
 

1 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

[MS -LLTD]:  
Link Layer Topology Discovery (LLTD) Protocol  

 

Intellectual Property Rights Notice for Open Specifications Documentation  

Á Technical Documentation.  Microsoft publishes Open Specifications documentation for 

protocols, file formats, languages, standards as well as overviews of the interaction among each 
of these technologies.  

Á Copyrights.  This documentation is covered by Microsoft copyrights. Regardles s of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 

documentation, you may make copies of it in order to develop implementations of the 
technologies described in the Open Specifications and may distribute p ortions of it in your 
implementations using these technologies or your documentation as necessary to properly 

document the implementation. You may also distribute in your implementation, with or without 
modification, any schema, IDLôs, or code samples that are included in the documentation. This 
permission also applies to any documents that are referenced in the Open Specifications.  

Á No Trade Secrets.  Microsoft does not claim any trade secret rights in this documentation.  

Á Patents.  Microsoft has patents that  may cover your implementations of the technologies 
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the 
documentation grants any licenses under those or any other Microsoft patents. However, a given 

Open Specification may be covered by Microsoft Open Specification Promise  or the Community 
Promise . If you would prefer a written license, or if the te chnologies described in the Open 
Specifications are not covered by the Open Specifications Promise or Community Promise, as 

applicable, patent licenses are available by contacting iplg@microsoft.com . 

Á Trademarks.  The names of companies and products contained in this documentation may be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 

licenses under those rights. For a list of Microsoft trademarks, visit 
www.microsoft.com/trademarks . 

Á Fictitious Names.  The example companies, organizations, products, domain names, email 
addresses, logos, people, places, and events depicted in this documentation are fictitious.  No 
associatio n with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred.  

Reservation of Rights.  All other rights are reserved, and this notice does not grant any rights 

other than specific ally described above, whether by implication, estoppel, or otherwise.  

Tools.  The Open Specifications do not require the use of Microsoft programming tools or 

programming environments in order for you to develop an implementation. If you have access to 
Micr osoft programming tools and environments you are free to take advantage of them. Certain 
Open Specifications are intended for use in conjunction with publicly available standard 
specifications and network programming art, and assumes that the reader either  is familiar with the 
aforementioned material or has immediate access to it.  

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks


 

2 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Revision Summary  

Date  

Revision 

History  

Revision 

Class  Comments  

12/18/2006  0.01    MCPP Milestone 2 Initial Availability  

03/02/2007  1.0    MCPP Milestone 2  

04/03/2007  1.1    Monthly release  

05/11/2007  1.2    Monthly release  

06/01/2007  1.2.1  Editorial  Revised and edited the technical content.  

07/03/2007  1.2.2  Editorial  Revised and edited the technical content.  

07/20/2007  1.2.3  Editorial  Revised and edited the technical content.  

08/10/2007  1.2.4  Editorial  Revised and edited the technical content.  

09/28/2007  1.2.5  Editorial  Revised and edited the technical content.  

10/23/2007  1.2.6  Editorial  Revised and edited the technical content.  

11/ 30/2007  1.3  Minor  Added introduction.  

01/25/2008  1.3.1  Editorial  Revised and edited the technical content.  

03/14/2008  1.3.2  Editorial  Revised and edited the technical content.  

05/16/2008  2.0  Major  Updated and revised the technical content.  

06/20/2008  2.1  Minor  Updated the technical content.  

07/25/2008  3.0  Major  Updated and revised the technical content.  

08/29/2008  3.1  Minor  Updated the technical content.  

10/24/2008  3.2  Minor  Updated the technical content.  

12/05/2008  4.0  Major  Updated and revised the technical content.  

01/16/2009  4.0.1  Editorial  Revised and edited the technical content.  

02/27/2009  5.0  Major  Updated and revised the technical content.  

04/10/2009  6.0  Major  Updated and revised the technical content.  

05/22/2009  6.0.1  Editorial  Revised and edited the technical content.  

07/02/2009  6.0.2  Editorial  Revised and edited the technical content.  

08/14/2009  6.0.3  Editorial  Revised and edited the technical content.  

09/25/2009  6.1  Minor  Updated the technical content.  



 

3 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Date  

Revision 

History  

Revision 

Class  Comments  

11/06/2009  6.1.1  Editorial  Revised and edited the technical content.  

12/18/2009  6.1.2  Editorial  Revised and edited the technical content.  

01/29/2010  6.1.3  Editorial  Revised and edited the technical content.  

03/12/2010  6.1.4  Editorial  Revised and edited the technical content.  

04/23/2010  6.1.5  Editorial  Revised and edited the technical content.  

06/04/2010  7.0  Major  Updated and revised the technical content.  

07/16/2010  8.0  Major  Significantly changed the technical content.  

08/27/2010  9.0  Major  Significantly changed the technical content.  

10/08/2010  10.0  Major  Significantly changed the technical content.  

11/19/2010  11.0  Major  Significantly changed the technical content.  

01/07/2011  12.0  Major  Significantly changed the technical content.  

