon to the system over the network.

POLICY_MODE_BATCH

0x00000004

The user can logon to the system as a batch job.

0x00000008 Reserved

POLICY_MODE_SERVICE

0x00000010

The user can logon to the system as a service.

0x00000020 Reserved

POLICY_MODE_DENY_INTERACTIVE

0x00000040

The user is denied the right to interactively logon to the system.
This setting supersedes POLICY_MODE_INTERACTIVE.

POLICY_MODE_DENY_NETWORK

0x00000080

The user is denied the right to logon to the system from the
network. This setting supersedes POLICY_MODE_NETWORK.

POLICY_MODE_DENY_BATCH

0x00000100

The user is denied the right to logon to the system as a batch
job. This setting supersedes POLICY_MODE_BATCH.

POLICY_MODE_DENY_SERVICE

0x00000200

The user is denied the right to logon to the system as a service.
This setting supersedes POLICY_MODE_SERVICE.

POLICY_MODE_REMOTE_INTERACTIVE

0x00000400

The user can logon to the system as a Remote Desktop client.

POLICY_MODE_DENY_REMOTE_INTERACTIVE

0x00000800

The user is denied the right to logon to the system as a Re mote
Desktop client.

POLICY_MODE_ALL

0x00000FF7

This flag indicates all allowed bits. <11>

POLICY_MODE_ALL_NT4

0x00000037

This flag indicates all allowed bits. <12>

The following citation contains a timeline of when each mode was introduced. <13>

2.2.1.3 SECURITY_INFORMATION

The SECURITY_INFORMATION type is used to specify which portions of a security descriptor the caller
would like to retrieve or set on an object.

32 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The SECURITY_INFORMATION data type is defined in [MS -DTYP] section 2.4.7. The following
dec laration is an alternative definition.

This type is declared as follows:

 typedef unsigned long SECURITY_INFORMATION;

The following table defines the bits that are relevant to the Local Security Authority (Domain Policy)
Remote Protocol.

Value Meaning

OWNER_SECURITY_INFORMATION

0x00000001

Return the Owner portion of the security descriptor.

GROUP_SECURITY_INFORMATION

0x00000002

Return the Group portion of the security descriptor.

DACL_SECURITY_INFORMATION

0x00000004

Return the DACL portion of the security descriptor.

SACL_SECURITY_INFORMATION

0x00000008

Return the SACL portion of the security descriptor.

Other values SHOULD NOT be set.

The server honors the request to set or retrieve security information only if the caller has the

appropriate rights to the object.

The following table lists the SECURITY_INFORMATION bits and the corresponding user rights required
of the caller requesting to query information.

Security information access
requested

Rights required of caller on
server

Privileges required of caller on
server

OWNER_SECURITY_INFORMATION READ_CONTROL Does not apply.

GROUP_SECURITY_INFORMATION READ_CONTROL Does not apply.

DACL_SECURITY_INFORMATION READ_CONTROL Does not apply.

SACL_SECURITY_INFORMATION Does not apply. Security privilege.

The following table lists the SECURITY_INFORMATION bits and the corresponding user rights required
of the caller requesting to set information.

Security information access
requested

Rights req uired of
caller on server Privileges required of caller on server

OWNER_SECURITY_INFORMATION WRITE_OWNER Take ownership privilege.

Note Either the access bit or the privilege is
sufficient; the caller does not need both.

GROUP_SECURITY_INFORMATION WRITE_OWNER Take -ownership privilege.

DACL_SECURITY_INFORMATION WRITE_DAC Does not apply.

SACL_SECURITY_INFORMATION Does not apply. Security privilege.

33 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.2 Basic Data Types

2.2.2.1 LSAPR_HANDLE

The LSAPR_HANDLE type defines a context handle (as specified in [C706] section 6) to the target

server.

This type is declared as follows:

 typedef [context_handle] void* LSAPR_HANDLE;

Note For information about the relevance of the context_handle attribute in this data type, see
section 3.1.1.7.

2.2.2.2 PLSAPR_HANDLE

The PLSAPR_HANDLE type defines a pointer to a context handle (as specified in [C706] section 6).

This type is declared as follows:

 typedef LSAPR_HANDLE* PLSAPR_HANDLE;

2.2.2.3 LSA_UNICODE_STRING

The LSA_UNICODE_STRING type is identical to RPC_UNICODE_STRING, as specified in [MS -DTYP]
section 2.3.10.

This type is declared as follows:

 typedef RPC_UNICODE_STRING LSA_UNICODE_STRING, *PLSA_UNICODE_STRING;

2.2.2.4 LSAPR_OBJECT_ATTRIBUTES

The LSAPR_OBJECT_ATTRIBUTES structure specifies an object and its properties. This structure MUST
be ignored except for the RootDirectory field, which MUST be NULL. <14>

 typedef struct _LSAPR_OBJECT_ATTRIBUTES {

 unsigned long Length;

 unsigned char* RootDirectory;

 PSTRING ObjectName;

 unsigned long Attributes;

 PLSAPR_SECURITY_DESCRIPTOR SecurityDescriptor;

 PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService;

 } LSAPR_OBJECT_ATTRIBUTES,

 *PLSAPR_OBJECT_ATTRIBUTES;

Length: The le ngth of the structure, in bytes. This field is not used and MUST be ignored.

RootDirectory: This field is not used and MUST be NULL.

34 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ObjectName: A pointer to a STRING structure that contains the object name. This field MUST be
ignored. The content is unspecified and no requirements are placed on its value because it is

never used.

Attributes: This field MUST be ignored. The content is unspecified and no requirements are placed

on its value because it is never used.

SecurityDescriptor: This field cont ains the security attributes of the object. This field MUST be
ignored. The content is unspecified and no requirements are placed on its value because it is
never used.

SecurityQualityOfService: This field MUST be ignored. The content is unspecified and n o
requirements are placed on its value because it is never used.

2.2.2.5 LSAPR_SR_SECURITY_DESCRIPTOR

The LSAPR_SR_SECURITY_DESCRIPTOR structure is used to communicate a self - relati ve security
descriptor, as specified in [MS -DTYP] section 2.4.6.

 typedef struct _LSAPR_SR_SECURITY_DESCRIPTOR {

 [range(0, 262144)] unsigned long Length;

 [size_is(Length)] unsigned char* SecurityDescriptor;

 } LSAPR_SR_SECURITY_DESCRIPTOR,

 *PLSAPR_SR_SECURITY_DESCRIPTOR;

Length: The count of bytes in SecurityDescriptor. <15>

SecurityDescriptor: The contiguous buffer containing the self - relative security descriptor. This field
MUST contain the Length number of bytes. If the Length field has a value other than 0, this field
MUST NOT be NULL.

2.2.3 Data Types Referenced by Basic Data Types

2.2.3.1 STRING

The STRING structure holds a counted string encoded in the OEM code page.

This structure has no effect on message processing in any environment.

 typedef struct _STRING {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength), length_is(Length)]

 char* Buffer;

 } STRING,

 *PSTRING;

Length: The length, in bytes, of the string pointed to b y the Buffer member, not including the
terminating null character (if any).

MaximumLength: This field contains the total number of bytes in the Buffer field.

Buffer: A pointer to the actual string. If Length is greater than 0, this field MUST contain a n on-
NULL value. If Length is 0, this field MUST be ignored.

35 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.3.2 LSAPR_ACL

The LSAPR_ACL structure defines the header of an access control list (ACL) that specifies a list of
security protections applied to an object.

This structure has no effect on message processing in any environment.

 typedef struct _LSAPR_ACL {

 unsigned char AclRevision;

 unsigned char Sbz1;

 unsigned short AclSize;

 [size_is(AclSize - 4)] unsigned char Dummy1[*];

 } LSAPR_ACL,

 *PLSAPR_ACL;

AclRevision: The revision level of the LSAPR_ACL structure. This field MUST be ignored. The content

is unspecified, and no requirements are placed on its value because it is never used.

Sbz1: This field is used for alignment. This field MUST be igno red. The content is unspecified, and no
requirements are placed on its value because it is never used.

AclSize: The size of this structure in bytes, including the size of the variable sized Dummy1 field.

Dummy1: This field MUST be ignored. The content i s unspecified, and no requirements are placed on
its value because it is never used.

The ACL structure is specified in [MS -DTYP] section 2.4.5.

2.2.3.3 SECURITY_DESCRIPTOR_CONTROL

The SECURITY_DESCRIPTOR_CONTROL type contains a set of bit flags that qualify the me aning of a
security descriptor or its components.

This type has no effect on message processing in any environment.

This type is declared as follows:

 typedef unsigned short SECURITY_DESCRIPTOR_CONTROL, *PSECURITY_DESCRIPTOR_CONTROL;

The flags that are us ed with this type are as specified in [MS -DTYP] section 2.4.6, under the Control
member of the SECURITY_DESCRIPTOR structure.

2.2.3.4 LSAPR_SECURITY_DESCRIPTOR

The LSAPR_SECURITY_DESCRIPT OR structure defines an object's security descriptor.

This structure has no effect on message processing in any environment.

 typedef struct _LSAPR_SECURITY_DESCRIPTOR {

 unsigned char Revision;

 unsigned char Sbz1;

 SECURITY_DESCRIPTOR_CONTROL Control;

 PRPC_SID Owner;

 PRPC_SID Group;

 PLSAPR_ACL Sacl;

 PLSAPR_ACL Dacl;

 } LSAPR_SECURITY_DESCRIPTOR,

 *PLSAPR_SECURITY_DESCRIPTOR;

36 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Revision: The security descriptor revision level. This field MUST be ignored. The content is
unspecified, and no requirements are placed on its value because it is never used.

Sbz1: This field is used for alignment. This field MUST be ignored. The content is unspecified, and no
requirements are placed on its value because it is never used.

Control: A set of flags (as specified in section 2.2.3.3) that qualify the meaning of the security
descriptor or its individual fields.

Owner: A pointer to the RPC_SID structure that represents an object's owner as a SID.

Group: A poin ter to the RPC_SID structure that represents an object's primary group as a SID.

Sacl: A pointer to an ACL structure (as specified in 2.2.3.2) that contains a system access control list
(SACL).

Dacl: A pointer to an ACL structure that contains a discreti onary access control list (DACL).

The SECURITY_DESCRIPTOR structure is specified in [MS -DTYP] section 2.4.6.

2.2.3.5 SECURITY_IMPERSONATION_LEVEL

The SECURITY_IMPERSONATION_LEVEL enumeration defines a set of values t hat specifies security

impersonation levels. These levels govern the degree to which a server process can act on behalf of a
client process.

This enumeration has no effect on message processing in any environment.

 typedef enum _SECURITY_IMPERSONATION_LEVE L

 {

 SecurityAnonymous = 0,

 SecurityIdentification = 1,

 SecurityImpersonation = 2,

 SecurityDelegation = 3

 } SECURITY_IMPERSONATION_LEVEL,

 *PSECURITY_IMPERSONATION_LEVEL;

SecurityAnonymous: The server cannot obtain information about the client and cannot impersonate
the client.

SecurityIdentification: The server can obtain information such as security identifiers and privileges,

but the server cannot impersonate the client.

SecurityImpersonation: The server can impersonate the client's security co ntext on its local
system, but cannot impersonate the client when communicating with services on remote systems.

SecurityDelegation: The server can impersonate the client's security context when communicating
with services on remote systems.

2.2.3.6 SECURITY_CONTEXT_TRACKING_MODE

The SECURITY_CONTEXT_TRACKING_MODE type specifies whether the server is to be given a
snapshot of the client's security context (called "static tracking") or is to be continually updated to
track changes to the client's secur ity context (called "dynamic tracking").

This structure has no effect on message processing in any environment and SHOULD be ignored.

This type is declared as follows:

37 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef unsigned char SECURITY_CONTEXT_TRACKING_MODE, *PSECURITY_CONTEXT_TRACKING_MODE;

The following values are possible.

Value Meaning

0x00 The server is given a snapshot of the client's security context.

0x01 The server is continually updated with changes.

All other values SHOULD be ignored.

2.2.3.7 SECURITY_QUALITY_OF_SERVICE

The SECURITY_QUALITY_OF_SERVICE structure defines information used to support client
impersonation.

This structure has no effect on message processing in any environment.

 typedef struct _SECURITY_QUALITY_OF_SERVICE {

 unsigned long Length;

 SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;

 SECURITY_CONTEXT_TRACKING_MODE ContextTrackingMode;

 unsigned char EffectiveOnly;

 } SECURITY_QUALITY_ OF_SERVICE,

 *PSECURITY_QUALITY_OF_SERVICE;

Length: This value MUST be ignored. No requirements are placed on its value because it is never
used.

ImpersonationLevel: This field contains information (as specified in section 2.2.3.5) given to the
server ab out the client that describes how the server can represent, or impersonate, the client.

ContextTrackingMode: This field specifies how the server tracks changes to the client's security

context (as specified in section 2.2.3.6).

EffectiveOnly: This field specifies whether the server can enable or disable privileges and groups
that the client's security context might include. This value MUST be TRUE (nonzero) if the server
has this right; otherwise, it MUST be FALSE (0).

2.2.4 Policy Query/Set Data Types

2.2.4.1 POLICY_I NFORMATION_CLASS

The POLICY_INFORMATION_CLASS enumeration type contains values that specify the type of policy
being queried or set by the client.

 typedef enum _POLICY_INFORMATION_CLASS

 {

 PolicyAuditLogInforma tion = 1,

 PolicyAuditEventsInformation,

 PolicyPrimaryDomainInformation,

 PolicyPdAccountInformation,

 PolicyAccountDomainInformation,

 PolicyLsaServerRoleInformation,

 PolicyReplicaSourceInformation,

 PolicyInformationNotUsedOnWire,

38 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 PolicyModifi cationInformation,

 PolicyAuditFullSetInformation,

 PolicyAuditFullQueryInformation,

 PolicyDnsDomainInformation,

 PolicyDnsDomainInformationInt,

 PolicyLocalAccountDomainInformation,

 PolicyMachineAccountInformation,

 PolicyLastEntry

 } POLICY_INFORMATION_CLASS,

 *PPOLICY_INFORMATION_CLASS;

PolicyAuditLogInformation: Information about audit log.

PolicyAuditEventsInformation: Auditing options.

PolicyPrimaryDomainInformation: Primary do main information.

PolicyPdAccountInformation: Obsolete information class.

PolicyAccountDomainInformation: Account domain information.

PolicyLsaServerRoleInformation: Server role information.

PolicyReplicaSourceInformation: Replica source information.

Polic yInformationNotUsedOnWire: This enumeration value does not appear on the wire.

PolicyModificationInformation: Obsolete information class.

PolicyAuditFullSetInformation: Obsolete information class.

PolicyAuditFullQueryInformation: Audit log state.

PolicyDns DomainInformation: DNS domain information.

PolicyDnsDomainInformationInt: DNS domain information.

PolicyLocalAccountDomainInformation: Local account domain information.

PolicyMachineAccountInformation : Machine account information.

PolicyLastEntry: Not used in this protocol. Present to mark the end of the enumeration.

The following citation contains a timeline of when each enumeration value was introduced. <16>

The values in this enumeration are used to define the contents of the

LSAPR_POLICY_INFORMATION (sec tion 2.2.4.2) union, where the structure associated with each
enumeration value is specified. The structure associated with each enumeration value defines the
meaning of that value to this protocol.

2.2.4.2 LSAPR_POLICY_INFORMATION

The LSAPR_POLICY_INFORMATION uni on is defined as follows, where the structure depends on the
POLICY_INFORMATION_CLASS specified in this message.

 typedef

 [switch_type(POLICY_INFORMATION_CLASS)]

 union _LSAPR_POLICY_INFORMATION {

 [case(PolicyAuditLogInformation)]

 POLICY_AUDIT_LOG_INFO PolicyAuditLogInfo;

 [case(PolicyAuditEventsInformation)]

 LSAPR_POLICY_AUDIT_EVENTS_INFO PolicyAuditEventsInfo;

39 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [case(PolicyPrimaryDomainInformation)]

 LSAPR_POLICY_PRIMARY_DOM_INFO PolicyPrimaryDomainInfo;

 [case(PolicyAccountDomainInformation)]

 LSAPR_POLICY_ACCOUNT_DOM_INFO PolicyAccountDomainInfo;

 [case(PolicyPdAccountInformation)]

 LSAPR_POLICY_PD_ACCOUNT_INFO PolicyPdAccountInfo;

 [case(PolicyLsaServerRoleInformation)]

 POLICY_LSA_SERVER_ROLE_INFO PolicyServerRoleInfo;

 [case(PolicyReplicaSourceInformation)]

 LSAPR_POLICY_REPLICA_SRCE_INFO PolicyReplicaSourceInfo;

 [case(PolicyModificationInformation)]

 POLICY_MODIFICATION_INFO PolicyModificationInfo;

 [case(PolicyAuditFullSetInformation)]

 POLICY_AUDIT_FULL_SET_INFO PolicyAuditFullSetInfo;

 [case(PolicyAuditFullQueryInformation)]

 POLICY_AUDIT_FULL_QUERY_INFO PolicyAuditFullQueryInfo;

 [case(PolicyDnsDomainInformation)]

 LSAPR_POLICY_DNS_DOMAIN_INFO PolicyDnsDomainInfo;

 [case(PolicyDnsDomainInformationInt)]

 LSAPR_POLICY_DNS_DOMAIN_INFO PolicyDnsDomainInfoInt;

 [case(PolicyLocalAccountDomainInform ation)]

 LSAPR_POLICY_ACCOUNT_DOM_INFO PolicyLocalAccountDomainInfo;

 [case(PolicyMachineAccountInformation)]

 LSAPR_POLICY_MACHINE_ACCT_INFO PolicyMachineAccountInfo;

 } LSAPR_POLICY_INFORMATION,

 *PLSAPR_POLICY_INFORMATION;

2.2.4.3 POLICY_AUDIT_LOG_INFO

The POLICY_AUDIT_LOG_INFO structure contains information about the state of the audit log. The
following structure corresponds to the Po licyAuditLogInformation information class.

 typedef struct _POLICY_AUDIT_LOG_INFO {

 unsigned long AuditLogPercentFull;

 unsigned long MaximumLogSize;

 LARGE_INTEGER AuditRetentionPeriod;

 unsigned char AuditLogFullShutdownInProgress;

 LARGE_INTEGER Ti meToShutdown;

 unsigned long NextAuditRecordId;

 } POLICY_AUDIT_LOG_INFO,

 *PPOLICY_AUDIT_LOG_INFO;

AuditLogPercentFull: A measure of how full the audit log is, as a percentage.

MaximumLogSize: The maximum size of the auditing log, in kilobytes (KB).

Aud itRetentionPeriod: The auditing log retention period (64 -bit signed integer), a 64 -bit value that
represents the number of 100 -nanosecond intervals since January 1, 1601, UTC. An audit record
can be discarded if its time stamp predates the current time mi nus the retention period.

AuditLogFullShutdownInProgress: A Boolean flag; indicates whether or not a system shutdown is
being initiated due to the security audit log becoming full. This condition occurs only if the system

is configured to shut down when t he log becomes full.

After a shutdown has been initiated, this flag MUST be set to TRUE (nonzero). If an administrator
can correct the situation before the shutdown becomes irreversible, this flag MUST be reset to
FALSE (0).

This field MUST be ignored fo r set operations.

40 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

TimeToShutdown: A 64 -bit value that represents the number of 100 -nanosecond intervals since
January 1, 1601, UTC. If the AuditLogFullShutdownInProgress flag is set, this field MUST contain

the time left before the shutdown becomes irreve rsible.

NextAuditRecordId: Not in use. This field SHOULD be set to zero when sent, and MUST be ignored

on receipt.

2.2.4.4 LSAPR_POLICY_AUDIT_EVENTS_INFO

The LSAPR_POLICY_AUDIT_EVENTS_INFO structure contains auditing options on the server.

 typedef struct _LSAPR_POLICY_AUDIT_EVENTS_INFO {

 unsigned char AuditingMode;

 [size_is(MaximumAuditEventCount)]

 unsigned long* EventAuditingOptions;

 [range(0,1000)] unsigned long MaximumAuditEventCount;

 } LSAPR_POLICY_AUDIT_EVENTS_INFO,

 *PLSAPR_POLICY_AUDIT_EVENTS_INFO;

AuditingMode: 0 indicates that auditing is disabled. All other values indicate that auditing is
enabled.

EventAuditingOptions: An array of values specifying the auditing options for a particular audit type.

The auditing type of an element is represented by its index in the array, which is identified by the
POLICY_AUDIT_EVENT_TYPE enumeration (see section 2.2.4.20). Each element MUST contain one
or more of the values in the table below.

If the MaximumAuditingEventCount field has a value other than 0, this field MUST NOT be
NULL.

Value Meaning

POLICY_AUDIT_EVENT_UNCHANGED

0x00000000

Leave existing auditing options unchanged for events of this type;
used only for set operations. This value cannot be combined with
values in this table.

POLICY_AUDIT_EVENT_NONE

0x00000004

Upon updates, this value causes the existing auditing options for
events of this type to be deleted and replaced with any other new
values specified. If specified by itself, this value cancels all auditing
options for events of this type. This value is used only for set
operations.

POLICY_AUDIT_EVENT_SUCCESS

0x00000001

When auditing is enabled, audit all successful occurrences of events
of the given type.

POLICY_AUDIT_EVENT_FAILURE

0x00000002

When auditing is enabled, audit all unsuccessful occurrences of
events of the given type.

MaximumAuditEventCount: The number of entr ies in the EventAuditingOptions array. <17>

2.2.4.5 LSAPR_POLICY_PRIMARY_DOM_INFO

The LSAPR_POLICY_PRIMARY_DOM_INFO structure defines the server's primary domain.

The following st ructure corresponds to the PolicyPrimaryDomainInformation information class.

 typedef struct _LSAPR_POLICY_PRIMARY_DOM_INFO {

 RPC_UNICODE_STRING Name;

 PRPC_SID Sid;

41 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 } LSAPR_POLICY_PRIMARY_DOM_INFO,

 *PLSAPR_POLICY_PRIMARY_DOM_INFO;

Name: This field con tains a name for the primary domain that is subject to the restrictions of a
NetBIOS name, as specified in [RFC1088]. The value SHOULD be used (by implementations
external to this protocol) to identify the domain via the NetBIOS API, as specified in [RFC10 88].

Sid: The SID of the primary domain.

2.2.4.6 LSAPR_POLICY_ACCOUNT_DOM_INFO

The LSAPR_POLICY_ACCOUNT_DOM_INFO structure contains information about the server's account
domain. The following structure corresponds to the PolicyAccountDomainInformation and
PolicyLocalAccountDomainInformation information classes.

 typedef struct _LSAPR_POLICY_ACCOUNT_DOM_INFO {

 RPC_UNICODE_STRING DomainName;

 PRPC_SID DomainSid;

 } LSAPR_POLICY_ACCOUNT_DOM_INFO,

 *PLSAPR_POLICY_ACCOUNT_DOM_INFO;

DomainName: This field contains a name for the account domain that is subjected to the restrictions
of a NetBIOS name, as specified in [RFC1088]. This value SHOULD be used (by implementations
external to this protocol) to identify the domain via the NetBIOS API, as specified in [RFC1088].

DomainSid: The SID of the account domain. This field MUST NOT be NULL.

2.2.4.7 LSAPR_POLICY_PD_ACCOUNT_INFO

The LSAPR_POLICY_PD_ACCOUNT_INFO structure is obsolete and exists for backward compatibility
purposes only.

Name: Represents the name of an account in the domain that is to be used for authentication and

name/ID lookup requests.

 typedef struct _LSAPR_POLICY_PD_ACCOUNT_INFO {

 RPC_UNICODE_STRING Name;

 } LSAPR_POLICY_PD_ACCOUNT_INFO,

 *PLSAPR_POLICY_PD_ACCOUNT_INFO;

2.2.4.8 POLICY_LSA_SERVER_ROLE

The POLICY_LSA_SERVER_ROLE enumeration takes one of two possible values, depending on which

capacity the account domain database is in: primary or backup. Certain operations of the protocol are
allowed only against a primary account database. On non ïdomain controller machines, the account
domain database is in primary state. On domain controllers, if the machine is the primary domain

controller (PDC) role owner, then the account domain database is in primary state; otherwise, it is in
backup state.

 typedef enum _POLICY_LSA_SERVER_R OLE

 {

 PolicyServerRoleBackup = 2,

 PolicyServerRolePrimary

 } POLICY_LSA_SERVER_ROLE,

 *PPOLICY_LSA_SERVER_ROLE;

42 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PolicyServerRoleBackup: A backup account database.

PolicyServerRolePrimary: A primary account database.

2.2.4.9 POLICY_LSA_SERVER_ROLE_INFO

The POLICY_LSA_SERVER_ROLE_INFO structure is used to allow callers to query and set whether the
account domain database acts as the primary copy or backup copy. The following structu re
corresponds to the PolicyLsaServerRoleInformation information class.

 typedef struct _POLICY_LSA_SERVER_ROLE_INFO {

 POLICY_LSA_SERVER_ROLE LsaServerRole;

 } POLICY_LSA_SERVER_ROLE_INFO,

 *PPOLICY_LSA_SERVER_ROLE_INFO;

LsaServerRole: One of the values of the POLICY_LSA_SERVER_ROLE enumeration on return.

2.2.4.10 LSAPR_POLICY_REPLICA_SRCE_INFO

The LSAPR_POLICY_REPLICA_SRCE_INFO structure corresponds to the
PolicyReplicaS ourceInformation information class.

 typedef struct _LSAPR_POLICY_REPLICA_SRCE_INFO {

 RPC_UNICODE_STRING ReplicaSource;

 RPC_UNICODE_STRING ReplicaAccountName;

 } LSAPR_POLICY_REPLICA_SRCE_INFO,

 *PLSAPR_POLICY_REPLICA_SRCE_INFO;

ReplicaSource: A string.

ReplicaAccountName: A string.

2.2.4.11 POLICY_MODIFICATION_INFO

The POLICY_MODIFICATION_INFO structure is obsolete and exists fo r backward compatibility
purposes only. Callers of this protocol MUST NOT be able to set or retrieve this structure.

 typedef struct _POLICY_MODIFICATION_INFO {

 LARGE_INTEGER ModifiedId;

 LARGE_INTEGER DatabaseCreationTime;

 } POLICY_MODIFICATION_INFO,

 * PPOLICY_MODIFICATION_INFO;

ModifiedId: A 64 -bit unsigned integer that is incremented each time anything in the Local Security
Authority (LSA) database is modified.

DatabaseCreationTime: The date and time when the LSA database was created. It is a 64 -bit value
that represents the number of 100 -nanosecond intervals since January 1, 1601, UTC.

2.2.4.12 POLICY_AUDIT_FULL_SET_INFO

The POLICY_AUDIT_FULL_SET_INFO structure contains information to set on the server that is
controlling audit log behavior. The following structure corresponds to the PolicyAuditFullSetInformation
information class. This information class is not supported.

43 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _POLICY_AUDIT_FULL_SET_INFO {

 unsigned char ShutDownOnFull;

 } POLICY_AUDIT_FULL_SET_INFO,

 *PPOLICY_AUDIT_FULL_SET_INFO;

ShutDownOnFull: A nonzero value means that the system MUST shut down when the event log is
full, while zero means that the system MUST NOT shut down when the event log is full.

2.2.4.13 POLICY_AUDIT_FULL_QUERY_INFO

The POLICY_AUDIT_FULL_QUERY_INFO structure is used to query information about the state of the
audit log on the server. The following structure corresponds to the PolicyAuditFullQueryInformation
information class.

This information class is obsolete and exists for backward compatibility purposes only.

 typedef struct _POLICY_AUDIT_FULL_QUERY_INFO {

 unsigned char ShutDownOnFull;

 unsigned char LogIsFull;

 } POLICY_AUDIT_FULL_QUERY_INFO,

 *PPOLICY_AUDIT_FULL_QUERY_INFO;

ShutDownOnFull: This field indicates whether the system MUST shut down when the event log is
full.

LogIsFull: This field indicates whether the event log is full or not.

2.2.4.14 LSAPR_POLIC Y_DNS_DOMAIN_INFO

The LSAPR_POLICY_DNS_DOMAIN_INFO structure is used to allow callers to query and set the
server's primary domain. <18>

The following structure corresponds t o the PolicyDnsDomainInformation and
PolicyDnsDomainInformationInt information classes.

 typedef struct _LSAPR_POLICY_DNS_DOMAIN_INFO {

 RPC_UNICODE_STRING Name;

 RPC_UNICODE_STRING DnsDomainName;

 RPC_UNICODE_STRING DnsForestName;

 GUID DomainGuid;

 PRPC_SID Sid;

 } LSAPR_POLICY_DNS_DOMAIN_INFO,

 *PLSAPR_POLICY_DNS_DOMAIN_INFO;

Name: This field contains a name for the domain that is subject to the restrictions of a NetBIOS
name, as specified in [RFC1088]. This value SHOULD be used (by implementations external to this
protocol) to identify the domain via the NetBIOS API, as specified in [RFC1088].

DnsDomainName: The fully qualified DNS name of the domain.

DnsForestName: The fully qualified DNS n ame of the forest containing this domain.

DomainGuid: The globally unique identifier (GUID), as specified in [MS -DTYP] section 2.3.4.1, of the
domain.

Sid: The SID of the domain.

44 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.4.15 POLICY_DOMAIN_INFORMATION_CLASS

The POLICY_DOMAIN_INFORMATION_CLASS enumeration type contains values that specify the type
of policy being queried or set by the client.

 typedef enum _POLICY_DOMAIN_INFORMATION_CLASS

 {

 PolicyDomainQualityOfServiceInformation = 1,

 PolicyDomainEfsInformation = 2,

 PolicyDomainKerberosTicketInformation = 3

 } POLICY_DOMAIN_INFORMATION_CLASS,

 *PPOLICY_DOMAIN_INFORMATION_CLASS;

The values in this enumeration are used in defining the cont ents of the
LSAPR_POLICY_DOMAIN_INFORMATION union.

2.2.4.16 LSAPR_POLICY_DOMAIN_INFORMATION

The LSAPR_POLICY_DOMAIN_INFORMATION union is defined as follows, where the structure depends
on the POLICY_DOMAIN_INFORMATION_CLASS that is specified in the message.

 typedef

 [switch_type(POLICY_DOMAIN_INFORMATION_CLASS)]

 union _LSAPR_POLICY_DOMAIN_INFORMATION {

 [case(PolicyDomainQualityOfServiceInformation)]

 POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO PolicyDomainQualityOfServiceInfo;

 [case(PolicyDomainEfsInformation)]

 LSAPR_POLICY_DOMAIN_EFS_INFO PolicyDomainEfsInfo;

 [case(PolicyDomainKerberosTicketInformation)]

 POLICY_DOMAIN_KERBEROS_TICKET_INFO PolicyDomainKerbTicketInfo;

 } LSAPR_POLICY_DOMAIN_INFORMATION,

 *PLSAPR_POLICY_DOMAIN_INFORMATION;

PolicyDomainQua lityOfServiceInfo: The complete description is as specified in section
2.2.4.17. <19>

PolicyDomainEfsInfo: The complete description is as specified in section 2.2.4.18.

PolicyDomainKerbTicketInfo: The complete description is as specified in section 2.2.4 .19.

2.2.4.17 POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO

The POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO structure is obsolete and exists for backward

compatibility purposes only.

 typedef struct _POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO {

 unsigned long QualityOfService;

 } POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO,

 *PPOLICY_DOMAIN_QUALITY_OF_SERVICE_INFO;

QualityOfService: Quality of service of the responder. MUST be set to zero when sent and MUST be
ignored on receipt.

2.2.4.18 LSAPR_POLICY_DOMAIN_EFS_INFO

The LSAPR_POLICY_DOMAIN_EFS_INFO structure communicates a counted binar y byte array.

45 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _LSAPR_POLICY_DOMAIN_EFS_INFO {

 unsigned long InfoLength;

 [size_is(InfoLength)] unsigned char* EfsBlob;

 } LSAPR_POLICY_DOMAIN_EFS_INFO,

 *PLSAPR_POLICY_DOMAIN_EFS_INFO;

InfoLength: The count of bytes in the EfsBlob .

EfsBlo b: An array of bytes, of size InfoLength bytes. If the value of InfoLength is other than 0,
this field MUST NOT be NULL. The syntax of this blob SHOULD <20> conform to the layout
specified in [MS -GPEF] section 2.2.1.2.1.

2.2.4.19 POLICY_DOMAIN_KERBEROS_TICKET_INFO

The POLICY_DOMAIN_KERBEROS_TICKET_INFO structure communicates policy information about the
Kerberos security provider.

 typedef struct _POLICY_DOMAIN_KERBEROS_TICKET_INFO {

 unsigned long AuthenticationOptions;

 LARGE_INTEGER MaxServiceTicketAge;

 LARGE_INTEGER MaxTicketAge;

 LARGE_INTEGER MaxRenewAge;

 LARGE_INTEGER MaxClockSkew;

 LARGE_INTEGER Reserved;

 } POLICY_DOMAIN_KERBEROS_TICKET_INFO,

 *PPOLICY_DOMAIN_KERBEROS_TICKET_INFO;

AuthenticationOptions: Optional flags that affect validations performed during authentication.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0
V

C 0 0 0 0 0 0 0

Where the bits are defined as:

Value Description

VC

POLICY_KERBEROS_VALIDATE_CLIENT
(0x00000080)

This is the only flag that is currently defined. When this bit is set, the
AuthenticationOptions flag of the Key Distribution Center (KDC)
configuration setting will be set to
POLICY_KERBEROS_VALIDATE_CLIENT (as described in [MS -KILE]
section 3.3.1). All other bits SHOULD be set to 0 and ignored upon
receipt.

MaxServiceTicketAge: This is in units of 10^(-7) seconds. It corresponds to Maximu m ticket
lifetime (as specified in [RFC4120] section 8.2) for service tickets only. The default value of this

setting is 10 hours.

MaxTicketAge: This is in units of 10^(-7) seconds. It corresponds to the Maximum ticket lifetime (as
specified in [RFC4120] section 8.2) for ticket -granting ticket (TGT) only. The default value of this
setting is 10 hours.

MaxRenewAge: This is in units of 10^(-7) seconds. It corresponds to the Maximum renewable
lifetime, as specified in [RFC4120] section 8.2. The default value of this setting is one week.

46 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

MaxClockSkew: This is in units of 10^(-7) seconds. It corresponds to the Acceptable clock skew, as
specified in [RFC4120] section 8.2. The default value of this setting is five minutes.

Reserved: The value of this field SHOU LD be set to zero when sent or on receipt.

2.2.4.20 POLICY_AUDIT_EVENT_TYPE

 typedef enum _POLICY_AUDIT_EVENT_TYPE

 {

 AuditCategorySystem = 0,

 AuditCategoryLogon,

 AuditCategoryObjectAccess,

 AuditCategoryPrivilegeUse ,

 AuditCategoryDetailedTracking,

 AuditCategoryPolicyChange,

 AuditCategoryAccountManagement,

 AuditCategoryDirectoryServiceAccess,

 AuditCategoryAccountLogon

 } POLICY_AUDIT_EVENT_TYPE,

 *PPOLICY_AUDIT_EVENT_TYPE;

AuditCategorySystem: Manages auditing of system -related events

AuditCategoryLogon: Manages auditing of account logon events

AuditCategoryObjectAccess: Manages auditing of object access events

AuditCategoryPrivilegeUse: Manages auditing of privilege use events

AuditCategoryDetailedTracking: Manages detailed auditing

AuditCategoryPolicyChange: Manages auditing of policy change events

AuditCategoryAccountManagement: Manages auditing of account management events

AuditCategoryDirectoryServiceAccess: Manages auditing of Active Directory access events

AuditCategoryAccountLogon: Manages auditing of account logon events

The values in this enumeration are used as indices into the EventAuditingOptions field of the
LSAPR_POLICY_AUDIT_EVENTS_INFO structure (see section 2.2.4.4).

2.2.4.21 LSAPR_POLICY_MACHINE_ACCT_INFO

The LSAPR_POLICY_MACHINE_ACCT_INFO structure is used to identify the machine account whose
security policy is to be queried or set.

 typedef struct _LSAPR_POLICY_MACH INE_ACCT_INFO {

 unsigned long Rid;

 PRPC_SID Sid;

 } LSAPR_POLICY_MACHINE_ACCT_INFO,

 *PLSAPR_POLICY_MACHINE_ACCT_INFO;

Rid : The RID of the machine account.

Sid : The SID of the machine account.

47 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.5 Account Query/Set Data Types

2.2.5.1 LSAPR_ACCOUNT_INFORMATION

The LSAPR_ACCOUNT_INFORMATION structure specifies a security principal security identifier (SID).

 typedef struct _LSAPR_ACCOUNT_INFORMATION {

 PRPC_SID Sid;

 } LSAPR_ACCOUNT_INFORMATION,

 *PLSAPR_ACCOUNT_INFORMATION;

Sid: This field contains the SID of the security principal. This field MUST NOT be NULL.

2.2.5.2 LSAPR_ACCOUNT_ENUM_BUFFER

The LS APR_ACCOUNT_ENUM_BUFFER structure specifies a collection of security principal SIDs

represented in an array of structures of type LSAPR_ACCOUNT_INFORMATION.

 typedef struct _LSAPR_ACCOUNT_ENUM_BUFFER {

 unsigned long EntriesRead;

 [size_is(EntriesRead)] P LSAPR_ACCOUNT_INFORMATION Information;

 } LSAPR_ACCOUNT_ENUM_BUFFER,

 *PLSAPR_ACCOUNT_ENUM_BUFFER;

EntriesRead: This field contains the number of security principals.

Information: This field contains a set of structures that define the security principal SID, as specified
in section 2.2.5.1. If the EntriesRead field has a value other than 0, this field MUST NOT be NULL.

2.2.5.3 LSAPR_USER_RIGHT_SET

The LSAPR_USER_RIGHT_SET structure specifies a col lection of user rights.

 typedef struct _LSAPR_USER_RIGHT_SET {

 [range(0,256)] unsigned long Entries;

 [size_is(Entries)] PRPC_UNICODE_STRING UserRights;

 } LSAPR_USER_RIGHT_SET,

 *PLSAPR_USER_RIGHT_SET;

Entries: This field contains the number of rights. <21>

UserRights: An array of strings specifying the rights. These can be string names corresponding to
either privilege names or system access names, as specified in section 3.1.1.2. If the Entries field
has a value other than 0, this field MUST NO T be NULL.

2.2.5.4 LSAPR_LUID_AND_ATTRIBUTES

The LSAPR_LUID_AND_ATTRIBUTES structure is a tuple defining a locally unique identifier (LUID) and
a field defining the attributes of the LUID .

 typedef struct _LSAPR_LUID_AND_ATTRIBUTES {

 LUID Luid;

 unsigned long Attributes;

 } LSAPR_LUID_AND_ATTRIBUTES,

 *PLSAPR_LUID_AND_ATTRIBUTES;

48 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Luid: The locally unique identifier.

Attributes: This field contains bitmapped values that define the properties of the privilege set. One

or more of the following flags can be set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 E D

D: The privilege is enabled by default.

E: The privilege is enabled.

All other bits SHOULD be 0 and ignored upon receipt.