02/11/2011  13.0  Major  Significantly changed the technical content.  

03/25/2011  14.0  Major  Significantly changed the technical content.  

05/06/2011  14.0  No change  No changes to the meaning, language, or formatting of 

the technical content.  

06/17/2011  14.1  Minor  Clarified the meaning of the technical content.  

09/23/2011  14.1  No change  No changes to the meaning, language, or formatting of 

the technical content.  

12/16/2011  15.0  Major  Significantly changed the technical content.  

03/30/2012  15.0  No change  No changes to the meaning, language, or formatting of 

the technical content.  

07/12/2012  15.0  No change  No changes to the meaning, language, or formatting of 

the technical content.  

10/25/2012  15.0  No change  No changes to the meaning, language, or formatting of 

the technical content.  

01/31/2013  15.0  No change  No changes to the meaning, language, or formatti ng of 

the technical content.  

08/08/2013  16.0  Major  Significantly changed the technical content.  

11/14/2013  16.0  No change  No changes to the meaning, language, or formatting of 

the technical content.  

02/13/2014  16.0  No change  No changes to the meaning, language, or formatting of 



 

4 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Date  

Revision 

History  

Revision 

Class  Comments  

the technical content.  

 



 

5 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Contents  

1   Introduction  ................................ ................................ ................................ ...........  11  
1.1   Glossary  ................................ ................................ ................................ .............  11  
1.2   References  ................................ ................................ ................................ ..........  13  

1.2.1   Normative References  ................................ ................................ .....................  13  
1.2.2   Informative References  ................................ ................................ ...................  14  

1.3   Overview  ................................ ................................ ................................ ............  15  
1.3.1   Quick Discovery  ................................ ................................ .............................  15  
1.3.2   Topology Discovery Tests  ................................ ................................ ................  15  
1.3.3   QoS Diagnostics: Network Test  ................................ ................................ ........  17  
1.3.4   QoS Diagnostics: Cross -Traffic Analysis  ................................ .............................  17  
1.3.5    Charge  ................................ ................................ ................................ ..........  18  

1.3.5.1   Frame Summary  ................................ ................................ .......................  18  
1.3.5.2   Tracking Charge  ................................ ................................ .......................  19 
1.3.5.3   Accumulating Charge  ................................ ................................ ................  19  
1.3.5.4   Charge Requirements  ................................ ................................ ................  19  
1.3.5.5   Consuming Charge  ................................ ................................ ...................  19  

1.4   Relationship to Other Protocols  ................................ ................................ ..............  20  
1.5   Prerequisites/Preconditions  ................................ ................................ ...................  20  
1.6   Applicability Statement  ................................ ................................ .........................  20  
1.7   Versioning and Capability Negotiation  ................................ ................................ .....  20  
1.8   Vendor -Extensible Fields  ................................ ................................ .......................  21  
1.9   Standards Ass ignments  ................................ ................................ ........................  21  

2   Messages ................................ ................................ ................................ ................  22  
2.1   Transport  ................................ ................................ ................................ ............  22  
2.2   Message Syntax  ................................ ................................ ................................ ..  22  

2.2.1   Common Data Types  ................................ ................................ ......................  22  
2.2.1.1   Attributes  ................................ ................................ ................................  22  

2.2.1.1.1   End -of -Property List Marker  ................................ ................................ ..  24  
2.2.1.1.2   Host ID  ................................ ................................ ..............................  24  
2.2.1.1.3   Characteristics  ................................ ................................ ....................  24  
2.2.1.1.4   Physical Medium  ................................ ................................ .................  25  
2.2.1.1.5   Wireless Mode  ................................ ................................ ....................  26  
2.2.1.1.6   802.11 BSSID  ................................ ................................ .....................  26  
2.2.1.1.7   802.11 SSID  ................................ ................................ .......................  26  
2.2.1.1.8   IPv4 Address  ................................ ................................ ......................  27  
2.2.1.1.9   IPv6 Address  ................................ ................................ ......................  27  
2.2.1.1.10   802.11 Maximum Operational Rate  ................................ ......................  28  
2.2.1.1.11   Performance Counter Frequency  ................................ ..........................  28  
2.2.1.1.12   Link Speed  ................................ ................................ .......................  29  
2.2.1.1.13   802.11 RSSI  ................................ ................................ .....................  29  
2.2.1.1.14   Icon Image  ................................ ................................ .......................  30  
2.2.1.1.15   Machine Name  ................................ ................................ ..................  30  
2.2.1.1.16   Support Information  ................................ ................................ ..........  30  
2.2.1.1.17   Friendly Name  ................................ ................................ ...................  31  
2.2.1.1.18   Device UUID  ................................ ................................ .....................  31  
2.2.1.1.19   Hardware ID  ................................ ................................ .....................  32  
2.2.1.1.20   QoS Characteristics  ................................ ................................ ...........  32  
2.2.1.1.21   802.11 Physical Medium  ................................ ................................ .....  32  
2.2.1.1.22   AP Association Table  ................................ ................................ ..........  33  