2.2.5.5 LSAPR_PRIVILEGE_SET

The LSAPR_PRIVILEGE_SET structure defines a set of privileges that belong to an account.

 typedef struct _LSAPR_PRIVILEGE_SET {

 [range(0,1000)] unsigned long PrivilegeCount;

 unsigned long Control;

 [size_is(PrivilegeCount)] LSAPR_LUID_AND_ATTRIBUTES Privilege[*];

 } LSAPR_PRIVILEGE_SET,

 *PLSAPR_PRIVILEGE_SET;

PrivilegeCount: This field contains the number of privileges. <22>

Control: This field contains bitmapped values that define the properties of the privilege set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 O

O: Valid for a set operation indicating that all specified privileges that are not already assigned are
to be assigned.

All other bits SHOULD be set to zero when sent, and ignored on receipt.

Privilege: An array of LSAPR_LUID_AND_ATTRIBUTES structures. If t he PrivilegeCount field has a
value different than 0, this field MUST NOT be NULL.

2.2.6 Secret Query/Set Data Types

2.2.6.1 LSAPR_CR_CIPHER_VALUE

The LSAPR_CR_CIPHER_VALUE structure is a counted buffe r of bytes containing a secret object.

 typedef struct _LSAPR_CR_CIPHER_VALUE {

 [range(0,131088)] unsigned long Length;

 [range(0,131088)] unsigned long MaximumLength;

 [size_is(MaximumLength), length_is(Length)]

 unsigned char* Buffer;

 } LSAPR_CR_CIPHER_VALUE,

49 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 *PLSAPR_CR_CIPHER_VALUE;

Length: This field contains the number of valid bytes in the Buffer field. <23>

MaximumLength: This field contains the number of a llocated bytes in the Buffer field. <24>

Buffer: This field contains the actual secret data. If the value of the MaximumLength field is

greater than 0, this field MUST contain a non -NULL value. This field is always encrypted using
algorithms as specified i n section 5.1.2.

2.2.7 Trusted Domain Query/Set Data Types

2.2.7.1 LSAPR_TRUST_INFORMATION

The LSAPR_TRUST_INFORMATION structure identifies a domain.

 typedef struct _LSAPR_TRUST_INFORMATION {

 RPC_UNICODE_STRING Name;

 PRPC_SID Sid;

 } LSAPR_TRUST_INFORMATION,

 *PLSAPR_TRUST_INFORMATION;

Name: This field contains a name for the domain that is subject to the restrictions of a NetBIOS
name, as specified in [RFC 1088]. This value SHOULD be used (by implementations external to this
protocol) to identify the domain via the NetBIOS, as specified in [RFC1088].

Sid: The SID of the domain. This field MUST NOT be NULL.

2.2.7.2 TRUSTED_INFORMATION_CLASS

The TRUSTED_INFORMATION_CLASS enumeration type contains values that specify the type of

trusted domain information queried or set by the client.

 typedef enum _TRUSTED_INFORMATION_CLASS

 {

 TrustedDomainNameInformation = 1,

 TrustedCon trollersInformation,

 TrustedPosixOffsetInformation,

 TrustedPasswordInformation,

 TrustedDomainInformationBasic,

 TrustedDomainInformationEx,

 TrustedDomainAuthInformation,

 TrustedDomainFullInformation,

 TrustedDomainAuthInformationInternal,

 Tru stedDomainFullInformationInternal,

 TrustedDomainInformationEx2Internal,

 TrustedDomainFullInformation2Internal,

 TrustedDomainSupportedEncryptionTypes

 } TRUSTED_INFORMATION_CLASS,

 *PTRUSTED_INFORMATION_CLASS;

TrustedDomainNameInformation: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_NAME_INFO structure specified in section 2.2.7.4.

TrustedControllersInformation: The trusted domain information contains the
LSAPR_TRUSTED_CONTROLLERS_INFO struc ture specified in section 2.2.7.5.

50 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

TrustedPosixOffsetInformation: The trusted domain information contains the
TRUSTED_POSIX_OFFSET_INFO structure specified in section 2.2.7.6.

TrustedPasswordInformation: The trusted domain information contains the
LSAPR_TRUSTED_PASSWORD_INFO structure specified in section 2.2.7.7.

TrustedDomainInformationBasic: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC structure specified in section 2.2.7.8.

TrustedDomainInformationEx: The trusted do main information contains the LSAPR_TRUSTED_
DOMAIN_INFORMATION_EX structure specified in section 2.2.7.9.

TrustedDomainAuthInformation: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION structure specified in section 2.2.7. 11.

TrustedDomainFullInformation: The trusted domain information contains the

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION structure specified in section 2.2.7.13.

TrustedDomainAuthInformationInternal: The trusted domain information contains the

LSAPR_TRUSTED_DOM AIN_AUTH_INFORMATION_INTERNAL structure specified in section
2.2.7.12.

TrustedDomainFullInformationInternal: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL structure specified in section

2.2.7.14.

TrustedDomainIn formationEx2Internal: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 structure specified in section 2.2.7.10.

TrustedDomainFullInformation2Internal: The trusted domain information contains the
LSAPR_TRUSTED_DOMAIN_FULL_INF ORMATION2 structure specified in section 2.2.7.15.

TrustedDomainSupportedEncryptionTypes: The trusted domain information contains the
TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES structure specified in section 2.2.7.18.

The following citation contains a timel ine of when each enumeration value was introduced. <25>

The values in this enumeration are used in defining the contents of the
LSAPR_TRUSTED_DOMAIN_INFO union.

2.2.7.3 LSAPR_TRUSTED_DOMAIN_INFO

The LSAPR_TRUSTED_DOMAIN_INFO union is defined as follows, where the s tructure depends on the
TRUSTED_INFORMATION_CLASS that is specified in the message.

 typedef

 [switch_type(TRUSTED_INFORMATION_CLASS)]

 union _LSAPR_TRUSTED_DOMAIN_INFO {

 [case(TrustedDomainNameInformation)]

 LSAPR_TRUSTED_DOMAIN_NAME_INFO TrustedDoma inNameInfo;

 [case(TrustedControllersInformation)]

 LSAPR_TRUSTED_CONTROLLERS_INFO TrustedControllersInfo;

 [case(TrustedPosixOffsetInformation)]

 TRUSTED_POSIX_OFFSET_INFO TrustedPosixOffsetInfo;

 [case(TrustedPasswordInformation)]

 LSAPR_TRUSTED_PASSWORD_INFO TrustedPasswordInfo;

 [case(TrustedDomainInformationBasic)]

 LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC TrustedDomainInfoBasic;

 [case(TrustedDomainInformationEx)]

 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX TrustedDomainInfoEx;

 [case(TrustedDomainAuthInformation)]

 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION TrustedAuthInfo;

51 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [case(TrustedDomainFullInformation)]

 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION TrustedFullInfo;

 [case(TrustedDomainAuthInformationInternal)]

 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL TrustedAuthInfoInternal;

 [case(TrustedDomainFullInformationInternal)]

 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL TrustedFullInfoInternal;

 [case(TrustedDomainInformationEx2Internal)]

 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 TrustedDomainInfoEx2;

 [case(TrustedDomainFullInformation2Internal)]

 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 TrustedFullInfo2;

 [case(TrustedDomainSupportedEncryptionTypes)]

 TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES TrustedDomainSETs;

 } LSAPR_TRUSTED_DOMAIN_INFO,

 *PLSAPR_TRUSTED_DOMAIN_INFO;

TrustedDomainNameInfo: An instance of the LSAPR_TRUSTED_DOMAIN_NAME_INFO structure
specified in section 2.2.7.4.

TrustedControllersInfo: An instance of the LSAPR_TRUSTED_CONTROL LERS_INFO structure

specified in section 2.2.7.5.

TrustedPosixOffsetInfo: An instance of the TRUSTED_POSIX_OFFSET_INFO structure specified in
section 2.2.7.6.

TrustedPasswordInfo: An instance of the LSAPR_TRUSTED_PASSWORD_INFO structure specified in
sect ion 2.2.7.7.

TrustedDomainInfoBasic: An instance of the LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC
structure specified in section 2.2.7.8.

TrustedDomainInfoEx: An instance of the LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure

specified in section 2.2.7.9.

Tru stedAuthInfo: An instance of the LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION structure
specified in section 2.2.7.11.

TrustedFullInfo: An instance of the LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION structure
specified in section 2.2.7.13.

TrustedAuthInfoInternal: An instance of the

LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL structure specified in section
2.2.7.12.

TrustedFullInfoInternal: An instance of the
LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL structure specified in section
2.2.7.14.

TrustedDomainInfoEx2: An instance of the LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2
structure specified in section 2.2.7.10.

TrustedFullInfo2: An instance of the LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 structure
specified in section 2.2.7.15.

TrustedD omainSETs: An instance of the TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES
structure specified in section 2.2.7.18.

2.2.7.4 LSAPR_TRUSTED_DOMAIN_NAME_INFO

The LSAPR_TRUSTED_DOMAIN _NAME_INFO structure is used to communicate the name of a trusted
domain. The following structure corresponds to the TrustedDomainNameInformation information class.

52 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _LSAPR_TRUSTED_DOMAIN_NAME_INFO {

 RPC_UNICODE_STRING Name;

 } LSAPR_TRUSTED_DOMAIN_NAME_INFO,

 *PLSAPR_TRUSTED_DOMAIN_NAME_INFO;

Name: This field contains a name for the domain that is subject to the restrictions of a NetBIOS
name, as specified in [RFC1088]. This field SHOULD be used (by implementations external to this
protocol) to identify the domain via the NetBIOS API, as specified in [RFC1088].

2.2.7.5 LSAPR_TRUSTED_CONTROLLERS_INFO

The LSAPR_TRUSTED_CONTROLLERS_INFO structure is used to communica te a set of names of
domain controllers (DCs) in a trusted domain. The following structure corresponds to the
TrustedControllersInformation information class.

 typedef struct _LSAPR_TRUSTED_CONTROLLERS_INFO {

 [range(0,5)] unsigned long Entries;

 [size_is (Entries)] PRPC_UNICODE_STRING Names;

 } LSAPR_TRUSTED_CONTROLLERS_INFO,

 *PLSAPR_TRUSTED_CONTROLLERS_INFO;

Entries: The count of names. <26>

Names: This field contains an array of DC names that are subject to the restrictions of a NetBIOS
name, as specified in [RFC1088]. This field SHOULD be used (by implementations external to this

protocol) to identify the DCs via the NetBIOS API, as specified in [RFC1088]. If the Entries field
has a value other than 0, this field MUST NOT be NULL.

2.2.7.6 TRUSTED_POSIX_OFFSET_INFO

The TRUSTED_POSIX_OFFSET_INFO structure communicates any offset ne cessary for POSIX

compliance. The following structure corresponds to the TrustedPosixOffsetInformation information
class.

 typedef struct _TRUSTED_POSIX_OFFSET_INFO {

 unsigned long Offset;

 } TRUSTED_POSIX_OFFSET_INFO,

 *PTRUSTED_POSIX_OFFSET_INFO;

Offset: The offset to use for the generation of POSIX IDs for users and groups, as specified in
"trustPosixOffset" in [MS -ADTS] section 6.1.6.7.14.

2.2.7.7 LSAPR_TRUSTED_PASSWORD_INFO

The LSAPR_TRUSTED_PASSWORD_INFO structure is used to communicate trust -authentication

material. The following structure corresponds to the TrustedPasswordInformation information class.

 typedef struct _LSAPR_TRUSTED_PASSWORD_INFO {

 PLSAPR_CR_CIPHER_VALUE Password;

 PLSAPR_CR_CIPHER_VALUE OldPassword;

 } LSAPR_TRUSTED_PASSWORD_INFO,

 *PLSAPR_TRUSTED_PASSWORD_INFO;

Password: The current authentication material. See section 2.2.6.1.

53 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

OldPassword: The version prio r to the current version of the authentication material. See section
2.2.6.1.

2.2.7.8 LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC

The LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC type is identical to the
LSAPR_TRUST_INFORMATION structure. This type corresponds to the Trusted DomainInformationBasic
information class.

This type is declared as follows:

 typedef LSAPR_TRUST_INFORMATION LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC;

2.2.7.9 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX

The LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure communicates properties of a trusted

domain. The following structure corresponds to the TrustedDomainInformationEx information class.
Domain trusts are specified in [MS -ADTS] sectio n 6.1.6.

 typedef struct _LSAPR_TRUSTED_DOMAIN_INFORMATION_EX {

 RPC_UNICODE_STRING Name;

 RPC_UNICODE_STRING FlatName;

 PRPC_SID Sid;

 unsigned long TrustDirection;

 unsigned long TrustType;

 unsigned long TrustAttributes;

 } LSAPR_TRUSTED_DOMAIN_INFORMATION_EX,

 *PLSAPR_TRUSTED_DOMAIN_INFORMATION_EX;

Name: The DNS name of the domain. Maps to the Name field, as specified in section 3.1.1.5.

FlatName: The NetBIOS name of the trusted domain, as specified in [RFC1088]. Maps to the Flat

Name field, as specified in section 3.1.1.5.

Sid: The domain SID. Maps to the Security Identifier field, as specified in section 3.1.1.5.

TrustDirection: This field con tains bitmapped values that define the properties of the direction of

trust between the local domain and the named domain. One or more of the valid flags can be set.
If all bits are 0, the trust is said to be disabled.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 I O

I: The trust is inbound.

O: The trust is outbound.

All other bits SHOULD be 0 and ignored upon receipt.

Maps to the Trust Direction field, as specified in section 3.1.1.5.

TrustType: This field specifies the type of trust between the local domain and the named domain.

54 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

0x00000001 Trust with a Windows domain that is not running Active Directory.

0x00000002 Trust with a Windows domain that is running Active Directory.

0x00000003 Trust with a non ïWindows -compliant Kerberos distribution, as specified in [RFC4120].

0x00000004 Trust with a distributed computing environment (DCE) realm. This is a historical reference and
is not used.

Note Other values SHOULD NOT be set.

Maps to the Trust Type field, as specified in section 3.1.1.5.

TrustAttributes: This field contains bitmapped values that define the attributes of the trust. <27>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

R R R R R R R R O O R R R R R R R R R R R T
A
P
T

T
A
N
C

R T
A
R
C

T
A
T
E

T
A
W
F

T
A
C
O

T
A
F
T

T
A
Q
D

T
A
U
O

T
A
N
T

TrustAttribute values are described in section 3.1.1.5. The following table shows how these values
map to the Trust Attributes field in section 3.1.1.5.

Value Mapping

TANT (TRUST_ATTRIBUTE_NON_TRANSITIVE) Trust Attributes: Non - transitive

TAUO (TRUST_ATTRIBUTE_UPLEVEL_ONLY) Trust Attributes: Uplevel only

TAQD (TRUST_ATTRIBUTE_QUARANTINED_DOMAIN) Trust Attributes: Quarantined

TAFT (TRUST_ATTRIBUTE_FOREST_TRANSITIVE) Trust Attributes: Forest trust

TACO (TRUST_ATTRIBUTE_CROSS_ORGANIZATION) Trust Attributes: Cross organization

TAWF (TRUST_ATTRIBUTE_WITHIN_FOREST) Trust Attributes: Within forest

TATE (TRUST_ATTRIBUTE_TREAT_AS_EXTERNAL) Trust Attributes: Treat as external

TARC (TRUST_ATTRIBUTE_USES_RC4_ENCRYPTION) Trust Attributes: Use RC4
Encryption (for more information
about RC4, see [SCHNEIER] section
17.1).

TANC
(TRUST_ATTRIBUTE_CROSS_ORGANIZATION_NO_TGT_DELEGATION)

Trust Attributes: Tokens must not
be trusted for delegation.

TAPT (TRUST_ATTRIBUTE_PIM_TRUST) Trust Attributes:
PrivilegedIdentityManagement
(PIM) trust.

O Obsolet e. SHOULD be set to 0.

R Reserved for future use. SHOULD
be set to zero.

55 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.7.10 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2

The LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 structure communicates properties of a trusted
domain. The following structure corresponds to the TrustedDomainInformationEx2Internal information
class. Domain trusts are specified in [MS -ADTS] section 6.1.6.

 typedef st ruct _LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 {

 RPC_UNICODE_STRING Name;

 RPC_UNICODE_STRING FlatName;

 PRPC_SID Sid;

 unsigned long TrustDirection;

 unsigned long TrustType;

 unsigned long TrustAttributes;

 unsigned long ForestTrustLength;

 [size_is (ForestTrustLength)] unsigned char* ForestTrustInfo;

 } LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2,

 *PLSAPR_TRUSTED_DOMAIN_INFORMATION_EX2;

Name: The DNS name of the domain. Maps to the Name field, as specified in section 3.1.1.5.

FlatName: The NetBIOS name of the trusted domain, as specified in [RFC1088]. Maps to the Flat
Name field, as specified in section 3.1.1.5.

Sid: The domain SID. Maps to the Security Identifier field, as specified in section 3.1.1.5.

TrustDirection: This field contains bitmapped value s that define the properties of the direction of
trust between the local domain and the named domain. See section 2.2.7.9 for valid values and a
description of each flag. Maps to the Trusted Direction field, as specified in section 3.1.1.5.

TrustType: Thi s field specifies the type of trust between the local domain and the named domain.
See section 2.2.7.9 for valid values and a description of each value. Maps to the Trusted Type
field, as specified in section 3.1.1.5.

TrustAttributes: This field contains bitmapped values that define the attributes of the trust. See

section 2.2.7.9 for valid values and a description of each flag. Maps to the Trusted Attributes field,
as specified in section 3.1.1.5.

ForestTrustLength: The count of bytes in ForestTrustInfo .

ForestTrustInfo: Binary data for the forest trust. For more information, see "Trust Objects" in [MS -
ADTS] section 6.1.6. Maps to the Forest Trust Information field, as specified in section 3.1.1.5.
Conversion from this binary format to the LSA_FOREST_TRU ST_INFORMATION format is specified
in [MS -ADTS] section 6.1.6.9.3. If the ForestTrustLength field has a value other than 0, this

field MUST NOT be NULL.

2.2.7.11 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION

The LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION structure communicates authentication material.

The following structure corresponds to the TrustedDomainAuthInformation information class. Domain
trust authentication is specifie d in [MS -ADTS] section 6.1.6.9.1. This structure maps to the Incoming
and Outgoing Trust Password fields, as specified in section 3.1.1.5.

 typedef struct _LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION {

 [range(0,1)] unsigned long IncomingAuthInfos;

 PLSAPR_AUTH_INFORMATION IncomingAuthenticationInformation;

 PLSAPR_AUTH_INFORMATION IncomingPreviousAuthenticationInformation;

 [range(0,1)] unsigned long OutgoingAuthInfos;

56 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 PLSAPR_AUTH_INFORMATION OutgoingAuthenticationInformation;

 PLSAPR_AUTH_INFORMATION OutgoingPreviousAuthenticationInformation;

 } LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION,

 *PLSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION;

IncomingAuthInfos: The count of LSAPR_AUTH_INFORMATION entries (section 2.2.7.17) in the
IncomingAuthenticationInformation field. <28>

IncomingAuthenticationInformation: An array of LSAPR_AUTH_INFORMATION structures. The
values are used to compute keys used in inbound trus t validation, as specified in [MS -ADTS]
section 6.1.6.9.1.

IncomingPreviousAuthenticationInformation: Same as IncomingAuthenticationInformation ,

but the data is the previous version of the authentication information.

OutgoingAuthInfos: The count of LSAPR _AUTH_INFORMATION entries in the
OutgoingAuthenticationInformation field. <29>

OutgoingAuthenticationInformation: An array of LSAPR_AUTH_INFORMATION structures. The
values are used to compute keys used in outbound trust validation, as specified in [MS -ADTS]
section 6.1.6.9.1.

OutgoingPreviousAuthenticationInformation: Same as OutgoingAuthenticationInformation ,
but the data is the previous version of the authentication information.

2.2.7.12 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL

The LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL structure communicates

authentication material. The following structure corresponds to the
TrustedDomainAuthInform ationInternal information class. For more information about domain trust
authentication material, see [MS -ADTS] section 6.1.6.9.1.

 typedef struct _LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL {

 LSAPR_TRUSTED_DOMAIN_AUTH_BLOB AuthBlob;

 } LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL,

 *PLSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL;

AuthBlob: An LSAPR_TRUSTED_DOMAIN_AUTH_BLOB.

2.2.7.13 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION

The LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION structure communicates identification, POSIX
compatibility, and authentication information for a trusted domain. The following structure
corresponds to the TrustedDomainFullInformation information clas s.

 typedef struct _LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION {

 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX Information;

 TRUSTED_POSIX_OFFSET_INFO PosixOffset;

 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION AuthInformation;

 } LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION,

 *PLSAPR_TRUSTED_DOMAIN_FULL_INFORMATION;

Information: A structure containing name, SID, and trust attributes, as specified in section 2.2.7.9.

PosixOffset: Any offset required for POSIX compliance, as specified in section 2.2.7.6.

AuthInformation: Authenticat ion material, as specified in section 2.2.7.11.

57 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.7.14 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL

The LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL structure communicates identification
and authentication information for a trusted domain. The following structure corresponds to the

Truste dDomainFullInformationInternal information class.

 typedef struct _LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL {

 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX Information;

 TRUSTED_POSIX_OFFSET_INFO PosixOffset;

 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL AuthInformation;

 } LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL,

 *PLSAPR_TRUSTED_DOMAIN_FULL_INFORMATION_INTERNAL;

Information: A structure containing name, SID, and trust attributes, as specified in section 2.2.7.9.

PosixOffset: Any offset required for POSIX compliance, as specified in section 2.2.7.6.

AuthInformation: Authentication material, as specified in section 2.2.7.12.

2.2.7.15 LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2

The LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 structure is used to communicate identification,
POSIX compatibility, and authentication information for a trusted domain. The following structure
corresponds to the TrustedDomainFullInf ormation2Internal information class.

 typedef struct _LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2 {

 LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2 Information;

 TRUSTED_POSIX_OFFSET_INFO PosixOffset;

 LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION AuthInformation;

 } LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2,

 *PLSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2;

Information: A structure containing name, SID, and trust attributes, as specified in section 2.2.7.10.

PosixOffset: Any offset required for POSIX compliance, as specified in section 2.2.7.6.

AuthInformation: Authentication material, as specified in section 2.2.7.11.

2.2.7.16 LSAPR_TRUSTED_DOMAIN_AUTH_BLOB

The LSAPR_TRUSTED_DOMAIN_AUTH_BLOB structure contai ns a counted buffer of authentication
material. Domain trust authentication is specified in [MS -ADTS] section 6.1.6.9.1.

 typedef struct _LSAPR_TRUSTED_DOMAIN_AUTH_BLOB {

 [range(0,65536)] unsigned long AuthSize;

 [size_is(AuthSize)] unsigned char* AuthBl ob;

 } LSAPR_TRUSTED_DOMAIN_AUTH_BLOB,

 *PLSAPR_TRUSTED_DOMAIN_AUTH_BLOB;

AuthSize: The count of bytes in AuthBlob .<30>

AuthBlob: An array of bytes containing the authentication material. If the AuthSize field has a value
other than 0, this field MUST NOT be NULL. Always encrypted using algorithms, as specified in
section 5.1.1. The plaintext layout is in the following format.

The incoming and outgoing authentication information buffer size included at the end of the
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB can be used to extract the incoming and outgoing

58 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

authentication information buffers from the LSAPR_TRUSTED_DOMAIN_AUTH_BLOB. Each of thes e
buffers contains the byte offset to both the current and the previous authentication information.

This information can be used to extract current and (if any) previous authentication information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

512 bytes of random data (512 bytes)

...

...

CountOutgoingAuthInfos

ByteOffsetCurrentOutgoingAuthInfo

ByteOffsetPreviousOutgoingAuthInfo

CurrentOutgoingAuthInfos (variable)

...

...

PreviousOutgoingAuthInfos (variable)

...

...

CountIncomingAuthInfos

ByteOffsetCurrentIncomingAuthInfo

ByteOffsetPreviousIncomingAuthInfo

CurrentIncomingAuthInfos (variable)

...

...

PreviousIncomingAuthInfos (variable)

...

...

OutgoingAuthInfoSize

59 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

IncomingAuthInfoSize

CountOutgoingAuthInfos (4 bytes): Specifies the count of entries present in the
CurrentOutgoingAuthInfos field. If optional field PreviousOutgoingAuthInfos is present, the number
of entries in PreviousOutgoingAuthInfos is also equal to CountOutgoingAuthInfos.

ByteOffsetCurrentOutgoingAuth Info (4 bytes): Specifies the byte offset from the beginning
of CountOutgoingAuthInfos to the start of the CurrentOutgoingAuthInfos field. If
CountOutgoingAuthInfos is 0, this field MUST be ignored.

ByteOffsetPreviousOutgoingAuthInfo (4 bytes): Specifies t he byte offset from the beginning
of CountOutgoingAuthInfos to the start of the PreviousOutgoingAuthInfos field. If the difference
between ByteOffsetPreviousOutgoingAuthInfo and OutgoingAuthInfoSize is 0, the

PreviousOutgoingAuthInfos field has zero entrie s.

CurrentOutgoingAuthInfo s: Contains an array of CountOutgoingAuthInfos of
LSAPR_AUTH_INFORMATION (section 2.2.7.17) entries in self - relative format. Each

LSAPR_AUTH_INFORMATION entry in the array MUST be 4 -byte aligned. When it is necessary to
insert unu sed padding bytes into a buffer for data alignment, such bytes MUST be set to 0.

PreviousOutgoingAuthInfos : Contains an array of CountOutgoingAuthInfos
LSAPR_AUTH_INFORMATION entries in self - relative format. See the comments for the

ByteOffsetPreviousOutgoingAuthInfo field to determine when this field is present. Each
LSAPR_AUTH_INFORMATION entry in the array MUST be 4 -byte aligned. When it is necessary to
insert unused padding bytes into a buffer for data alignment, such bytes MUST be set to 0.

CountIncomingAuthInfos (4 bytes) : Specifies the count of entries present in the
CurrentIncomingAuthInfos field. If optional field PreviousIncomingAuthInfos is pre sent, the
number of entries in PreviousIncomingAuthInfos is also equal to CountIncomingAuthInfos .

ByteOffsetCurrentIncomingAuthInfo (4 bytes) : Specifies the byte offset from the beginning

of CountIncomingAuthInfos to the start of the CurrentIncomingAuthInf os field. If
CountIncomingAuthInfos is 0, this field MUST be ignored.

ByteOffsetPreviousIncomingAuthInfo (4 bytes) : Specifies the byte offset from the beginning
of CountIncomingAuthInfos to the start of the PreviousIncomingAuthInfos field. If the
differenc e between ByteOffsetPreviousIncomingAuthInfo and IncomingAuthInfoSize is 0,
the PreviousIncomingAuthInfos field has zero entries.

CurrentIncomingAuthInfos : Contains an array of CountIncomingAuthInfos
LSAPR_AUTH_INFORMATION entries in self - relative format. Each LSAPR_AUTH_INFORMATION
entry in the array MUST be 4 -byte aligned. When it is necessary to insert unused padding bytes
into a buffer for data alignment, such bytes MUST be set to 0.

PreviousIncomingAuthInfos : Contains an array of CountIncomingAuthInfos
LSAPR_AUTH_INFORMATION entries in self - relative format. See the comments for the
ByteOffsetPreviousIncomingAuthInfo field to determine when this field is present. Each

LSAPR_AUTH_INFORMATION entry in the array MUST be 4 -byte aligned. When it is necessary to
insert unused padding bytes into a buffer for data alignment, such bytes MUST be set to 0.

OutgoingAuthInfoSize (4 bytes) : Specifies the size, in bytes, of the subportion of the structure
from the beginning of the CountOutgoingAuthInfos field through th e end of the of the
PreviousOutgoingAuthInfos field.

IncomingAuthInfoSize (4 bytes) : Specifies the size, in bytes, of the sub -portion of the
structure from the beginning of the CountIncomingAuthInfos field through the end of the of the

PreviousIncomingAuth Infos field.

60 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.7.17 LSAPR_AUTH_INFORMATION

The LSAPR_AUTH_INFORMATION structure communicates information about authentication between
trusted domains. Domain trust authentication is specified in [MS -ADTS] section 6.1.6.9.1.

 typedef struct _LSAPR_AUTH_INFORMATION {

 LARGE_INTEGER LastUpdateTime;

 unsigned long AuthType;

 [range(0,65536)] unsigned long AuthInfoLength;

 [size_is(AuthInfoLength)] unsigned char* AuthInfo;

 } LSAPR_AUTH_INFORMATION,

 *PLSAPR_AUTH_INFORMATION;

LastUpdateTime: The date and time when this authentication information was last updated. It is a
64 -bit value that represents the number of 100 -nanosecond intervals since January 1, 1601, UTC.

AuthType: A type for the AuthInfo, as specified in the following table.

Value Meaning

0x00000000 This type MUST be ignored.

0x00000001 Derived RC4HMAC key. For more information, see [RFC4757].

0x00000002 A plaintext password. Indicates that the information stored in the attribute is a Unicode
plaintext password. If this AuthType is present, Kerberos can then use this password to derive
additional key types that are needed to encrypt and decrypt cross - realm TGTs.

0x00000003 A plaintext password v ersion number that is a single, unsigned long integer consisting of 32
bits.

AuthInfoLength: The count of bytes in AuthInfo buffer. <31>

AuthInfo: Authentication data that depends on the AuthType .

The self - relative form of the LSAPR_AUTH_INFORMATION stru cture is used in
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB; in that case, the structure memory layout looks like the
following.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LastUpdateTime

...

AuthType

AuthInfoLength

AuthInfo [1 ... AuthInfoLength]

61 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.7.18 TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES

The TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES structure is used to present the encrypti on
types that are allowed through a trust.

 typedef struct _TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES {

 unsigned long SupportedEncryptionTypes;

 } TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES,

 *PTRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES;

SupportedEncryptionTypes: This field contains bitmapped values that define the encryption types
supported by this trust relationship. The flags can be set in any combination.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 S A R M C

C: Supports CRC32, as specified in [RFC3961] page 31.

M: Supports RSA -MD5, as specified in [RFC3961] page 31.

R: Supports RC4 -HMAC-MD5, as specified in [RFC4757].

A: Supports HMAC -SHA1 -96 -AES128, as specified in [RFC3961] page 31.

S: Supports HMAC -SHA1 -96 -AES256, as specified in [RFC3961] page 31.

All other bits SHOULD be 0 and ignored upon receipt.

2.2.7.19 LSAPR_TRUSTED_ENUM_BUFFER

The LSAPR_TRUSTED_ENUM_BUFFER structure specifies a collection of trust information structures of

type LSAPR_TRUST_INFORMATION.

 typedef struct _LSAPR_TRUSTED_ENUM_BUFFER {

 unsigned long EntriesRead;

 [size_is(EntriesRead)] PLSAPR_TRUST_INFORMATION Information;

 } LSAPR_TRUSTED_ENUM_BUFFER,

 *PLSAPR_TRUSTED_ENUM_BUFFER;

EntriesRead: This field contains the number of trust information structures.

Informat ion: This field contains a set of structures that define the trust information, as specified in

section 2.2.7.1. If the EntriesRead field has a value other than 0, this field MUST NOT be NULL.

2.2.7.20 LSAPR_TRUSTED_ENUM_BUFFER_EX

The LSAPR_TRUSTED_ENUM_BUFFER_EX structure specifies a collection of trust information structures
of type LSAPR_TRUSTED_DOMAIN_INFORMATION_EX.

 typedef struct _LSAPR_TRUSTED_ENUM_BUFFER_EX {

 unsigned long EntriesRead;

 [size_is(EntriesRead)] PLSAPR_TRUSTED_DOMAIN_INFORMATION_EX EnumerationBuffer;

 } LSAPR_TRUSTED_ENUM_BUFFER_EX,

 *PLSAPR_TRUSTED_ENUM_BUFFER_EX;

62 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

EntriesRead: This field contains the number of trust information structures.

EnumerationBuffer: This field contains a set of structures that define the trust information, as

specified in section 2.2.7.9. If the EntriesRead field has a value other than 0, this field MUST
NOT be NULL.

2.2.7.21 LSA_FOREST_TRUST_RECORD

The LSA_FOREST_TRUST_RECORD structure is used to communicate the type, creation time, and data
for a forest trust record. The data is determined by the trust type as follows in the definition of the

contained union.

 typedef st ruct _LSA_FOREST_TRUST_RECORD {

 unsigned long Flags;

 LSA_FOREST_TRUST_RECORD_TYPE ForestTrustType;

 LARGE_INTEGER Time;

 [switch_type(LSA_FOREST_TRUST_RECORD_TYPE), switch_is(ForestTrustType)]

 union {

 [case(ForestTrustTopLevelName,ForestTrustTopLevelNameEx)]

 LSA_UNICODE_STRING TopLevelName;

 [case(ForestTrustDomainInfo)]

 LSA_FOREST_TRUST_DOMAIN_INFO DomainInfo;

 [default] LSA_FOREST_TRUST_BINARY_DATA Data;

 } ForestTrustData;

 } LSA_FOREST_TRUST_RECORD,

 *PLSA_FOREST_TRUST_RECORD;

Flags: The following table specifies the possible flags.

Note Some flag values are reused for different forest record types. See the Meaning column for
more information.

Value Meaning

LSA_TLN_DISABLED_NEW

0x00000001

The top - level name trust record is disabled during initial creation.

Note This flag MUST be used only with forest trust record types of
ForestTrustTopLevelName and For estTrustTopLevelNameEx.

LSA_TLN_DISABLED_ADMIN

0x00000002

The top - level name trust record is disabled by the domain
administrator.

Note This flag MUST be used only with forest trust record types of
ForestTrustTopLevelName and ForestTrustTopLevelNameEx.

LSA_TLN_DISABLED_CONFLICT

0x00000004

The top - level name trust record is disabled due to a conflict.

Note This flag MUST be used only with forest trust record types of
ForestTrustTopLevelName and ForestTrustTopLevelNameEx.

LSA_SID_DISABLED_ADMIN

0x00000001

The domain information trust record is disabled by the domain
administrator.

Note This flag MUST be used only with a forest trust record type of
ForestTrustDomainInfo.

LSA_SID_DISABLED_CONFLICT

0x00000002

The domain informat ion trust record is disabled due to a conflict.

Note This flag MUST be used only with a forest trust record type of
ForestTrustDomainInfo.

LSA_NB_DISABLED_ADMIN

0x00000004

The domain information trust record is disabled by the domain
administrator.

Note This flag MUST be used only with a forest trust record type of
ForestTrustDomainInfo.

63 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value Meaning

LSA_NB_DISABLED_CONFLICT

0x00000008

The domain information trust record is disabled due to a conflict.

Note This flag MUST be used only with a fore st trust record type of
ForestTrustDomainInfo.

LSA_FTRECORD_DISABLED_REASONS

0x0000FFFF

The domain information trust record is disabled.

Note This set of flags is reserved; for current and future reasons,
the trust is disabled.

ForestTrustType: This va lue is one of LSA_FOREST_TRUST_RECORD_TYPE.

Time: The date and time when this entry was created. It is a 64 -bit value that represents the number

of 100 -nanosecond intervals since January 1, 1601, UTC.

ForestTrustData: An LSA_UNICODE_STRING or LSA_FOREST_TRUST_DOMAIN_INFO structure,
depending on the value ForestTrustType as specified in the structure definition for
LSA_FOREST_TRUST_RECORD.

2.2.7.22 LSA_FOREST_TRUST_RECORD_TYPE

The LSA_ FOREST_TRUST_RECORD_TYPE enumeration specifies a type of forest trust record.

 typedef enum _LSA_FOREST_TRUST_RECORD_TYPE

 {

 ForestTrustTopLevelName = 0,

 ForestTrustTopLevelNameEx = 1,

 ForestTrustDomainInfo = 2

 } LSA_FOREST_TRUST_RECORD_TYPE;

ForestTrustTopLevelName: The DNS name of the trusted forest. The structure used for this record
type is equivalent to LSA_UNICODE_STRING (section 2.2.2.3).

ForestTrustTopLevelNameEx: The DNS name of the trusted forest. This is the same as

ForestTrustTopLevelName . The structure used for this record type is equivalent to
LSA_UNICODE_STRING.

ForestTrustDomainInfo: This field specifies a record containing identification and name
information.

2.2.7.23 LSA_FOREST_TRUST_BINARY_DATA

The LSA_FOREST_TRUST_BINARY_DATA structure is used to communicate a forest trust record. This
structure is not used in the current version of the protocol.

 typedef struct _LSA_FOREST_TRUST_BINARY_DATA {

 [range(0,131072)] unsigned long Length;

 [size_is(Length)] unsigned char* Buffer;

 } LSA_FOREST_TRUST_BINARY_DATA,

 *PLSA_FOREST_TRUST_BINARY_DATA;

Length: The count of bytes in Buffer .<32>

Buffer: The trust record. If the Length field has a value other than 0, this field MUST NOT be NULL.

64 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.7.24 LSA_FOREST_TRUST_DOMAIN_INFO

The LSA_FOREST_TRUST_DOMAIN_INFO structure is used to communicate a forest trust re cord
corresponding to the LSA_FOREST_TRUST_DOMAIN_INFO value of ForestTrustDomainInfo.

 typedef struct _LSA_FOREST_TRUST_DOMAIN_INFO {

 PRPC_SID Sid;

 LSA_UNICODE_STRING DnsName;

 LSA_UNICODE_STRING NetbiosName;

 } LSA_FOREST_TRUST_DOMAIN_INFO,

 *PLSA_FOREST_TRUST_DOMAIN_INFO;

Sid: Domain SID for the trusted domain.

DnsName: The DNS name of the trusted domain.

NetbiosName: The NetBIOS name of the trusted domain, as specified in [RFC1088].

2.2.7.25 LSA_FOREST_TRUST_INFORMATION

The LSA_FOREST_TRUST_INFORMATION structure is a collection of
LSA_FOREST_TRUST_RECORD (section 2.2.7.21) structures.

 typedef struct _LSA_FOREST_TRUST_INFORMATION {

 [range(0,4000)] unsigned long RecordCount;

 [size_is(RecordCount)] PLSA_FOREST_TRUST_RECORD* Entries;

 } LSA_FOREST_TRUST_INFORMATION,

 *PLSA_FOREST_TRUST_INFORMATION;

RecordCount: A count of elements in the Entries array. <33>

Entries: An array of LSA_ FOREST_TRUST_RECORD structures. If the RecordCount field has a value

other than 0, this field MUST NOT be NULL.

2.2.7.26 LSA_FOREST_TRUST_COLLISION_RECORD_TYPE

The LSA_FOREST_TRUST_COLLISION_RECORD_TYPE type specifies the type of a collision record in
the message.

 typedef enum _LSA_FOREST_TRUST_COLLISION_RECORD_TYPE

 {

 CollisionTdo = 0,

 CollisionXref,

 CollisionOther

 } LSA_FOREST_TRUST_COLLISION_RECORD_TYPE;

CollisionTdo: A forest trust record that a cal ler attempted to set on a trusted domain object has

suffered a collision with another trusted domain object in Active Directory, as specified in [MS -
ADTS], section 6.1.6.

CollisionXref: A forest trust record that a caller attempted to set on a trusted doma in object has
suffered a collision with a cross - reference object belonging to the forest to which the server
belongs, as specified in [MS -ADTS], section 6.1.6.

CollisionOther: A forest trust record that a caller attempted to set on a trusted domain object has
suffered a collision for an unknown reason.

65 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2.2.7.27 LSA_FOREST_TRUST_COLLISION_RECORD

The LSA_FOREST_TRUST_COLLISION_RECORD structure is used to communicate forest tru st collision
information. For more information about trusted domain objects, see [MS -ADTS] section 6.1.6.

 typedef struct _LSA_FOREST_TRUST_COLLISION_RECORD {

 unsigned long Index;

 LSA_FOREST_TRUST_COLLISION_RECORD_TYPE Type;

 unsigned long Flags;

 LSA_UNICODE_STRING Name;

 } LSA_FOREST_TRUST_COLLISION_RECORD,

 *PLSA_FOREST_TRUST_COLLISION_RECORD;

Index: An ordinal number of a forest trust record in the forest trust information supplied by the caller
that suffered a collision. For rules about collisions , see sections 3.1.4.7.16 and 3.1.4.7.16.1.

Type: The type of collision record, as specified in section 2.2.7.26.

Flags: A set of bits specifying the nature of the collision. These flags and the rules for generating
them are specified in sections 3.1.4.7.16 and 3.1.4.7.16.1.

Name: The name of the existing entity (a top - level name entry, a domain information entry, or a
top - level name exclusion entry) that caused the collision.

2.2.7.28 LSA_FOREST_TRUST_COLLISION_INFORMATION

The LSA_FOREST_TRUST_COLLISION_INFORMATION structure is used to communicate a set of
LSA_FOREST_TRUST_COLLISION_RECORD structures.

 typedef struct _LSA_FOREST_TRUST_COLLISION_INFORMATION {

 unsigned long RecordCount;

 [size_is(RecordCount)] PLSA_FOREST_TRUST_COLLISION_RECORD* Entries;

 } LSA_FOREST_TRUST_COLLISION_INFORMATION,

 *PLSA_FOREST_TRUST_COLLISION_INFORMATION;

RecordCount: The count of elements in the Entries array.

Entries: An array of LSA_FOREST_TRUST_COLLISION_RECORD (section 2.2.7.27) structures. If the
RecordCount field has a value other than zero, this field MUST NOT be NULL.

2.2.8 Privilege Data Types

2.2.8.1 LSAPR_POLICY_PRIVILEGE_DEF

The LSAPR_POLICY_PRIVILEGE_DEF structure specifies a privilege definition, which consists of a

pairing of a human - readable name with a locally unique identifier (LUID).

 typedef st ruct _LSAPR_POLICY_PRIVILEGE_DEF {

 RPC_UNICODE_STRING Name;

 LUID LocalValue;

 } LSAPR_POLICY_PRIVILEGE_DEF,

 *PLSAPR_POLICY_PRIVILEGE_DEF;

Name: An RPC_UNICODE_STRING that contains the privilege name.

66 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

LocalValue: This field contains the LUID value ass igned locally for efficient representation of the
privilege. This value is meaningful only on the system where it was assigned.

2.2.8.2 LSAPR_PRIVILEGE_ENUM_BUFFER

The LSAPR_PRIVILEGE _ENUM_BUFFER structure specifies a collection of privilege definitions of type
LSAPR_POLICY_PRIVILEGE_DEF.

 typedef struct _LSAPR_PRIVILEGE_ENUM_BUFFER {

 unsigned long Entries;

 [size_is(Entries)] PLSAPR_POLICY_PRIVILEGE_DEF Privileges;

 } LSAPR_PRIVILEG E_ENUM_BUFFER,

 *PLSAPR_PRIVILEGE_ENUM_BUFFER;

Entries: This field contains the number of privileges in the structure.

Privileges: This field contains a set of structures that define the privileges, as specified in section

2.2.8.1. If the Entries field has a value other than 0, this field MUST NOT be NULL.

2.3 Directory Service Schema Elements

This protocol is part of the Active Directory core family of protocols. In order to be fully compliant with
Active Directory, an implementation of this protocol must be used in conjunction with the full Active
Directory schema, containing all the schema attributes and classes specified in [MS -ADA1], [MS -
ADA2], [MS -ADA3], and [MS -ADSC].

67 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3 Protocol Details

The client side of this protocol is a pass - through; that is, the client side requires no additional timers
or other state. Calls made by the higher - layer protocol or application are passed directly to the
transport, and the results returned by the transport are passed directly back to the hi gher - layer
protocol or application.

3.1 Server Details

The Local Security Authority (Domain Policy) Remote Protocol server handles client requests for any of
the messages described in section 3.1.4, and operates on the security policy settings stored on the
server. For each message, the behavior of the server while processing messages is described in

section 3.1.4.

3.1.1 Abstract Data Model

The Local Security Authority (Domain Policy) Remote Protocol defines an abstract data model that
contains information about three types of objects: account objects, secret objects, and trusted domain

objects. In addition, this abstract data model contains the policy object that holds miscellaneous policy
settings that are unrelated to any of these three types of objects, but apply to the operation of the
host of the server implementation of the protocol. Each object contains a few fields; operations on
these fields MUST satisfy the ACID properties [GRAY]. Thus, if fields are defined by structures, it is
expected that the entire structure be operated on as a unit.

This data model MUST cons ist of variables whose values are maintained across system restarts and
RPC method invocations and that store those values for retrieval and update, unless otherwise

specified.

Note The abstract notation (Public) indicates that this Abstract Data Model el ement can be directly
accessed from outside this protocol, for the purpose of documentary convenience. Such direct access
MUST NOT be construed as a relaxation of the security constraints specified within this document;
rather, the same authorization decis ions that are applied when clients access such data elements

using protocol primitives MUST also be applied during direct access of the elements. See section

3.1.1.10 for more details.

3.1.1.1 Policy Object Data Model

The policy obj ect contains miscellaneous policy settings. There is one object of this type on the server.
This object cannot be deleted, and a new object of this type cannot be created. Its fields, however,

can be changed when they adhere to the rules in the specificati on. The data model is presented here
as a collection of structures defined in section 2.2 to ensure that syntax and other consistency rules
are met in the data model. <34>

Name Type

Auditing Log Information POLICY_AUDIT_LOG_INFO

Audit Full Information POLICY_AUDIT_FULL_QUERY_INFO

Event Auditing Options LSAPR_POLICY_AUDIT_EVENTS_INFO

Primary Domain Information LSAPR_POLICY_PRIMARY_DOM_INFO

DNS Domain Information (Public) <35> LSAPR_POLICY_DNS_DOMAIN_INFO

Account Domain Information LSAPR_POLICY_ACCOUNT_DOM_INFO

68 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name Type

Server Role Information POLICY_LSA_SERVER_ROLE_INFO

Replica Source Information LSAPR_POLICY_REPLICA_SRCE_INFO

* Kerberos Policy Information <36> POLICY_DOMAIN_KERBEROS_TICKET_INFO

Encrypting File System (EFS) Policy Information <37> LSAPR_POLICY_DOMAIN_EFS_INFO

Quality of Service Information <38> POLICY_DOMAIN_QUALITY_OF_SERVICE_INFO

Security Descriptor LSAPR_SR_SECURITY_DESCRIPTOR

Machine Account Information LSAPR_POLICY_MACHINE_ACCT_INFO

* The Kerberos Policy Info rmation abstract data contains the following public ADM elements (whose
meaning is described in section 2.2.4.19):

Á AuthenticationOptions (Public): Optional flags that affect validations.

Á MaxServiceTicketAge (Public): The maximum ticket lifetime for a service ticket.

Á MaxTicketAge (Public): The maximum ticket lifetime for a ticket -granting ticket.

Á MaxRenewAge (Public): The maximum renewable lifetime.

Á MaxClockSkew (Public): The acceptable clock skew.

Á Reserved : Reserved for future use.

The server MUST notify the Kerberos protocol [MS -KILE] when any field of the Kerberos Policy
Information ADM element is changed; see section 3.1.4.4.8 for more details.

The following element also pertains to the Policy Object data model:

Á ComputerNetBIOSName : This ADM element represents the NetBIOS name of the computer. It
is shared with the ComputerName.NetBIOS element from [MS -WKST] section 3.2.1.2.

Auditing Log Information is constant information about the state of the auditing system. The server
MUST store the following constant information.

Á MaximumLogSize = 8192 for non ïdomain controllers (DCs)

Á MaximumLogSize = 20480 for domain controllers

Á AuditLogPercentFull = 0

Á AuditRetentionPeriod = 8533315

Á AuditLogFullShutdownInPro gress = FALSE

Á TimeToShutdown = 288342

Á NextAuditRecordId = 0

Account Domain Information stores information about the local account domain of the machine. Note
that Primary Domain Information is returned to clients who issue LsarQueryInformationPolicy2

messa ges (section 3.1.4.4.3) with PolicyAccountDomainInformation to a domain controller.

69 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

For domain - joined machines, Primary Domain Information and DNS Domain Information store
information about the domain to which the machine is joined. If the machine is not j oined to a

domain, these abstract data elements store information about the workgroup the machine is in.

The value of the Server Role Information ADM element is determined by the following series of calls to

the local SAM Remote Protocol implementation:

1. In voke SamrConnect ([MS -SAMR] section 3.1.5.1.4), specifying SAM_SERVER_CONNECT for the
DesiredAccess parameter.

2. Invoke SamrLookupDomainInSamServer ([MS -SAMR] section 3.1.5.11.1), specifying the
Name field of the Primary Domain Information ADM element for th e Name parameter

3. Invoke SamrOpenDomain ([MS -SAMR] section 3.1.5.1.5), specifying the ServerHandle that was
obtained in step 1, DOMAIN_ALL_ACCESS for the DesiredAccess parameter, and the DomainId

that was obtained in step 2.

4. Invoke SamrQueryInformationDomai n2 ([MS -SAMR] section 3.1.5.5.1), specifying the
DomainHandle that was obtained in step 3, and DomainServerRoleInformation for the

DomainInformationClass parameter.

5. The value obtained in step 4 is then used for the Server Role Information ADM element. If
DomainServerRolePrimary is returned, then PolicyServerRolePrimary is used; if

DomainServerRoleBackup is returned, PolicyServerRoleBackup is used.

6. Call SamrCloseHandle ([MS -SAMR] section 3.1.5.13.1) on the handle from step 3.

7. Call SamrCloseHandle on the hand le from step 1.

Replica Source Information and Encrypting File System (EFS) Policy Information are obsolete abstract
data in this version of the protocol. However, an implementation SHOULD support this data for
compatibility with previous versions of this protocol.

Audit Full Information and Quality of Service Information are obsolete abstract data in this version of

the protocol. An implementation SHOULD choose not to implement this abstract data model.

A security descriptor is used during handle open for access check. The content of this security
descriptor is implementation -specific, but a server MUST assign a default security descriptor. <39>

If the responder for this protocol is a domain controller, the values of the implementation -specific
instantiation of Event Auditing Options and Kerberos Policy Information abstract data MUST converge
between the domain controllers in the same domain. <40> There is no requirement on the length of
time to reach convergence.

For domai n- joined machines, the Machine Account Information abstract data contains information
about the account object in the domain to which the machine is joined.

3.1.1.2 Accounts Rights Data Model

Account Rights is composed of two subm odels, Privilege and System Access Rights. When used with

account objects, they can be used separately in messages, as in LsarEnumeratePrivileges and
LsarGetSystemAccessAccount, or together, as in LsarAddAccountRights. The Name fields in the
following data models are used to identify the privilege or system access right uniquely.

3.1.1.2.1 Privilege Data Model

The server MUST maintain a list of privileges that it recognizes. A privilege is defined by a language -

independent human - readable n ame, a locally unique identifier (LUID), and a language -dependent
description of the privilege. Two different privileges MUST have different names as well as different
LUIDs. The list of privileges known by the server SHOULD NOT change unless a major event , such as

70 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

an operating system upgrade, takes place. The set of names identifying privileges and their LUIDs
MUST be the same across all servers running the same revision of the operating system.

Name Type

Name RPC_UNICODE_STRING

Locally Unique Identifier LUID

Privilege descriptions in different languages An array of RPC_UNICODE_STRINGs

The Name and Locally Unique Identifier pair are communicated by the Local Security Authority
(Domain Policy) Remote Protocol via the LSAPR_PRIVILEGE_ENUM_BUFFER structure.

Privilege Description is communicated by the Local Security Authority (Domain Policy) Remote Protocol
via the LsarLookupPrivilegeDisplayName method.

The data model in this version of the protocol defines the privileges described in the table be low. The

descriptions that are provided are in English. <41>

Name LUID Privilege description

SE_ASSIGNPRIMARYTOKEN_NAME

"SeAssignPrimaryTokenPrivilege"

{0,3} Replace a process - level token.

SE_AUDIT_NAME

"SeAuditPrivilege"

{0,21} Generate security audits.

SE_BACKUP_NAME

"SeBackupPrivilege"

{0,17} Back up files and directories.

SE_CHANGE_NOTIFY_NAME

"SeChangeNotifyPrivilege"

{0,23} Bypass traverse checking.

SE_CREATE_GLOBAL_NAME

"SeCreateGlobalPrivilege"

{0,30} Create global objects.

SE_CREATE_PAGEFILE_NAME

"SeCreatePagefilePrivilege"

{0,15} Create a page file.

SE_CREATE_PERMANENT_NAME

"SeCreatePermanentPrivilege"

{0,16} Create permanent shared objects.

SE_CREATE_TOKEN_NAME

"SeCreateTokenPrivilege"

{0,2} Create a token object.

SE_DEBUG_NAME

"SeDebugPrivilege"

{0,20} Debug programs.

SE_ENABLE_DELEGATION_NAME

"SeEnableDelegationPrivilege"

{0,27} Enable computer and user accounts to be trusted for
delegation.

SE_IMPERSONATE_NAME

"SeImpersonatePrivilege"

{0,29} Impersonate a client after authentication.

SE_INC_BASE_PRIORITY_NAME

"SeIncreaseBasePriorityPriv ilege"

{0,14} Increase scheduling priority.

SE_INCREASE_QUOTA_NAME {0,5} Adjust memory quotas for a process.

71 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name LUID Privilege description

"SeIncreaseQuotaPrivilege"

SE_LOAD_DRIVER_NAME

"SeLoadDriverPrivilege"

{0,10} Load and unload device drivers.

SE_LOCK_MEMORY_NAME

"SeLockMemoryPrivilege"

{0,4} Lock pages in memory.

SE_MACHINE_ACCOUNT_NAME

"SeMachineAccountPrivilege"

{0,6} Add workstations to domain.

SE_MANAGE_VOLUME_NAME

"SeManageVolumePrivilege"

{0,28} Manage the files on a volume.

SE_PROF_SINGLE_PROCESS_NAME

"SeProfileSingleProcessPrivilege"

{0,13} Profile single process.

SE_REMOTE_SHUTDOWN_NAME

"SeRemoteShutdownPrivilege"

{0,24} Force shutdown from a remote system.

SE_RESTORE_NAME

"SeRestorePrivilege"

{0,18} Restore files and directories.

SE_SECURITY_NAME

"SeSecurityPrivilege"

{0,8} Manage auditing and security log.

SE_SHUTDOWN_NAME

"SeShutdownPrivilege"

{0,19} Shut down the system.

SE_SYNC_AGENT_NAME

"SeSyncAgentPrivilege"

{0,26} Synchronize directory service data.

SE_SYSTEM_ENVIRONMENT_NAME

"SeSystemEnvironment"

{0,22} Modify firmware environment values.

SE_SYSTEM_PROFILE_NAME

"SeSystemProfilePrivilege"

{0,11} Profile system performance.

SE_SYSTEMTIME_NAME

"SeSystemtimePrivilege"

{0,12} Change system time.

SE_TAKE_OWNERSHIP_NAME

"SeTakeOwnershipPrivilege"

{0,9} Take ownership of files or other objects.

SE_TCB_NAME

"SeTcbPrivilege"

{0,7} Act as part of the operating system.

SE_UNDOCK_NAME

"SeUndockPrivilege"

{0,25} Remove computer from docking station.

SE_CREATE_SYMBOLIC_LINK_NAME

"SeCreateSymbolicLi nkPrivilege"

{0,35} Create symbolic links.

SE_INC_WORKING_SET_NAME

"SeIncreaseWorkingSetPrivilege"

{0,33} Increase a process working set.

SE_RELABEL_NAME {0,32} Modify an object label.

72 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name LUID Privilege description

"SeRelabelPrivilege"

SE_TIME_ZONE_NAME

"SeTimeZonePrivilege"

{0,34} Change time zone.

SE_TRUSTED_CREDMAN_ACCESS_NAME

"SeTrustedCredManAccessPrivilege"

{0,31} Access Credential Manager as a trusted caller.

3.1.1.2.2 System Access Rights Data Model

The server MU ST maintain a list of system access rights that it recognizes. A system access right is
identified by a bit flag and a name. The name is a human - readable form of a system access right. The
flag is a representation of the same system access right for data r epresentation.

Fields:

Á Name

Á Flag

Two different system accesses MUST have different names and different bit flags.

The list of system access rights that MUST be supported are specified in section 2.2.1.2. <42>

The following table contains the string name that is associated with each system access right. The
string name is used in methods that associate a system access with a particular account and that also

specify the system access not by a POLICY_SYSTEM_ACCESS_MODE, but by the string specified in this
ta ble.

Name Flag

SeInteractiveLogonRight POLICY_MODE_INTERACTIVE

0x00000001

SeNetworkLogonRight POLICY_MODE_NETWORK

0x00000002

SeBatchLogonRight POLICY_MODE_BATCH

0x00000004

SeServiceLogonRight POLICY_MODE_SERVICE

0x00000010

SeDenyInteractiveLogonRight POLICY_MODE_DENY_INTERACTIVE

0x00000040

SeDenyNetworkLogonRight POLICY_MODE_DENY_NETWORK

0x00000080

SeDenyBatchLogonRight POLICY_MODE_DENY_BATCH

0x00000100

SeDenyServiceLogonRight POLICY_MODE_DENY_SERVICE

0x00000200

73 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name Flag

SeRemoteInteractiveLogonRight POLICY_MODE_REMOTE_INTERACTIVE

0x00000400

SeDenyRemoteInteractiveLogonRight POLICY_MODE_DENY_REMOTE_INTERACTIVE

0x00000800

3.1.1.3 Account Object Data Model

Inside the Local Security Authority (Domain Policy) Remote Protocol database, the account object
MUST be represented by four pieces of data as follows.

Name Type

Security Identifier (Public) RPC_SID

Security Descriptor LSAPR_SR_SECURITY_DESCRIPTOR

Privileges (Public) LSAPR_PRIVILEGE_SET

System Access Rights unsigned int with combination of POLICY_SYSTEM_ACCESS_MODE flags

The Security Identifier field identifies the account object and MUST be present. Two different
account objects MUST NOT have the same security identifier (SID). The Security Identifier field

MUST be read -only. Any valid SID can be used to identify an account object.

The Security Descriptor field controls access to the account object. Every account obje ct in the Local
Security Authority (Domain Policy) Remote Protocol database MUST have a valid security descriptor.
The security descriptor can be queried by calling the LsarQuerySecurityObject method and changed by
calling the LsarSetSecurityObject method. The server MUST assign a default security descriptor to

every newly created account object, even if the client did not specify a default value. <43>

The Privileges field is a potentially empty set of "global" rights granted to the account by the server.

Every "right" in the set is a pair of a LUIDs and a bitmask of attributes. The right can be controlled by
calling the LsarAddAccountRights, LsarAddPrivilegesToAccount, LsarRemoveAccountRights, and
LsarRemovePrivilegesFromAccount methods. Because there are no "negative" rights, the order of
rights in the set is not relevant and the server MUST NOT associate any special semantics with the
order of rights.

The System Access Rights field is a bitmask of flags indicating the system access of the account.

This fiel d can be set to 0.

If the responder for this protocol is a domain controller, the values of the implementation -specific
instantiation of this abstract data model MUST converge between the domain controller in the same
domain. <44> There is no requirement on the length of time to reach convergence.

3.1.1.4 Secret Object Data Model

Inside the Local Security Authority (Domain Policy) Remote Protocol database, a secret object is
represented by the following pieces of data.

Name Type Attr ibute name

Name RPC_UNICODE_STRING ldapDisplayName ([MS -ADA1] section 2.356)

74 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name Type Attr ibute name

Security Descriptor LSAPR_SR_SECURITY_DESCRIPTOR securityIdentifier ([MS -ADA3] section 2.237)

Old Set Time LARGE_INTEGER priorSetTime ([MS -ADA3] section 2.159)

Old Value binary data priorValue ([MS -ADA3] section 2.160)

New Set Time LARGE_INTEGER lastSetTime ([MS -ADA1] section 2.353)

New Value binary data currentValue ([MS -ADA1] section 2.139)

The Name field uniquely identifies the secret by using a Unicode string. Two different secrets MUST
have different names (the comparison is case -sensitive). The Name field MUST be read -only. To be

considered valid, the length of the name in bytes MUST be even; it MUST be greater than 0 and less
than 0x101. The secret name MUST NOT contain the " \ " character. Special values of the Name field
indicate secret types. The different secret types are as follows:

Á Global

Á Local

Á Trusted Domain

Á System

The following rules govern secret type assignments.

The term "starts with" literally means "must have a nonzero number of characters following the
prefix". Names consisting of only a reserved prefix are invalid.

The following table indicates the secret name pattern and the associat ed secret type.

Secret name or name pattern Type of secret

Starts with "G$$" Trusted domain

Starts with "G$" Global

Starts with "L$" Local

Starts with "M$" System

Starts with "_sc_" System

Starts with "NL$" System

Starts with "RasDialParams" Local

Starts with "RasCredentials" Local

Equal to "$MACHINE.ACC" System

Equal to "SAC" Local

Equal to "SAI" Local

Equal to "SANSC" Local

The type of a secret defines the access and availability boundary for a given secret object.

System Secret: Cannot be accessed by any clients.

75 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Local Secret: Can be accessed only by a client that is on the same machine as the server.

Global Secret: Replicates between domain controllers in the same domain, allowing each domain

controller to be able to respond to secret requests of this type.

Trusted Domain Secret: Used with trusted domain objects to store trust passwords. Trusted domain

secrets also replicate between domain controllers in the same domain. <45>

The security descriptor field controls access to the secret object. Every secret object in the Local
Security Authority (Domain Policy) Remote Protocol database that has Local Secret type MUST have a
valid security descriptor. The security descriptor of Local Secret objects can b e queried by calling the
LsarQuerySecurityObject (section 3.1.4.9.1) method and changed by calling the
LsarSetSecurityObject (section 3.1.4.9.2) method. The server MUST assign a default security
descriptor to every newly created secret object, even if the client did not specify a default value. <46>

The value of a secret is a byte BLOB. Depending on the caller's choices, the server stores 0, 1, or 2
values for the secret, the 2 values being "current" and "previous" and 1 value being either "current" or
"prev ious". Both versions of the secret's value are accompanied by a 64 -bit time stamp in Coordinated

Universal Time (UTC), sometimes referred to as Greenwich Mean Time, in units of 100 nanoseconds
since January 1, 1601.

3.1.1.5 Trusted Domain Object Data Model

An implementer must read [MS -ADTS] section 6.1.6 to understand the role of trusts in Active
Directory and to understand the data model in this specification.

Inside the Local Security Authority (Domain Policy) Remote Proto col database, a trusted domain
object (TDO) is represented by the following table. Each abstract data field listed in the Name column

of the table contains a link to the appropriate section in [MS -ADTS] section 6.1.6.7. See these sections
for detailed info rmation, including how each abstract data field is mapped to an Active Directory
attribute. The Type column lists the data type for its corresponding abstract data field. The Attribute
Name column lists the ldapDisplayName and a link to the appropriate sec tion in [MS -ADA1], [MS -
ADA2], or [MS -ADA3] for the corresponding abstract data field stored in Active Directory.

Name Type Attribute name

Name ([MS -ADTS]
section 6.1.6.7.13)

RPC_UNICODE_STRING trustPartner ([MS -ADA3] section
2.325)

Flat Name ([MS -
ADTS] s ection
6.1.6.7.1)

RPC_UNICODE_STRING flatName ([MS -ADA1] section
2.232)

Security Identifier
([MS -ADTS] section
6.1.6.7.8)

RPC_SID securityIdentifier ([MS -ADA3]
section 2.237)

Trust Type ([MS -
ADTS] section
6.1.6.7.15)

unsigned int (as specified in section 2.2.7.9 TrustType) trustType ([MS -ADA3] section
2.327)

Trust Direction
([MS -ADTS] section
6.1.6.7.12)

unsigned int (as specified in section 2.2.7.9
TrustDirection)

trustDirection ([MS -ADA3]
section 2.323)

Trust Attributes
([MS -ADTS] section
6.1.6 .7.9)

unsigned int (as specified in section 2.2.7.9
TrustAttributes)

trustAttributes ([MS -ADA3]
section 2.320)

Posix Offset ([MS -
ADTS] section

TRUSTED_POSIX_OFFSET_INFO trustPosixOffset ([MS -ADA3]
section 2.326)

76 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name Type Attribute name

6.1.6.7.14)

Trust Incoming
Passwords ([MS -
ADTS] section
6.1.6.7.10)

Array of LSAPR_AUTH_INFORMATION trustAuthIncoming ([MS -ADA3]
section 2.321)

Trust Outgoing
Passwords ([MS -
ADTS] section
6.1.6.7.11)

Array of LSAPR_AUTH_INFORMATION trustAuthOutgoing ([MS -ADA3]
section 2.322)

Supported
Encryption Types
([MS -ADTS] section
6.1.6.7.3)

TRUSTED_DOMAIN_SUPPORTED_ENCRYPTION_TYPES msDS -
SupportedEncryptionTypes
([MS -ADA2] section 2.465)

Forest Trust
Information ([MS -
ADTS] section
6.1.6.7.4)

LSA_FOREST_TRUST_INFORMATION msDS -TrustForestTrustInfo
([MS -ADA2] section 2.480)

Security Descriptor
([MS -ADTS] section
6.1.6.7.5)

LSAPR_SR_SECURITY_DESCRIPTOR nTSecurityDescriptor ([MS -
ADA3] section 2.37)

The following citation contains a timeline of when each information value was introduced. <47>

3.1.1.6 Configura tion Settings

3.1.1.6.1 Block Anonymous Access to Objects

Name Type

LsaRestrictAnonymous Boolean

The LsaRestrictAnonymous setting is used to restrict the ability of anonymous requestors to query or
modify security -sensitive data. <48> See sections 3.1.4.4.1, 3.1.4.5.1, 3.1.4.5.2, 3.1.4.5.3,
3.1.4.5.10, 3.1.4.5.12, 3.1.4.6.1, 3.1.4.6.2, and 3.1.4.6.6 for information on how message processing
is affected with this setting. The server message -processing behavior MUST always reflect the cu rrent
value of this setting.

This setting MUST be persisted across protocol and system restarts.

3.1.1.7 LsaContextHandle Data Model

This protocol is based largely on the use of RPC context handles to maintain session state between the

client and the server. The b asic context -handle programming model is described in [C706] section

6.1.6. Also see sections 3.2.3.1.9 and 3.3.1.4.1 in [MS -RPCE].

The server MUST maintain the following data elements for each context handle that is returned to a
client.

Name Type

GrantedAccess ACCESS_MASK

HandleType HandleType MUST be one of the following:

77 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Name Type

Á Policy

Á Account

Á Secret

Á Trusted Domain

Object A reference to an object in the database that has the type specified in HandleType.

3.1.1.8 Attribute Listing

The following attributes ar e referenced by this protocol (listed by ldapDisplayName). For a normative
description of the syntax, see [MS -ADA1], [MS -ADA2], and [MS -ADA3].

Á currentValue

Á flatName

Á lastSetTime

Á ldapDisplayName

Á msDS -AllUsersTrustQuota

Á msDS -PerUserTrustQuota

Á msDS -PerUserTrustTombstonesQuota

Á msDS -SupportedEncryptionTypes

Á msDS -TrustForestTrustInfo

Á priorSetTime

Á priorValue

Á securityIdentifier

Á trustAuthIncoming

Á trustAuthOutgoing

Á trustDirection

Á trustPartner

Á trustPosixOffset

Á trustType

Á unicodePwd

78 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.1.9 Object Class Listing

The following classes are referenced by this protocol (listed by ldapDisplayName). For a normative
description of these classes, see [MS -ADSC].

Á secret

Á trustedDomain

3.1.1.10 Access for Public Abstract Data Model Elements

As described in section 3.1.1, direct access (query or set) of data elements tagged as "(Public)" MUST

use the same authorization policies, enforced as if the elements were being accessed via the RPC -
based protocol methods in this document. The calling patterns descri bed in section 1.3 provide an
overview for understanding the basic flow of the query and set patterns. Section 3.1.1.10.1 provides
detailed examples for the Policy Object Data Model (section 3.1.1.1); the other object types use
similar patterns.

The follow ing table describes the level of access that MUST be enforced during direct access of the

described public ADM elements.

Object type
DesiredAccess required for Query
pattern DesiredAccess required for Set pattern

Policy (section
3.1.1.1)

POLICY_VIEW_AUDIT_INFORMATION |
POLICY_GET_PRIVATE_INFORMATION |
POLICY_VIEW_LOCAL_INFORMATION |
READ_CONTROL

POLICY_TRUST_ADMIN |
POLICY_CREATE_ACCOUNT |
POLICY_CREATE_SECRET |
POLICY_CREATE_PRIVILEGE |
POLICY_SET_DEFAULT_QUOTA_LIMITS |
POLICY_SET_AUDIT_R EQUIREMENTS |
POLICY_AUDIT_LOG_ADMIN |
POLICY_SERVER_ADMIN | READ_CONTROL

Account
(section
3.1.1.3)

ACCOUNT_VIEW | READ_CONTROL ACCOUNT_ADJUST_PRIVILEGES |
ACCOUNT_ADJUST_QUOTAS |
ACCOUNT_ADJUST_SYSTEM_ACCESS |
READ_CONTROL

Secret (section
3.1.1.4)

SECRET_QUERY_VALUE | READ_CONTROL SECRET_SET_VALUE | READ_CONTROL

TrustedDomain
(section
3.1.1.5)

TRUSTED_QUERY_DOMAIN_NAME |
READ_CONTROL

TRUSTED_SET_CONTROLLERS |
TRUSTED_SET_POSIX | READ_CONTROL

3.1.1.10.1 Example Patterns for Direct Access of Policy Object ADM Elements

3.1.1.10.1.1 Query Pattern for Policy Object ADM

Direct querying of any of the (Public) ADM elements listed in section 3.1.1 MUST be performed as
follows:

1. The client MUST invoke LsarOpenPolicy2 (section 3.1.4.4.1), specifying NULL for the SystemName
parameter and POLICY_VIEW_AUDIT_INFORMATION | POLICY_VIEW_LOCAL_INFORMATION |
POLICY_GET_PRIVATE_INFORMATION | READ_CONTROL for the DesiredAccess parameter.

79 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

2. The client MUST invoke LsarQueryInformationPolicy2 (section 3.1.4.4.3), specifying the policy
handle obtained in step 1 for the PolicyHandle parameter and PolicyDnsDomainInformation for the

InformationClass parameter.

3. The client MUST invoke LsarClose (section 3.1.4.9.4), specifying the policy handle obtained in step

1 for the ObjectHandle parameter.

4. The ADM eleme nts of interest are then read from the
LSAPR_POLICY_INFORMATION.PolicyDnsDomainInfo structure (section 2.2.4.14) that was
returned in step 2.

3.1.1.10.1.2 Set Pattern for Policy Object ADM

Direct setting of any of the (Public) ADM elements listed in section 3.1.1 MUST be performed as

follows:

1. The client MUST invoke LsarOpenPolicy2 (section 3.1.4.4.1), specifying NULL for the SystemName
parameter and POLICY_TRUST_ADMIN | POLICY_CREATE_ACCOUNT | POLICY_CREATE_SECRET |

POLICY_CREATE_PRIVILEGE | POLICY_SET_DEFAULT_QUOTA_LIMITS |
POLICY_SET_AUDIT_REQUIREMENTS | POLICY_AUDIT_LOG_ADMIN | POLICY_SERVER_ADMIN |
READ_CONTROL for the DesiredAccess parameter.

2. The client MUST invoke LsarQueryInformationPolicy2 (section 3.1.4.4.3), specifying the policy
handle obtained in step 1 for the PolicyHandle parameter and PolicyDnsDomainInformation for the
InformationClass parameter.

3. The client MUST set the AD M elements of interest in the
LSAPR_POLICY_INFORMATION.PolicyDnsDomainInfo structure (section 2.2.4.14) that was
returned in step 2 to the desired new values, leaving the remaining elements unmodified.

4. The client MUST invoke LsarSetInformationPolicy2 (sect ion 3.1.4.4.5), specifying the policy handle

obtained in step 1 for the PolicyHandle parameter.

5. The client MUST invoke LsarClose (section 3.1.4.9.4), specifying the policy handle obtained in step

1 for the ObjectHandle parameter.

3.1.2 Timers

No protocol timers are required other than those internal ones used in RPC to implement resiliency to
network outages, as specified in [MS -RPCE].

3.1.3 Initialization

The server MUST start listening on the well -known named pipe for the RPC interface, as specified in
section 2.1.

The ComputerNetBIOSName element (specified in section 3.1.1.1) MUST be copied into the
DomainName field in Account Do main Information (also specified in section 3.1.1.1).

3.1.4 Message Processing Events and Sequencing Rules

This section contains detailed information about each protocol message and the steps taken by the
server to process caller requests. <49><50><51>

Methods in RPC Opnum Order

80 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

LsarClose This method closes an open handle.

Opnum: 0

Opnum1NotUsedOnWire Opnum: 1

LsarEnumeratePrivileges This method is invoked to enumerate all privileges known to the system.

Opnum: 2

LsarQuerySecurityObject This method is invoked to query security information that is assigned to
a database object. It returns the security descriptor of the object.

Opnum: 3

LsarSetSecurityObject This method is invoked to set a security descriptor on an object.

Opnum: 4

Opnum5NotUsedOnWire Opnum: 5

LsarOpenPolicy This method is exactly the same as LsarOpenPolicy2, except that the
SystemName parameter in this function, because of its syntactic
definition, contains only one character instead of a full string.

Opnum: 6

LsarQueryInformationPolicy This method is invoke d to query values representing the server's
information policy.

Opnum: 7

LsarSetInformationPolicy This method is invoked to set some policy on the server.

Opnum: 8

Opnum9NotUsedOnWire Opnum: 9

LsarCreateAccount This method is invoked to create a new acc ount object in the server's
database.

Opnum: 10

LsarEnumerateAccounts This method is invoked to request a list of account objects in the server's
database.

Opnum: 11

LsarCreateTrustedDomain This method is invoked to create an object of type trusted domain in the
server's database.

Opnum: 12

LsarEnumerateTrustedDomains This method is invoked to request a list of TDOs in the server's
database.

Opnum: 13

Lsar_LSA_TM_14 Opnum: 14

Lsar_LSA_TM_15 Opnum: 15

LsarCreateSecret This method is invok ed to create a new secret object in the server's
database.

Opnum: 16

LsarOpenAccount This method is invoked to obtain a handle to an account object.

Opnum: 17

LsarEnumeratePrivilegesAccount This method is invoked to retrieve a list of privileges granted to an

81 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

account on the server.

Opnum: 18

LsarAddPrivilegesToAccount This method is invoked to add new privileges to an existing account
object.

Opnum: 19

LsarRemovePrivilegesFromAccount This m ethod is invoked to remove privileges from an account object.

Opnum: 20

Opnum21NotUsedOnWire Opnum: 21

Opnum22NotUsedOnWire Opnum: 22

LsarGetSystemAccessAccount This method is invoked to retrieve system access account flags for an
account object.

Opnum: 23

LsarSetSystemAccessAccount This method is invoked to set system access account flags for an account
object.

Opnum: 24

LsarOpenTrustedDomain This method is invoked to obtain a handle to a TDO.

Opnum: 25

LsarQueryInfoTrustedDomain This method is invoked to retrieve information on a TDO.

Opnum: 26

LsarSetInformationTrustedDomain This method is invoked to set information on a TDO.

Opnum: 27

LsarOpenSecret This method is invoked to obtain a handle to an exi sting secret object.

Opnum: 28

LsarSetSecret This method is invoked to set the current and old values of the secret
object.

Opnum: 29

LsarQuerySecret This method is invoked to retrieve the current and old (or previous)
value of the secret object.

Opnum: 30

LsarLookupPrivilegeValue This method is invoked to map the name of a privilege into the LUID by
which the privilege is known on the server.

Opnum: 31

LsarLookupPrivilegeName This method is invoked to map the LUID of a privilege into the string
name by which the privilege is known on the server.

Opnum: 32

LsarLookupPrivilegeDisplayName This method is invoked to map the name of a privilege into a display text
string in the caller's language.

Opnum: 33

LsarDeleteObject This method is invoked to d elete an open account, secret, or TDO.

Opnum: 34

LsarEnumerateAccountsWithUserRight This method is invoked to return a list of account objects that have the

82 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

user right equal to the passed - in value.

Opnum: 35

LsarEnumerateAccountRights This method is invoked to retrieve a list of rights that are associated with
an existing account.

Opnum: 36

LsarAddAccountRights This method is invoked to add new rights to an account object.

Opnum: 37

LsarRemoveAccountRights This method is invoked to remove rights from an account object.

Opnum: 38

LsarQueryTrustedDomainInfo This method is invoked to retrieve information on a TDO.

Opnum: 39

LsarSetTrustedDomainInfo This method is invoked to set information on a TDO.

Opnum: 40

LsarDeleteTrustedDomain This me thod is invoked to delete a TDO.

Opnum: 41

LsarStorePrivateData This method is invoked to store a secret value.

Opnum: 42

LsarRetrievePrivateData This method is invoked to retrieve a secret value.

Opnum: 43

LsarOpenPolicy2 This method opens a context handle to the RPC server.

Opnum: 44

Lsar_LSA_TM_45 Opnum: 45

LsarQueryInformationPolicy2 This method is identical to LsarQueryInformationPolicy.

Opnum: 46

LsarSetInformationPolicy2 This method is identical to LsarSetInformationPolicy.

Opnum: 47

LsarQueryTrustedDomainInfoByName This method is invoked to retrieve information on a TDO by its string
name.

Opnum: 48

LsarSetTrustedDomainInfoByName This method is invoked to set information on a TDO by its string name.

Opnum: 49

LsarEnumerateTrustedDomainsEx This method is invoked to enumerate TDOs in the server's database.

Opnum: 50

LsarCreateTrustedDomainEx This method is invoked to create a new TDO.

Opnum: 51

Opnum52NotUsedOnWire Opnum: 52

LsarQueryDomainInformationPolicy This method is invoked to retrieve policy settings pertaining to the
current domain.

Opnum: 53

83 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method Description

LsarSetDomainInformationPolicy This method is invoked to change policy settings pertaining to the
current domain.

Opnum: 54

LsarOpenTrustedDomainByName This method is invoked to open a TDO handle by supplying the name of
the trusted domain.

Opnum: 55

Opnum56NotUsedOnWire Opnum: 56

Lsar_LSA_TM_57 Opnum: 57

Lsar_LSA_TM_58 Opnum: 58

LsarCreateTrustedDomainEx2 This method is in voked to create a new TDO.

Opnum: 59

Opnum60NotUsedOnWire Opnum: 60

Opnum61NotUsedOnWire Opnum: 61

Opnum62NotUsedOnWire Opnum: 62

Opnum63NotUsedOnWire Opnum: 63

Opnum64NotUsedOnWire Opnum: 64

Opnum65NotUsedOnWire Opnum: 65

Opnum66NotUsedOnWire Opnum: 66

Opnum67NotUsedOnWire Opnum: 67

Lsar_LSA_TM_68 Opnum: 68

Opnum69NotUsedOnWire Opnum: 69

Opnum70NotUsedOnWire Opnum: 70

Opnum71NotUsedOnWire Opnum: 71

Opnum72NotUsedOnWire Opnum: 72

LsarQueryForestTrustInformation This method is invoked to retrieve information on a trust relationship
with another forest.