 

6 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

2.2.1.1.23   Detailed Icon Image  ................................ ................................ ..........  33  
2.2.1.1.24   Sees -List Working Set  ................................ ................................ ........  34  
2.2.1.1.25   Component Table  ................................ ................................ ..............  34  
2.2.1.1.26   Repeater AP Lineage  ................................ ................................ ..........  35  
2.2.1.1.27   Repeater AP Table  ................................ ................................ .............  35  

2.2.2   Large Data Properties  ................................ ................................ .....................  36  
2.2.2.1   Icon Image  ................................ ................................ ..............................  36  
2.2.2.2   Friendly Name  ................................ ................................ ..........................  36  
2.2.2.3   Hardware ID  ................................ ................................ ............................  36  
2.2.2.4   AP Association Table  ................................ ................................ .................  36  
2.2.2.5   Detailed Icon Image  ................................ ................................ ..................  37  
2.2.2.6   Component Table  ................................ ................................ .....................  37  

2.2.2.6.1   Component Descriptors  ................................ ................................ ........  37  
2.2.2.6.1.1   Bridge Component Descriptor  ................................ ..........................  38  
2.2.2.6.1.2   802.11 Access Point Component Descriptor  ................................ ......  38  
2.2.2.6.1.3   Built - in Switch Component Descriptor  ................................ ..............  39  

2.2 .2.7   Repeater AP Table  ................................ ................................ ....................  39  
2.2.3   Base Specification  ................................ ................................ ..........................  40  

2.2.3.1   Demultiplex Header Format  ................................ ................................ .......  40  
2.2.4   Topology Discovery Tests and Quick Discovery  ................................ ...................  42  

2.2.4.1   Base Header Format  ................................ ................................ .................  42  
2.2.4.2   Discover Upper -Level Header Format  ................................ ..........................  43  
2.2.4.3   Hello Upper -Level Header Format  ................................ ...............................  43  
2.2.4.4   Emit Upper -Level Header Format  ................................ ................................  44  
2.2.4.5   Train Upper -Level Header Format  ................................ ...............................  45  
2.2.4.6   Probe Upper -Level Header Format  ................................ ..............................  45  
2.2.4.7   A ck Upper -Level Header Format  ................................ ................................ . 45  
2.2.4.8   Query Upper -Level Header Format  ................................ ..............................  46  
2.2.4.9   QueryResp Upper -Level Header Format  ................................ .......................  46  
2.2.4.10   Reset Upper -Level Header Format  ................................ .............................  47  
2.2.4.11   Charge Upper -Level Header Format ................................ ...........................  47  
2.2.4.12   Flat Upper -Level Header Format  ................................ ...............................  47  
2.2.4.13   QueryLargeTlv Upper -Level Header Format  ................................ ................  48  
2.2.4.14   QueryLargeTlvResp Upper -Level Header Format  ................................ .........  49  

2.2.5   QoS Diagnostics Specification for Network Test  ................................ ..................  50  
2.2.5.1   Base Header Format  ................................ ................................ .................  50  
2.2.5.2   QosInitializeSi nk Upper -Level Header Format  ................................ ...............  50  
2.2.5.3   QosReady Upper -Level Header Format  ................................ ........................  51  
2.2.5.4   QosProbe Upper -Level Header Format  ................................ .........................  51  
2.2.5.5   QosQuery Upper -Level Header Format  ................................ ........................  52  
2.2.5.6   QosQueryResp Upper -Level Header Format  ................................ ..................  53  
2.2.5 .7   QosReset Upper -Level Header Format  ................................ .........................  54  
2.2.5.8   QosError Upper -Level Header Format  ................................ ..........................  54  
2.2.5.9   QosAck Upper -Level Header Format  ................................ ............................  54  

2.2.6   QoS Diagnostics Specification for Cross -Traffic Analysis  ................................ ......  54  
2.2.6.1   Base Header Format  ................................ ................................ .................  54  
2.2.6.2   QosCounterSnapshot Upper -Level Header Format  ................................ .........  55  
2.2.6.3   QosCounterResult Upper -Level Header Format  ................................ .............  55  
2.2.6.4   QosCounterLease Upper -Level Header Fo rmat  ................................ ..............  56  

3   Protocol Details  ................................ ................................ ................................ ......  57  
3.1   Enumerator Details  ................................ ................................ ..............................  57  

3.1.1   Abstract Data Model  ................................ ................................ .......................  58  



 

7 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.1.2   Timers  ................................ ................................ ................................ ..........  59  
3.1.3   Initialization  ................................ ................................ ................................ ..  59  
3.1.4   Higher -Layer Triggered Events  ................................ ................................ .........  59  

3.1.4.1   Quick Discovery Startup  ................................ ................................ ............  59  
3.1.4.2   Quick Discovery Shutdown  ................................ ................................ .........  60  

3.1.5   Message Processing Events and Sequencing Rules  ................................ ..............  60  
3.1.5.1   Receiving a Hello Frame  ................................ ................................ ............  60  