Opnum: 73

LsarSetForestTrustInformation This method is invoked to establish a trust relationship with another
forest by attaching a set of records called the forest trust information to
the TDO.

Opnum: 74

The following citation contains a timeline of when each method value was introduced. <52>

Note Gaps in the opnum numbering sequence represent opnums of methods that are specified in
[MS -LSAT], or opnums that MUST NOT be used over the wire. <53>

Note Exceptions MUST NOT be thrown beyond those thrown by the underlying RPC protocol (as
specified in [MS -RPCE]), unless otherwise specified.

84 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The return values of all methods MUST conform to the specification of NTSTATUS, as specified in [MS -
ERREF] section 2.3. Specific return values for normative processing conditions are specified in this

document in the subsections of this section.

Unless otherwise specified, all negative values returned by an implementation are treated equivalently

by the client as a message processing error. Unless otherwise specified, all non -negative values
returned by an implementation are treated equivalently by the client as a success (of message
processin g).

Return values for implementation -specific conditions are left to the implementer's discretion, subject
to the constraints specified in [MS -ERREF]. For example, an implementation can re -use an existing
value in [MS -ERREF], such as 0xC0000017 (no memory) .

All methods in this protocol MUST perform data validation (as specified in section 3.1.4.10) for all

parameters that are specified as input parameters. If data validation fails for some reason, processing
MUST end, and the server MUST respond back with a f ailure.

In the following sections, the first general idea behind the common operations is explained in sections

3.1.4.1, 3.1.4.2, and 3.1.4.3. The methods are grouped by functionality: policies, accounts, secrets,
trusted domains, privileges, and common o bject methods. Section 3.1.4.10 explains the data
validation rules.

3.1.4.1 Obtaining Handles

The Local Sec urity Authority (Domain Policy) Remote Protocol recognizes four types of handles: Policy,
Account, Secret, and Trusted Domain. A handle of each type can be obtained only by calling one of a
well -defined set of methods. These handles are listed in the follo wing table.

Handle type Methods that return this type of handle

Policy LsarOpenPolicy

LsarOpenPolicy2

Account LsarCreateAccount

LsarOpenAccount

Secret LsarCreateSecret

LsarOpenSecret

Trusted Domain LsarCreateTrustedDomain

LsarOpenTrustedDomain

LsarCreateTrustedDomainEx

LsarOpenTrustedDomainByName

LsarCreateTrustedDomainEx2

The server MUST keep track of all handles of each type that every caller opens, from the moment of
creation until the handle has been closed (by calling LsarClose or LsarDeleteObject) or until the client
disconnects.

Upon receipt of a handle parameter, the server MUST check to see that the handle is one of the valid
handles of a type relevant for that operation; if the handle is not valid, the server MUST fail the
request by returning STATUS_INVALID_HANDLE.

The RPC protocol provides a mechanism to clean up any resources related to a context handle if a
client that is holding the context handle exits, dies, disconnects, or reboots. See section 3.1.6.1 for
this protocol's context handle rundown specification.

85 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.2 Access Rights and Access Checks

Methods in this protocol perform one or more of the access checks that are specified in the following
sections.

Access check (section) Methods that use it

3.1.4.2.1 LsarOpenPolicy

LsarOpenPolicy2

LsarCreateAccount

LsarOpenAccount

LsarCreateSecret

LsarOpenSecret

LsarCreateTrustedDomain

LsarOpenTrustedDomain

LsarCreateTrustedDomainEx

LsarOpenTrustedDomainByName

LsarCreateTrustedDomainEx2

3.1.4.2.2 LsarQueryInformationPolicy2

LsarQueryInformationPolicy

LsarSetInformat ionPolicy2

LsarSetInformationPolicy

LsarQueryDomainInformationPolicy

LsarSetDomainInformationPolicy

LsarCreateAccount

LsarEnumerateAccounts

LsarEnmeratePrivilegesAccount

LsarAddPrivilegesToAccount

LsarRemovePrivilegesFromAccount

LsarGetSystemAccessAccount

LsarSetSystemAccessAcount

LsarEnumerateAccountsWithUserRight

LsarEnumerateAccountRights

LsarAddAccountRights

LsarRemoveAccountRights

LsarCreateSecret

LsarSetSecret

LsarQuerySecret

LsarStorePrivateD ata

LsarRetrievePrivateData

LsarQueryTrustedDomainInfo

LsarDeleteTrustedDomain

LsarQueryTrustedDomainInfoByName

LsarEnumerateTrustedDomainsEx

LsarEnumerateTrustedDomains

LsarQueryInfoTrustedDomain

LsarSetInformationTrustedDomain

LsarEnumeratePrivileges

Lsa rLookupPrivilegeValue

LsarLookupPrivilegeName

86 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Access check (section) Methods that use it

LsarLookupPrivilegeDisplayName

LsarQuerySecurityObject

LsarSetSecurityObject

LsarDeleteObject

3.1.4.2.3 LsarOpenPolicy2

LsarOpenPolicy

LsarCreateAccount

LsarEnumerateAccounts

LsarOpenAccount

LsarEnumerateAccountRights

LsarRemoveAccountRights

LsarCreateSecret

LsarOpenSecret

LsarRetrievePrivateData

3.1.4.2.1 Access Checks Applied on Handle Open

When opening a handle, the server MUST associate with it a set of ACCESS_MASK bits, as defined in
section 2.2. 1.1. These access bits control which type of subsequent operations the caller can perform
with this handle.

All methods that open handles (as specified in section 3.1.4.1) allow the caller to specify a "desired

access" bitmask. The meaning of the bits with in this bitmask depends on the type of object. The bits
are documented in sections 2.2.1.1.1, 2.2.1.1.2, 2.2.1.1.3, 2.2.1.1.4, and 2.2.1.1.5. All methods that
open handles (as specified in section 3.1.4.1) perform an access check based on the desired acces s
mask, whose general form is:

 IF (method specific check fails) THEN

 Return STATUS_ACCESS_DENIED

 END IF

 IF (security descriptor check fails) THEN

 Return STATUS_ACCESS_DENIED

 END IF

The method -specific checks are detailed in the sections for individual methods that open handles. The
security -descriptor check is performed by using the Access Check Algorithm Pseudocode ([MS -DTYP]

section 2.5.3.2). For this protocol, the input parameters of that algorithm are mapped as follows:

Á SecurityDescriptor : The security descriptor of the object to which the handle is being opened, as
specified in section 3.1.1.

Á Token : This MUST be the token ([MS -DTYP] section 2.5.2) of the client, obtained by invoking

GetRpcImpersonationAccessToken(NULL). The GetRpcImperson ationAccessToken interface is
specified in [MS -RPCE] section 3.3.3.4.3.1.

Á Access Request mask : The DesiredAccess parameter of the method being invoked, or the

DesiredAccess value specified in the method description.

Á Object Tree : This parameter MUST be NULL .

Á PrincipalSelfSubst SID : This parameter MUST be NULL.

87 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á GrantedAccess : The value returned by this parameter MUST be stored in a local variable
LocalGrantedAccess (of type ACCESS_MASK).

In the case that the access check is successful, the server MUST NOT gra nt more access bits than the
caller has asked for, but MUST grant only those access bits that the client has explicitly requested. The

caller is permitted to request the maximum access permitted by the server by specifying the special
constant MAXIMUM_ALLO WED, as specified in section 2.2.1.1.1.

If DesiredAccess contains the MAXIMUM_ALLOWED bit, the server MUST create and return an
LsaContextHandle (section 3.1.1.7) via the method's LSAPR_HANDLE* output parameter, with its
fields initialized as follows:

Á LsaContextHandle.HandleType = "Policy", "Account", "Secret", or "Trusted Domain", depending on
the type of the database object

Á LsaContextHandle.Object = the database object

Á LsaContextHandle.GrantedAccess = LocalGrantedAccess

If DesiredAccess does not contain t he MAXIMUM_ALLOWED bit, the following constraint MUST be
satisfied:

Á If DesiredAccess contains bits that are not in GrantedAccess , the server MUST return
STATUS_ACCESS_DENIED. Otherwise, the server MUST create and return an LsaContextHandle

(section 3.1.1.7) via the method's LSAPR_HANDLE* output parameter, with its fields initialized as
follows:

Á LsaContextHandle.HandleType = "Policy", "Account", "Secret", or "Trusted Domain",
depending on the type of the database object

Á LsaContextHandle.Object = the database object

Á LsaContextHandle.GrantedAccess = DesiredAccess

The server MUST NOT allow the caller to add more access bits to the handle in a subsequent

operation. In order to obtain more access, a new handle must be obtained.

3.1.4.2.2 Access Checks Applied for Object Operations

Each method that consumes a handle requires that certain access bits be set on the handle, which is
defined as RequiredAccess for the purposes of this specification, and returns
STATUS_ACCESS_DENIED according to the pseudocode shown below , if necessary. The required bits
vary on a per -method basis and might depend on method arguments. Therefore, the value of

RequiredAccess is specified on a per -method basis in sections 3.1.4.4, 3.1.4.5, 3.1.4.6, 3.1.4.7,
3.1.4.8, and 3.1.4.9.

 IF (any bit s et in RequiredAccess is not set in LsaContextHandle.GrantedAccess) THEN

 Return STATUS_ACCESS_DENIED

 END IF

For example, if a method -processing rule specifies a required access bit of

POLICY_VIEW_LOCAL_INFORMATION, the server MUST check that this bit is set in the granted access
field on the context handle. If the check is unsuccessful, the server MUST return
STATUS_ACCESS_DENIED.

3.1.4.2.3 Determining If Requestors Are Anonymous

 procedure IsRequestorAnonymous() : boolean

88 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The IsRequestorAnonymous procedure returns TRUE if the requestor is anonymous. On entrance:

Á AnonymousSid: This MUST be the ANONYMOUS SID as specified in [MS -DTYP] section 2.4.2.4.

Á RpcImpersonationAccessToken: This MUST be the token ([MS -DTYP] section 2.5.2) of the client,
obtained by invoking the GetRpcImpersonationAccessToken interface as specified in [MS -

RPCE] section 3.3.3.4.3.1, specifying NULL for Input Parameter .

 Return RpcImp ersonationAccessToken.Sids[RpcImpersonationAccessToken.UserIndex] equals

AnonymousSid

3.1.4.3 Closing Handles

A handl e of any type can be closed by calling LsarClose. Successful calls to LsarDeleteObject, which

deletes an object to which the caller has an open handle, MUST also close the handle. The fact that a
handle is closed is communicated to the RPC transport by ret urning a NULL value in the handle
parameter, as specified in [C706] section 5.1.6.

Closing one handle MUST NOT affect any other handle on the server; that is, handles obtained using a
policy handle MUST continue to be valid after that policy handle is clos ed.

3.1.4.4 Policy Object Methods

The message processing of methods in this section MUS T use the abstract data model defined in
section 3.1.1.1.

Method (opnum) Summary

LsarOpenPolicy2 (opnum 44) Opens a context handle to the RPC server.

LsarOpenPolicy (opnum 6) Superseded by LsarOpenPolicy2.

LsarQueryInformationPolicy2 (opnum 46) Obtains information from the policy object.

LsarQueryInformationPolicy (opnum 7) Obtains information from the policy object.

LsarSetInformationPolicy2 (opnum 47) Sets information on the policy object.

LsarSetInform ationPolicy (opnum 8) Sets information on the policy object.

LsarQueryDomainInformationPolicy (opnum
53)

Obtains information from the policy object pertaining to the
domain.

LsarSetDomainInformationPolicy (opnum 54) Sets information on the policy object pertaining to the domain.

3.1.4.4.1 LsarOpenPolicy2 (Opnum 44)

The LsarOpenPolicy2 method opens a context handle to the RPC server. This is the first function that
MUST be called to contact the Local Security Authority (Domain Policy) Remote Protocol database.

 NTSTATUS LsarOpenPolicy2(

 [in, unique, string] wchar_t* SystemName,

 [in] PLSAPR_OBJECT_ATTRIBUTES ObjectAttributes,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* PolicyHandle

);

89 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SystemName: This parameter does not have any effect on message processing in any environment.
It MUST be ignored on receipt.

ObjectAttributes: This parameter does not have any effect on message processing in any
environment. All fields MUST <54> be ignored except RootDirect ory which MUST be NULL.

DesiredAccess: An ACCESS_MASK value that specifies the requested access rights that MUST be
granted on the returned PolicyHandle if the request is successful.

PolicyHandle: An RPC context handle (as specified in section 2.2.2.1) tha t represents a reference to
the abstract data model of a policy object, as specified in section 3.1.1.1.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing below.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied parameters is incorrect. For example, this can happen
when ObjectAttributes is NULL or DesiredAccess is zero.

Processing:

DesiredAccess : A bitmask specifying the access that the caller attempts to obtain on the policy object,
which is access -checked according to section 3.1.4.2.1. The method -specific portion of the check is

the following:

 LET serverInfo be a SERVER_INFO_101 structure

 CALL ServerGetInfo(101, &serverInfo)

 LET isDomainController be a boolean initialized to FALSE

 IF (server Info.sv101_version_type & (SV_TYPE_DOMAIN_CTRL | SV_TYPE_DOMAIN_BAKCTRL)) THEN

 Set isDomainController equal to TRUE

 END IF

 IF ((isDomainController equals FALSE) and (IsRequestorAnonymous() and LsaRestrictAnonymous is

set to TRUE)) THEN

 Return STATUS_ACCESS_DENIED

 END IF

SERVER_INFO_101, SV_TYPE_DOMAIN_CTRL, and SV_TYPE_DOMAIN_BACKCTRL are specified in

[MS -DTYP] section 2.3.12. The ServerGetInfo procedure is specified in [MS -DTYP] section 2.6. The
valid account - rights bits are specifi ed in section 2.2.1.1.2, and the security descriptor is specified in
section 3.1.1.1. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

PolicyHandle : If the request is successful, the server MUST create and return a context handle (sec tion

3.1.1.7) via PolicyHandle , with its fields initialized as follows:

Á LsaContextHandle.HandleType = "Policy"

Á LsaContextHandle.Object = the policy object

Á LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

The return value MUST be set to STATUS_SUCCESS in this case.

90 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.4.2 LsarOpenPolicy (Opnum 6)

The LsarOpenPolicy method is exactly the same as LsarOpenPolicy2, except that the SystemName
parameter in this function, because of its syntactic definition, contains only o ne character instead of a

full string. This SystemName parameter does not have any effect on message processing in any
environment. It MUST be ignored.

 NTSTATUS LsarOpenPolicy(

 [in, unique] wchar_t* SystemName,

 [in] PLSAPR_OBJECT_ATTRIBUTES ObjectAttri butes,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* PolicyHandle

);

SystemName: This parameter does not have any effect on message processing in any environment.
It MUST be ignored on receipt.

ObjectAttributes: This parameter does not have any e ffect on message processing in any

environment. All fields MUST <55> be ignored except RootDirectory , which MUST be NULL.

DesiredAccess: An ACCESS_MASK value that specifies the requested access rights that MUST be
granted on the returned PolicyHandle, if th e request is successful.

PolicyHandle: An RPC context handle (as specified in section 2.2.2.1) that represents a reference to
the abstract data model of a policy object, as specified in section 3.1.1.1.

Processing:

The processing is the same as for LsarOpe nPolicy2. LsarOpenPolicy2 supersedes this message and

MUST be used when possible.

3.1.4.4.3 LsarQueryInformationPolicy2 (Opnum 46)

The LsarQueryInformationPolicy2 method is invoked to query values that represent the server's

security policy.

 NTSTATUS LsarQueryInformationPolicy2(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] POLICY_INFORMATION_CLASS InformationClass,

 [out, switch_is(InformationClass)]

 PLSAPR_POLICY_INFORMATION* PolicyInformation

);

PolicyHandle: An RPC conte xt handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

InformationClass: A parameter that specifies what type of information the caller is requesting.

PolicyInformation: A parameter that references policy information structure on return.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing below.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC000009A There are insufficient resources to complete the request.

91 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_INSUFFICIENT_RESOURCES

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform the operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the parameters is incorrect. For instance, this can happen if
InformationClass is out of range or if PolicyInformation is NULL.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

PolicyHandle MUST be a handle to an op en policy object, and PolicyHandle .HandleType MUST equal
"Policy"; otherwise, STATUS_INVALID_HANDLE MUST be returned.

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following

table specifies the RequiredAccess value to use in this access check for each InformationClass value or
indicates if no processing is supported, regardless of access granted.

InformationClass value RequiredAccess value

PolicyAuditLogInformation POLICY_VIEW_AUDIT_INFORMATION

PolicyAuditEventsInformation POLICY_VIEW_AUDIT_INFORMATION

PolicyPrimaryDomainInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyPdAccountInformation POLICY_GET_PRIVATE_INFORMATION

PolicyAccountDomainInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyLsaServ erRoleInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyReplicaSourceInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyModificationInformation Not applicable: This information class cannot be queried. The request
MUST fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullSetInformation Not applicable: This information class cannot be queried. The request
MUST fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullQueryInformation POLICY_VIEW_AUDIT_INFORMATION

PolicyDnsDomainInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyDnsDomainInformationInt POLICY_VIEW_LOCAL_INFORMATION

PolicyLocalAccountDomainInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyMachineAccountInformation POLICY_VIEW_LOCAL_INFORMATION

The InformationClass parameter can take on any value in the POLICY_INFORMATION_CLASS

enumeration range. For all values outside this range, the server MUST return a
STATUS_INVALID_PARAMETER error code.

PolicyInformation is an output parameter. The server MUST fill it in with the information requested by
the client, based on the value of the InformationClass parameter and the abstract data model
specified in section 3.1.1.1, as follows.

92 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value of InformationClass
parameter Information returned to caller from abstract data model

PolicyAuditLogInformation Auditing Log Information

PolicyAuditEventsInformation Event Auditing Options

PolicyPrimaryDomainInformation Primary Domain Information

PolicyPdAccountInformation MUST return an LSAPR_POLICY_PD_ACCOUNT_INFO information
structure , its Name member being an RPC_UNICODE_STRING with
Length set to 0 and Buffer initialized to NULL.

PolicyAccountDomainInformation On non ïdomain controllers: Account Domain

On domain controller: Primary Domain Information

PolicyLsaServerRoleInformation Server Role Information

PolicyReplicaSourceInformation Replica Source Information

PolicyModificationInformation MUST return STATUS_INVALID_PARAMETER

PolicyAuditFullSetInformation MUST return STATUS_INVALID_PARAMETER

PolicyAuditFullQueryInformation Audit Full Information <56>

PolicyDnsDomainInformation DNS Domain Information <57>

PolicyDnsDomainInformationInt DNS Domain Information

PolicyLocalAccountDomainInformation Account Domain Information

PolicyMachineAccountInformation Machine Account Information

3.1.4.4.4 LsarQueryInformationPolicy (Opnum 7)

The LsarQueryInformationPolicy method is invoked to query values that represent the server's
information policy.

 NTSTATUS LsarQueryInformationPolicy(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] POLICY_INFORMATION_CLASS InformationClass,

 [out, switch_is(Inf ormationClass)]

 PLSAPR_POLICY_INFORMATION* PolicyInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

InformationClass: A parameter that specifies what type of information the caller is requesting.

PolicyInformation: A parameter that references policy information structure on return.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing below.

Return value/code Descr iption

0x00000000

STATUS_SUCCESS

The request was successfully completed.

93 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Descr iption

0xC000009A

STATUS_INSUFFICIENT_RESOURCES

There are insufficient resources to complete the request.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform the operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the parameters is incorrect. For instance, this can happen if
InformationClass is out of range or if PolicyInformation is NULL.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This message MUST be processed in an identical manner to LsarQueryInformationPolicy2.

3.1.4.4.5 LsarSetInformationPolicy2 (Opnum 47)

The LsarSetInformationPolicy2 method is invoked to set a policy on the server.

 NTSTATUS LsarSetInformationPolicy2(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] POLICY_INFORMATION_CLASS InformationClass,

 [in, switch_is(InformationClass)]

 PLSAPR_POLICY_INFORMATION PolicyInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

InformationClass: A parameter that specifies what type of information the caller is setting.

PolicyInformation: Data that represents policy being set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the parameters is incorrect. For instance, this can happen if
InformationClass is not supported or some of the supplied pol icy data is
invalid.

0xC0000002

STATUS_NOT_IMPLEMENTED

This information class cannot be set.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

94 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PolicyHandle MUST reference a context that was granted an access commensurate w ith the
InformationClass value requested. If PolicyHandle is not a valid context handle or

PolicyHandle .HandleType does not equal "Policy", the server MUST return STATUS_INVALID_HANDLE.
If the context does not have sufficient access, the server MUST return STATUS_ACCESS_DENIED.

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following
table specifies the RequiredAccess value to use in this access check for each InformationClass value or
indicates if no processin g is supported, regardless of access granted.

InformationClass value RequiredAccess value

PolicyAuditLogInformation POLICY_AUDIT_LOG_ADMIN

PolicyAuditEventsInformation POLICY_SET_AUDIT_REQUIREMENTS

PolicyPrimaryDomainInformation POLICY_TRUST_ADMIN

PolicyPdAccountInformation Not applicable: This information class cannot be set; the request MUST
fail with STATUS_INVALID_PARAMETER.

PolicyAccountDomainInformation Not applicable: This information class cannot be set; the request MUST
fail with STATUS_INVALID_PARAMETER.

PolicyLsaServerRoleInformation POLICY_SERVER_ADMIN

PolicyReplicaSourceInformation POLICY_SERVER_ADMIN

PolicyModificationInformation Not applicable: This information class cannot be set; the request MUST
fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullSetInformation Not applicable: This information class cannot be set; the request MUST
fail with STATUS_INVALID_PARAMETER.

PolicyAuditFullQueryInformation Not applicable: This inform ation class cannot be set; the request MUST
fail with STATUS_INVALID_PARAMETER.

PolicyDnsDomainInformation POLICY_TRUST_ADMIN

PolicyDnsDomainInformationInt POLICY_TRUST_ADMIN

PolicyLocalAccountDomainInformation POLICY_TRUST_ADMIN

PolicyMachineAccountIn formation POLICY_TRUST_ADMIN

The InformationClass parameter can take on any value in the POLICY_INFORMATION_CLASS
enumeration range. For all values outside this range, the server MUST return the
STATUS_INVALID_PARAMETER error code.

The PolicyInformation parameter contains the data that the caller wishes to set, based on the value of
the InformationClass parameter. The server MUST update its abstract data model, specified in section
3.1.1.1, as follows.

Value of InformationClass
parameter Information updated in abstract data model

PolicyAuditLogInformati on Server MUST return the STATUS_NOT_IMPLEMENTED error code
because this is not a policy element that can be set.

PolicyAuditEventsInformation Event Auditing Options.

PolicyPrimaryDomainInformation Primary Domain Information.

95 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value of InformationClass
parameter Information updated in abstract data model

PolicyPdAccountInformation Server MUST return STATUS_INVALID_PARAMETER because this is not
a policy element that can be set.

PolicyAccountDomainInformation On a domain controller, the server MUST fail this request with the
STATUS_INVALID_PARAMETER.

On non -domain controllers: Account Domain Information.

PolicyLsaServerRoleInformation Server Role Information.

PolicyReplicaSourceInformation Replica Source Information.

PolicyModificationInformation Server MUST return STATUS_INVALID_PARAMETER because this is not
a p olicy element that can be set.

PolicyAuditFullSetInformation ShutDownOnFull field of Audit Full Information. <58>

PolicyAuditFullQueryInformation Server MUST record STATUS_INVALID_PARAMETER because this is not
a policy element that can be set.

PolicyDnsD omainInformation DNS Domain Information. <59>

PolicyDnsDomainInformationInt DNS Domain Information.

PolicyLocalAccountDomainInformation Account Domain Information.

PolicyMachineAccountInformation Machine Account Information.

3.1.4.4.6 LsarSetInformationPolicy (Opnum 8)

The LsarSetInformationPolicy method is invoked to set a policy on the server.

 NTSTATUS LsarSetInformationPolicy(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] POLICY_INFORMATION_CLASS Inf ormationClass,

 [in, switch_is(InformationClass)]

 PLSAPR_POLICY_INFORMATION PolicyInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

InformationClass: A parameter that specifies what type of inf ormation the caller is setting.

PolicyInformation: Data that represents the policy being set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return val ue/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

96 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return val ue/code Description

0xC000000D

STATUS_INVALID_PARAMETER

One of the parameters is incorrect. For instance, this can happen if
InformationClass is not supported or some of the supplied policy data is
invalid.

0xC0000002

STATUS_NOT_IMPLEMENTED

This information class cannot be set.

0xC0000008

STATUS_INVALID_HANDL E

PolicyHandle is not a valid handle.

Processing:

This message MUST be processed in an identical manner to LsarSetInformationPolicy2.

3.1.4.4.7 LsarQueryDomainInformationPolicy (Opnum 53)

The LsarQueryDomainInformationPolicy method is invoked to retrieve policy settings in addition to
those exposed through LsarQueryInformationPolicy and LsarSetInformationPolicy2. Despite the term

"Domain" in t he name of the method, processing of this message occurs with local data, and
furthermore, there is no requirement that this data have any relationship with the LSA information in
the domain to which the machine is joined.

 NTSTATUS LsarQueryDomainInformati onPolicy(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] POLICY_DOMAIN_INFORMATION_CLASS InformationClass,

 [out, switch_is(InformationClass)]

 PLSAPR_POLICY_DOMAIN_INFORMATION* PolicyDomainInformation

);

PolicyHandle: An RPC context handle obtained from ei ther LsarOpenPolicy or LsarOpenPolicy2.

InformationClass: A parameter that specifies what type of information the caller is requesting.

PolicyDomainInformation: A parameter that references policy information structure on return.

Return Values: The followin g is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments was invalid.

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

No value has been set for this policy.

0xC000 0008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

97 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the InformationClass parameter is PolicyDomainEfsInformation, and the responder does not support
Encrypting File System (EFS) Policy Information as specified in section 3.1.1.1, the request MUST fail

with STATUS_OBJECT_NAME_NOT_FOUND.

If the InformationClass parameter is Poli cyDomainQualityOfServiceInformation, and the responder

implementation does not support Quality Of Service Information as specified in section 3.1.1.1, the
request MUST fail with STATUS_INVALID_PARAMETER.

If PolicyHandle is not a valid context handle or PolicyHandle .HandleType does not equal "Policy", the
server MUST return STATUS_INVALID_HANDLE.

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following
table specifies the RequiredAccess value to use in this acce ss check for each InformationClass value.

InformationClass value RequiredAccess value

PolicyDomainQualityOfServiceInformation POLICY_VIEW_AUDIT_INFORMATION

PolicyDomainEfsInformation POLICY_VIEW_LOCAL_INFORMATION

PolicyDomainKerberosTicketInformation POLICY_VIEW_LOCAL_INFORMATION

The InformationClass parameter can take on any value in the POLICY_DOMAIN_INFORMATION_CLASS
enumeration range. For all values outside this range, the server MUST return the
STATUS_INVALID _PARAMETER error code.

PolicyDomainInformation is an output parameter. The server MUST fill it with the information
requested by the client, based on the value of the InformationClass parameter and the abstract data
model specified in section 3.1.1.1. If t he information has not been set before, the request MUST fail
with STATUS_OBJECT_NAME_NOT_FOUND.

Value of InformationClass parameter Information returned to caller from abstract data model

PolicyDomainQualityOfServiceInformation Quality Of Service Inform ation

PolicyDomainEfsInformation EFS Policy Information

PolicyDomainKerberosTicketInformation Kerberos Policy Information

3.1.4.4.8 LsarSetDomainInformationPolicy (Opnum 54)

The LsarSetDomainInformationPolicy method is invoked to change policy settings in addition to those
exposed through LsarQueryInformationPolicy and LsarSetInformationPolicy2. Despite the term
"Domain" in the name of the method, processing of this message occurs with local data. Also, there is

no requirement that this data have any relationship with the LSA information in the domain in which
the machine is joined.

 NTSTATUS LsarSetDomainInformationPolicy(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] POLICY_DOMAIN_INFO RMATION_CLASS InformationClass,

 [in, unique, switch_is(InformationClass)]

 PLSAPR_POLICY_DOMAIN_INFORMATION PolicyDomainInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

InformationClass: A par ameter that specifies what type of information the caller is setting.

98 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PolicyDomainInformation: Data representing policy being set.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the following message processing.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments was invalid.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

If the InformationClass parameter is PolicyDomainEfsInformation, and the responder implementation
does not support Encrypting File System (EFS) Policy Information as specified in section 3.1.1.1, the
request MUST fail with STATUS_INVALID_PARAMETER.

If the InformationClass parame ter is PolicyDomainQualityOfServiceInformation, and the responder
implementation does not support Quality Of Service Information as specified in section 3.1.1.1, the
request MUST fail with an RPC exception RPC_S_INVALID_TAG.

If PolicyHandle is not a valid context handle or PolicyHandle .HandleType does not equal "Policy", the
server MUST return STATUS_INVALID_HANDLE.

The server MUST verify that PolicyHandle grants access as specified in section 3.1.4.2.2. The following
table specifies the RequiredAccess val ue to use in this access check for each InformationClass value.

InformationClass value RequiredAccess value

PolicyDomainQualityOfServiceInformation POLICY_SERVER_ADMIN

PolicyDomainEfsInformation POLICY_SERVER_ADMIN

PolicyDomainKerberosTicketInformation POLICY_SERVER_ADMIN

The InformationClass parameter can take on any value in the POLICY_DOMAIN_INFORMATION_CLASS
enumeration range. For all values outside this range, the server MUST return the
STATUS_INVALID_PARAMETER error code.

The PolicyDomainInformation parameter contains the data that the caller needs to set, based on the
value of the InformationClass parameter. The server MUST update its abstract data model, specified in
section 3.1.1.1, as follows.

Value of Info rmationClass parameter Information returned to caller from abstract data model

PolicyDomainQualityOfServiceInformation Quality Of Service Information

PolicyDomainEfsInformation EFS Policy Information

PolicyDomainKerberosTicketInformation Kerberos Policy Information

99 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

If the abstract data model update succeeds and the InformationClass parameter is
PolicyDomainKerberosTicketInformation, the server MUST invoke the KDC ConfigurationChange event

(see [MS -KILE] section 3.3.4.1) and MUST ignore any errors that are returned.

3.1.4.5 Account Object Methods

The message processing of methods in this section MUST use the abstract data model, as specified in
section 3.1.1.3.

Method (opnum) Summary

LsarCreateAccount (opnum 10) Creates a new account object in the policy database.

LsarEnumerateAccounts (opnum 11) Enumerates all account objects in the policy database.

LsarOpenAccount (opnum 17) Opens a handle to an existing account object.

LsarEnumeratePrivilegesAccount (opnum 18) Enumerates all rights and privileges of an account.

LsarAddPrivilegesToAccount (opnum 19) Adds new privileges to an existing account object.

LsarRemovePrivilegesFromAccount (opnum
20)

Removes privileges from an existing account object.

LsarGetSystemAccessAccount (opnum 23) Retrieves system access flags from the account object.

LsarSetSystemAccessAccount (opnum 24) Sets system access flags on the account object.

LsarEnumerateAccountsWit hUserRight
(opnum 35)

Enumerates all account objects in the server's policy database
that match a given user right.

LsarEnumerateAccountRights (opnum 36) Enumerates all rights of an account object in the server's policy
database.

LsarAddAccountRights (opnum 37) Adds new rights to an account object in the server's policy
database.

LsarRemoveAccountRights (opnum 38) Removes rights from an account object in the server's policy
database.

3.1.4.5.1 LsarCreateAccount (Opnum 10)

The LsarCreateAccount method is invoked to create a new account object in the server's database.

 NTSTATUS LsarCreateAccount(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID AccountSid,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDL E* AccountHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

AccountSid: The security identifier (SID) of the account to be created.

DesiredAccess: A bitmask specifying accesses to be granted to the newly created and opened
account at this time.

AccountHandle: Used to return a handle to the newly created account object.

100 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000035

STATUS_OBJECT_NAME_CO LLISION

An account with this SID already exists.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC000000D

STATUS_INVALID_PARAMETER

Some of the parameters supplied were invalid.

Processing:

This message takes four arguments:

PolicyHandle : A handle to an open policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_CREATE_ACCOUNT.

AccountSid : The SID of the account to be created. The server MUST validate that AccountSid
represents a valid SID and fail the request with STATUS_INV ALID_PARAMETER if it is not. <60>

DesiredAccess : A set of access bits that the caller attempts to receive from the account object after it
has been created, which is access -checked according to section 3.1.4.2.2. The method -specific portion

of the check is the following.

 IF (IsRequestorAnonymous() and LsaRestrictAnonymous is set to TRUE) THEN

 Return STATUS_OBJECT_NAME_NOT_FOUND

 END IF

The valid account - rights bits are specified in section 2.2.1.1.3, and the security descriptor is specified
in section 3.1 .1.3. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

AccountHandle : If the request is successful, the server MUST create and return a context handle
(section 3.1.1.7) via AccountHandle , with its fields initialized as follows:

Á LsaCont extHandle.HandleType = "Account"

Á LsaContextHandle.Object = the account object

Á LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

This mechanism allows the caller to skip the additional step of opening the account object after
creating it.

The server MUST check whether another account object already exists in its policy database with the
same SID, and fail the request with STATUS_OBJECT_NAME_COLLISION if it does.

101 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The server MUST associate a security descriptor with a newly created account object. See section
3.1.1.3 for the data model of this object type.

3.1.4.5.2 LsarEnumerateAccounts (Opnum 11)

The LsarEnumerateAccounts method is invoked to request a list of account objects in the server's
database. The method can be called multiple times to return its output in fragments.

 NTSTATUS LsarEnumerateAccounts(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] [out] unsigned long *EnumerationContext,

 [out] PLSAPR_ACCOUNT_ENUM_BUFFER EnumerationBuffer,

 [in] unsigned long PreferedMaximumLength

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

EnumerationContext: A p ointer to a context value that is used to resume enumeration, if necessary.

EnumerationBuffer: A pointer to a structure that will contain the results of the enumeration.

PreferedMaximumLength: A value that indicates the approximate size of the data to retu rn.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0x00000105

STATUS_MORE_ENTRIES

More information is available to successive calls.

0x8000001A

STATUS_NO_MORE_ENTRIES

No more entries are available from the enumeration.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return

STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION. If
IsRequestorAnony mous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to TRUE,
the call MUST fail with STATUS_ACCESS_DENIED.

EnumerationContext : A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all account objects in the same order, starting at the object whose index is
EnumerationContext . To initiate a new enumeration, the client sets EnumerationContext to zero;
otherwise, the client sets EnumerationContext to a value returned by a previous call to the method.

102 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The server MUST return STATUS_INVALID_PARAMETER if the EnumerationContext parameter is NULL.

EnumerationBuffer : Used to return the results of enumeration. The server MUST fill EnumerationBuffer

with as many account objects as possible, as determined by PreferedMaximumLength . If the size of all
remaining objects is less than or equal to PreferedMaximumLength , the server MUST fill

EnumerationBuffer with all objects. If the size of all remaining ob jects is greater than
PreferedMaximumLength , the server MUST fill EnumerationBuffer with objects such that the size of the
account objects returned is greater than or equal to PreferedMaximumLength , but would be less than
PreferedMaximumLength if the last object had not been added to EnumerationBuffer . If there are no
more objects than are returned in EnumerationBuffer , the server MUST return
STATUS_NO_MORE_ENTRIES. If there are more database objects than are returned in
EnumerationBuffer , the server MUST s et the EnumerationContext value to the index value that would

allow it to resume enumeration correctly when this method is called again, and the server MUST
return STATUS_MORE_ENTRIES. Note that this return value is not an error status.

PreferedMaximumLength : An indication about the approximate size, in bytes, of the data to return.
Any unsigned 32 -bit value is valid for the PreferedMaximumLength parameter.

3.1.4.5.3 LsarOpenAccount (Opnum 17)

The LsarOpenAccount metho d is invoked to obtain a handle to an account object.

 NTSTATUS LsarOpenAccount(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID AccountSid,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* AccountHandle

);

PolicyHandle: An RPC context handle obtai ned from either LsarOpenPolicy or LsarOpenPolicy2.

AccountSid: A SID of the account to be opened.

DesiredAccess: A bitmask specifying accesses to be granted to the opened account at this time.

AccountHandle: Used to return a handle to the opened account ob ject.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

Some of the parameters supplied are incorrect. For instance, this
can happen when AccountSid is NULL.

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

An account with this SID does not exist in the server's database.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

103 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the

policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle .GrantedAccess MUST NOT be considered for this call,

because the access check MUST happen on the account object.

AccountSid : The SID of the account to be opened. The server MUST verify that the SID is valid and fail
the request with STATUS_INVALID_PARAMETER otherwise. The server MUST verify that t he account
object with this SID exists in its policy database and fail the request with
STATUS_OBJECT_NAME_NOT_FOUND otherwise.

DesiredAccess : A bitmask specifying the type of access the caller attempts to obtain from the account
object, which is access -checked according to section 3.1.4.2.1. The method -specific portion of the

check is the following.

 IF (IsRequestorAnonymous() and LsaRestrictAnonymous is set to TRUE) THEN

 Return STATUS_OBJECT_NAME_NOT_FOUND

 END IF

The valid account rights bits are specified in section 2.2.1.1.3, and the security descriptor is specified

in section 3.1.1.3. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

AccountHandle : If the request is successful, this parameter is used to return a handle (secti on
3.1.1.7) to the opened account object with its fields initialized as follows:

Á LsaContextHandle.HandleType = "Account"

Á LsaContextHandle.Object = the account object

Á LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.5.4 LsarEnumeratePrivileges Account (Opnum 18)

The LsarEnumeratePrivilegesAccount method is invoked to retrieve a list of privileges granted to an
account on the server.

 NTSTATUS LsarEnumeratePrivilegesAccount(

 [in] LSAPR_HANDLE Account Handle,

 [out] PLSAPR_PRIVILEGE_SET* Privileges

);

AccountHandle: An open account object handle obtained from either
LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).

Privileges: Used to return a list of privileges granted to t he account.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC000009A

STATUS_INSUFFICIENT_RESOURCES

There are insufficient resources to complete the request.

104 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000008

STATUS_INVALID_HAND LE

AccountHandle is not a valid handle.

Processing:

This message takes two arguments:

AccountHandle : An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle .HandleType does not equal "Account", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants acc ess as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_VIEW.

Privileges : Used to return a set of privileges associated with the account. It is valid for the set of

privileges to be empty.

The server MUST return STATUS_INSUFFICIENT_RESOURC ES if it runs out of memory while

processing this request.

3.1.4.5.5 LsarAddPrivilegesToAccount (Opnum 19)

The LsarAddPrivilegesToAccount method is invoked to add new privileges to an existing account
object.

 NTSTATUS LsarAdd PrivilegesToAccount(

 [in] LSAPR_HANDLE AccountHandle,

 [in] PLSAPR_PRIVILEGE_SET Privileges

);

AccountHandle: An open account object handle obtained from either

LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).

Privileges: Contains a list of privileges to add to the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Re turn value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

Some of the parameters supplied were invalid.

0xC0000008

STATUS_INVALID_HANDLE

AccountHandle is not a valid handle.