3.1.5.1.1   Enumerator Also Functioning in the Mapper Role  ................................ .....  60  
3.1.6   Timer Events  ................................ ................................ ................................ . 61  

3.1.6.1   Block Timer Expiry  ................................ ................................ ....................  61  
3.1.6.1.1   Enumerator Also Functioning in the Mapper Role  ................................ .....  61  

3.1.7   Resetting Quick Discovery  ................................ ................................ ...............  61  
3.1.8   Shutting Down Quick Discovery and Returning Results  ................................ ........  62  
3.1.9   Other Local Events  ................................ ................................ .........................  62  

3.1.9.1   Media Connect/Disconnect Event  ................................ ................................  62  
3.2   Mapper Details  ................................ ................................ ................................ ....  62  

3.2.1   Abstract Data Model  ................................ ................................ .......................  63  
3.2.2   Timers  ................................ ................................ ................................ ..........  64  
3.2.3   Initialization  ................................ ................................ ................................ ..  64  
3.2.4   Higher -Layer Triggered Events  ................................ ................................ .........  64  

3.2.4.1   Startup Trigger  ................................ ................................ .........................  64  
3.2.4.2   Retrieve a Large Data Property  ................................ ................................ ...  64  
3.2.4.3   Perform a Network Topology Test  ................................ ...............................  64  
3.2.4.4   Perform a Test Result Query  ................................ ................................ ......  66  
3.2.4.5   Query for Responder Charge  ................................ ................................ ......  67  
3.2.4.6   Shutdown Trigger  ................................ ................................ .....................  67  

3.2.5   Message Processing Events and Sequencing Rules  ................................ ..............  67  
3.2.5.1   Receiving an Ack Frame  ................................ ................................ ............  67  
3.2.5.2   Receiving a Flat Frame  ................................ ................................ ..............  68  
3.2.5.3   Receiving a  QueryResp Frame  ................................ ................................ ....  68  
3.2.5.4   Receiving a QueryLargeTlvResp Frame  ................................ ........................  69  

3.2.6   Timer Events  ................................ ................................ ................................ . 69  
3.2.6.1   Per -Responder Response Timer Expiry  ................................ ........................  69  

3.2.7   Other Local Events  ................................ ................................ .........................  69  
3.2.7.1   Enumerator Finishes Enumerating Responders  ................................ .............  69  
3.2.7.2   Media Connect/Disconnect Event  ................................ ................................  70  

3.3   QoS Controller Details  ................................ ................................ ..........................  70  
3.3.1   Abstract Data Model  ................................ ................................ .......................  70  
3.3.2   Timers  ................................ ................................ ................................ ..........  71  
3.3.3   Initialization  ................................ ................................ ................................ ..  71 
3.3.4   Higher -Layer Triggered Events  ................................ ................................ .........  72  

3.3.4.1   Start Network Test Session  ................................ ................................ ........  72  
3.3.4.2   Stop Network Test Session  ................................ ................................ ........  73  

3.3.5   Message Processing Events and Sequencing Rules  ................................ ..............  73  
3.3.5.1   Receiving a QosProbe Frame  ................................ ................................ ......  73  
3.3.5.2   Receiving a QosQueryResp Frame  ................................ ...............................  73  
3.3.5.3   Receiving a QosError Frame  ................................ ................................ .......  74  
3.3.5.4   Receiving a QosReady Frame  ................................ ................................ .....  74  
3.3.5.5   Receiving a QosAck Frame  ................................ ................................ .........  74  

3.3.6   Timer Event s ................................ ................................ ................................ . 74  
3.3.6.1   Per -QosInitializeSink Response Timer Expiry  ................................ ................  74  
3.3.6.2   Per -QosProbe Response Timer Expiry  ................................ ..........................  74  
3.3.6.3   Per -QosQuery Response Timer Expiry  ................................ .........................  74  



 

8 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.3.6.4   Per -QosReset Response Timer Expiry  ................................ ..........................  75  
3.3.7   Other Local Events  ................................ ................................ .........................  75  

3.3.7.1    Media Connect/Disconnect Event  ................................ ................................  75  
3.4   Cross -Traffic Analysis Initiator Details  ................................ ................................ ....  75  

3.4.1   Abstract Data Model  ................................ ................................ .......................  75  
3.4.2   Timers  ................................ ................................ ................................ ..........  76  
3.4.3   Initialization  ................................ ................................ ................................ ..  76  
3.4.4   Higher -Layer Triggered Events  ................................ ................................ .........  76  

3.4.4.1   Start Cross -Traffic Analysis  ................................ ................................ ........  76  
3.4.4.2   Request Counters  ................................ ................................ .....................  76  
3.4.4.3   Stop Cross -Traffic Analysis  ................................ ................................ ........  77  

3.4.5   Message Processing Events and Sequencing Rules  ................................ ..............  77  
3.4.5.1   Receiving a QosCounterResult Frame  ................................ ..........................  77  

3.4.6   Timer Events  ................................ ................................ ................................ . 77  
3.4.6.1   Per - Interface Lease Renewal Timer Expiry  ................................ ...................  77  
3.4.6.2   Per -Snapshot Response Timer Expiry  ................................ ..........................  77  

3.4.7   O ther Local Events  ................................ ................................ .........................  77  
3.4.7.1   Media Connect/Disconnect Event  ................................ ................................  78  

3.5   Responder (Quick Discovery) Details  ................................ ................................ ......  78  
3.5.1   Abstract Data Model  ................................ ................................ .......................  79  
3.5.2   Timers  ................................ ................................ ................................ ..........  81  
3.5.3   Initialization  ................................ ................................ ................................ ..  81  
3.5.4   Higher -Layer Triggered Events  ................................ ................................ .........  81  
3.5.5   Message Processing Events and Sequencing Rules  ................................ ..............  81  

3.5.5.1   Receiving a Discover Frame  ................................ ................................ .......  81  
3.5.5.1.1   Network Load Control  ................................ ................................ ..........  82  

3.5.5.1.1.1   Load Initialization  ................................ ................................ ..........  82  
3.5.5.1.1.2   Dynamic Behavior  ................................ ................................ .........  82  
3.5.5.1.1.3   Effect of Discover over Network Load Control  ................................ ....  82  

3.5.5.2   Receiving a Hello Frame  ................................ ................................ ............  83  
3.5.5.3   Receiving a Reset Frame  ................................ ................................ ...........  83  
3.5.5.4   State Tra nsition Rules  ................................ ................................ ...............  83  

3.5.6   Timer Events  ................................ ................................ ................................ . 84  
3.5.6.1   Session Inactivity Timer Expiry  ................................ ................................ ...  84  
3.5.6.2   Block Timer Expiry  ................................ ................................ ....................  84  
3.5.6.3   Hello Timer Expiry  ................................ ................................ ....................  84  

3.5.7   Other Local Events  ................................ ................................ .........................  85  
3.5.7.1   Media Disconnect Event  ................................ ................................ .............  85  
3.5.7.2   Entering Quiescent State  ................................ ................................ ...........  85  
3.5.7.3   Entering Pausing State  ................................ ................................ ..............  85  
3.5.7.4   Entering Wait State  ................................ ................................ ...................  85  

3.6   Responder (Topology Discovery) Details  ................................ ................................ . 85  
3.6.1   Abstrac t Data Model  ................................ ................................ .......................  87  
3.6.2   Timers  ................................ ................................ ................................ ..........  89  
3.6.3   Initialization  ................................ ................................ ................................ ..  89  
3.6.4   Higher -Layer Triggered Events  ................................ ................................ .........  90  
3.6.5   Message Processing Events and Sequencing Rules  ................................ ..............  90  

3.6.5.1   Receiving a Charge Frame  ................................ ................................ .........  90  
3.6.5.2   Receiving an Emit Frame  ................................ ................................ ...........  91  
3.6.5.3   Receiving a Probe Frame  ................................ ................................ ...........  93  
3.6.5.4   Receiving a Query Frame  ................................ ................................ ...........  93  
3.6.5.5   Receiving a QueryLargeTlv Frame  ................................ ...............................  94  

3.6.6   Tim er Events  ................................ ................................ ................................ . 95  



 

9 /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.6.6.1   Charge Timer Expiry  ................................ ................................ .................  95  
3.6.6.2   Emit Timer Expiry  ................................ ................................ .....................  95  

3.6.7   Other Local Events  ................................ ................................ .........................  95  
3.6.7.1   Media Disconnect Event  ................................ ................................ .............  95  
3.6.7.2   Entering Quiescent State  ................................ ................................ ...........  96  
3.6.7.3   Entering Command State  ................................ ................................ ...........  96  
3.6.7.4   Leaving Command State  ................................ ................................ ............  96  

3.7   QoS Sink Details  ................................ ................................ ................................ ..  96  
3.7.1   Abstract Data Model  ................................ ................................ .......................  96  
3.7.2   Timers  ................................ ................................ ................................ ..........  97  
3.7.3   Initialization  ................................ ................................ ................................ ..  97  
3.7.4   Higher -Layer Triggered Events  ................................ ................................ .........  97  
3.7.5   Message Processing Events and Sequencing Rules  ................................ ..............  97  

3.7.5.1   Receiving a QosInitializeSink Frame  ................................ ............................  98  
3.7.5.2   Receiving a  QosProbe Frame  ................................ ................................ ......  98  
3.7.5.3   Receiving a QosQuery Frame  ................................ ................................ ....  100  
3.7.5.4   Receiving a QosReset Frame  ................................ ................................ .....  100  

3.7.6   Timer Events  ................................ ................................ ................................  100  
3.7.6.1   Inactivity Timer Expiry  ................................ ................................ .............  100  

3.7.7   Other Local Events  ................................ ................................ ........................  101  
3.7.7.1   Media Disconnect Event  ................................ ................................ ............  101  