Processing:

This message takes two arguments:

105 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

AccountHandle : An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle .HandleType does not equal "Account", the server MUST return

STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES.

Privileges : A set of privileges to add to an account. Each privilege is a LUID -Attributes pair where the
Luid field MUST match a LUID of a privilege on the server. The attributes replace any attributes of the
privilege if one was associated with the accou nt previously. Any LUID not recognized as valid by the
server SHOULD cause the message to be rejected with STATUS_INVALID_PARAMETER. <61>

3.1.4.5.6 LsarRemovePrivilegesFromAccount (Opnum 20)

The LsarRemovePrivilegesFromAccount method is invoked to remove privileges from an account

object.

 NTSTATUS LsarRemovePrivilegesFromAccount(

 [in] LSAPR_HANDLE AccountHandle,

 [in] unsigned char AllPrivilege s,

 [in, unique] PLSAPR_PRIVILEGE_SET Privileges

);

AccountHandle: An open account object handle obtained from either

LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).

AllPrivileges: If this parameter is not FALSE (0), all priv ileges will be stripped from the account
object.

Privileges: Contains a (possibly empty) list of privileges to remove from the account object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000 00D

STATUS_INVALID_PARAMETER

Some of the parameters supplied were invalid.

0xC0000008

STATUS_INVALID_HANDLE

AccountHandle is not a valid handle.

Processing:

This message takes three arguments:

AccountHandle : An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle .HandleType does not equal "Account", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants acc ess as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES.

AllPrivileges : A Boolean value; if not FALSE (0), all privileges associated with the account are

removed. In this case, the server MUST check that the Privileges parameter is NULL, and fail the
request with STATUS_INVALID_PARAMETER otherwise.

106 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Privileges : If AllPrivileges is FALSE (0), this parameter cannot be NULL. It will be used to remove
Privileges from the account object. The server MUST verify that Privileges is not NULL and fail the

request with STATUS_INVALID_PARAMETER otherwise. <62>

3.1.4.5.7 LsarGetSystemAccessAccount (Opnum 23)

The LsarGetSystemAccessAccount method is invoked to retrieve system access account flags for an
accou nt object. System access account flags are described as part of the account object data model,
as specified in section 3.1.1.3.

 NTSTATUS LsarGetSystemAccessAccount(

 [in] LSAPR_HANDLE AccountHandle,

 [out] unsigned long* SystemAccess

);

AccountHandle: An open account object handle obtained from either
LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).

SystemAccess: Used to return a bitmask of access flags associated with the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000008

STATUS_INVALID_HANDLE

AccountHandle is not a valid handle.

Processing:

This message takes two arguments:

AccountHandle : An open handle to an account objec t. If the handle is not a valid context handle to an
account object or AccountHandle .HandleType does not equal "Account", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHandle grants access as specified in
section 3.1.4.2. 2 with RequiredAccess set to ACCOUNT_VIEW.

SystemAccess : Used to return a bitmask of system access bits.

3.1.4.5.8 LsarSetSystemAccessAccount (Opnum 24)

The LsarSetSystemAccessAccount method is invoked to set system access account flags for an

account object.

 NTSTATUS LsarSetSystemAccessAccount(

 [in] LSAPR_HANDLE AccountHandle,

 [in] unsigned long SystemAccess

);

AccountHandle: An open account object h andle obtained from either

LsarCreateAccount (section 3.1.4.5.1) or LsarOpenAccount (section 3.1.4.5.3).

107 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

SystemAccess: A bitmask containing the account flags to be set on the account.

Return Values: The following is a summary of the return values that an i mplementation MUST return,

as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied parameters was invalid.

0xC0000008

STATUS_INVALID_HANDLE

AccountHandle is not a valid handle.

Processing:

This message takes two arguments:

AccountHandle : An open handle to an account object. If the handle is not a valid context handle to an
account object or AccountHandle .HandleType does not equal "Account", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that AccountHand le grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_SYSTEM_ACCESS.

SystemAccess : Specifies the set of access bits to be added to account's system access. The server

MUST verify that the bits do not fall outside the set of system access rights defined on the system,
and fail the request with STATUS_INVALID_PARAMETER otherwise. The new system access bits
replace the old ones.

3.1.4.5.9 LsarEnumerateAccountsWithUserRight (Opnum 35)

The LsarEnumerateAccountsWithUserRight method is invoked to return a list of account objects that
have the user right equal to the passed - in value.

 NTSTATUS LsarEnumerateAccountsWithUserRight(

 [in] LSAPR_HANDLE PolicyHandle,

 [in, unique] PRPC_UNICODE_ STRING UserRight,

 [out] PLSAPR_ACCOUNT_ENUM_BUFFER EnumerationBuffer

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

UserRight: The name of the right to use in enumeration.

EnumerationBuffer: Used to return the list of account objects that have the specified right.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return valu e/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

108 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return valu e/code Description

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000060

STATUS_NO_SUCH_PRIVILEGE

The supplied name is not recognized by the server.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments is invalid.

0x8000001A

STATUS_NO_MORE_ENTRIES

No account was found with the specified privilege.

Processing:

This message takes three arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION. <63>

UserRight : A string representation of an account right. If the server does not recogniz e the account
right, it MUST return STATUS_NO_SUCH_PRIVILEGE.

The server executes the request by going through all accounts in its policy database and returning a
set of all account object SIDs that have that right or privilege.

EnumerationBuffer : Used to return a set of account SIDs that have the specified UserRight.

3.1.4.5.10 LsarEnumerateAccountRights (Opnum 36)

The LsarEnumerateAccountRights method is invoked to retrieve a list of rights associated with an
existing account .

 NTSTATUS LsarEnumerateAccountRights(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID AccountSid,

 [out] PLSAPR_USER_RIGHT_SET UserRights

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

AccountSid: A SID of the account object that the caller is inquiring about.

UserRights: Used to return a list of right names associated with the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

109 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

The specified account object does not exist.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This message takes two arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return

STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_VIEW.

AccountSid : A SID of the account to query. The server MUST verify that the SID pointed to by
AccountSid is valid and fail the request with STATUS_INVALID_PARAMETER otherwise. If
Is RequestorAnonymous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to TRUE,
the call MUST fail with STATUS_OBJECT_NAME_NOT_FOUND. The server MUST verify that such an

account exists in its database and fail the request with STATUS_OBJECT_ NAME_NOT_FOUND
otherwise.

The server MUST return the string names of all the system access rights and privileges associated with
the account. It is valid for the server to return an empty set if the account object does not contain any
rights.

3.1.4.5.11 LsarAddAccoun tRights (Opnum 37)

The LsarAddAccountRights method is invoked to add new rights to an account object. If the account
object does not exist, the system will attempt to create one.

 NTSTATUS LsarAddAccountRights(

 [in] LSAP R_HANDLE PolicyHandle,

 [in] PRPC_SID AccountSid,

 [in] PLSAPR_USER_RIGHT_SET UserRights

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

AccountSid: A security identifier of an account to add the rights to.

UserRights: A set of right names to add to the account.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x0000 0000

STATUS_SUCCESS

The request was successfully completed.

110 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000060

STATUS_NO_SUCH_PRIVILEGE

The rights supplied were not recognized.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This message takes three arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return

STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 wit h:

Á RequiredAccess set to POLICY_CREATE_ACCOUNT if the account identified by the AccountSid
parameter does not exist in the server's database, or

Á RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES | ACCOUNT_ADJUST_SYSTEM_ACCESS |
ACCOUNT_VIEW if the account identified by the AccountSid parameter exists in the server's

database

AccountSid : A security identifier of the account object. The server MUST cre ate the account object if
one does not exist.

UserRights : A set of system access rights and privileges to be added to the account. If the server does

not recognize any of the rights, it MUST return STATUS_NO_SUCH_PRIVILEGE.

3.1.4.5.12 LsarRemoveAccountRights (Opnum 3 8)

The LsarRemoveAccountRights method is invoked to remove rights from an account object.

 NTSTATUS LsarRemoveAccountRights(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID AccountSid,

 [in] unsigned char AllRights,

 [in] PLSAPR_USER_RIGHT_SET UserRights

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

AccountSid: A security descriptor of an account object.

AllRights: If this field is not set to 0, all rig hts will be removed.

UserRights: A set of rights to remove from the account.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the message processing that follows.

111 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Descripti on

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000060

STATUS_NO_SUCH_PRIVILEGE

The rights supplied were not recognized.

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

An account with this SID does not exist.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC00000BB

STATUS_NOT_SUPPORTED

The operation is not supported by the server.

Processing:

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the

policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to ACCOUNT_ADJUST_PRIVILEGES |
ACCOUNT_ADJUST_SYSTEM_ACCESS | ACCOUNT_VIEW | DELETE.

If IsRequestorAnonymous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to

TRUE, the call MUS T fail with STATUS_OBJECT_NAME_NOT_FOUND.

AccountSid : The security identifier of the account to modify. The server MUST verify that such an
account exists in its database and fail the request with STATUS_OBJECT_NAME_NOT_FOUND
otherwise.

AllRights : If nonze ro, all system access rights and privileges will be stripped from the account.

UserRights : A set of rights and privileges to remove from the account. If the server does not recognize
any of the rights, server MUST return STATUS_NO_SUCH_PRIVILEGE.

The serve r MUST NOT allow removal of "SeAuditPrivilege", "SeChangeNotifyPrivilege",

"SeImpersonatePrivilege", and "SeCreateGlobalPrivilege" from accounts represented with SIDs "S -1-5-
19" and "S -1-5-20". The request MUST be rejected with STATUS_NOT_SUPPORTED. <64>

If the resulting set of access rights and privileges is empty, the server MUST delete the account object

from its database.

3.1.4.6 Secret Object Methods

The message processing of methods in this section MUST use the abstract data model defined in
section 3.1.1.4.

112 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method (opnum) Summary

LsarCreateSecret (opnum 16) Creates a new secret obje ct in the policy database.

LsarOpenSecret (opnum 28) Opens a handle to an existing secret object.

LsarSetSecret (opnum 29) Sets the value of the secret object.

LsarQuerySecret (opnum 30) Retrieves the value of the secret object.

LsarStorePrivateData (opnum 42) Stores private data in the server's policy database as a secret object.

LsarRetrievePrivateData (opnum 43) Retrieves private data from a secret object in the server's policy database.

The server SHOULD <65> support the foll owing methods:

Á LsarSetSecret

Á LsarQuerySecret

Á LsarStorePrivateData

Á LsarRetrievePrivateData

If the server does not support these methods, the server MUST respond with an RPC exception. If the

server supports these methods, the server MUST perform the operati ons in the message processing
section for each method.

3.1.4.6.1 LsarCreateSecret (Opnum 16)

The LsarCreateSecret method is invoked to create a new secret object in the server's database.

 NTSTATUS LsarCreateSecret(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING SecretName,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* SecretHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

SecretName: The name of the secret object to be created.

DesiredAccess: A bitmask that specifies accesses to be granted to the newly created and opened
secret object at this time.

SecretHandle: Used to return a handle to the newly created secret object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request wa s successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D One of the supplied parameters is invalid. This can happen, for

113 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_INVALID_PARAMETER example, if SecretHandle is NULL or if SecretName is not a valid name
for a secret object. Secret naming rules are specified in the processing
rules shown below for the SecretName parameter.

0xC0000035

STATUS_OBJECT_NAME_COLLISION

The secret object by the specified name already exists.

0xC0000106

STATUS_NAME_TOO_LONG

The length of specified secret name exceeds the maximum set by the
server.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is no t a valid handle.

Processing:

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the

policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_CREATE_SECRET.

SecretName : Name of the secret object to be created. The server MUST verify that the string satisfies
the RPC_UNICODE_STRING syntax restrictions specified in section 3.1.4. 10, and fail the request with
STATUS_INVALID_PARAMETER otherwise. The server MUST also check that the following constraints
are satisfied by SecretName , and fail the request with STATUS_INVALID_PARAMETER if the name

does not check out:

Á Must not be empty.

Á Must not contain the " \ " character. <66><67><68>

DesiredAccess : Contains the access bits that the caller is asking to receive for the handle returned in
SecretHandle . DesiredAccess is access -checked according to section 3.1.4.2.1. The method -specific
portion of the check is the following.

 IF (IsRequestorAnonymous() and LsaRestrictAnonymous is set to TRUE) THEN

 Return STATUS_OBJECT_NAME_NOT_FOUND

 END IF

The valid secret - rights bi ts are specified in section 2.2.1.1.4, and the security descriptor is specified in
section 3.1.1.4. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

SecretHandle : If the request is successful, this parameter is used to return a handle (section 3.1.1.7)
to the newly created secret object with its fields initialized as follows:

Á LsaContextHandle.HandleType = "Secret"

Á LsaContextHandle.Object = the secret object

Á LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

Both "current time" and "old time" attributes of a secret will be set to the server's current time at the
instance of creation. Both "old value" and "current value" will be set to NULL until they are modified by
the LsarSetSecret message.

The server MUST check that the secret by the name SecretName does not already exist and fail the
request with STATUS_OBJECT_NAME_COLLISION otherwise. <69>

114 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.6.2 LsarOpenSecret (Opnum 28)

The LsarOpenSecret method is invoked to obtain a handle to an existing secret object.

 NTSTATUS LsarOpenSecret(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING SecretName,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* SecretHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or L sarOpenPolicy2.

SecretName: The name of the secret object to open.

DesiredAccess: The requested type of access.

SecretHandle: Used to return the handle to the opened secret object.

Return Values: The following is a summary of the return values that an impl ementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

The secret with the specified name was not found.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC000000D

STATUS_INVALID_PARAMETER

Some of the parameters supplied were invalid.

Processing:

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .Handl eType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle .GrantedAccess MUST NOT be considered for this call because

the access check MUST happen on the secret object.

SecretName : The name of the secret to be opened. The ser ver MUST verify that the name syntax

restrictions on secrets specified in section 3.1.4.6.1 are satisfied, and fail the request with
STATUS_INVALID_PARAMETER otherwise. The server MUST verify that the secret object with this
name exists in its policy datab ase and fail the request with STATUS_OBJECT_NAME_NOT_FOUND
otherwise. <70>

DesiredAccess : A bitmask specifying the type of access that the caller attempts to obtain from the
secret object, which is access -checked according to section 3.1.4.2.1. The method -specific portion of
the check is as follows:

 IF (IsRequestorAnonymous() and LsaRestrictAnonymous is set to TRUE) THEN

115 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 Return STATUS_OBJECT_NAME_NOT_FOUND

 END IF

The valid secret - rights bits are specified in section 2.2.1.1.4 and the security descriptor is specified in
section 3.1.1.4. The IsRequestorAnonymous procedure is specified in section 3.1.4.2.3.

SecretHandle : If the request is successful, this parameter is used to return a handle (section 3.1.1.7)
to the opened secret object with its fields initi alized as follows:

Á LsaContextHandle.HandleType = "Secret"

Á LsaContextHandle.Object = the secret object

Á LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.6.3 LsarSetSecret (Opnum 29)

The LsarSetSecret method is invoke d to set the current and old values of the secret object.

 NTSTATUS LsarSetSecret(

 [in] LSAPR_HANDLE SecretHandle,

 [in, unique] PLSAPR_CR_CIPHER_VALUE EncryptedCurrentValue,

 [in, unique] PLSAPR_CR_CIPHER_VALUE EncryptedOldValue

);

SecretHandle: An open secret object handle.

EncryptedCurrentValue: A binary large object (BLOB) representing a new encrypted cipher value. It
is valid for this parameter to be NULL, in which case the value is del eted from the server's policy
database.

EncryptedOldValue: A BLOB representing the encrypted old value. It is valid for this parameter to be

NULL, in which case the current value in the policy database is copied.

Return Values: The following is a summary o f the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000008

STATUS_INVALID_HANDLE

SecretHandle is not a valid handle.

Processing:

This message contains three input parameters:

SecretHandle : An open handle to a secret object. If the handle is not a valid context handle to a secret
object or SecretHandle .HandleType does not equal "Secret", the server MUST return

116 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

STATUS_INVALID_HANDLE. The server MU ST verify that SecretHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to SECRET_SET_VALUE. <71>

EncryptedCurrentValue : The version of the new secret value that is being set, encrypted as specified
in section 5.1.2. It is valid for this parameter to be NULL, in which case the server MUST delete the

current value in its database. If decryption fails, the server must return an implementation -specific
error. <72>

EncryptedOldValue : The version of the old secret value that is being se t, encrypted as specified in
section 5.1.2. It is valid for this parameter to be NULL, in which case the server MUST delete the old
value in its database and replace it with the previous version of "CurrentValue". If decryption fails, the
server must retur n an implementation -specific error. <73>

The server MUST also maintain "time stamp" values for current and old values of the secret object.

The following table lists the rules by which the time stamps are computed.

Old secret value New secret value Effect o n old time Effect on new time

NULL NULL Old value of "new secret time" Current server time

NULL Non -NULL Old value of "new secret time" Current server time

Non -NULL NULL Current server time Current server time

Non -NULL Non -NULL Current server time Current server time

3.1.4.6.4 LsarQuerySecret (Opnum 30)

The LsarQuerySecret method is invoked to retrieve the current and old (or previous) value of the
secret object.

 NTSTATUS LsarQuerySecret(

 [in] LSAPR_HANDLE SecretHandle,

 [in, out, unique] PLSAPR_CR_CIPHER_VALUE* EncryptedCurrentValue,

 [in, out, unique] PLARGE_INTEGER CurrentValueSetTime,

 [in, out, unique] PLSAPR_CR_CIPHER_VALUE* EncryptedOldValue,

 [in, out, unique] PLARGE_INTEGER OldValueSetTime

);

SecretHandle: An open secret object handle.

EncryptedCurrentValue: Used to return the encrypted current value of the secret object.

CurrentValueSetTime: Used to return the time when the current value was set.

EncryptedOldValue: A BLOB representing the encr ypted old value. It is valid for this parameter to be
NULL, in which case the current value in the policy database is copied.

OldValueSetTime: The time corresponding to the instant that the old value was last changed.

Return Values: The following is a summ ary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

117 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000008

STATUS_INVALID_HANDLE

SecretHandle is not a valid handle.

Processing:

This message takes five arguments:

SecretHandle : An open handle to a secret object. If the handle is not a valid context handle to a secret
object or SecretHandle .HandleType does not equal "Secret", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that SecretHandle grants access as specified in
section 3.1.4.2.2 with R equiredAccess set to SECRET_QUERY_VALUE. <74>

EncryptedCurrentValue : Used to return the current value of the secret, encrypted as specified in

section 5.1.2. This parameter can be NULL if the caller is not interested in this information. <75>

CurrentValueSet Time: The time corresponding to the instant that the current value was last changed.

This parameter can be NULL if the caller is not interested in this information.

EncryptedOldValue : Used to return the old value of the secret, encrypted as specified in section 5.1.2.
This parameter can be NULL if the caller is not interested in this information. <76>

OldValueSetTime : The time corresponding to the instance that the old value was last changed. This
parameter can be NULL if the caller is not int erested in this information.

3.1.4.6.5 LsarStorePrivateData (Opnum 42)

The LsarStorePrivateData method is invoked to store a secret value.

 NTSTATUS LsarStorePrivateData(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING KeyName,

 [in, unique] PLSAPR_CR_CIPHER_VALUE EncryptedData

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

KeyName: The name under which private data will be stored.

EncryptedData: The secret value to be stored.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

118 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

Processing:

This message takes three arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in

section 3.1.4.2.2 with RequiredAccess set to POLICY_CREATE_SECRET.

KeyName : A string identifying the name of the secret object under which the private dat a would be
stored. The server MUST verify that KeyName is syntactically valid and reject the request with
STATUS_INVALID_PARAMETER otherwise. If a secret object by this name does not exist and the
EncryptedData parameter is not NULL, the server MUST verify that the caller has

POLICY_CREATE_SECRET access. If the secret does exist and the EncryptedData parameter is not

NULL, the access check is performed for the SECRET_SET_VALUE right against the secret's security
descriptor. If the access check fails, the se rver MUST return STATUS_ACCESS_DENIED. If the
EncryptedData parameter is NULL, the server MUST check that the caller has DELETE access to the
secret object and, if so, delete the secret object from the policy database.

EncryptedData : The value of the secre t to be stored. This value is encrypted as specified in section
5.1.2. As mentioned already, a caller that wants the secret to be deleted simply passes NULL for this
value. If decryption fails, the server must return an implementation -specific error. <77>

3.1.4.6.6 LsarRetrievePrivateData (Opnum 43)

The LsarRetrievePrivateData method is invoked to retrieve a secret value.

 NTSTATUS LsarRetrievePrivateData(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING KeyName,

 [in, out] PLSAPR_CR_CIPHER_VALUE* EncryptedData

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

KeyName: The name identifying the secret value to be retrieved.

EncryptedData: Receives the encrypted value of the secret object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied parameters was invalid.

119 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

The key with the specified name was not found.

Processing:

This message takes three arguments:

PolicyHandle : An open handle to the policy object. If the han dle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredA ccess set to SECRET_QUERY_VALUE.

KeyName : A string identifying the name of the secret object to be queried. If

IsRequestorAnonymous() returns TRUE (section 3.1.4.2.3) and LsaRestrictAnonymous is set to TRUE,
the call MUST fail with STATUS_OBJECT_NAME_NOT_F OUND. If a secret object by this name does not

exist, the server MUST return STATUS_OBJECT_NAME_NOT_FOUND.

EncryptedData : Used to return an encrypted version of the secret value. This value is encrypted as
specified in section 5.1.2.

3.1.4.7 Trusted Domain Object Methods

Trusted domain objects SHOULD be created only on a server implementation that is in the domain
controller configuration. <78>

The message processing of methods in this section MUST use the abstract data model as specified in
section 3.1.1.5.

Method (opnum) Summary

LsarCreateTrustedDomainEx2 (opnum 59) Creates a new trusted domain object in the server's policy
database.

LsarCreateTrustedDomainEx (opnum 51) Superseded by LsarCreateTrustedDomainEx2.

LsarCreateTrustedDomain (opnum 12) Superseded by LsarCreateTrustedDo mainEx2.

LsarOpenTrustedDomain (opnum 25) Opens a handle to an existing trusted domain object that matches
the given domain security identifier.

LsarOpenTrustedDomainByName (opnum
55)

Opens a handle to an existing trusted domain object that matches
the given DNS or NetBIOS name.

LsarQueryTrustedDomainInfo (opnum 39) Obtains information about a trusted domain object.

LsarSetTrustedDomainInfo (opnum 40) Sets information on a trusted domain object.

LsarSetTrustedDomainInfoByName (opnum
49)

Sets information on a trusted domain object without having to first
open a handle to it.

LsarSetInformationTrustedDomain (opnum
27)

Sets information on a trusted domain object.

LsarQueryT rustedDomainInfoByName
(opnum 48)

Obtains information about a trusted domain object without having
to first open a handle to it.

120 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Method (opnum) Summary

LsarQueryInfoTrustedDomain (opnum 26) Obtains information about a trusted domain object.

LsarDeleteTrustedDomain (opnum 41) Removes a trusted domain object from the server's policy
database.

LsarEnumerateTrustedDomainsEx (opnum
50)

Enumerates all trusted domain objects in the server's policy
database.

LsarEnumerateTrustedDomains (opnum 13) Enumerates trusted domain objects in the server's policy database.

LsarQueryForestTrustInformation (opnum
73)

Obtains information from a trusted domain object corresponding to
a forest trust relationship.

LsarSetForestTrustInformation (opnum 74) Sets information on a trusted domain object corresponding to a
cross - forest trust relationship.

3.1.4.7.1 LsarOpenTrustedDomain (Opnum 25)

The LsarOpenTrustedDomain method is invoked to obtain a handle to a trusted domain object.

 NTSTATUS LsarOpenTrustedDomain(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID TrustedDomainSid,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* TrustedDomainHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainSid: A security identifier of the trusted domain that is being opened.

DesiredAccess: A bitmask of access rights to open the object with.

TrustedDomainHandle: Used to return the trusted domain object handle.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this
operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied parameters is invalid. For instance, this can
happen if the security identifier TrustedDomainSid is not a valid
domain security identifier. Section 3.1.4.10 specifies data
validation rules, including what constitutes a valid domain
security identifier.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC00000DF The specified trusted domain object does not exist.

121 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_NO_SUCH_DOMAIN

0xC00002B1

STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the server.

Processing:

If Active Directory is not running on this machine, the server MUST return

STATUS_DIRECTORY_SERVICE_REQUIRED.

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle .GrantedAcces s MUST NOT be considered for this call because
the access check MUST happen on the trusted domain object.

TrustedDomainSid : A SID of the trusted domain object. The server MUST verify that the SID is a valid

domain SID and reject the request with STATUS_INV ALID_PARAMETER otherwise. If the trusted
domain object with this SID does not exist, the server MUST fail the request with
STATUS_NO_SUCH_DOMAIN error code.

DesiredAccess : A bitmask specifying the type of access the caller attempts to obtain from the trust ed
domain object, which is access -checked according to section 3.1.4.2.1. There is no method -specific
portion of the check. The valid trusted -domain - rights bits are specified in section 2.2.1.1.5, and the

security descriptor is specified in section 3.1.1.5 .

TrustedDomainHandle : If the request is successful, this parameter is used to return a handle (section
3.1.1.7) to the opened trusted domain object with its fields initialized as follows: <79><80>

Á LsaContextHandle.HandleType = "Trusted Domain"

Á LsaContextHa ndle.Object = the trusted domain object

Á LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.7.2 LsarQueryTrustedDomainInfo (Opnum 39)

The LsarQueryTrustedDomainInfo method is invoked to retrieve informati on on a trusted domain
object.

 NTSTATUS LsarQueryTrustedDomainInfo(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID TrustedDomainSid,

 [in] TRUSTED_INFORMATION_CLASS InformationClass,

 [out, switch_is(InformationClass)]

 PLSAPR_TRUSTED_DOMAIN_INFO* TrustedDomainInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainSid: A security descriptor of the trusted domain obje ct.

InformationClass: Identifies the type of information the caller is interested in.

TrustedDomainInformation: Used to return the information on the trusted domain object to the
caller.

122 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this
operation.

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000002

STATUS_NOT_IMPLEMENTED

The specified information class is not supported.

0xC0000003

STATUS_INVALID_INFO_CLASS

The I nformationClass argument is outside the allowed range.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC00000DF

STATUS_NO_SUCH_DOMAIN

The specified trusted domain object does not exist.

0xC00002B1

STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the server.

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the

policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle gra nts access as specified in
section 3.1.4.2.2 with RequiredAccess set as specified in section 3.1.4.7.13.

TrustedDomainSid : The SID of the trusted domain object to query. The server MUST verify that the
caller has supplied a valid domain SID for this parame ter and fail the request with
STATUS_INVALID_PARAMETER if the check fails. The server MUST verify that a trusted domain object
with this SID exists in its policy database and fail the request with STATUS_NO_SUCH_DOMAIN

otherwise.

InformationClass : A value from the TRUSTED_INFORMATION_CLASS enumeration that specifies which
type of information the caller is requesting. Not all values are valid. For values outside the

TRUSTED_INFORMATION_CLASS enumeration range, the server MUST reject the request with
STATUS_I NVALID_PARAMETER. For InformationClass values TrustedControllersInformation,
TrustedDomainAuthInformationInternal, TrustedDomainFullInformationInternal, and for any values

that would be rejected by an LsarQueryInfoTrustedDomain call, the server MUST reject the request
with an implementation -specific error. For all other InformationClass values, the server MUST behave
as if it is processing an LsarQueryInfoTrustedDomain call with a trusted domain handle to the trusted
domain identified by the TrustedDomainSi d parameter.

TrustedDomainInformation : Used to return the requested information.

123 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.4.7.3 LsarSetTrustedDomainInfo (Opnum 40)

The LsarSetTrustedDomainInfo method is invoked to set information on a trusted domain object. In
some cases, if the trusted domain object does not exist, it will be created.

 NTSTATUS LsarSetTrustedDomainInfo(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID TrustedDomainSid,

 [in] TRUSTED_INFORMATION_CLASS InformationClass,

 [in, switch_is(Informat ionClass)]

 PLSAPR_TRUSTED_DOMAIN_INFO TrustedDomainInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainSid: A SID of the trusted domain object to be modified.

InformationClass: Identifies the type of information to be set on the trusted domain object.

TrustedDomainInformation: Information to be set on the trusted domain object.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this
operation.

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC00000DF

STATUS_NO_SUCH_DOMAIN

The specified trusted domain object does not exist.

0xC00002B1

STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the server.

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.

This method is sim ilar to the LsarSetInformationTrustedDomain method, with some important

differences. For one, this method takes a policy object handle instead of a trusted domain object
handle. Another important distinction is that for some information classes this method , unlike
LsarSetInformationTrustedDomain, will create a trusted domain object if one does not exist already.

This message takes four arguments:

PolicyHandle : An open handle to the policy object. The access rights required to perform the operation
depend on the value of the InformationClass parameter. The access bits required for each information
class are specified in section 3.1.4.7.14. If the handle is not a valid context handle to the policy object

124 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle .GrantedAccess MUST NOT be considered for this call because

the access check MUST happen on the trusted domain object. If the server is a read -only domain
controller, it MUST return an error. <81>

TrustedDomainSid : A SID of the trusted domain object to modify. The server MUST verify that the
caller has supplied a valid domain SID for this parameter and fail the request with
STATUS_INVALID_PARAMETER if the check fails.

InformationClass : A value from the TRUSTED_INFORMATION_CLASS enumeration that specifies which
type of information the caller is setting. Not all InformationClass values are valid. The valid
InformationClass values for this method are as follows:

Á TrustedDomainNameInformation: The server MUST act as if an LsarCreateTrustedDomain

message came in with its TrustedDomainInformation.Name parameter as the name passed in the
TrustedDomainInformation parameter, its TrustedDomainInformation.Sid parameter as the SID
passed in the TrustedDomainSid parameter, and its DesiredAccess parameter set to zero.

Á TrustedPosixOffsetInformation: The server MUST verify that a trusted domain object with this SID
exists in its policy database. If the object does not exist, the call MUST fail with
STATUS_NO_SUCH_DOMAIN. Otherwise, the server MUST verify that the caller h as access to the

trusted domain object as specified in section 3.1.4.2.1 with DesiredAccess set to
TRUSTED_SET_POSIX. There is no method -specific portion of this check.

Then the server MUST act as if an LsarSetInformationTrustedDomain message is being proc essed.

The server MAY support the following InformationClass values. <82> If the server does not support
these values, it MUST return STATUS_INVALID_PARAMETER. If the server supports these values, it
MUST perform the corresponding operations:

Á TrustedDomainI nformationEx: The server MUST check that a trusted domain object with this SID

exists in its policy database. If the object does not exist, the server MUST create a new trusted
domain object using the same processing rules as LsarCreateTrustedDomainEx2, an d using the
following parameters for the LsarCreateTrustedDomainEx2 processing rules:

Á PolicyHandle set to the same PolicyHandle in the original message.

Á TrustedDomainInformation set to the same TrustedDomainInformation in the original
message.

Á Authenticati onInformation set to NULL.

Á DesiredAccess set to zero.

If the object does exist, the server MUST set the trusted domain information using the same
processing rules as LsarSetInformationTrustedDomain, and using the following parameters for the
LsarSetInforma tionTrustedDomain processing rules:

Á TrustDomainHandle set to the handle to the trusted domain object.

Á InformationClass set to the same InformationClass in the original message.

Á TrustedDomainInformation set to the same TrustedDomainInformation in the origin al
message.

Á TrustedPasswordInformation: The server MUST verify that a trusted domain object with this SID
exists in its policy database. If the object does not exist, the call MUST fail with
STATUS_NO_SUCH_DOMAIN. Otherwise, the server MUST open the secret object, as defined in
section 3.1.1.4, (or create a secret object, if one does not already exist) with "Name" set to
"G$$<Trusted Domain Name>". The server MUST then set "Old Value" of the secret object to the

"OldPassword" value in TrustedDomainInformati on and set "New Value" of the secret object to the

125 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

"Password" value in TrustedDomainInformation , similar to the processing when an LsarSetSecret
request has been made.

The server MUST return STATUS_INVALID_PARAMETER for all other InformationClass arguments .

TrustedDomainInformation : Contains the data supplied by the caller to be set on the trusted domain

object.

3.1.4.7.4 LsarDeleteTrustedDomain (Opnum 41)

The LsarDeleteTrustedDomain method is invoked to delete a trusted domain o bject (TDO).

 NTSTATUS LsarDeleteTrustedDomain(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_SID TrustedDomainSid

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainSid: A security descriptor of the TDO to be deleted.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform
this operation.

0xC00000DF

STATUS_NO_SUCH_DOMAIN

The specified TDO does not exist.

0xC000000D

STATUS_INVALID_PARAM ETER

One or more of the supplied parameters was invalid.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC00002B1

STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the
server.

0xC0000403

STATUS_USER_DELETE_TRUST_QUOTA_EXCEEDED

The caller's quota for the maximum allowed number of
deleted TDOs is exceeded.

Processing:

If Active Directory is not running on this machine, the server MUST return
STATUS_DIRECTORY_SERVICE_REQUIRED.

If the number of deleted TDOs that were created by the caller through the control access right Create -

Inbound -Trust (defined in [MS -ADTS] section 5.1.3.2.1) exceeds the value in the msDS -
PerUserTrustTombstonesQuota attribute of the domain naming context (domain NC) root object
(defined in [MS -ADTS] section 6.1.1.1.4), the server MUST return
STATUS_USER_DELETE_TRUST_QUOTA_EXCEEDED. For the syntax of the msDS -
PerUserTrustTombstonesQuota attribute, refer to [MS -ADA2] section 2.411. The server MUST enforce

126 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

the quota check on ly for the TDOs created by control access right Create - Inbound -Trust and if the
caller is the creator of that TDO.

This message takes two arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the

polic y object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to TRUSTED_QUERY_DOMAIN_NAME | DELET E.

TrustedDomainSid : The SID of a TDO to be deleted. The server MUST verify that the caller has
supplied a valid domain SID for this parameter and fail the request with
STATUS_INVALID_PARAMETER if the check fails. The server MUST verify that a TDO with thi s SID
exists in its policy database and fail the request with STATUS_NO_SUCH_DOMAIN otherwise.

 If the server is a read -only domain controller, it MUST return an error. <83>

The server MUST also check whether a secret with name "G$$<Trusted Domain Name>" ex ists or not.
If it exists, the server MUST delete that secret along with the trusted domain.

The server MUST also check whether an interdomain trust account with name "<Trusted Domain
NetBIOS Name>$" exists. If it exists, the server MUST delete that accoun t along with the trusted
domain.

3.1.4.7.5 LsarQueryTrustedDomainInfoByName (Opnum 48)

The LsarQueryTrustedDomainInfoByName method is invoked to retrieve information about a trusted
domain object by its string name.

 NTSTATUS LsarQueryTrustedDomainInfoByName(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING TrustedDomainName,

 [in] TRUSTED_INFORMATION_CLASS InformationClass,

 [out, switch_is(InformationClass)]

 PLSAPR_TRUSTED_DOMAIN_INFO* Truste dDomainInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainName: The name of the trusted domain object to query.

InformationClass: One of the TRUSTED_INFORMATION_CLASS values identifying t he type of
information the caller is interested in.

TrustedDomainInformation: Used to return the information requested by the caller.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the mes sage processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied parameters was invalid.

127 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

The trusted domain object with the specified name could not be
found.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Proce ssing:

This message is identical in its operation to LsarQueryInfoTrustedDomain; the only exception is that

the TrustedDomainName parameter is used to locate the trusted domain object, rather than having
the caller supply the trusted domain object handle.

The trusted domain object is located by matching the TrustedDomainName parameter against the
trusted domain object in the server's policy database. The trailing period on DNS names is ignored for
the purposes of comparison.

3.1.4.7.6 LsarSetTrustedDomainInfoByName (Opnum 49)

The LsarSetTrustedDomainInfoByName method is invoked to set information about a trusted domain
object by its string name.

 NTSTATUS LsarSetTrustedDomainInfoByName(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING TrustedDomainName,

 [in] TRUSTED_INFORMATION_CLASS InformationClass,

 [in, switch_is(InformationClass)]

 PLSAPR_TRUSTED_DOMAIN_INFO TrustedDomainInformation

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainName: The name of the trusted domain object to set information on.

InformationClass: One of the TRUSTED_INFORMATION_CLASS values indicating the type of
information the caller is tr ying to set.

TrustedDomainInformation: The data being set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments is invalid.

0xC0000034

STATUS_OBJECT_NAME_NOT_FOUND

The trusted domain object with the specified name could not be
found.

0xC0000008 PolicyHandle is not a valid handle.

128 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_INVALID_HANDLE

Processing:

This message is identical in its operation to LsarSetInformationTrustedDom ain; the only exception is
that the TrustedDomainName parameter is used to locate the trusted domain object, rather than
having the caller supply the trusted domain object handle.

The trusted domain object is located by matching the TrustedDomainName param eter against the

trusted domain object in the server's policy database. The trailing period on DNS names is ignored for
the purposes of comparison.

3.1.4.7.7 LsarEnumerateTrustedDomainsEx (Opnum 50)

The LsarEnumerateTruste dDomainsEx method is invoked to enumerate trusted domain objects in the
server's database. The method is designed to be invoked multiple times to retrieve the data in

fragments.

 NTSTATUS LsarEnumerateTrustedDomainsEx(

 [in] LSAPR_HANDLE PolicyHandle,

 [in, out] unsigned long* EnumerationContext,

 [out] PLSAPR_TRUSTED_ENUM_BUFFER_EX EnumerationBuffer,

 [in] unsigned long PreferedMaximumLength

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or Lsar OpenPolicy2.

EnumerationContext: Used to keep track of the state of the enumeration in cases where the caller
obtains its information in several fragments.

EnumerationBuffer: Contains a fragment of requested information.

PreferedMaximumLength: A value that indicates the approximate size of the data to be returned.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x0000000 0

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0x8000001A

STATUS_NO_MORE_ENTRIES

No more information is available.

0x00000105

STATUS_MORE_ENTRIES

More information is available by calling this method again.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This message takes four arguments:

129 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return

STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with Requir edAccess set to POLICY_VIEW_LOCAL_INFORMATION.

EnumerationContext : A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all trusted domain objects in the same order, starting at the object whose
index is EnumerationContext . To initiate a new enumeration, the client sets EnumerationContext to
zero; otherwise, the client sets EnumerationContext to a value returned by a previous call to the
method.

The server MUST return STATUS_INVALID_PARAMETER if the Enume rationContext parameter is NULL.

EnumerationBuffer : Used to return the results of enumeration. The server MUST fill EnumerationBuffer

with as many trusted domain objects as possible, as determined by PreferedMaximumLength . If the
size of all remaining obje cts is less than or equal to PreferedMaximumLength , the server MUST fill
EnumerationBuffer with all objects. If the size of all remaining objects is greater than
PreferedMaximumLength , the server MUST fill EnumerationBuffer with objects such that the size of the

trusted domain objects returned is greater than or equal to PreferedMaximumLength , but would be
less than PreferedMaximumLength if the last object had not been added to EnumerationBuffer . If there

are no more objects than are returned in Enumeration Buffer , the server MUST return
STATUS_NO_MORE_ENTRIES. If there are more database objects than are returned in
EnumerationBuffer , the server MUST set the EnumerationContext value to the index value that would
allow it to resume enumeration correctly when t his method is called again, and the server MUST
return STATUS_MORE_ENTRIES. Note that this return value is not an error status.