3.8   Responder (QoS Cross -Traffic) Details  ................................ ................................ ...  101  
3.8.1   Abstract Data Model  ................................ ................................ ......................  101  
3.8.2   Timers  ................................ ................................ ................................ .........  102  
3.8.3   Initialization  ................................ ................................ ................................ . 102  
3.8.4   Higher -Layer Triggered Events  ................................ ................................ ........  102  
3.8.5   Message Processing Events and Sequencing Rules  ................................ .............  102  

3.8.5.1   Receiving a QosCounterLease Frame  ................................ ..........................  102  
3.8.5.2   Receiving a QosCounterSnapshot Frame  ................................ .....................  103  

3.8.6   Timer Events  ................................ ................................ ................................  103  
3.8.6.1   Lease Timer Expiry  ................................ ................................ ..................  103  
3.8.6.2   Snapshot Timer Expiry  ................................ ................................ .............  104  

3.8.7   Other Local Events  ................................ ................................ ........................  104  
3.8.7.1   Media Disconnect Event  ................................ ................................ ............  104  

4   Protocol Examples  ................................ ................................ ................................  105  
4.1   Example 1: Mapping a Network  ................................ ................................ ............  105  
4.2   Example 2: Measuring Network Capacity  ................................ ...............................  108  
4.3   Example 3: Charging a Responder  ................................ ................................ ........  110  
4.4   Example 4: RepeatBAND Algorithm  ................................ ................................ .......  111  

4.4 .1   Scenario 1: No Hello/Discover Frames Received After Initial Discover Frame 
Moves Responder into the Pausing State  ................................ .........................  111  

4.4.2   Scenario 2: Small Network -  A Few Hello/Discover Frames Received During Each 
Round  ................................ ................................ ................................ .........  112  

4.4.3   Scenario 3: Large Network -  A Steady Flow of a Few Hello/Discover Frames 

Received During Each Round ................................ ................................ ..........  112  

5   Security  ................................ ................................ ................................ ................  114  
5.1   Security Considerations for Implementers  ................................ ..............................  114  
5.2   Index of Security Parameters  ................................ ................................ ...............  114  

6   Appendix A: Product Behavior  ................................ ................................ ..............  115  

7   Change Tracking ................................ ................................ ................................ ...  117  



 

10  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

8   Index  ................................ ................................ ................................ ...................  118  



 

11  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

1   Introduction  

This document specifies the Link Layer Topology Discovery (LLTD) Protocol, which an application or 
higher - layer protocol can use to facilitate discovery of link - layer topology and to diagnose various 
problems that are associated with a network's signal str ength and bandwidth.  

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD, 
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also 
normative but cannot contain those terms. All other sections and examples in this specification are 
informative.  

  

1.1   Glossary  

The following terms are defined in [MS -GLOS] :  

big - endian  
little - endian  
UUID  

The following terms are specific to this document:  

access point (AP): A device that connects wireless devices to form a wireless network.  

Basic Service Set Identifier (BSSID): A Media Access Control (MAC) address  that is used 
to identify an entity (such as the access point ) in a wireless network.  

broadcast: The sending of a frame to the Ethernet broadcast domain by an LLTD -capable 
station.  

charge: A mechanism used to prevent Denial of Service (DoS) attacks, as described in section 
1.3.5 . 

controller: A station  that initiates  a network test  request.  

cross - traffic analysis: A technique used by Quality of Service (QoS) applications to understand 
the nature of network activity, usually resulting in the identification of the hosts that are 
responsible for most of this activity.  

cr oss - traffic analysis initiator: A station  that initiates a cross - traffic analysis  request.  

Current Transmit Credit (CTC): The charge  available at a responder.  

enumerator: A station  that seeks all LLTD ïcapable stations  on the link by using quick 
discovery .  

Ethernet broadcast domain: The portion of a network that can receive frames destined for the 
special broadcast MAC address  (that is, consisting of all binary 1s).  

flooding: A switch's  sending of a frame to all segments  to which it is connected. A switch  wi ll 
flood a frame containing a MAC address  for which the switch  does not know the 

corresponding segment .  

friendly name: A human - readable name that identifies a network resource.  

%5bMS-GLOS%5d.pdf


 

12  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

generation number: A number used by a mapper  to generate fresh MAC addresses  from a 
private range.  

hub: A data link - layer network device that acts as a shared bus. All stations  that are connected 
to a hub  are on the same segment ; therefore, each station  that is connected to a hub  sees 

all frames that are sent to or from all other stations  on that hub . Compare this term with 
router  and switch .  

interrupt moderation: The process of delaying central processing unit (CPU) interrupts 
generated by a local network interface. Delaying interrupts improves system efficiency by only 
generating  a single interrupt for multiple events instead of an individual interrupt per event. 
Although desirable for improved system performance, delaying interrupts impacts the 
measurement accuracy of timed events. The algorithm determining the length of delay is  

hardware specific, therefore, not in scope of this specification.  

mapper: A station  that initiates a topology discovery test . 