PreferedMaximumLength : An indication about the approximate size, in bytes, of the data to be
returned. Any unsigned 32 -bit value is valid for the PreferedMaximumLength parameter.

If Active Directory is not running on this machine, the server MUST fill 0 objects in EnumerationBuffer ,
and return STATUS_NO_MORE_ENTRIES.

3.1.4.7.8 LsarEnumerateTrustedDomains (Opnum 13)

The LsarEnumerateTrustedDomains method is invoked to request a list of trusted domain objects in
the server's database. The method can be called multiple times to return its output in fragments.

 NTSTATUS LsarEnume rateTrustedDomains(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] [out] unsigned long *EnumerationContext,

 [out] PLSAPR_TRUSTED_ENUM_BUFFER EnumerationBuffer,

 [in] unsigned long PreferedMaximumLength

);

PolicyHandle: An RPC context handle obtained from eith er LsarOpenPolicy or LsarOpenPolicy2.

EnumerationContext: A pointer to a context value that is used to resume enumeration, if necessary.

EnumerationBuffer: A pointer to a structure that will contain the results of the enumeration.

PreferedMaximumLength: A value that indicates the approximate size of the data to be returned.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x0 0000000

STATUS_SUCCESS

The request was successfully completed.

130 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000105

STATUS_MORE_ENTRIES

More information is available to successive calls.

0xC000001A

STATUS_NO_MORE_ENTRIES

No more entries are available from the enumeration.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This message takes four arguments:

PolicyHandle : An open handle to the policy object. I f the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return

STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION.

EnumerationContext : A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all trusted domain objects in the same order, starting at the object whose
index is EnumerationContext . To initiate a new enumeration, the client sets EnumerationContext to
zero; otherwise, the client sets EnumerationContext to a value returned by a previous call to the

method.

The server MUST return STATUS_INVALID_PARAMETER if the EnumerationContext parameter is NULL.

This method differs from the LsarEnumerateTrustedDomainsEx method in one significant way - in
mixed -mode forests, this method returns to the caller an entire set of domains within the forest by
enumerating all the cross -referenced objects in Active Directory in addition to domains that are

trusted explicitly.

EnumerationBuffer : Used to return the results of enumeration. The server MUST fill EnumerationBuffer

with as many trusted domain objects as possible, as determined by PreferedMaximumLength . If the
size of all remaining objects is less than or equal to PreferedMaximumLength , the server MUST fill
EnumerationBuffer with all objects. If the size of all remaining objects is greater than
PreferedMaximumLength , the server MUST fill EnumerationBuffer with objects such that the size of the
trusted domain objects returned is greater than or equal to PreferedMaximumLength , but would be
less than PreferedMaximumLength if the last object had not been added to EnumerationBuffer . If there
are no more objects than are returned in EnumerationBuffer , the server MUST return

STATUS_NO_MORE_ENTR IES. If there are more database objects than are returned in
EnumerationBuffer , the server MUST set the EnumerationContext value to the index value that would
allow it to resume enumeration correctly when this method is called again, and the server MUST
re turn STATUS_MORE_ENTRIES. Note that this return value is not an error status.

When enumerating trusted domain objects for this message, the server MUST limit the trusted domain
objects returned to the following subset only:

Á Outbound Trusts: The trust direc tion has the TRUST_DIRECTION_OUTBOUND bit set.

Á Uplevel or Downlevel Trusts: The trust type is TRUST_TYPE_DOWNLEVEL or
TRUST_TYPE_UPLEVEL.

Á Non -uplevel -only Trusts: The Trust Attributes field does not have the
TRUST_ATTRIBUTE_UPLEVEL_ONLY bit set.

131 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Trust type s and attributes are specified in [MS -ADTS] section 6.1.6.

PreferedMaximumLength : An indication about the approximate size, in bytes, of the data to be

returned. Any unsigned 32 -bit value is valid for the PreferedMaximumLength parameter.

If Active Director y is not running on this machine, the server MUST fill 0 objects in EnumerationBuffer ,

and return STATUS_NO_MORE_ENTRIES.

3.1.4.7.9 LsarOpenTrustedDomainByName (Opnum 55)

The LsarOpenTrustedDomainByName method is invoked to open a trusted domain object handle by
supplying the name of the trusted domain.

 NTSTATUS LsarOpenTrustedDomainByName(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING TrustedDomainName,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* TrustedDomainHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainName: The name of the trusted domain object.

DesiredAccess: The type of access requested by the caller.

TrustedDomainHandle: Used to return the opened trusted domain handle.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments was invalid.

0xC0000034

STATUS_O BJECT_NAME_NOT_FOUND

A trusted domain object by this name was not found.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle .GrantedAccess MUST NOT be considered for this call because

the access check MUST happen on the trusted domain object.

TrustedDomainName : Contains the name of the trusted domain to be opened. This can be a DNS or a
NetBIOS name. If the server cannot locate a trusted domain object by this name in i ts policy

132 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

database, the server MUST return STATUS_OBJECT_NAME_NOT_FOUND. The same status code MUST
be returned by the server if Active Directory is not running on this machine.

DesiredAccess : The set of rights that the caller attempts to obtain from the tr usted domain object,
which is access -checked according to section 3.1.4.2.1. There is no method -specific portion of the

check. The valid trusted -domain - rights bits are specified in section 2.2.1.1.5, and the security
descriptor is specified in section 3.1. 1.5.

TrustedDomainHandle : If the request is successful, this parameter is used to return a handle (section
3.1.1.7) to the opened trusted domain object with its fields initialized as follows:

Á LsaContextHandle.HandleType = "Trusted Domain"

Á LsaContextHandle. Object = the trusted domain object

Á LsaContextHandle.GrantedAccess = as specified in section 3.1.4.2.1

3.1.4.7.10 LsarCreateTrustedDomainEx2 (Opnum 59)

The LsarCreateTrustedDomainEx2 method is invoked to create a new trusted do main object
(TDO). <84>

 NTSTATUS LsarCreateTrustedDomainEx2(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PLSAPR_TRUSTED_DOMAIN_INFORMATION_EX TrustedDomainInformation,

 [in] PLSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION_INTERNAL AuthenticationInformation,

 [in] ACC ESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* TrustedDomainHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainInformation: Information about the new TDO to be created.

AuthenticationInformation: Encrypted authentication information for the new TDO.

DesiredAccess: An access mask specifying desired access to the TDO handle.

TrustedDomainHandle: Used to return the handle for the newly created TDO.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC000 0022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this
operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments is invalid.

0xC0000300

STATUS_NOT_SUPPORTED_ON_SBS

The operation is not supported on a particular
product. <85>

0xC00000DD

STATUS_INVALID_DOMAIN_STATE

The operation cannot complete in the current state of the
domain.

133 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC00002B1

STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the
server.

0xC0000078

STATUS_INVALID_SID

The security identifier of the trusted domain is not valid.

0xC00002E9

STATUS_CURRENT_DOMAIN_NOT_ALLOWED

Trust cannot be established with the current domain.

0xC0000035

STATUS_OBJECT_NAME_COLLISION

Another TDO already exists that matches some of the
identifying information of the supplied information.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000401

STATUS_PER_USER_TRUST_QUOTA_EXCEEDED

The caller's quota for maximum number of TDOs that can

be create d by control access right Create - Inbound -Trust is
exceeded.

0xC0000402

STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED

The combined users' quota for maximum number of TDOs
that can be created by control access right Create -
Inbound -Trust is exceeded.

Processing:

If Active Directory is not running on this machine, the server MUST return

STATUS_DIRECTORY_SERVICE_REQUIRED. <86> If the server is a read -only domain controller, it
MUST return an error. <87>

If the caller is not a member of the Domain Admins group, the server MUST return
STATUS_ACCESS_DENIED for policy handle access checking.

If the TDO creation failed due to the caller not having standard access rights to create the TDO, then
the server MUST check the caller's control access right (defined in [MS -ADTS] section 5.1.3.2.1). The
TDO creation by control access right is allowed if:

Á The trust is an inbound -only forest trust. The server MUST return STATUS_ACCESS_DENIED if the
trust to be created is not an inbound -only forest trust.

Á The caller has the control ac cess right to create an inbound trust on the domain object.

Á The caller's quota for trust object creations has not been exceeded. If the number of TDOs that
have been created by the caller through control access right Create - Inbound -Trust exceeds the
value in the msDS -PerUserTrustQuota attribute of the domain NC root object, then the server
MUST return STATUS_PER_USER_TRUST_QUOTA_EXCEEDED. For the syntax of the msDS -

PerUserTrustQuota attribute, refer to [MS -ADA2] section 2.410.

Á The combined users' quota for trust object creations has not been exceeded. If the number of

TDOs that have been created through control access right Create - Inbound -Trust exceeds the value
in the msDS -AllUsersTrustQuota attribute of the domain NC root object (defined in [MS -ADTS]
secti on 6.1.1.1.4), then the server MUST return STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED.
For the syntax of the msDS -AllUsersTrustQuota attribute, refer to [MS -ADA2] section 2.212.

This message takes five arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return

134 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

STATUS_INVALID_HANDLE. PolicyHandle .GrantedAccess MUST NOT be considered for this call because
the access check MUST happen on the TDO.

TrustedDomainInformation : A structure containing most components of a TDO makeup. The data
provided in this parameter MUST be checked for validity in accordance with rules for TDO consistency

speci fied in "Trust Objects" in [MS -ADTS] section 6.1.6. The server MUST reject invalid input with
STATUS_INVALID_PARAMETER. The server MUST return STATUS_INVALID_DOMAIN_STATE in the
following cases:

Á The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the
forestFunctionality specified in [MS -ADTS] section 3.1.1.3.2.27 is DS_BEHAVIOR_WIN2003 or
higher.

Á The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the DnsForestName

and DnsDomainName fields in DNS Domain Information (see s ection 3.1.1.1) do not contain the
same value.

Á The TrustAttributes TRUST_ATTRIBUTE_CROSS_ORGANIZATION flag is set and the

forestFunctionality specified in [MS -ADTS] section 3.1.1.3.2.27 is DS_BEHAVIOR_WIN2003 or
higher.

If one or more properties in Truste dDomainInformation points to the current domain (such as the

domain that the server is a part of), the server MUST return
STATUS_CURRENT_DOMAIN_NOT_ALLOWED. If there is another domain that claims the same
properties, the server MUST return STATUS_OBJECT_NA ME_COLLISION. Each field in this structure
maps to a field in the TDO model, as specified in section 3.1.1.5. If the operation succeeds, the server
MUST update its database with a new TDO field populated from this input parameter.

AuthenticationInformation : A structure containing authentication information for the trusted domain.
The server first MUST decrypt this data structure using an algorithm (as specified in section 5.1.1)

with the key being the session key negotiated by the transport. The server then MUST unmarshal the
data inside this structure and then store it into a structure whose format is specified in section
2.2.7.11. This structure MUST then be stored on Trust Incoming and Outgoing Password properties.

DesiredAccess : A bitmask containing a se t of access rights that the caller attempts to obtain from the
TDO, which is access -checked as specified in section 3.1.4.2.1. Whatever the set of access rights
requested by the caller, the server MUST also set the TRUSTED_SET_AUTH bit inside DesiredAccess
before performing the security descriptor check. There is no method -specific portion of the check.

The valid trusted -domain - rights bits are specified in section 2.2.1.1.5, and the security descriptor is
specified in section 3.1.1.5.

TrustedDomainHandle : If the request is successful, this parameter is used to return a handle (section
3.1.1.7) to the newly created TDO with its fields initialized as follows:

Á LsaContextHandle.HandleType = "Trusted Domain"

Á LsaContextHandle.Object = the TDO

Á LsaContextHandle.Gra ntedAccess = as specified in section 3.1.4.2.1

New TDOs are always created without forest trust information. The ForestTrustInfo and
ForestTrustLength fields of the TDO are thus set to NULL and 0, respectively.

If the trust being created is inbound or bidi rectional as defined in the TrustDirection field of the
TrustedDomainInformation parameter, then the server MUST also update its database with a new
interdomain trust account populated as specified in [MS -ADTS] section 6.1.6.8.

3.1.4.7.11 LsarCreateTrustedDomainEx (O pnum 51)

135 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The LsarCreateTrustedDomainEx method is invoked to create a new trusted domain object (TDO).

 NTSTATUS LsarCreateTrustedDomainEx(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PLSAPR_TRUSTED_DOMAIN_INFORMATION_EX TrustedDomainInformation,

 [in] PLSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION AuthenticationInformation,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* TrustedDomainHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainInformation: Information about the new TDO to be created.

AuthenticationInformation: Encrypted authentication information for the new TDO.

DesiredAccess: An access mask that specifies desired access to the TDO handle.

TrustedDomainHandle: Used to return the handle for the newly created TDO.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this
operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments is invali d.

0xC0000300

STATUS_NOT_SUPPORTED_ON_SBS

The operation is not supported on a particular
product. <88>

0xC00000DD

STATUS_INVALID_DOMAIN_STATE

The operation cannot complete in the current state of the
domain.

0xC00002B1

STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not available on the
server.

0xC0000078

STATUS_INVALID_SID

The security identifier of the trusted domain is not valid.

0xC00002E9

STATUS_CURRENT_DOMAIN_NOT_ALLOWED

Trust cannot be establi shed with the current domain.

0xC0000035

STATUS_OBJECT_NAME_COLLISION

Another TDO already exists that matches some of the
identifying information of the supplied information.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000401

STATUS_PER_USER_TRUST_QUOTA_EXCEEDED

The caller's quota for the maximum number of TDOs that
can be created by control access right Create -Inbound -
Trust is exceeded.

0xC0000402 The combined users' quota for the maximum number of

136 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED TDOs that can be created by control access right Create -
Inbound -Trust is exceeded.

Processing:

This message MUST be processed in an identical manner to LsarCreateTrus tedDomainEx2, with the
following exceptions.

AuthenticationInformation is a structure containing authentication information for the trusted domain.
The authentication information is not encrypted, which makes this an insecure message to call. As a

result, callers SHOULD NOT invoke this message and SHOULD instead call
LsarCreateTrustedDomainEx2.

3.1.4.7.12 LsarCreateTrustedDomain (Opnum 12)

The LsarCreateTrustedDomain method is invoked to create an object of type trusted domain in the

server's database.

 NTSTATUS LsarCreateTrustedDomain(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PLSAPR_TRUST_INFORMATION TrustedDomainInformation,

 [in] ACCESS_MASK DesiredAccess,

 [out] LSAPR_HANDLE* TrustedDomainHandle

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainInformation: Information about the new trusted domain object (TDO) to be created.

DesiredAccess: An access mask th at specifies the desired access to the TDO handle.

TrustedDomainHandle: Used to return the handle for the newly created TDO.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message proc essing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this
operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments is invalid.

0xC0000300

STATUS_NOT_SUPPORTED_ON_SBS

The operation is not supported on a particular
product. <89>

0xC00002B1

STATUS_DIRECTORY_SERVICE_REQUIRED

The Active Directory service was not availa ble on the
server.

0xC0000078

STATUS_INVALID_SID

The security identifier of the trusted domain is not valid.

0xC00002E9 Trust cannot be established with the current domain.

137 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_CURRENT_DOMAIN_NOT_ALLOWED

0xC0000035

STATUS_OBJECT_NAME_COLLISION

Another TDO already exists that matches some of the
identifying information of the supplied information.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000401

STATUS_PER_USER_TRUST_QUOTA_EXCEEDED

The caller's quota for the maximum number of TDOs that
can be created by control access right Create -Inbound -
Trust is exceeded.

0xC0000402

STATUS_ALL_USER_TRUST_QUOTA_EXCEEDED

The combined users' quota for the maximum number of
TDOs that can be created by control access right Create -
Inbound -Trust is exceeded.

Processing:

This message MUST be processed in an identical manner to LsarCreateTrustedDomainEx with the
following mapping as input parameters.

PolicyHandle : Same.

TrustedDomainInformation :

Á Name : Comes from TrustedDomainInformation . Name input parameter.

Á FlatName : Comes from TrustedDomainInformation . Name input parameter.

Á SID : Comes from TrustedDomainInformation . Security identifier (SID) input parameter.

Á TrustDirec tion : TRUST_DIRECTION_OUTBOUND.

Á TrustType : TRUST_TYPE_DOWNLEVEL.

Á TrustAttributes : 0.

AuthenticationInformation : NULL.

DesiredAccess : Same.

TrustedDomainHandle : Same.

3.1.4.7.13 LsarQueryInfoTrustedDomain (Opnum 26)

The LsarQueryInfoTrustedDomain method is invoked to retrieve information about the trusted domain
object.

 NTSTATUS LsarQueryInfoTrustedDomain(

 [in] LSAPR_HANDLE TrustedDomainHandle,

 [in] TRUSTED_INFORMATION_CLA SS InformationClass,

 [out, switch_is(InformationClass)]

 PLSAPR_TRUSTED_DOMAIN_INFO* TrustedDomainInformation

);

TrustedDomainHandle: An open trusted domain object handle.

InformationClass: One of the TRUSTED_INFORMATION_CLASS values indicating the type of

information the caller is interested in.

138 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

TrustedDomainInformation: Used to return requested information about the trusted domain object.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the arguments supplied to the function was invalid.

0xC0000003

STATUS_INVALID_INFO_CLASS

The InformationClass argument is outside the allowed range.

0xC0000008

STATUS_INVA LID_HANDLE

TrustedDomainHandle is not a valid handle.

Processing:

This message takes three arguments:

TrustedDomainHandle : An open handle to a trusted domain object. If the handle is not a valid context
handle to a trusted domain object or TrustedDomainHa ndle .HandleType does not equal "Trusted
Domain", the server MUST return STATUS_INVALID_HANDLE. The server MUST verify that

TrustedDomainHandle grants access as specified in section 3.1.4.2.2. The following table specifies the
RequiredAccess value to use in this access check for each InformationClass value, or indicates if no
processing is supported, regardless of access granted. There are several methods in the Local Security
Authority (Domain Policy) Remote Protocol that query trusted domain information. A ll of them enforce
the same rights assignments based on information class as described in the following table.

Value of InformationClass parameter RequiredAccess value

TrustedDomainNameInformation

TrustedDomainInformationBasic

TrustedDomainInformationEx

TrustedDomainInformationEx2Internal

TRUSTED_QUERY_DOMAIN_NAME

TrustedControllersInformation Does not apply: This information class is obsolete and cannot be set
or queried. The server MUST return STATUS_INVALID_PARAMETER.

Trust edPosixOffsetInformation

TrustedDomainSupportedEncryptionTypes

TRUSTED_QUERY_POSIX

TrustedPasswordInformation

TrustedDomainAuthInformation

TrustedDomainAuthInformationInternal

TRUSTED_QUERY_AUTH

TrustedDomainFullInformation

TrustedDomainFullInformationInternal

TrustedDomainFullInformation2Internal

TRUSTED_QUERY_DOMAIN_NAME | TRUSTED_QUERY_POSIX |
TRUSTED_QUERY_AUTH

InformationClass : A value from the TRUSTED_INFORMATION_CLASS enumeration specifying what
type of information th e caller is requesting. Not all values are valid. For values outside the

139 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

TRUSTED_INFORMATION_CLASS range, the server MUST reject the request with
STATUS_INVALID_PARAMETER. Information class values TrustedDomainAuthInformationInternal and

TrustedDomainFullI nformationInternal MUST be rejected with STATUS_INVALID_INFO_CLASS.

TrustedDomainInformation : Used to return the data requested by the caller, in a structure form

corresponding to the InformationClass parameter. Information MUST be collected from the abstr act
data model specified in section 3.1.1.5.

Value of InformationClass parameter Information to return

TrustedDomainNameInformation Flat Name

TrustedPosixOffsetInformation Posix Offset

TrustedDomainInformationEx Name

Flat Name

Security Identifier

Posix Offset

Trust Type

Trust Direction

Trust Attributes

TrustedDomainAuthInformation

TrustedDomainAuthInformationInternal

TrustedDomainFullInformationInternal

Not applicable: This information class cannot be queried. Server
MUST return STATUS_ INVALID_INFO_CLASS.

TrustedDomainFullInformation Name

Flat Name

Security Identifier

Posix Offset

Trust Type

Trust Direction

Trust Attributes

Trust Incoming and Outgoing Password values MUST be set to 0.

TrustedDomainFullInformation2Internall Name

Flat Name

Security Identifier

Posix Offset

Trust Type

Trust Direction

Trust Attributes

Forest Trust Attributes, as stored in Active Directory under the msDs -
TrustForestTrustInfo attribute ([MS -ADTS] section 6.1.6 .9.3).

Trust Incoming and Outgoing Password values MUST be set to 0.

TrustedDomainSupportedEncryptionTypes Supported Encryption Types

Other values Server MUST return STATUS_INVALID_PARAMETER.

If the server is not at DS_BEHAVIOR_WIN2003 forest functional level, the presence of the
TRUST_ATTRIBUTE_FOREST_TRANSITIVE bit in the Trust Attributes field of a trusted domain object
MUST NOT be returned by the server. <90>

3.1.4.7.14 LsarSetInformationTrustedDomain (Opnum 27)

140 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The LsarSetInformationTrustedDomain method is invoked to set information on a trusted domain
object.

 NTSTATUS LsarSetInformationTrustedDomain(

 [in] LSAPR_HANDLE TrustedDomainHandle,

 [in] TRUSTED_INFORMATION_CLASS InformationClass,

 [in, switch_is(InformationClass)]

 PLSAPR_TRUSTED_DOMAIN_INFO TrustedDomainInformation

);

TrustedDomainHandle: A handle to a trusted domain object.

InformationClass: A value indicating the type of informati on requested by the caller.

TrustedDomainInformation: Used to supply the information to be set.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return v alue/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the arguments supplied to the function was invalid.

0xC00000DD

STATUS_INVALID_DOMAIN_STATE

The domain is in the wrong state to perform the stated operation.

0xC0000008

STATUS_INVALID_HANDLE

TrustedDomainHandle is not a valid handle.

Processing:

This message takes thr ee arguments:

TrustedDomainHandle : An open handle to a trusted domain object. If the handle is not a valid context
handle to a trusted domain object or TrustedDomainHandle .HandleType does not equal "Trusted
Domain", the server MUST return STATUS_INVALID_HA NDLE. The server MUST verify that
TrustedDomainHandle grants access as specified in section 3.1.4.2.2. The following table specifies the
RequiredAccess value to use in this access check for each InformationClass value, or indicates if no

processing is supp orted, regardless of access granted. There are several methods in the Local Security
Authority (Domain Policy) Remote Protocol that set trusted domain information. All of them enforce
the same rights assignments based on information class.

Value of Informa tionClass parameter RequiredAccess value

TrustedPosixOffsetInformation

TrustedDomainInformationEx

TRUSTED_SET_POSIX

TrustedDomainFullInformation

TrustedDomainFullInformationInternal

TRUSTED_SET_POSIX | TRUSTED_SET_AUTH

TrustedDomainAuthInformation TRUSTED_SET_AUTH

141 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Value of Informa tionClass parameter RequiredAccess value

TrustedDomainAuthInformationInternal

TrustedDomainSupportedEncryptionTypes TRUSTED_SET_POSIX

InformationClass : A value from the TRUSTED_INFORMATION_CLASS enumeration specifying what
type of information the ca ller is setting. Not all values are valid. For values outside the

TRUSTED_INFORMATION_CLASS range, the server MUST reject the request with
STATUS_INVALID_PARAMETER. Information class values other than the following set SHOULD <91>
be rejected with STATUS_IN VALID_PARAMETER. The set of allowed information class values is:

Á TrustedPosixOffsetInformation

Á TrustedDomainInformationEx

Á TrustedDomainAuthInformation

Á TrustedDomainFullInformation

Á TrustedDomainAuthInformationInternal

Á TrustedDomainFullInformationInternal

Á TrustedDomainSupportedEncryptionTypes

TrustedDomainInformation : Contains information to be set, appropriate for the InformationClass
parameter. The server MUST validate the TrustedDomainInformation parameter according t o
information class ïspecific rules. The rules for internal consistency checking of trusted domain objects
are specified in [MS -ADTS] section 6.1.6.

Information in the abstract data model specified in section 3.1.1.5 MUST be updated using
TrustedDomainInfor mation and InformationClass parameters as follows:

Value of InformationClass parameter Information to set

TrustedPosixOffsetInformation Posix Offset

TrustedDomainInformationEx Trust Type

Trust Direction

Trust Attributes

Forest Trust Attributes MUST be set to 0 if new trust attributes do
not contain TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag.

TrustedDomainAuthInformation

TrustedDomainAuthInformationInternal

Trust Incoming Password

Trust Outgoing Password

TrustedDomainFullInformation

TrustedDomainFullInform ationInternal

Posix Offset

Trust Type

Trust Direction

Trust Attributes

Trust Incoming Password

Trust Outgoing Password

Forest Trust Attributes MUST be set to 0 if new trust attributes do
not contain TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag.

TrustedDomainSupportedEncryptionTypes Supported Encryption Types

Other values Server MUST return STATUS_INVALID_PARAMETER.

142 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The server MUST return STATUS_INVALID_DOMAIN_STATE in the following cases:

Á The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the

forestFunctionality specified in [MS -ADTS] section 3.1.1.3.2.27 is DS_BEHAVIOR_WIN2003 or
higher.

Á The TrustAttributes TRUST_ATTRIBUTE_FOREST_TRANSITIVE flag is set and the DnsForestName
and DnsDomainName fields in DNS Domain Information (see section 3.1.1.1) do not contain the
same value.

Á The TrustAttributes TRUST_ATTRIBUTE_CROSS_ORGANIZATION flag is set and the
forestFunctionality specified in [MS -ADTS] section 3.1.1.3.2.27 is DS_BEHAVIO R_WIN2003 or
higher.

If the server is a read -only domain controller, it MUST return an error. <92>

If the trust direction is being set to incoming or bidirectional, then the server MUST create an
interdomain trust account for this trust, if such an account does not yet exist, and populate it as
specified in [MS -ADTS] section 6.1.6.8. The unicodePwd attribute of the account is updated (as

specified in [MS -SAMR] section 3.1.1.8.7) with the clear text password (that is, the password value
with AuthType being eq ual to 0x2) in the "Trust Incoming Passwords" information provided.

3.1.4.7.15 LsarQueryForestTrustInformation (Opnum 73)

The LsarQueryForestTrustInformation method is invoked to retrieve information about a trust
relatio nship with another forest.

 NTSTATUS LsarQueryForestTrustInformation(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PLSA_UNICODE_STRING TrustedDomainName,

 [in] LSA_FOREST_TRUST_RECORD_TYPE HighestRecordType,

 [out] PLSA_FOREST_TRUST_INFORMATION* ForestTrustIn fo

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainName: The name of the trusted domain to query.

HighestRecordType: The highest ordinal number of forest trust record type that the caller

understa nds.

ForestTrustInfo: Used to return the forest trust information.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One of the supplied arguments was invalid.

0xC00000 DD

STATUS_INVALID_DOMAIN_STATE

The domain is in the wrong state of this operation.

143 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC00000DF

STATUS_NO_SUCH_DOMAIN

The TrustedDomainName is not a recognized domain name.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC0000225

STATUS_NOT_FOUND

Forest trust information does not exist for this trusted domain object.

Processing:

This message takes four arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle .GrantedAccess MUST NOT be considered for this call because

the access check MUST happen on the trusted domain object.

TrustedDomainName : The name of the trusted domain object to query.

The server MUST return STATUS_INVALID_DOMAIN_STATE if any of the following conditions is TRUE:

Á The DnsForestName and DnsDomainName fields in DNS Domain Information (see section
3.1.1.1) do not contain the same value.

Á The forestFunctionality specified in [MS -ADTS] section 3.1.1.3.2.27 is not
DS_BEHAVIOR_WIN2003 or higher.

Á Active Directory is not running on this machi ne.

If a trusted domain object by the name TrustedDomainName does not exist, the server MUST return
STATUS_NO_SUCH_DOMAIN.

HighestRecordType : The caller sets this argument to the highest LSA_FOREST_TRUST_RECORD_TYPE
enum value recognized by the caller. Thi s parameter is ignored by the server.

ForestTrustInfo : Used to return the forest trust information associated with the trusted domain object.
This corresponds to the Forest Trust Information abstract data model specified in section 3.1.1.5.

If the trusted domain object is not of the type that supports a forest trust (as determined by the

presence or absence of the TRUST_ATTRIBUTE_FOREST_TRANSITIVE attribute), the server MUST
return STATUS_INVALID_PARAMETER. If the forest trust information does not exist on a trusted
domain object that otherwise can support a forest trust, the server MUST return
STATUS_NOT_FOUND.

The server MUST verify that the caller has access to the trusted domain object as specified in section
3.1.4.2.1 with DesiredAccess set to TRUSTED_Q UERY_AUTH. There is no method -specific portion of

this check.

3.1.4.7.16 LsarSetForestTrustInformation (Opnum 74)

The LsarSetForestTrustInformation method is invoked to establish a trust relationship with another
forest by attaching a set of records called the forest trust information to the trusted domain object.

 NTSTATUS LsarSetForestTrustInformation(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PLSA_UNICODE_STRING TrustedDomainName,

 [in] LSA_FOREST_TRUST_RECORD_TYPE HighestRecordType,

144 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 [in] PLSA_FOREST_TRUST_INFORMATION ForestTrustInfo,

 [in] unsigned char CheckOnly,

 [out] PLSA_FOREST_TRUST_COLLISION_INFORMATION* CollisionInfo

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

TrustedDomainName: The name of the trusted domain object on which to set the forest trust
information.

HighestRecordType: The highest ordinal forest trust record type that the caller understands.

ForestTrustInfo: The for est trust information that the caller is trying to set on the trusted domain
object.

CheckOnly: If not 0, the operation is read -only and does not alter the state of the server's database.

CollisionInfo: Used to return information about collisions between different sets of forest trust

information in the server's database.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Descripti on

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC00000DD

STATUS_INVALID_DOMAIN_STATE

The domain is not the root domain of the forest, or the forest is not at
DS_BEHAVIOR_WIN2003 forest functional level.

0xC00000DE

STATUS_INVALID_DOMAIN_ROLE

The server is not the primary domain controller.

0xC00000DF

STATUS_NO_SUCH_DOMAIN

The trusted domain object with the name in the TrustedDom ainName
parameter does not exist.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

0xC000000D

STATUS_INVALID_PARAMETER

Some of the parameters supplied were invalid.

Processing:

This message takes six arguments:

PolicyHandle : Open handle to the policy object. If the handle is not a valid context handle to the policy
object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. PolicyHandle .GrantedAccess MUST NOT be consid ered for this call because
the access check MUST happen on the trusted domain object.

TrustedDomainName : The name of the trusted domain object to set forest trust information on.

The server MUST return STATUS_INVALID_DOMAIN_STATE if any of the following co nditions is TRUE.

145 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á The DnsForestName and DnsDomainName fields in DNS Domain Information (see section
3.1.1.1) do not contain the same value.

Á Active Directory is not running on this machine.

The server MUST return STATUS_INVALID_DOMAIN_ROLE if the IsEffectiv eRoleOwner function

specified in [MS -ADTS] section 3.1.1.5.1.8 returns FALSE with the roleObject parameter set to default
NC.

If a trusted domain object by the name TrustedDomainName does not exist, the server MUST return
STATUS_NO_SUCH_DOMAIN.

The server MUST verify that the caller has access to the trusted domain object as specified in section
3.1.4.2.1 with DesiredAccess set to TRUSTED_SET_AUTH. There is no method -specific portion of this
check.

The server MUST also make sure that the trust attributes as sociated with the trusted domain object
referenced by the TrustedDomainName parameter has the TRUST_ATTRIBUTE_FOREST_TRANSITIVE
set. If the attribute is not present, the server MUST return STATUS_INVALID_PARAMETER.

HighestRecordType : The caller sets this argument to the highest LSA_FOREST_TRUST_RECORD_TYPE
enumeration value recog nized by the caller. If this argument is greater in value than the highest
record type recognized by the server, the server MUST return STATUS_INVALID_PARAMETER.

ForestTrustInfo : A collection of forest trust records identifying the topology of the trusted forest. The
server MUST verify that the forest trust information supplied by the caller is valid by performing a
consistency check, as specified in [MS -ADTS] section 6.1.6. Note that "consistent" does not
necessarily mean "collision - free". The method for d etermining collisions is specified in section
3.1.4.7.16.1.

CheckOnly : Perform a read -only probing operation. The results will not be persisted in the Local
Security Authority (Domain Policy) database, but the set of collision records returned in Collision Info

will be accurate as though the information was persisted.

CollisionInfo : A list of collision records. The request is considered successful even if a non -empty set of

collisions is returned. The rules for generating collision information are specified in section
3.1.4.7.16.1.

The server MUST store the generated ForestTrustInfo in the Forest Trust Information attribute
specified in section 3.1.1.5.

3.1.4.7.16.1 Forest Trust Collision Generation

This section describes the rules that the server MUST follow to compute a set of collisions when setting
forest trust information on a trusted domain object.

Forest trust information across all trusted forests is always internally consistent. This is an invariant
that the server MUST enforce. When new forest trust information i s added to the server's policy
database, the server MUST ensure that the overall forest trust information remains consistent. The

server does so by disabling the entries in the new forest trust information structure that would violate

this internal consist ency. The server communicates the entries that are inconsistent with existing
forest trust information back to the client by computing and returning a set of "collision entries".

The rules that govern consistency of forest trust information are specified i n [MS -ADTS] section 6.1.6
and are listed here for convenience. To be exact, there are two sets of rules, one for top - level name
entries, and one for domain information entries.

The rules for top - level name entries are as follows:

146 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Á An enabled (that is, non -conflict) top - level name record must not be equal to an enabled top - level
name for another trusted domain object or to any of the DNS tree names within the current forest.

Equality is computed using case - insensitive string comparison. If the strings di ffer only by one
trailing '.' character, the difference is ignored.

Á The top - level name must not be subordinate to an enabled top - level name for another trusted
domain object, unless the other trusted domain object has a corresponding exclusion record.

Á A to p- level name must not be superior to an enabled top - level name for another trusted domain
object, unless the current trusted domain object has a corresponding exclusion record.

If any of these rules are violated, a top - level name is considered in conflict. In this case, a collision
record is generated with the following values:

Index : Ordinal number of a forest trust record supplied by the caller that generated the collision.

Type : CollisionTdo or CollisionXref, depending on whether the collision was caused by an external - to -
forest domain or an internal - to - forest domain.

Flags : LSA_TLN_DISABLED_CONFLICT

Name : DNS name of the TDO that contained the forest trust information with which this entry has
collided.

The rules for domain information entries are as fol lows:

Á The security identifier of this entry must not be equal to that of an enabled domain information
entry belonging to a different forest or any of the domains that comprise the current forest.

Á The NetBIOS name of this entry must not be claimed by any o ther forest with which this forest
has a trust relationship or by any domain within the current forest.

Á The DNS name of this entry must not be claimed by any other forest with which this forest has a
trust relationship or by the current forest.

If any of t hese rules are violated, a domain information entry is considered to be in conflict. In this

case, a collision record is generated with the following values:

Index : Ordinal number of a forest trust record supplied by the caller that generated the collision .

Type : CollisionTdo or CollisionXref, depending on whether the collision was caused by an external - to -
forest or internal - to - forest domain.

Flags : LSA_SID_DISABLED_CONFLICT if the collision was caused by a security identifier component
of the record. LSA_N B_DISABLED_CONFLICT if the collision was caused by a NetBIOS name
component of the record.

Entries that have been disabled by administrative action or through conflict are not considered in
computing consistency checks.

3.1.4.8 Privilege Methods

The message processing of methods in this section MUST use the abstract data model specified in
section 3.1.1.2.1.

Me thod (opnum) Summary

LsarEnumeratePrivileges (opnum 2) Enumerates all privileges known to the server.

LsarLookupPrivilegeValue (opnum 31) Maps the well -known name of a privilege into the server -specific

147 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Me thod (opnum) Summary

locally unique identifier (LUID).

LsarLookupPrivilegeName (opnum 32) Maps the server -specific LUID of a privilege into a well -known
privilege name.

LsarLookupPrivilegeDisplayName (opnum
33)

Maps the well -known name of a privilege into a human -readable
name in the caller's language.

3.1.4.8.1 LsarEnumeratePrivileges (Opnum 2)

The LsarEnumeratePrivileges method is invoked to enumerate all privileges known to the s ystem. This
method can be called multiple times to return its output in fragments.

 NTSTATUS LsarEnumeratePrivileges(

 [in] LSAPR_HANDLE PolicyHandle,

 [in, out] unsigned long* EnumerationContext,

 [out] PLSAPR_PRIVILEGE_ENUM_BUFFER EnumerationBuffer,

 [in] unsigned long PreferedMaximumLength

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

EnumerationContext: A pointer to a context value that is used to resum e enumeration, if necessary.

EnumerationBuffer: A pointer to a structure that will contain the results of the enumeration.

PreferedMaximumLength: A value that indicates the approximate size of the data to be returned.

Return Values: The following is a summ ary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0x00000105

STATUS_MORE_ENTRIES

More information is available to successive calls.

0x8000001A

STATUS_NO_MORE_ENTRIES

No more entries are available from the enumeratio n.

0xC000000D

STATUS_INVALID_PARAMETER

One of the parameters supplied was invalid. This can happen if

EnumerationBuffer is NULL or EnumerationContext is NULL.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This method takes four arguments:

148 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

PolicyHandle : Open handle to the policy object. If the handle is not a valid context handle to the policy
object or PolicyHandle .HandleType does not equal "Policy", the server MUST return

STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_VIEW_LOCAL_INFORMATION.

EnumerationContext : A number that indicates a starting index at which to begin the enumeration. The
server MUST always return all privileges in the same order, starting at the object whose index is
EnumerationContext . To initiate a new enumeration, the client sets EnumerationContext to zero;
otherwise, the client sets EnumerationContext to a value returned by a previous call to the method.

The server MUST return STATUS_INVALID_PARAMETER if the EnumerationContext parameter is NULL.

EnumerationBuffer : Used to return the results of enumeration. The server MUST fill EnumerationBuffer
with as many privilege objects as possible, as determined by PreferedMaximumLength . If the size of

all remaining objects is less than or equal to PreferedMaximumLength , the server MUST fill
EnumerationBuffer with all objects. If the size of all remaining objects is greater than
PreferedMaximumLength , the server MUST fill EnumerationBuffer with objects such that the size of the
privilege objects returned is greater than or equal to PreferedMaximumLength , but would be less than

PreferedMaximumLength if the l ast object had not been added to EnumerationBuffer . If there are no
more objects than are returned in EnumerationBuffer , the server MUST return

STATUS_NO_MORE_ENTRIES. If there are more database objects than are returned in
EnumerationBuffer , the server MU ST set the EnumerationContext value to the index value that would
allow it to resume enumeration correctly when this method is called again, and the server MUST
return STATUS_MORE_ENTRIES. Note that this return value is not an error status.

PreferedMaximum Length : An indication about the approximate size, in bytes, of the data to return.
Any unsigned 32 -bit value is valid for the PreferedMaximumLength parameter.

3.1.4.8.2 LsarLookupPrivilegeValue (Opnum 31)

The LsarLookupPrivileg eValue method is invoked to map the name of a privilege into a locally unique
identifier (LUID) by which the privilege is known on the server. The locally unique value of the
privilege can then be used in subsequent calls to other methods, such as LsarAddP rivilegesToAccount.