Media Access Control (MAC) address: A unique link - layer address that identifies a network 

interface.  

network test: Generic term t o describe any technique (for example, probegap or timed probe) 
that is used to estimate the throughput of a network.  

probegap: A probing experiment that involves sending one or more probe packets from the 
initiator to the sink  and then back to the initiat or. The intention is to gather a series of one -
way delay (OWD) samples. This technique is used to estimate the available bandwidth of the 
network path between the initiator and sink  devices. Probegap is synergistic to timed probe  
and packet pair in the sen se that the available bandwidth is calculated relative to the 
bottleneck bandwidth; the former cannot be calculated without knowing the latter. For an 
example of how probegap can be used by an application, see [ProbeGap] . 

quick discovery: The process of discovering responders  on a network.  

real MAC address: A MAC address  provided by the network interface vendor to uniquely 

identify the device on the network, as specified in [IEEE802.3] .  

RepeatBAND: A fast and scalable station  enumeration algorithm as specified in section 3.5.6.2 . 

responder: An LLTDïcapable station  to which mappers  and enumerators  send LLTD 
commands.  

router: A network - layer device that defines the limit of an Ethernet broadcast domain . 

Compare with hub  and switch .  

segment: A set of stations  that see each others' link - layer frames without being changed by 
any device in the middle, such as a switch .  

service set identifier (SSID): A unique identifier that is used to differentiate one wireless 
network from another.  

session: A context for managin g communication over LLTD among stations .  

sink: A responder  that is the target of a network test  session .  

station: Any device that implements LLTD.  

switch: A data link - layer device that propagates frames between segments  and allows 
communication among st ations  on different segments . Stations  that are connected through 

http://go.microsoft.com/fwlink/?LinkId=158845
http://go.microsoft.com/fwlink/?LinkId=89911


 

13  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

a switch  see only those frames destined for their segments . Compare this term with hub  
and router .  

timed probe: A network test  used for packet pair. Packet pair is a probing experiment that 
involves sending two or more consecutive probe packets of highly entropic data from the 

initiator to the sink . This technique is used to estimate the bottleneck bandwidth of the 
network path between the initiator and sink  devices. For an example of how pac ket pair can 
be used by an application, see [PacketPair] . 

topology discovery test: A test that an application or higher - layer protocol can use to facilitate 
discovering the link - layer topology o f a single link in a network. That is, to facilitate 
discovering the set of segments  and switches , and determining which responders  are on 
which segments. Compare this term with quick discovery . 

type - length - value (TLV): A property, as used in this protocol , of a network interface, so 
named because each property is composed of a Type  field, a Length  field, and a value. All 
LLTD attributes are TLVs , as specified in section 2.2.1.1 . 

UCS- 2LE: A variation of the UCS -2 string encoding format. The specification of UCS -2 in 
[ISO/IEC -10646]  represents each code point in big - endian  format. In UCS- 2LE , each code  
point is represented in little - endian  format.  

wireless band: A term used to identify an IEEE 802.11 protocol family. For example, 802.11a is 
a wireless band .  

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as 
specified in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or 
SHOULD NOT.  

1.2   References  

References to Microsoft Open Specifications documentation do not include a publishing year because 
links are to the latest version of the documents, which are updated frequently. References to other 
documents include a publishing year when one is available . 

A reference marked "(Archived)" means that the reference document was either retired and is no 
longer being maintained or was replaced with a new document that provides current implementation 
details. We archive our documents online [Windows Protocol] . 

1.2.1   Normative References  

We conduct frequent surveys of the normative references to assure their continued availability. If 
you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We 
will assist you in finding the relevant information.  

[IANAifType] IANA, "IANAifType -MIB Definitions", January 2007, 
http://www.iana.org/assignments/ianaiftype -mib  

[IEEE EtherType] IEEE Standards Association, "IEEE EtherType Field Registration Authority", 

February 2007, http://standards.ieee.org/regauth/ethertype/eth.txt  

[IEEE OUI] IEEE Standards Association, "IE EE OUI Registration Authority", February 2007, 
http://standards.ieee.org/regauth/oui/oui.txt  

[IEEE802.11 -2007] Institute of Electrical and Electronics Engineers, "Standard for Information 
Technol ogy -  Telecommunications and Information Exchange Between Systems -  Local and 

http://go.microsoft.com/fwlink/?LinkId=158841
http://go.microsoft.com/fwlink/?LinkId=89916
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89884
http://go.microsoft.com/fwlink/?LinkId=89894
http://go.microsoft.com/fwlink/?LinkId=89895


 

14  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Metropolitan Area Networks -  Specific Requirements -  Part 11: Wireless LAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications", ANSI/IEEE Std 802.11 -2007, 

http://standards.ieee.org/getieee802/download/802.11 -2007.pdf  

Note   There is a charge to download this document.  