 NTSTATUS LsarLookupPrivilegeValue(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING Name,

 [out] PLUID Value

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

Name: A string cont aining the name of a privilege.

Value: Used to return a LUID assigned by the server to the privilege by this name.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing tha t follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D One or more of the supplied parameters was invalid.

149 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_INVALID_PARAMETER

0xC0000060

STATUS_NO_SUCH_PRIVILEGE

The privilege name is not recognized by the server.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This me ssage takes three arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MU ST verify that PolicyHandle grants access as specified in
section 3.1.4.2.2 with RequiredAccess set to POLICY_LOOKUP_NAMES.

Name : The string name of the privilege.

Value : Used to return the LUID corresponding to the Name argument.

If the value in the Name argument is not recognized by the server, the server MUST fail the request
with STATUS_NO_SUCH_PRIVILEGE. The privileges recognized by the server are specified in section
3.1.1.2.1.

3.1.4.8.3 LsarLookupPrivilegeName (Opnum 32)

The LsarLookupPrivilegeName method is invoked to map the LUID of a privilege into a string name by
which the privilege is known on the server.

 NTSTATUS LsarLookupPrivilegeName(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PLUID Value,

 [out] PRPC_UNICODE_STRING* Name

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

Value: A LUID that the caller wishes to map to a string name.

Name: Used to return the string name corresponding to the supplied LUID.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfu lly completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000060

STATUS_NO_SUCH_PRIVILEGE

The supplied LUID is not recognized by the server.

0xC0000008 PolicyHandle is not a valid handle.

150 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

STATUS_INVALID_HANDLE

Processing:

This message takes three arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does n ot equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in

section 3.1.4.2.2 with RequiredAccess set to POLICY_LOOKUP_NAMES.

Value : The LUID of the privilege.

Name : Used to return the name corresponding to the LUID contained in the Value argument.

If the LUID in the Value argument is not recognized by the server, the server MUST fail the request

with STATUS_NO_SUCH_PRIVILEGE. The privileges recognized by the server are specified in section
3.1.1.2.1.

3.1.4.8.4 LsarLookupPrivilegeDisplayName (Opnum 33)

The LsarLookupPrivilegeDisplayName method is invoked to map the name of a privilege into a display
text string in the caller's language.

 NTSTATUS Lsa rLookupPrivilegeDisplayName(

 [in] LSAPR_HANDLE PolicyHandle,

 [in] PRPC_UNICODE_STRING Name,

 [in] short ClientLanguage,

 [in] short ClientSystemDefaultLanguage,

 [out] PRPC_UNICODE_STRING* DisplayName,

 [out] unsigned short* LanguageReturned

);

PolicyHandle: An RPC context handle obtained from either LsarOpenPolicy or LsarOpenPolicy2.

Name: A string containing the name of a privilege.

ClientLanguage: An identifier of the client's language.

ClientSystemDefaultLanguage: An identifier of the default language of the caller's machine.

DisplayName: Used to return the display name of the privilege in the language pointed to by the
LanguageReturned value.

LanguageReturned: An identifier of the language in which DisplayName was r eturned.

Return Values: The following is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

151 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000060

STATUS_NO_SUCH_PRIVILEGE

The supplied LUID is not recognized by the server.

0xC0000008

STATUS_INVALID_HANDLE

PolicyHandle is not a valid handle.

Processing:

This method takes six arguments:

PolicyHandle : An open handle to the policy object. If the handle is not a valid context handle to the
policy object or PolicyHandle .HandleType does not equal "Policy", the server MUST return
STATUS_INVALID_HANDLE. The server MUST verify that PolicyHandle grants access as specified in

section 3.1.4.2.2 with RequiredAcce ss set to POLICY_LOOKUP_NAMES.

Name : A string name of the privilege. The server MUST attempt to locate the entry with the same
name in the data store specified in section 3.1.1.2.1. If the entry cannot be located, the server MUST
return STATUS_NO_SUCH_PRIV ILEGE.

ClientLanguage : A numerical identifier of the language in which the caller wishes to receive the display
name. The server MUST try to locate the privilege description in the language that is identified by this
parameter. If the data store does not h ave this language, the server MUST try the next parameter.

ClientSystemDefaultLanguage : An identifier of the default language of the caller. This might be

different than the ClientLanguage parameter. If the data store does not have the description in the
previous language, the server MUST try to find the description in this language.

DisplayName : Used to return the description of the privilege. If neither ClientLanguage nor
ClientSystemDefaultLanguage can be found, the server MUST return the description in the server's

own language.

LanguageReturned : Used to return the language ID of DisplayName . This might be different from the
language ID that was requested.

3.1.4.9 Common Object Methods

The message processing of methods in this section MUST use the abstract data model defined in
secti on 3.1.1.

 Method (Opnum) Summary

LsarQuerySecurityObject (opnum 3) Retrieves the security descriptor associated with an object.

LsarSetSecurityObject (opnum 4) Sets a security descriptor on an object.

LsarDeleteObject (opnum 34) Deletes an object fr om the policy database.

LsarClose (opnum 0) Closes an open handle.

3.1.4.9.1 LsarQuerySecurityObject (Opnum 3)

152 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

The LsarQuerySecurityObject method is invoked to query security information that is assigned to a
database object. It returns the security descriptor of the object.

 NTSTATUS LsarQuerySecurityObject(

 [in] LSAPR_HANDLE ObjectHandle,

 [in] SECURITY_INFORMATION SecurityInformation,

 [out] PLSAPR_SR_SECURITY_DESCRIPTOR* SecurityDescriptor

);

ObjectHandle: An ope n object handle of any type.

SecurityInformation: A bitmask specifying which portions of the security descriptor the caller is
interested in.

SecurityDescriptor: Used to return the security descriptor containing the elements requested by the

caller.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC00000BB

STATUS_NOT_SUPPORTED

The request is not supported.

0xC0000008

STATUS_INVALID_HANDLE

ObjectHandle is not a valid handle.

Processing:

This messa ge takes three arguments:

ObjectHandle : Can be an open handle of any type. If the handle is not a valid context handle to an
object or ObjectHandle .PolicyType is not one of the following:

Á "Policy" for handles to policy objects

Á "Account" for handles to acco unt objects

Á "Secret" for handles to secret objects

Á "Trusted Domain" for handles to trusted domain objects

The server MUST return STATUS_INVALID_HANDLE. The access required for a successful completion

of this request depends on the SecurityInformation parameter. The server MUST verify that
ObjectHandle grants access as specified in section 3.1.4.2.2. The follow ing pseudocode specifies the

RequiredAccess value to use in this access check.

 Set RequiredAccess equal to 0

 IF ((SecurityInformation & OWNER_SECURITY_INFORMATION) || (SecurityInformation &

GROUP_SECURITY_INFORMATION) || (SecurityInformation & DACL_SECURIT Y_INFORMATION)) THEN

 RequiredAccess |= READ_CONTROL

 END IF

 IF (SecurityInformation & SACL_SECURITY_INFORMATION) THEN

153 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 RequiredAccess |= ACCESS_SYSTEM_SECURITY

 END IF

SecurityInformation : A set of bits specifying which portions of the security descriptor the caller is
interested in retrieving. The various bits and the associated access rights are specified in section
2.2.1.3.

SecurityDescriptor : An output parameter. If access checks pass, the server MUST fill this information
with a val id self - relative security descriptor containing only the fields requested by the caller. The
server MUST NOT put information into the security descriptor that the caller did not request.

It is valid for the server to not support this method for all object types. If an object does not support
this method, the server MUST return STATUS_NOT_SUPPORTED. <93>

3.1.4.9.2 LsarSetSecurityObject (Opnum 4)

The LsarSetSecurityObject method is invoked to set a security descriptor on an object.

 NTSTATUS LsarSetSecurityObject(

 [in] LSAPR_HANDLE ObjectHandle,

 [in] SECURITY_INFORMATION SecurityInformation,

 [in] PLSAPR_SR_SECURITY_DESCRIPTOR SecurityDescriptor

);

ObjectHandle: An open handle to an existing object.

SecurityInformation: A bitmask s pecifying which portions of the security descriptor are to be set.

SecurityDescriptor: The security descriptor to be set.

Return Values: The following is a summary of the return values that an implementation MUST return,

as specified by the message process ing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC000009A

STATUS_INSUFFICIENT_RESOURCES

There are insufficient resources to complete the request.

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC0000079

STATUS_INVALID_SECURITY_DESCR

The supplied security descriptor is invalid.

0xC000000D

STATUS_INVALID_PARAMETER

One of the parameters supplied was invalid. For instance,
SecurityDescriptor is NULL.

0xC00000BB

STATUS_NOT_SUPPORTED

The operation is not supported for this object.

0xC0000008

STATUS_INVALID_HANDLE

ObjectHandle is not a valid handle.

Processing:

154 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This message takes three arguments:

ObjectHandle : Can be an open handle of any type. If the handle is not a valid context handle to an

object or ObjectHandle .PolicyType is not one of the following:

Á "Policy" for handles to policy objects

Á "Accoun t" for handles to account objects

Á "Secret" for handles to secret objects

Á "Trusted Domain" for handles to trusted domain objects

The server MUST return STATUS_INVALID_HANDLE. The access required for a successful completion
of this request depends on the SecurityInformation parameter. The server MUST verify that
ObjectHandle grants access as specified in section 3.1.4.2.2. The following pseudocode specifies the
RequiredAccess value to use in this access check.

 Set RequiredAccess equal to 0

 IF ((SecurityInform ation & OWNER_SECURITY_INFORMATION) || (SecurityInformation &

GROUP_SECURITY_INFORMATION) || (SecurityInformation & DACL_SECURITY_INFORMATION)) THEN

 RequiredAccess |= READ_CONTROL

 END IF

 IF (SecurityInformation & SACL_SECURITY_INFORMATION) THEN

 RequiredAccess |= ACCESS_SYSTEM_SECURITY

 END IF

SecurityInformation : A set of bits specifying which portions of the security descriptor the caller is
interested in setting. The various bits and the associated access righ ts are specified in section 2.2.1.3.

SecurityDescriptor : Expects a valid self - relative security descriptor that the caller is trying to set. If
this security descriptor is invalid, the server MUST return the STATUS_INVALID_SECURITY_DESCR
status code. If th e security descriptor is NULL, the server MUST return STATUS_INVALID_PARAMETER.

It is valid for the server to not support this method for all object types. <94>

The server MUST return STATUS_INSUFFICIENT_RESOURCES if it runs out of memory while servicing
th e request.

3.1.4.9.3 LsarDeleteObject (Opnum 34)

The LsarDeleteObject method is invoked to delete an open account object, secret object, or trusted
domain object.

 NTSTATUS LsarDeleteObject(

 [in, out] LSAPR_HANDLE* ObjectHandle

);

Obj ectHandle: A handle to an open object of the correct type to be deleted. After successful

completion of the call, the handle value cannot be reused.

Return Values: The following is a summary of the return values that an implementation MUST return,

as speci fied by the message processing that follows.

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

155 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0xC0000022

STATUS_ACCESS_DENIED

The caller does not have the permissions to perform this operation.

0xC000000D

STATUS_INVALID_PARAMETER

One or more of the supplied parameters was invalid.

0xC0000008

STATUS_INVALID_HANDLE

ObjectHandle is not a valid handle.

Processing:

This message takes one input parameter.

ObjectHandle : An open handle to an object that is to be deleted. If the handle is not a valid context
handle to an object or ObjectHandle .PolicyType is not one of the following:

Á "Policy" for handles to policy objects

Á "Account" for handles to account objects

Á "Secret" f or handles to secret objects

Á "Trusted Domain" for handles to trusted domain objects

The server MUST return STATUS_INVALID_HANDLE. Policy objects cannot be deleted. Attempts to
delete policy objects MUST fail with STATUS_INVALID_PARAMETER. For other object types, the server
MUST verify that ObjectHandle grants access as specified in section 3.1.4.2.2 with RequiredAccess set
to DELETE.

The server MUST make all subsequent requests to deleted objects through already opened handles fail

with STATUS_INVALID_HANDL E. The deleted handle MUST be automatically closed by the server; the
caller need not close it.

If the object being deleted is a trusted domain, then the server MUST also check whether an
interdomain trust account with name "<Trusted Domain NetBIOS Name>$" exists. If it exists, the
server MUST delete that account along with the trusted domain.

The server MUST free any resources associated with the LsaContextHandle element (section 3.1.1.7)
that is represented by ObjectHandle , as specified in section 3.1.6.1, LSAPR_HANDLE_rundown.

The fact that a handle is no longer usable is communicated to the RPC transport by returning a NULL
value in the handle parameter, as specified in [C706] section 5.1.6.

3.1.4.9.4 LsarClose (Opnum 0)

The LsarClose method frees the resources held by a context handle that was opened earlier. After
response, th e context handle will no longer be usable, and any subsequent uses of this handle will fail.

 NTSTATUS LsarClose(

 [in, out] LSAPR_HANDLE* ObjectHandle

);

ObjectHandle: The context handle to be freed. On response, it MUST be set to 0.

Return Values: The fo llowing is a summary of the return values that an implementation MUST return,
as specified by the message processing that follows.

156 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Return value/code Description

0x00000000

STATUS_SUCCESS

The request was successfully completed.

0xC0000008

STATUS_INVALID_HANDLE

ObjectHandle is not a valid handle.

Processing:

A handle of any type can be closed by calling LsarClose. Successful calls to LsarDeleteObject, which

deletes an object to which the caller has an open handle, will also close the handle .

If ObjectHandle is invalid, the server MUST return STATUS_INVALID_HANDLE.

The server MUST free any resources associated with the LsaContextHandle element (section 3.1.1.7)
that is represented by ObjectHandle , as specified in section 3.1.6.1, LSAPR_HANDLE _rundown.

The fact that a handle is closed is communicated to the RPC transport by returning a NULL value in the
handle parameter, as specified in [C706] section 5.1.6.

Closing one handle MUST NOT affect any other handle on the server; that is, handles obt ained using a

policy handle MUST continue to be valid after that policy handle is closed.

3.1.4.10 Data Validation

Data types defined in section 2.2 are subject to a set of validation rules, in addition to any already

noted. For structures that contain other structures or sets of other structures, the validation for those
structures MUST be enfo rced when validating the containing structure. All constraints in the following
tables MUST be satisfied; on failure, an error NTSTATUS code MUST be returned.

Data type Validations

LSA_UNICODE_STRING

RPC_UNICODE_STRING

LSAPR_CR_CIPHER_VALUE

Á Length MUST be a multiple of 2. <95>

Á Length MUST be less than or equal to MaximumLength.

Á If Length is not 0, Buffer MUST NOT be NULL.

Á The Buffer field MUST NOT contain any NULL Unicode
characters in the first Length bytes. <96>

RPC_SID
Á Revision MUST be 1.

Á SubAuthorityCount MUST be less than or equal to 15.

Additionally, if the security identifier (SID) is a domain SID:

Á IdentifierAuthority MUST be {0,0,0,0,0,5}.

Á SubAuthorityCount MUST be greater than 3.

Á SubAuthority[0] MUST be 0x15.

LSAPR_SR_SECURITY_DESCRIPTOR
Á Revision MUST be 1.

Á The security descriptor must conform to the definition
for self - relative security descriptor in [MS -DTYP] section

157 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Data type Validations

2.4.6.

LSAPR_LUID_AND_ATTRIBUTES
Á Luid.HighPart SHOULD NOT be 0. <97>

Á Luid.LowPart SHOULD be less than or equal to 35. <98>

Á Attributes SHOULD have only combinations of bits
(0x00000001 & 0x00000002) set. <99>

LSAPR_PRIVILEGE_SET
Á If PrivilegeCount is not 0, Privilege MUST NOT be NULL.

Á Each Privilege MUST pass validation for
LSAPR_LUID_AND_ATTRIBUTES.

Á There MUST be no duplicate elements in the Privilege
array.

LSAPR_OBJECT_ATTRIBUTES RootDirectory MUST be NULL.

ACCESS_MASK SHOULD conform to the defined bits for ACCESS_MASK.

POLICY_INFORMATION_CLASS MUST be greater than or e qual to one and MUST be less than
the PolicyLastEntry enumeration value (section 2.2.4.1).

POLICY_AUDIT_LOG_INFO No additional validation.

LSAPR_POLICY_AUDIT_EVENTS_INFO
Á MaximumAuditEventCount MUST NOT be 0.

Á MaximumAuditEventCount MUST be less than or equal to
8.

Á EventAuditingOptions MUST NOT be NULL.

Á EventAuditingOptions and 0xFFFFFFF8 MUST be 0.

LSAPR_POLICY_ACCOUNT_DOM_INFO
Á DomainName MUST satisfy RPC_UNICODE_STRING

validations.

Á DomainSid MUST satisfy RPC_SID validations, including
those for domain SIDs.

LSAPR_POLICY_PRIMARY_DOM_INFO
Á Name MUST satisfy RPC_UNICODE_STRING validations.

Á Name.Length MUST be less than or equal 30.

Á SID MUST either be NULL or satisfy RPC_SID
validations, including those for domain SIDs.

LSAPR_POLICY_DNS_DOMAIN_INFO
Á Name MUST pass RPC_UNICODE_STRING validations.

Á Name.Length MUST be less than or equal to 30.

Á DnsDomainName MUST satisfy RPC_UNICODE_STRING
validations.

Á DnsForestName MUST satisfy RPC_UNICODE_STRING

158 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Data type Validations

validations.

Á SID MUST either be NULL or satisfy RPC_SID
va lidations, including those for domain SID.

LSAPR_POLICY_PD_ACCOUNT_INFO Name MUST satisfy RPC_UNICODE_STRING validations.

POLICY_LSA_SERVER_ROLE_INFO LsaServerRole MUST be 2 OR 3.

LSAPR_POLICY_MACHINE_ACCT_INFO Á Rid MUST be 0 or greater than 0x000003E7.

Á If Rid is 0, Sid MUST be NULL.

Á If Rid is not 0, Sid MUST NOT be NULL. In this case, Rid
MUST equal the last sub -authority of Sid.

Á If Sid is not NULL, it MUST satisfy RPC_SID validations,
including those for domain SID.

LSAPR_CR_CIPHER_VALUE MaximumLength MUST be greater than or equal to Length.

LSAPR_POLICY_REPLICA_SRCE_INFO
Á ReplicaSource MUST satisfy RPC_UNICODE_STRING

validation.

Á ReplicaAccountName must satisfy
RPC_UNICODE_STRING validation.

POLICY_MODIFICATION_INFO ModifiedId MUST not be 0 .

POLICY_AUDIT_FULL_SET_INFO No validation.

LSAPR_POLICY_DOMAIN_EFS_INFO If InfoLength is not 0, EfsBlob MUST NOT be NULL.

TRUSTED_INFORMATION_CLASS MUST be greater than or equal to 1 and less than or equal to
13.

LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION
Á If IncomingAuthInfos is not 0,

IncomingAuthenticationInformation MUST NOT be NULL.

Á IncomingAuthInfos MUST be 0 or 1.

Á If OutgoingAuthInfos is not 0,
OutgoingAuthenticationInformation MUST NOT be NULL.

Á OutgoingAuthInfos MUST be 0 or 1.

Á Each IncomingPreviousAuthenticationInformation MUST
satisfy validation for LSAPR_AUTH_INFORMATION.

Á Each IncomingAuthenticationInformation MUST satisfy
validation for LSAPR_AUTH_INFORMATION.

Á Each OutgoingPreviousAuthenticationInformation MUST
satisfy validation for LSAPR_AUTH_INFORMATION.

Á Each OutgoingAuthenticationInformation MUST satisfy
validation for LSAPR_AUTH_INFORMATION.

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION
Á Information MUST satisfy

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX
validation.

159 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Data type Validations

Á AuthInformation MUST satisfy
LSAPR_TRUSTED_DOMAIN_AUTH_INFORMATION
validation.

LSAPR_TRUSTED_DOMAIN_FULL_INFORMATION2
Á Information MUST satisfy

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX2
validation.

Á FlatName MUST satisfy RPC_UNICODE_STRING
validation.

Á SID MUST be NULL or satisfy RPC_SID validation,
including domain SID validation.

Á If ForestTrustLength is not 0, ForestTrustInfo MUST NOT
be NULL.

LSAPR_AUTH_INFORMATION If AuthInfoLength is not 0, AuthInfo MUST NOT be NULL.

LSA_FOREST_TRUST_DOMAIN_INFO
Á SID MUST satisfy RPC_SID validation, including domain

SID validation.

Á DnsName MUST satisfy RPC_UNICODE_STRING
validation.

Á NetbiosName MUST satisfy RPC_UNIC ODE_STRING
validation.

LSA_FOREST_TRUST_BINARY_DATA If Length is not 0, Buffer MUST NOT be NULL.

LSA_FOREST_TRUST_RECORD
Á For ForestTrustType = ForestTrustTopLevelName or

ForestTrustTopLevelNameEx,
ForestTrustData.TopLevelName MUST satisfy
RPC_UNICODE_STR ING validation.

Á For ForestTrustType = ForestTrustDomainInfo,
ForestTrustData.DomainInfo MUST satisfy
LSA_FOREST_TRUST_DOMAIN_INFO validation.

LSA_FOREST_TRUST_INFORMATION
Á If RecordCount is not 0, Entries MUST NOT be NULL.

Á Each one of Entries MUST satisfy
LSA_FOREST_TRUST_RECORD validation.

LSA_FOREST_TRUST_COLLISION_RECORD Name MUST satisfy RPC_UNICODE_STRING validation.

LSA_FOREST_TRUST_COLLISION_INFORMATION
Á If RecordCount is not 0, Entries MUST NOT be NULL.

Á Each one of Entries MUST satisfy
LSA_FOREST_TRUST_COLLISION_RECORD validation.

LSAPR_HANDLE MUST not be NULL.

LSAPR_ACCOUNT_INFORMATION SID MUST satisfy RPC_SID validation.

160 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Data type Validations

LSAPR_ACCOUNT_ENUM_BUFFER
Á If EntriesRead is not 0, Information MUST NOT be NULL.

Á Each Information element MUST satisf y
LSAPR_ACCOUNT_INFORMATION validation.

LSAPR_POLICY_PRIVILEGE_DEF Name MUST satisfy RPC_UNICODE_STRING validation.

LSAPR_PRIVILEGE_ENUM_BUFFER
Á If Entries is not 0, Privileges MUST NOT be NULL.

Á Each element in Entries MUST satisfy
LSAPR_POLICY_PRIVILEGE_DEF validation.

LSAPR_TRUSTED_DOMAIN_INFORMATION_BASIC
Á Name MUST satisfy RPC_UNICODE_STRING validation.

Á SID MUST be NULL or MUST satisfy RPC_SID validation
including domain SID validation.

LSAPR_TRUSTED_ENUM_BUFFER
Á If EntriesRead i s not 0, Information MUST NOT be NULL.

Á Each element in Information MUST satisfy
LSAPR_TRUST_INFORMATION validation.

LSAPR_TRUSTED_PASSWORD_INFO OldPassword and Password MUST satisfy
LSAPR_CR_CIPHER_VALUE validation.

LSAPR_TRUSTED_DOMAIN_NAME_INFO Name MUST satisfy RPC_UNICODE_STRING validation.

LSAPR_USER_RIGHT_SET
Á If Entries is not 0, UserRights MUST NOT be NULL.

Á Each element in UserRights MUST satisfy
RPC_UNICODE_STRING validation.

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX
Á Name MUST satisfy RPC_UNICODE_STRING validation.

Á FlatName MUST satisfy RPC_UNICODE_STRING
validation.

Á SID MUST be NULL or MUST satisfy RPC_SID validation
including domain SID validation.

3.1.5 Timer Events

No protocol timer events are required on the RPC server other than the timers required in the
underlying RPC transport.

3.1.6 Other Local Events

No additional local events are used on the RPC server other than the events maintained in the
underlying RPC transport.

161 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

3.1.6.1 LSAPR_HANDLE_rundown

This function implements the RPC context handle rundown routine for the LsaContextHandle context
handle type (section 3.1.1.7). When invoked, the LSAPR_HANDLE_rundown procedure MUST free all

server resources associated with LsaContextHandle.Ob ject. The server MUST then set
LsaContextHandle.Object to 0.

For more information, see [C706] section 5.1.6. An implementation of this protocol SHOULD use this
functionality.

162 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4 Protocol Examples

The following section s describe several common scenarios from the client's perspective to illustrate the
function of the Local Security Authority (Domain Policy) Remote Protocol. "Send" implies that the
direction is from client to server, and "Receive" implies the opposite dir ection.

4.1 Manipulating Account Objects

This section illustrates a message exchange pertaining to account objects.

1. Message 1: Open the p olicy object.

Direction and
method

Parameter
field Parameter value

Send

LsarOpenPolicy2

SystemName "Arbitrary String"

Send

LsarOpenPolicy2

ObjectAttributes Ignored, except for the RootDirectory field, which is NULL.

Send

LsarOpenPolicy2

DesiredAccess POLICY_VIEW_LOCAL_INFORMATION | POLICY_CREATE_ACCOUNT |
POLICY_LOOKUP_NAMES

2. Message 2: Success; return the policy object handle.

Direction and method Parameter field Parameter value

Receive

LsarOpenPolicy2

Status STATUS_SUCCESS

Receive

LsarOpenPolicy2

PolicyHandle [Implementation -specific value]

3. Message 3: Attempt to create an account object with security identifier (SID) S -1-5-21 -123 -123 -
123 -1005.

Direction and
method

Parameter
field Parameter value

Send

LsarCreateAccount

PolicyHandle [Implementation -specific value returned in Step 2.]

Send

LsarCreateAccount

AccountSid "S-1-5-21 -123 -123 -123 -1005"

Send

LsarCreateAccount

DesiredAccess READ_CONTROL | WRITE_DAC | ACCOUNT_ADJUST_PRIVILEGES |
ACCOUNT_ADJUST_SYSTEM_ACCESS | ACCOUNT_VIEW

4. Message 4: Failure: Account already exists.

Direction and method Parameter field Parameter value

Receive

LsarCreateAccount

Status STATUS_OBJECT_NAME_COLLISION

163 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Direction and method Parameter field Parameter value

Receive

LsarCreateAccount

AccountHandle NULL

5. Message 5: Attempt to open the account object with SID S -1-5-21 -123 -123 -123 -1005.

Direction and
method

Parameter
field Parameter value

Send

LsarOpenAccount

PolicyHandle [Implementation -specific value]

Send

LsarOpenAccount

AccountSid "S-1-5-21 -123 -123 -123 -1005"

Send

LsarOpenAccount

DesiredAccess READ_CONTROL | WRITE_DAC | ACCOUNT_ADJUST_PRIVILEGES |
ACCOUNT_ADJUST_SYSTEM_ACCESS | ACCOUNT_VIEW

6. Message 6: Success: Return the account object handle.

Direction and method Parameter field Parameter value

Receive

LsarOpenAccount

Status STATUS_SUCCESS

Receive

LsarOpenAccount

AccountHandle [Implementation -specific value]

7. Message 7: Retrieve the security descriptor of the account object.

Direction and method Parameter field Parameter value

Send

LsarQuerySecurityObject

ObjectHandle [Implementation -specific value returned in Step 6.]

Send

LsarQuerySecurityObject

SecurityInformation DACL_SECURITY_INFORMATION

8. Message 8: Success: Return the security descriptor.

Direction and method Parameter field Parameter value

Receive

LsarQuerySecurityObject

Status STATUS_SUCCESS

Receive

LsarQuerySecurityObject

SecurityDescriptor Security descriptor of the account object in self - relative form.

9. Message 9: Update the discretionary access control list (DACL) on the account object.

Direction and
method Parameter field Parameter value

Send

LsarSetSecurityObject

ObjectHandle [Implementation -specific value returned in Step 6.]

164 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Direction and
method Parameter field Parameter value

Send

LsarSetSecurityObject

SecurityInformation DACL_SECURITY_INFORMATION

Send

LsarSetSecurityObject

SecurityDescriptor Security descriptor representation of the D ACL in self - relative
form.

10. Message 10: Success: Security descriptor of the account object has been updated.

Direction and method Parameter field Parameter value

Receive

LsarSetSecurityObject

Status STATUS_SUCCESS

11. Message 11: Retrieve the Locally Unique Identifier (LUID) that the server assigns to the

"SeTcbPrivilege" privilege.

Direction and method Parameter field Parameter value

Send

LsarLookupPrivilegeValue

PolicyHandle [Implementation -specific value returned in Step 2.]

Send

LsarLookupPrivilegeValue

Name "SeTcbPrivilege"

12. Message 12: Success: Return the LUID of SeTcbPrivilege.

Direction and method Parameter field Parameter value

Receive

LsarLookupPrivilegeValue

Status STATUS_SUCCESS

Receive

LsarLookupPrivilegeValue

Value The LUID assigned by the server to SeTcbPrivilege.

13. Message 13: Add a privilege to the account object.

Direction and method
Parameter
field Parameter value

Send

LsarAddPrivilegesToAccount

AccountHandle [Implementation -specific value returned in Step 6.]

Send

LsarAddPrivilegesToAccount

Privileges A LSAPR_PRIVILEGE_SET structure containing one privilege (the

LUID of which was returned in Step 12).

14. Message 14: Success: Privilege has been added to the acco unt object.

Direction and method Parameter field Parameter value

Receive

LsarAddPrivilegesToAccount

Status STATUS_SUCCESS

15. Message 15: Add a system access right to the account object.

165 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Direction and method
Parameter
field Parameter value

Send

LsarSetSystemAccessAccount

AccountHandle [Implementation -specific value returned in Step 6.]

Send

LsarSetSystemAccessAccount

SystemAccess An unsigned long value with the POLICY_MODE_NETWORK
flag set

16. Message 16: Success: Access right has been recorded.

Di rection and method Parameter field Parameter value

Receive

LsarSetSystemAccessAccount

Status STATUS_SUCCESS

17. Message 17: Done with this account object: Close the handle.

Direction and method Parameter field Parameter value

Send

LsarClose

ObjectHandle [Implementation -specific value returned in Step 6.]

18. Message 18: Success: Account objects handle has been closed.

Direction and method Parameter field Parameter value

Receive

LsarClose

Status STATUS_SUCCESS

19. Message 19: Done with the policy object: Close the handle.

Direction and method Parameter field Parameter value

Send

LsarClose

ObjectHandle [Implementation -specific value returned in Step 2.]

20. Message 20: Success: Policy object has been closed.

Direction and method Parameter f ield Parameter value

Receive

LsarClose

Status STATUS_SUCCESS

4.2 Manipulating Secret Objects

This section illustrates a message exchange pertaining to secret objects.

1. Message 1: Open the policy object.

Direction and method Parameter field Parameter value

Send SystemName "Arbitrary String"

166 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Direction and method Parameter field Parameter value

LsarOpenPolicy2

Send

LsarOpenPolicy2

ObjectAttributes Ignored, except for the RootDirectory field, which is NULL.

Send

LsarOpenPolicy2

DesiredAccess POLICY_VIEW_LOCAL_INFORMATION | POLICY_CREATE_SECRET

2. Message 2: Success: Policy object opened successfully.

Direction and method Parameter field Parameter value

Receive

LsarOpenPolicy2

Status STATUS_SUCCESS

Receive

LsarOpenPolicy2

PolicyHandle [Implementation -specific value]

3. Message 3: Attempt to create a secret objects with name "NL$".

Direction and method Parameter field Parameter value

Send

LsarCreateSecret

PolicyHandle [Implementation -specific value returned in Step 2.]

Send

LsarCreateSecret

Secretname "NL$"

Send

LsarCreateSecret

DesiredAccess SECRET_SET_VALUE

4. Message 4: Failure: Secret name "NL$" is a reserved prefix name and cannot be used.

Direction and method Parameter field Parameter value

Receive

LsarCreateSecret

Status STATUS_INVALID_PARAMETER

Receive

LsarCreateSecret

SecretHandle NULL

5. Message 5: Attempt to create a secret object with name "MyBigSecret".

Direction and method Parameter field Parameter value

Send

LsarCreateSecret

PolicyHandle [Implementation -specific value returned in Step 2.]

Send

LsarCreateSecret

Secretname "MyBigSecret"

Send

LsarCreateSecret

DesiredAccess SECRET_SET_VALUE

6. Message 6: Success: Secret created.

167 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Direction and method Parameter field Parameter value

Receive

LsarCreateSecret

Status STATUS_SUCCESS

Receive

LsarCreateSecret

SecretHandle [Implementation -specific value]

7. Message 7: Set the value of the secret object.

Direction and method Parameter field Parameter value

Send

LsarSetSecret

SecretHandle [Implementation -specific value returned in Step 6.]

Send

LsarSetSecret

EncryptedCurrentValue Byte BLOB value encrypted with session key.

Send

LsarSetSecret

EncryptedOldValue NULL

8. Message 8: Success: Secret value set.

Direction and method Parameter field Parameter value

Receive

LsarSetSecret

Status STATUS_SUCCESS

9. Message 9: Done with this secret; close the handle.

Direction and method Parameter field Parameter value

Send

LsarClose

ObjectHandle [Implementation -specific value returned in Step 6.]

10. Message 10: Success: Secret handle has been closed.

Direction and method Parameter field Parameter value

Receive

LsarClose

Status STATUS_SUCCESS

11. Message 11: Done with the policy handle; close the handle.

Direction and method Parameter field Parameter value

Send

LsarClose

ObjectHandle [Implementation -specific value returned in Step 2.]

12. Message 12: Success: Policy handle has been closed.

Direction and method Parameter field Parameter value

Receive

LsarClose

Status STATUS_SUCCESS

168 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

4.3 Manipulating Trusted Domain Objects

This section illustrates a message exchange pertaining to trusted domain objects.

1. Message 1: Open the pol icy object.

Direction and method Parameter field Parameter value

Send

LsarOpenPolicy2

SystemName "Arbitrary String"

Send

LsarOpenPolicy2

ObjectAttributes Ignored, except for the RootDirectory field, which is NULL.

Send

LsarOpenPolicy2

DesiredAccess POLICY_VIEW_LOCAL_INFORMATION

2. Message 2: Success; return the policy object handle.

Direction and method Parameter field Parameter value

Receive

LsarOpenPolicy2

Status STATUS_SUCCESS

Receive

LsarOpenPolicy2

PolicyHandle [Implementation -specific value]

3. Message 3: Enumerate trusted domain objects.

Direction and method Parameter field Parameter value

Send

LsarEnumerateTrustedDomainsEx

PolicyHandle [Implementation -specific value returned in Step
2.]

Send

LsarEnumerateTrustedDomainsEx

EnumerationContext 0

Send

LsarEnumerateTrustedDomainsEx

PreferredMaximumLength 0x100

4. Message 4: Success; return some trusted domain objects, with more to come.

Direction and method Parameter field Parameter value

Receive

LsarEnumerateTrustedDomainsEx

Status STATUS_MORE_ENTRIES

Receive

LsarEnumerateTrustedDomainsEx

EnumerationContext [Implementation -specific value]

Receive

LsarEnumerateTrustedDomainsEx

TrustedDomainInformation EntriesRead: 2

EnumerationBuffer: Con tains information about
two different trusted domain objects.

5. Message 5: Finish enumerating the trusted domain objects.

169 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Direction and method Parameter field Parameter value

Send

LsarEnumerateTrustedDomainsEx

PolicyHandle [Implementation -specific value returned in Step
2.]

Send

LsarEnumerateTrustedDomainsEx

EnumerationContext [Value returned in Step 4.]

Send

LsarEnumerateTrustedDomainsEx

PreferredMaximumLength 0x10000

6. Message 6: Success; all trusted domain objects have been enumerated.

Direction and method Parameter field Parameter value

Receive

LsarEnumerateTrustedDomainsEx

Status STATUS_NO_MORE_ENTRIES

Receive

LsarEnumerateTrustedDomainsEx

EnumerationContext [Implementation -specific value]

Receive

LsarEnumerateTrustedDomainsEx

TrustedDomainInformation EntriesRead: 3

EnumerationBuffer: Contains information about
three different trusted domain objects.

7. Message 7: Open a trusted domain object by name.

Direction and method Parameter field Parameter value

Send

LsarOpenTrustedDomainByName

PolicyHandle [Implementation -specific value returned in Step 2.]

Send

LsarOpenTrustedDomainByName

TrustedDomainName [One of the DNS names returned in Step 4 or Step 6.]

Send

LsarOpenTrustedDomainByName

DesiredAccess POLICY_TRUST_ADMIN

8. Message 8: Success; the trusted domain object has been opened successfully.

Direction and method Parameter field Parameter value

Receive

LsarOpenTrustedDomainByName

Status STATUS_SUCCESS

Receive

LsarOpenTrustedDomainByName

TrustedDomainHandle [Implementation -specific value]

9. Message 9: Done with this trusted domain object: Close the handle.

Direction and method Parameter field Parameter value

Send

LsarClose

ObjectHandle [Implementation -specific value returned in Step 8.]

10. Message 10: Success: Trusted domain object has been closed.

170 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

Direction and method Parameter field Parameter value

Receive

LsarClose

Status STATUS_SUCCESS

11. Message 11: Done with the policy object: Close the handle.

Direction and method Parameter field Parameter value

Send

LsarClose

ObjectHandle [Implementation -specific value returned in Step 2.]

12. Message 12: Success: Policy object has been closed.

Direction and method Parameter field Parameter value

Receive

LsarClose

Status STATUS_SUCCESS

4.4 Structure Example of LSAPR_TRUSTED_DOMAIN_AUTH_BLOB

The following is an annotated dump of LSAPR_TRUSTED_DOMAIN_AUTH_BLOB.

 00000000 93 1e 54 57 83 78 c6 c1 15 f1 13 85 3d 93 18 1d ..TW.x......=...

 00000010 b4 eb ee 6b fa 79 f5 2e 8d c b b4 e3 e3 54 8a 81 ...k.y.......T..

 00000020 b6 38 0f 6c 4d 6b 2b 36 4f a5 ce d8 82 44 52 23 .8.lMk+6O....DR#

 00000030 fc 40 b4 fd e2 71 78 95 f4 d5 29 e1 11 7a 8c 67 .@...qx...)..z.g

 00000040 2f 3d 69 a3 54 cd 47 79 ca 3f a8 a9 4f 08 85 9d /=i.T.Gy.?..O...

 00000050 93 fb 56 0b db 84 9e bb da c4 fd 58 3d 88 55 c7 ..V........X=.U.

 00000060 bb 5a 2d aa e3 26 23 a5 12 b1 1c 23 1a aa 72 26 .Z - ..&#....#..r&

 00000070 9f 57 b2 89 be 37 ec 32 83 25 6c fe 7c ae 09 2b .W...7.2.%l.|..+

 00000080 2 7 15 20 01 c2 7a d3 2a e1 e5 5e 0c 16 17 10 4d '. ..z.*..^....M

 00000090 6a dc 9b 3e 09 43 5a 66 8e 17 4c 27 d1 40 9b 19 j..>.CZf..L'.@..

 000000a0 82 ab d4 81 07 83 78 98 78 a1 f8 2a b2 9b 7c 5f x.x..*..|_

 000000b0 81 6f 11 37 e1 e5 90 4b 47 b4 0d 9a ac 3b 35 40 .o.7...KG....;5@

 000000c0 79 45 04 0e 59 07 67 ea f2 ea 57 c2 5d 25 03 94 yE..Y.g...W.]%..

 000000d0 46 35 7c 1f 01 e4 89 d9 1b 9d fe 94 e8 9e 3f 4e F5|...........?N

 000000e0 b1 18 43 2f 27 a7 f1 0a ff 1d 42 e2 ce 54 f9 2a ..C/'.B..T.*

 000000f0 b9 b2 43 81 f0 ed 22 2d e0 a0 37 2a c1 19 67 f0 ..C..." - ..7*..g.

 00000100 fa 5f 37 0a 9f 58 90 77 eb 0a 95 1c fe 5f a0 e7 ._7..X.w....._..

 00000110 dc 4f 28 fa 18 d7 22 23 9b 54 e7 fd e5 ed 67 a2 .O(..."#.T....g.

 00000120 da a4 3 d cb 0b f3 5a ce e9 dd de 0b d6 e7 e5 91 ..=...Z.........

 00000130 92 20 8f ac 2f bc be 11 55 b1 5e 0a 79 ed 00 4a . ../...U.^.y..J

 00000140 e6 94 34 8e 29 09 ef b5 2e 36 62 73 84 4d 4a 77 ..4.)....6bs.MJw

 00000150 3f df 9a 6f 4f 3c 3e 1a 11 e7 1c 8d 84 43 2e 1a ?..oO<>......C..

 00000160 aa 59 88 96 47 0b f0 6d 29 27 7b 68 c2 7b 2e be .Y..G..m)'{h.{..

 00000170 03 07 43 bf 8a 96 80 30 b9 1c 1e 36 e4 c0 d1 a6 ..C....0...6....

 00000180 a0 35 75 71 d5 ac f1 a3 1c d4 29 ee 40 50 68 93 .5uq......).@P h.

 00000190 02 e7 aa 96 43 c2 46 1d cd f3 ba 9c 94 ff f6 74 C.F........t

 000001a0 3c 19 5f f6 1d 1c 11 42 ff 3e 34 0b 94 48 dc de <._....B.>4..H..

 000001b0 5d 74 7e 33 d8 cd 58 20 20 38 1a d5 e4 b6 fd 1d]t~3..X 8......

 000001c0 c3 a7 ef 40 82 11 4c dc 2b 7e b4 ea 1a 85 ce f8 ...@..L.+~......

 000001d0 87 a3 ed 20 ff 50 4f ee 6c c3 b1 4c 2a 17 96 61 PO.l..L*..a

 000001e0 bc 5b 5e 17 52 d0 92 9e 11 70 d0 1d 98 a7 56 fa .[^.R....p....V.

 000001f0 69 95 6c 78 22 34 70 03 75 77 60 c5 3b 2f 42 e0 i.lx"4p.uw`.;/B.

 00000200 01 00 00 00 0c 00 00 00 30 00 00 00 49 42 b8 1c 0...IB..

 00000210 b4 55 c9 01 02 00 00 00 11 00 00 00 4f 75 74 67 .U..........Outg

 00000220 6f 69 6e 67 41 75 74 68 49 6e 66 6f 00 00 00 00 oingAuthInfo....

 0000 0230 49 42 b8 1c b4 55 c9 01 02 00 00 00 19 00 00 00 IB...U..........

 00000240 4f 75 74 67 6f 69 6e 67 50 72 65 76 69 6f 75 73 OutgoingPrevious

171 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 00000250 41 75 74 68 49 6e 66 6f 00 00 00 00 01 00 00 00 AuthInfo........

 00000260 0c 00 00 00 30 00 00 0 0 49 42 b8 1c b4 55 c9 01 0...IB...U..

 00000270 02 00 00 00 11 00 00 00 49 6e 63 6f 6d 69 6e 67 Incoming

 00000280 41 75 74 68 49 6e 66 6f 00 00 00 00 49 42 b8 1c AuthInfo....IB..

 00000290 b4 55 c9 01 02 00 00 00 19 00 00 00 49 6e 63 6f . U..........Inco

 000002a0 6d 69 6e 67 50 72 65 76 69 6f 75 73 41 75 74 68 mingPreviousAuth

 000002b0 49 6e 66 6f 00 00 00 00 5c 00 00 00 5c 00 00 00 Info.... \ ... \ ...

The LSAPR_TRUSTED_DOMAIN_AUTH_BLOB leads with 512 bytes of random data:

 00000000 93 1e 54 57 83 78 c6 c1 15 f1 13 85 3d 93 18 1d ..TW.x......=...

 00000010 b4 eb ee 6b fa 79 f5 2e 8d cb b4 e3 e3 54 8a 81 ...k.y.......T..

 00000020 b6 38 0f 6c 4d 6b 2b 36 4f a5 ce d8 82 44 52 23 .8.lMk+6O....DR#

 00000030 fc 40 b4 fd e2 71 78 95 f4 d5 29 e 1 11 7a 8c 67 .@...qx...)..z.g

 00000040 2f 3d 69 a3 54 cd 47 79 ca 3f a8 a9 4f 08 85 9d /=i.T.Gy.?..O...

 00000050 93 fb 56 0b db 84 9e bb da c4 fd 58 3d 88 55 c7 ..V........X=.U.

 00000060 bb 5a 2d aa e3 26 23 a5 12 b1 1c 23 1a aa 72 26 .Z - ..&#....#. .r&

 00000070 9f 57 b2 89 be 37 ec 32 83 25 6c fe 7c ae 09 2b .W...7.2.%l.|..+

 00000080 27 15 20 01 c2 7a d3 2a e1 e5 5e 0c 16 17 10 4d '. ..z.*..^....M

 00000090 6a dc 9b 3e 09 43 5a 66 8e 17 4c 27 d1 40 9b 19 j..>.CZf..L'.@..

 000000a0 82 ab d4 81 07 83 78 98 78 a1 f8 2a b2 9b 7c 5f x.x..*..|_

 000000b0 81 6f 11 37 e1 e5 90 4b 47 b4 0d 9a ac 3b 35 40 .o.7...KG....;5@

 000000c0 79 45 04 0e 59 07 67 ea f2 ea 57 c2 5d 25 03 94 yE..Y.g...W.]%..

 000000d0 46 35 7c 1f 01 e4 89 d9 1b 9d fe 94 e8 9e 3f 4e F5|...........?N

 000000e0 b1 18 43 2f 27 a7 f1 0a ff 1d 42 e2 ce 54 f9 2a ..C/'.....B..T.*

 000000f0 b9 b2 43 81 f0 ed 22 2d e0 a0 37 2a c1 19 67 f0 ..C..." - ..7*..g.

 00000100 fa 5f 37 0a 9f 58 90 77 eb 0a 95 1c fe 5f a0 e7 ._7..X.w....._..

 00000110 dc 4f 28 fa 18 d7 22 23 9b 54 e7 fd e5 ed 67 a2 .O(..."#.T....g.

 00000120 da a4 3d cb 0b f3 5a ce e9 dd de 0b d6 e7 e5 91 ..=...Z.........

 00000130 92 20 8f ac 2f bc be 11 55 b1 5e 0a 79 ed 00 4a . ../...U.^.y..J

 00000140 e 6 94 34 8e 29 09 ef b5 2e 36 62 73 84 4d 4a 77 ..4.)....6bs.MJw

 00000150 3f df 9a 6f 4f 3c 3e 1a 11 e7 1c 8d 84 43 2e 1a ?..oO<>......C..

 00000160 aa 59 88 96 47 0b f0 6d 29 27 7b 68 c2 7b 2e be .Y..G..m)'{h.{..

 00000170 03 07 43 bf 8a 96 80 30 b9 1c 1e 36 e4 c0 d1 a6 ..C....0...6....

 00000180 a0 35 75 71 d5 ac f1 a3 1c d4 29 ee 40 50 68 93 .5uq......).@Ph.

 00000190 02 e7 aa 96 43 c2 46 1d cd f3 ba 9c 94 ff f6 74 C.F........t

 000001a0 3c 19 5f f6 1d 1c 11 42 ff 3e 34 0b 94 48 dc de <._....B .>4..H..

 000001b0 5d 74 7e 33 d8 cd 58 20 20 38 1a d5 e4 b6 fd 1d]t~3..X 8......

 000001c0 c3 a7 ef 40 82 11 4c dc 2b 7e b4 ea 1a 85 ce f8 ...@..L.+~......

 000001d0 87 a3 ed 20 ff 50 4f ee 6c c3 b1 4c 2a 17 96 61 PO.l..L*..a

 000001e0 bc 5b 5e 17 52 d0 92 9e 11 70 d0 1d 98 a7 56 fa .[^.R....p....V.

 000001f0 69 95 6c 78 22 34 70 03 75 77 60 c5 3b 2f 42 e0 i.lx"4p.uw`.;/B.

The data following that is for CountOutgoingAuthInfos , in little -endian byte order:

 00000200 01 00 00 00

This indica tes that there is one entry present in the CurrentOutgoingAuthInfos field.

The data following that is for ByteOffsetCurrentOutgoingAuthInfo , in little -endian byte order:

 00000204 0c 00 00 00

This means that the byte offset from the beginning of Coun tOutgoingAuthInfos to the start of the
CurrentOutgoingAuthInfos field is 0x0000000c.

The data following that is for ByteOffsetPreviousOutgoingAuthInfo , in little -endian byte order:

 00000208 30 00 00 00 0...

172 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This means that the byte offset from the beginn ing of CountOutgoingAuthInfos to the start of the
PreviousOutgoingAuthInfos field is 0x00000030, so the size of CurrentOutgoingAuthInfos is

0x30 ï 0xc = 0x24 bytes.

The data following that is for CurrentOutgoingAuthInfos ; the last 3 padding bytes are for d ata

alignment purposes:

 0000020c 49 42 b8 1c IB..

 00000210 b4 55 c9 01 02 00 00 00 11 00 00 00 4f 75 74 67 .U..........Outg

 00000220 6f 69 6e 67 41 75 74 68 49 6e 66 6f 00 00 00 00 oingAuthInfo....

This is an array of CountOutgoingAuthInfos of LSAPR_AUTH_INFORMATION (section 2.2.7.17)
entries in self - relative format.

The data following that is for PreviousOutgoingAuthInfos ; the last 3 padding bytes are for data
alignment purposes:

 00000230 49 42 b8 1c b4 55 c9 01 02 00 00 00 19 00 00 00 IB...U..........

 00000240 4f 75 74 67 6f 69 6e 67 50 72 65 76 69 6f 75 73 OutgoingPrevious

 00000250 41 75 74 68 49 6e 66 6f 00 00 00 00 AuthInfo....

This is an array of CountOutgoingAuthInfos of LSAPR_AUTH_INFORMATION entries in self - relative

format.

The data following that is for CountIncomingAuthInfos , in little -endian byte order:

 0000025c 01 00 00 00

This means there is one entry present in t he CountIncomingAuthInfos field.

The data following that is for ByteOffsetCurrentIncomingAuthInfo , in little -endian byte order:

 00000260 0c 00 00 00

This means that the byte offset from the beginning of CountIncomingAuthInfos to the start of the
Cur rentIncomingAuthInfos field is 0x0000000c.

The data following that is for ByteOffsetPreviousIncomingAuthInfo , in little -endian byte order:

 00000264 30 00 00 00 0...

This means that the byte offset from the beginning of CountIncomingAuthInfos to the start of the
PreviousIncomingAuthInfos field is 0x00000030, so the size of CurrentIncomingAuthInfos is

0x30 ï 0xc = 0x24 bytes.

The data following that is for CurrentIncomingAuthInfos ; the last 3 padding bytes are for data
alignment purposes:

 00000268 49 42 b8 1c b4 55 c9 01 IB...U..

 00000270 02 00 00 00 11 00 00 00 49 6e 63 6f 6d 69 6e 67 Incoming

 00000280 41 75 74 68 49 6e 66 6f 00 00 00 00 AuthInfo....

173 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

This is an array of CountIncomingAuthInfos of LSAP R_AUTH_INFORMATION entries in self - relative
format.

The data following that is for PreviousIncomingAuthInfos ; the last 3 padding bytes are for data
alignment purposes:

 0000028c 49 42 b8 1c IB..

 00000290 b4 55 c9 01 02 00 00 00 19 00 00 00 49 6e 63 6f .U..........Inco

 000002a0 6d 69 6e 67 50 72 65 76 69 6f 75 73 41 75 74 68 mingPreviousAuth

 000002b0 49 6e 66 6f 00 00 00 00 Info....

This is an array of CountIncomingAuthInfos of LS APR_AUTH_INFORMATION entries in self - relative
format.

The data following that is for OutgoingAuthInfoSize , in little -endian byte order:

 000002b8 5c 00 00 00 \ ...

This means that the size, in bytes, of the sub -portion of the structure from the beginning of the
CountOutgoingAuthInfos field through the end of the of the PreviousOutgoingAuthInfos field is
0x0000005c.

The data following that is for IncomingAuthInfoSize , in little -endian byte order:

 000002bc 5c 00 00 00 \ ...

This means that the size, in bytes, of the sub -portion of the structure from the beginning of the
CountIncomingAuthInfos field through the end of the of the PreviousIncomingAuthInfos field is
0x0000 005c.

174 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5 Security

5.1 Security Considerations for Implementers

Usage of RC4 is specified in section 5.1.1. This protocol employs an implementation that reuses RC4

key stream, which subjects it to Xor and other cryptanalysis attacks. This vulnerability is applicable
when multiple RC4 -encrypted opnum requests are made over the same transport session, as sp ecified
in section 2.1.

Usage of Data Encryption Standard (DES) in Electronic Code Book (ECB) mode is specified in section
5.1.2. This algorithm is considered inadequate for maintaining confidentiality considering the efficiency
of brute - force and cryptana lysis attacks that are enabled by using year 2006, off - the -shelf computer

hardware.

The session key for sections 5.1.1 and 5.1.2 is obtained from the SMB transport, as specified in
section 2.1. The session key is obtained from the SMB transport every time a message that needs
encryption is to be sent or a message that needs decryption is to be received.

5.1.1 RC4 Cipher Usage

Implementations of this protocol protect the LSAPR_TRUSTED_DOMAIN_AUTH_BLOB structure by
encrypting the data refere nced by that structure's AuthBlob field. The RC4 algorithm is used to
encrypt the data on request (and reply) and decrypt the data on receipt. The key, required during
runtime by the RC4 algorithm, is the 16 -byte key specified by the method that uses this structure (for
example, see section 3.1.4.7.10). The size of data (the AuthSize field of
LSAPR_TRUSTED_DOMAIN_AUTH_BLOB) must remain unencrypted.

5.1.2 Secret Encryption and Decryption

This cipher is used to provide confidentiality of wire traffic for operations that reference this section.

The encrypt_secret routine is used to encrypt a cleartext value into ciphertext prior to transmission.

The decrypt_secret routine is used to decrypt a ciphertext value into cleartext after receipt. The
appropriate mode is selected based on the requirements of the interface.

The definitions of des_ecb_lm_dec and des_ecb_lm_enc are specified in section 5.1.3.

 encrypt_secret(in put : LSA_UNICODE_STRING, sessionkey : byte[16],

 output : LSA_UNICODE_STRING)

 {

 LET blocklen be 8

 LET keyindex be 0

 // Set version, length

 // temporary buffer.

 LET buffer be an array of blocklen bytes

 DECLEARE Version as ULONG

 SET Version to 1

 SET buffer to input - >length

 SET (buffer + 4) to Version

 CALL des_ecb_lm_enc(buffer, sessionkey[keyindex],

 output - >buffer)

 INCREMENT output - >buffer by blocklen

 INCREMENT output - >length by blocklen

 SET keyindex to AdvanceKey(keyindex)

 LET remaining be input - >length

175 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 WHILE remaining > blocklen

 CALL des_ecb_lm_enc(input - >buffer,

 sessionkey [keyindex], output - >buffer)

 INCREMENT input - >buffer by blocklen

 INCREMENT output - >buffer by blocklen

 INCREMENT output - >length by blocklen

 SET keyindex to AdvanceKey(keyindex)

 DECREMENT remaining by blocklen

 ENDWHILE

 IF (remaining > 0) THEN

 // zero pad the last block.

 SET bytes in buffer to 0

 COPY remaining bytes from input - >buffer to buffer

 CALL des_ecb_lm_enc(buffer, sessionkey[keyindex],

 output - >buffer)

 INCREMENT output - >length by blocklen

 ENDIF

 }

 decrypt_secret(input : LSA_UNICODE_STRING, sessionkey : byte[16],

 output : LSA_UNICODE_STRING)

 {

 LET keyindex be 0

 LET blocklen be 8

 // Ch eck version, get clear length.

 CALL des_ecb_lm_dec(input - >buffer, sessionkey[keyindex],

 output - >buffer)

 LET outputlength be output[0]

 LET version be output[1]

 IF (version Í 1) THEN // version check

 FAIL

 ENDIF

 INCREMENT input - >buffer by blocklen

 SET keyindex to AdvanceKey(keyindex)

 LET remaining be outputlength

 WHILE remaining > blocklen

 CALL des_ecb_lm_dec(input - >buffer,

 sessionkey[keyindex], output - >buffer)

 INCREMENT input - >buffer by blocklen

 INCREMENT output - >buffer by blocklen

 SET keyindex to AdvanceKey(keyindex)

 DECREMENT remaining by blocklen

 ENDWHILE

 IF (remaining > 0) THEN

 CALL des_ecb_lm_dec(input - >buffer,

 sessionkey[keyindex], output - >buffer)

 ENDIF

 SET output - >length to outputlength

 }

176 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 ULONG AdvanceKey(pos : ULONG)

 {

 LET KeyBlockLen be 7;

 DECLARE overrun as ULONG

 DECLARE currpos as ULONG;

 DECLARE nextpos as ULONG;

 LET pos = pos + KeyBlockLen;

 LET currpos = pos;

 LET nextpos = pos + KeyBlockLen;

 IF (nextpos > sizeof(sessionKey)) THEN

 LET overrun = nextpos - sizeof(sessionKey);

 LET currpos = (KeyBlockLen - overrun);

 ENDIF

 RETURN currpos;

 }

5.1.3 DES -ECB-LM Cipher Definition

des_ecb_lm_dec utilizes DES -ECB-LM in cipher -mode decryption.

des_ecb_lm_enc utilizes DES -ECB-LM in cipher -mode encryption.

DES-ECB-LM is defined as follows.

 des_ecb_lm(input:byte[8], encryptionKey: byte[8],

 output:byte[8])

 InputKey:byte[7]

 OutputKey:byte[8]

 Let InputKey be the first 7 bytes of encryptionK ey [0 - 6]

 OutputKey[0] = InputKey[0] >> 0x01;

 OutputKey[1] = ((InputKey[0]&0x01)<<6) | (InputKey[1]>>2);

 OutputKey[2] = ((InputKey[1]&0x03)<<5) | (InputKey[2]>>3);

 OutputKey[3] = ((InputKey[2]&0x07)<<4) | (InputKey[3]>>4);

 OutputKey[4] = ((InputKey[3]&0x0F)<<3) | (InputKey[4]>>5);

 OutputKey[5] = ((InputKey[4]&0x1F)<<2) | (InputKey[5]>>6);

 OutputKey[6] = ((InputKey[5]&0x3F)<<1) | (InputKey[6]>>7);

 OutputKey[7] = InputKey[6] & 0x7F;

 ((unsigned long*)OutputKey)[0] <<= 1;

 ((unsigned long*)OutputKey)[1] <<= 1;

 ((unsigned long*)OutputKey)[0] &= 0xfefefefe;

 ((unsigned long*)OutputKey)[1] &= 0xfefefefe;

 Let the left - most bit of OutputKey be the parity bit. That is,

 if the sum of the other 7 bits is odd, the parity bit is zero;

 otherwise the parity bit is one. The processing starts at the

 left - most bit of OutputKey.

 des_ecb(input, OutputKey, output)

 END

The algorithm des_ecb is the Data Encryption Standard (DES) encryption in Electronic Code Book
(ECB) mode, as sp ecified in [FIPS81].

5.1.4 Encryption and Decryption Examples

This section provides an encryption and decryption example of the algorithms specified in section
5.1.2.

177 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

5.1.4.1 Encryption Example

This section provides an example of how the encrypt_secret routine defined in section 5.1.2 encrypts a
given cleartext value into a ciphertext using a session key, and given the following parameters:

Parameters Value

input 50 00 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 31 00 32 00 33 00

sessionkey 4e 98 c9 10 b2 a9 88 d7 92 fb 5a a3 3e 8e f7 86

The following table describes the values keyindex (defined in encrypt_secret) and input , InputKey ,
OutputKey , and output (defined in des_ecb_lm) after successive calls to des_ecb_lm_enc .

keyindex input InputKey OutputKey output

0 16 00 00 00 01 00 00 00 4e 98 c9 10 b2 a9 88 4f 4c 32 23 0b 94 a7 10 af 78 44 03

fb a0 92 27

7 50 00 61 00 73 00 73 00 d7 92 fb 5a a3 3e 8e d6 c8 bf 6b ab 19 fb 1c 8c 95 fc 7e

88 56 4c cd

2 77 00 6f 00 72 00 64 00 c9 10 b2 a9 88 d7 92 c8 89 2c 54 98 46 5e 25 7c d0 c2 41

da 6f 14 41

9 31 00 32 00 33 00 00 00 fb 5a a3 3e 8e f7 86 fb ad a8 67 e9 76 df 0d 56 26 cd a5

81 e9 22 3d

The output variable fields are:

Parameters Value

output ->buffer af 78 44 03 fb a0 92 27 8c 95 fc 7e 88 56 4c cd 7c d0 c2 41 da 6f 14 41 56 26 cd a5 81 e9 22
3d

output -
>length

0x20

5.1.4.2 Decryption Example

This section provides an example of how the decrypt_secret routine defined in section 5.1.2 decrypts
a given ciphertext value into cleartext using a session key, and given the following parameters:

Parameters Value

Input af 78 44 03 fb a0 92 27 8c 95 fc 7e 88 56 4c cd 7c d0 c2 41 da 6f 14 41 56 26 cd a5 81 e9 22 3d

sessionkey 4e 98 c9 10 b2 a9 88 d7 92 fb 5a a3 3e 8e f7 86

The following table describes the values keyindex (defined in decrypt_secret) and input , InputKey ,
OutputKey , and output (defined in des_ecb_lm) after successive calls to des_ecb_lm_dec .

ke yindex input InputKey OutputKey output

0 af 78 44 03 fb a0 92 27 4e 98 c9 10 b2 a9 88 4f 4c 32 23 0b 94 a7 10 16 00 00 00

178 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

ke yindex input InputKey OutputKey output

01 00 00 00

7 8c 95 fc 7e 88 56 4c cd d7 92 fb 5a a3 3e 8e d6 c8 bf 6b ab 19 fb 1c 50 00 61 00

73 00 73 00

2 7c d0 c2 41 da 6f 14 41 c9 10 b2 a9 88 d7 92 c8 89 2c 54 98 46 5e 25 77 00 6f 00

72 00 64 00

9 56 26 cd a5 81 e9 22 3d fb 5a a3 3e 8e f7 86 fb ad a8 67 e9 76 df 0d 31 00 32 00

33 00 00 00

The output variable fields are:

Parameters Value

output ->buffer 50 00 61 00 73 00 73 00 77 00 6f 00 72 00 64 00 31 00 32 00 33 00 00 00

output ->length 0x16

5.2 Index of Security Parameters

Security par ameter Section

Usage of RC4 stream cipher 5.1.1

Usage of DES_ECB_LM 5.1.2

179 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided, where ms -dtyp.idl is the IDL specified in [MS -
DTYP] Appendix A.

Note The lsarpc interface is shared between this protocol and the Local Security Authority
(Translation Methods) Remote Protocol [MS -LSAT]. For convenience, the IDL definitions that appear
below and the IDL definitions in [MS -LSAT] section 6 have been merged and are available for

download. For more information, see [MSFT -LSA- IDL].

 import "ms - dtyp.idl";

 [

 uuid(12345778 - 1234 - ABCD- EF00- 0123456789AB),

 version(0.0),

 ms_union,

 pointer_default(unique)

]

 interface lsarpc

 {

 //

 // Type definitions.

 //

 //

 // Start of common types.

 //

 typedef [context_handle] void * LSAPR_HANDLE;

 typedef unsigned char SECURITY_CONTEXT_TRACKING_MODE,

 *PSECURITY_CONTEXT_TRACKING_MODE;

 typedef unsigned short SECURITY_DESCRIPTOR_CONTROL,

 *PSECURITY_DESCRIPTOR_CONTROL;

 typedef struct _STRING {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength), length_is(Length)]

 char * Buffer;

 } STRING, *PSTRING;

 typedef struct _LSAPR_ACL {

 unsigned char AclRevision;

 unsigned char Sbz1;

 unsigned short AclS ize;

 [size_is(AclSize - 4)] unsigned char Dummy1[*];

 } LSAPR_ACL, *PLSAPR_ACL;

 typedef struct _LSAPR_SECURITY_DESCRIPTOR {

 unsigned char Revision;

 unsigned char Sbz1;

 SECURITY_DESCRIPTOR_CONTROL Control;

 PRPC_SID Owner;

 PRPC_SID Group;

 PLSAPR_ACL Sacl;

 PLSAPR_ACL Dacl;

 } LSAPR_SECURITY_DESCRIPTOR, *PLSAPR_SECURITY_DESCRIPTOR;

 typedef enum _SECURITY_IMPERSONATION_LEVEL {

 SecurityAnonymous = 0,

 SecurityIdentification = 1,

180 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 SecurityImpersonation = 2,

 SecurityDelegation = 3

 } SECURITY_IMPERSONATION_LEVEL, * PSECURITY_IMPERSONATION_LEVEL;

 typedef struct _SECURITY_QUALITY_OF_SERVICE {

 unsigned long Length;

 SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;

 SECURITY_CONTEXT_TRACKING_MODE ContextTrackingMode;

 unsigned char EffectiveOnly;

 } SECURITY_QUALITY_OF_SERVICE, * PSECURITY_QUALITY_OF_SERVICE;

 typedef struct _LSAPR_OBJECT_ATTRIBUTES {

 unsigned long Length;

 unsigned char * RootDirectory;

 PSTRING ObjectName;

 unsigned long Attributes;

 PLSAPR_SECURITY_DESCRIPTOR SecurityDescriptor;

 PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService;

 } LSAPR_OBJECT_ATTRIBUTES, *PLSAPR_OBJECT_ATTRIBUTES;

 typedef struct _LSAPR_TRUST_INFORMATION {

 RPC_UNICODE_STRING Name;

 PRPC_SID Sid;

 } LSAPR_TRUST_INFORMATION, *PLSAPR_TRUST_INFORMATION;

 //

 // End of common types.

 //

 typedef enum _POLICY_INFORMATION_CLASS {

 PolicyAuditLogInformation = 1,

 PolicyAuditEventsInformation,

 PolicyPrimaryDomainInformation,

 PolicyPdAccountInformation,

 PolicyAccountDomainInformation,

 PolicyLsaServerRoleInformation,

 PolicyReplicaSo urceInformation,

 PolicyInformationNotUsedOnWire,

 PolicyModificationInformation,

 PolicyAuditFullSetInformation,

 PolicyAuditFullQueryInformation,

 PolicyDnsDomainInformation,

 PolicyDnsDomainInformationInt,

 PolicyLocalAccountDomainI nformation,

 PolicyMachineAccountInformation,

 PolicyLastEntry

 } POLICY_INFORMATION_CLASS, *PPOLICY_INFORMATION_CLASS;

 typedef enum _POLICY_AUDIT_EVENT_TYPE {

 AuditCategorySystem = 0,

 AuditCategoryLogon,

 AuditCategoryObjectAccess,

 AuditCategoryPrivilegeUse,

 AuditCategoryDetailedTracking,

 AuditCategoryPolicyChange,

 AuditCategoryAccountManagement,

 AuditCategoryDirectoryServiceAccess,

 AuditCategoryAccountLogon

 } POLICY_AUDIT_EVENT _TYPE, *PPOLICY_AUDIT_EVENT_TYPE;

 typedef RPC_UNICODE_STRING LSA_UNICODE_STRING,

 *PLSA_UNICODE_STRING;

 typedef struct _POLICY_AUDIT_LOG_INFO {

 unsigned long AuditLogPercentFull;

 unsigned long MaximumLogSize;

 LARGE_INTEGER AuditRetentionPeriod;

 unsigned char AuditLogFullShutdownInProgress;

 LARGE_INTEGER TimeToShutdown;

181 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 unsigned long NextAuditRecordId;

 } POLICY_AUDIT_LOG_INFO, *PPOLICY_AUDIT_LOG_INFO;

 typedef enum _POLICY_LSA_SERVER_ROLE {

 PolicyServ erRoleBackup = 2,

 PolicyServerRolePrimary

 } POLICY_LSA_SERVER_ROLE, *PPOLICY_LSA_SERVER_ROLE;

 typedef struct _POLICY_LSA_SERVER_ROLE_INFO {

 POLICY_LSA_SERVER_ROLE LsaServerRole;

 } POLICY_LSA_SERVER_ROLE_INFO, *PPOLICY_LSA_SERVER_ROLE_INFO;

 typedef struct _POLICY_MODIFICATION_INFO {

 LARGE_INTEGER ModifiedId;

 LARGE_INTEGER DatabaseCreationTime;

 } POLICY_MODIFICATION_INFO, *PPOLICY_MODIFICATION_INFO;

 typedef struct _POLICY_AUDIT_FULL_SET_INFO {

 unsigned char ShutDownOnFull;

 } POLICY_AUDIT_FULL_SET_INFO,

 *PPOLICY_AUDIT_FULL_SET_INFO;

 typedef struct _POLICY_AUDIT_FULL_QUERY_INFO {

 unsigned char ShutDownOnFull;

 unsigned char LogIsFull;

 } POLICY_AUDIT_FULL_ QUERY_INFO,

 *PPOLICY_AUDIT_FULL_QUERY_INFO;

 typedef enum _POLICY_DOMAIN_INFORMATION_CLASS {

 PolicyDomainQualityOfServiceInformation = 1,

 PolicyDomainEfsInformation = 2,

 PolicyDomainKerberosTicketInformation = 3

 } POLICY_DOMAIN_INFORMATION_CLASS,

 *PPOLICY_DOMAIN_INFORMATION_CLASS;

 typedef struct _POLICY_DOMAIN_KERBEROS_TICKET_INFO {

 unsigned long AuthenticationOptions;

 LARGE_INTEGER MaxServiceTicketAge;

 LARGE_INTEGER MaxTicketAge;

 LARGE_INTEGER MaxRenewAge;

 LARGE_INTEGER MaxClockSkew;

 LARGE_INTEGER Reserved;

 } POLICY_DOMAIN_KERBEROS_TICKET_INFO,

 *PPOLICY_DOMAIN_KERBEROS_TICKET_INFO;

 typedef struct _TRUSTED_POSIX_OFFSET_INFO {

 unsigned long Offset;

 } TRUSTED_POSIX_OFFSET_INFO,

 *PTRUSTED_POSIX_OFFSET_INFO;

 typedef enum _TRUSTED_INFORMATION_CLASS {

 TrustedDomainNameInformation = 1,

 TrustedControllersInformation,

 TrustedPosixOffsetInformation,

 TrustedPasswordInformation,

 TrustedDomainInformationBa sic,

 TrustedDomainInformationEx,

 TrustedDomainAuthInformation,

 TrustedDomainFullInformation,

 TrustedDomainAuthInformationInternal,

 TrustedDomainFullInformationInternal,

 TrustedDomainInformationEx2Internal,

 TrustedDomainFullInfor mation2Internal,

 TrustedDomainSupportedEncryptionTypes

 } TRUSTED_INFORMATION_CLASS,

 *PTRUSTED_INFORMATION_CLASS;

 typedef enum _LSA_FOREST_TRUST_RECORD_TYPE {

 ForestTrustTopLevelName = 0,

 ForestTrustTopLevelNameEx = 1,

182 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 ForestTrustDomainInfo = 2

 } LSA_FOREST_TRUST_RECORD_TYPE;

 typedef struct _LSA_FOREST_TRUST_BINARY_DATA {

 [range(0, 131072)] unsigned long Length;

 [size_is(Length)] unsigned char * Buffer;

 } LSA_FOREST_TRUST_BINARY_DATA,

 *PLSA_FOREST_TRUST_BINARY_DATA;

 typedef struct _LSA_FOREST_TRUST_DOMAIN_INFO {

 PRPC_SID Sid;

 LSA_UNICODE_STRING DnsName;

 LSA_UNICODE_STRING NetbiosName;

 } LSA_FOREST_TRUST_DOMAIN_INFO,

 *PLSA_FOREST_TRUST_DOMAIN_INFO;

 typedef s truct _LSA_FOREST_TRUST_RECORD {

 unsigned long Flags;

 LSA_FOREST_TRUST_RECORD_TYPE ForestTrustType;

 LARGE_INTEGER Time;

 [switch_type(LSA_FOREST_TRUST_RECORD_TYPE),

 switch_is(ForestTrustType)]

 union

 {

 [case(ForestTrustTopLevelName,

 ForestTrustTopLevelNameEx)]

 LSA_UNICODE_STRING TopLevelName;

 [case(ForestTrustDomainInfo)]

 LSA_FOREST_TRUST_DOMAIN_INFO DomainInfo;

 [default] LSA_FOREST_TRUST_ BINARY_DATA Data;

 } ForestTrustData;

 } LSA_FOREST_TRUST_RECORD, *PLSA_FOREST_TRUST_RECORD;

 typedef struct _LSA_FOREST_TRUST_INFORMATION {

 [range(0,4000)] unsigned long RecordCount;

 [size_is(RecordCount)] PLSA_FOREST_TRUST_RECORD * Entries;

 } LSA_FOREST_TRUST_INFORMATION, *PLSA_FOREST_TRUST_INFORMATION;

 typedef enum _LSA_FOREST_TRUST_COLLISION_RECORD_TYPE {

 CollisionTdo = 0,

 CollisionXref,

 CollisionOther

 } LSA_FOREST_TRUST_COLLISION_RECORD_TYPE;

 typedef struct _LSA_FOREST_TRUST_C OLLISION_RECORD {

 unsigned long Index;

 LSA_FOREST_TRUST_COLLISION_RECORD_TYPE Type;

 unsigned long Flags;

 LSA_UNICODE_STRING Name;

 } LSA_FOREST_TRUST_COLLISION_RECORD,

 *PLSA_FOREST_TRUST_COLLISION_RECORD;

 typedef struct _LSA_FOREST_TRUST_COLLISION_INFORMATION {

 unsigned long RecordCount;

 [size_is(RecordCount)]

 PLSA_FOREST_TRUST_COLLISION_RECORD * Entries;

 } LSA_FOREST_TRUST_COLLISION_INFORMATION,

 *PLSA_FOREST_TRUST_COLLISION_INFORMATION;

 typedef LSAPR_HANDLE *PLSAPR_HANDLE;

 typedef struct _LSAPR_ACCOUNT_INFORMATION {

 PRPC_SID Sid;

 } LSAPR_ACCOUNT_INFORMATION, *PLSAPR_ACCOUNT_INFORMATION;

 typedef struct _LSAPR_ACCOUNT_ENUM_BUFFER {

 unsi gned long EntriesRead;

 [size_is(EntriesRead)] PLSAPR_ACCOUNT_INFORMATION Information;

 } LSAPR_ACCOUNT_ENUM_BUFFER, *PLSAPR_ACCOUNT_ENUM_BUFFER;

183 / 224

[MS -LSAD-Diff] - v20180912
Local Security Authority (Domain Policy) Remote Pr otocol
Copyright © 2018 Microsoft Corporation
Release: September 12, 2018

 typedef struct _LSAPR_SR_SECURITY_DESCRIPTOR {

 [range(0,262144)] unsigned long Length;

 [size_is(Len gth)] unsigned char * SecurityDescriptor;

 } LSAPR_SR_SECURITY_DESCRIPTOR, *PLSAPR_SR_SECURITY_DESCRIPTOR;

 typedef struct _LSAPR_LUID_AND_ATTRIBUTES {

 LUID Luid;

 unsigned long Attributes;

 } LSAPR_LUID_AND_ATTRIBUTES, * PLSAPR_LUID_AND_ATTRIBUTES;

 typedef struct _LSAPR_PRIVILEGE_SET {

 [range(0,1000)] unsigned long PrivilegeCount;

 unsigned long Control;

 [size_is(PrivilegeCount)] LSAPR_LUID_AND_ATTRIBUTES Privilege[*];

 } LSAPR_PRIVILEGE_SET, *PLSAPR_PRIVILEGE_SET;

 typedef struct _LSAPR_POLICY_PRIVILEGE_DEF {

 RPC_UNICODE_STRING Name;

 LUID LocalValue;

 } LSAPR_POLICY_PRIVILEGE_DEF, *PLSAPR_POLICY_PRIVILEGE_DEF;

 typedef struct _LSAPR_PRIVILEGE_ENUM_BUFFER {

 unsigned long Entries;

 [size_is(Entries)] PLSAPR_POLICY_PRIVI LEGE_DEF Privileges;

 } LSAPR_PRIVILEGE_ENUM_BUFFER, *PLSAPR_PRIVILEGE_ENUM_BUFFER;

 typedef struct _LSAPR_CR_CIPHER_VALUE {

 [range(0, 131088)] unsigned long Length;

 [range(0, 131088)] unsigned long MaximumLength;

 [size_is(MaximumLength), length _is(Length)]

 unsigned char *Buffer;

 } LSAPR_CR_CIPHER_VALUE, *PLSAPR_CR_CIPHER_VALUE;

 typedef struct _LSAPR_TRUSTED_ENUM_BUFFER {

 unsigned long EntriesRead;

 [size_is(EntriesRead)] PLSAPR_TRUST_INFORMATION Information;

 } LSAPR_TRUSTED_ENUM_BUFFER, *PLSAPR_TRUSTED_ENUM_BUFFER;

 typedef struct _LSAPR_POLICY_ACCOUNT_DOM_INFO {

 RPC_UNICODE_STRING DomainName;

 PRPC_SID DomainSid;

 } LSAPR_POLICY_ACCOUNT_DOM_INFO, *PLSAPR_POLICY_ACCOUNT_DOM_INFO;

 typedef struct _LSAPR_POLICY_PRIMARY_DOM_INFO {

 RPC_UNICODE_STRING Name;

 PRPC_SID Sid;

 } LSAPR_POLICY_PRIMARY_DOM_INFO, *PLSAPR_POLICY_PRIMARY_DOM_INFO;

 typedef struct _LSAPR_POLICY_DNS_DOMAIN_INFO {

 RPC_UNICODE_STRING Name;

 RPC_UNICODE_STRING DnsDomainName;

 RPC_UNICODE_STRING DnsForestName;

 GUID DomainGuid;

 PRPC_SID Sid;

 } LSAPR_POLICY_DNS_DOMAIN_INFO, *PLSAPR_POLICY_DNS_DOMAIN_INFO;

 typedef struct _LSAPR_POLICY_PD_ACCOUNT_INFO {

 RPC_UNICODE_STRING Name;

 } LSAPR_POLICY_PD_ACCOUNT_INFO, *PLSAPR_POLICY_PD_ACCOUNT_INFO;

 typedef struct _LSAPR_POLICY_REPLICA_SRCE_INFO {

 RPC_UNICODE_STRING ReplicaSource;

 RPC_UNICODE_STRING ReplicaAccountName;

 } LSAPR_POLICY_REPLICA_SRCE_INFO, *PLSAPR_POLICY_REPLICA_SRCE_INFO;

 typedef struct _LSAPR_POLICY_AUDIT_EVENTS_INFO {

 unsigned char AuditingMode;

 [size_is(MaximumAuditEventCount)]

 unsigned long *EventAuditingOptions;

 [range(0,1000)] unsigned long MaximumAuditEventCount;