[IEEE802.1Q] Institute of Electrical and Electronics Engineers, "IEEE Standard for Local  and 
Metropolitan Area Networks -  Virtual Bridged Local Area Networks", IEEE Std 802.1Q, May 2003, 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1203093&isnumber=27089                

[I EEE802.3] Institute of Electrical and Electronics Engineers, "Part 3: Carrier Sense Multiple Access 
with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications -  Description", 
IEEE Std 802.3, 2002, http://standards.ieee.org/getieee802/download/802.3 -2002.pdf  

[ISO/IEC -10646] International Organization for Standardization, "Information Technology -  

Universal Multiple -Octet Coded Character Set (UCS)", ISO/IEC 10646:2003, Decemb er 2003, 
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39921&ICS1  

[RFC826] Plummer, D., "An Ethernet Address Resolution Protocol -  or -  Converting Network Protocol 
Address es to 48.bit Ethernet Address for Transmission on Ethernet Hardware", STD 37, RFC 826, 
November 1982, http://www.ietf.org/rfc/rfc826.txt  

[RFC1123] Braden, R., "Requirements for Internet Hosts -  Application and Support", STD 3, RFC 

1123, October 1989, http://www.ietf.org/rfc/rfc1123.txt  

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, Ma rch 1997, http://www.rfc -editor.org/rfc/rfc2119.txt  

[RFC2461] Narten, T., Nordmark, E., and Simpson, W., "Neighbor Discovery for IP Version 6 
(IPv6)", RFC 2461, December 1998, http://www.ietf.org/rfc/rfc2461.txt  

[RFC3022] Srisuresh, P., and Egevang, K., "Traditional IP Network Address Translator (Traditional 
NAT)", RFC 3022, January 2001, http://www.ietf.org/rfc/rfc3022.txt  

[RFC3513] Hinden, R., and Deering, S., "Internet Protocol Version 6 (IPv6) Addressing 
Architecture", RFC 3513, April 2003, http://www.ietf.org/rfc/ rfc3513.txt  

[UPnP] UPnP Forum, "Standards", http://www.upnp.org/standardizeddcps/default.asp  

1.2.2   Informative References  

[BAND] Black, R., Donnelly, A., Gavrilescu, A., and Thaler, D., "Fast Scalable Robust Node 
Enumeration", http://research.microsoft.com/~dthaler/BAND.pdf  

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Glossary ".  

[MSDN - ICO] Microsoft Corporation, "Icons in Win32", http://msdn.microsoft.com/en -
us/library/ms9 97538.aspx  

[PacketPair] Hu, N., and Steenkiste, P., "Estimating Available Bandwidth Using Packet Pair Probing", 

September 2002, http://www.cs.cmu.edu/~hnn/papers/igi - tr.pdf  

[ProbeGap] Lakshminar ayanan, K., Padmanabhan, V., and Padhye, J., "Bandwidth Estimation in 

Broadband Access Networks", May 2004, 
http://research.microsoft.com/apps/pubs/default.aspx?id=70060  

http://go.microsoft.com/fwlink/?LinkID=89905
http://go.microsoft.com/fwlink/?LinkId=89909
http://go.microsoft.com/fwlink/?LinkId=89911
http://go.microsoft.com/fwlink/?LinkId=89916
http://go.microsoft.com/fwlink/?LinkId=90498
http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90358
http://go.microsoft.com/fwlink/?LinkId=90403
http://go.microsoft.com/fwlink/?LinkId=90427
http://go.microsoft.com/fwlink/?LinkId=90553
http://go.microsoft.com/fwlink/?LinkId=89818
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90018
http://go.microsoft.com/fwlink/?LinkId=90018
http://go.microsoft.com/fwlink/?LinkId=158841
http://go.microsoft.com/fwlink/?LinkId=158845


 

15  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

[RALLY] Microsoft Corpor ation, "Windows Rally: Connectivity Technologies for Devices", 
http://www.microsoft.com/whdc/connect/rally/default.mspx  

1.3   Overview  

This document specifies the Link Layer Topology Discovery (LLTD) Protocol, which operates over 
Ethernet - like media, including both wired (802.3 Ethernet) and wireless (802.11) media. As the 
protocol name suggests, the core functions of LLTD enable applicat ions to discover the link - layer 
topology of a single link in a network. That is, it is used to facilitate discovering the set of switches  
and segments  that constitute the link. LLTD also has Quality of Service (QoS) extensions that 
applications can use to diagnose problems, such as those problems that involve signal strength on 
wireless networks or bandwidth constraints in home networks.  

LLTD offers the following services, which operate independently on the net work (except as noted in 
this document):  

Á Quick discovery .  

Á Topology discovery test . 

Á QoS diagnostics for network tests .  

Á QoS diagnostics for cross - traffic analysis . 

There are no dependencies or ordering restrictions between these services, except that the topology 
discovery test requires that quick discovery is performed first.  

Additionally, the concept of charge  is central to LLTD. Charge is descri bed in section 1.3.5 . 

1.3.1   Quick Discovery  

Quick discovery is the method of enumerating LLTD -capable stations  on the network and their 
various properties. Throughout this document, these LLTD -capable stations are referred to as 
responders . That is, the roles of stations involved in the quick -discovery process are as the 

enumerator  and the responders. All responders that participate in quick discovery implement a 
distributed network load balancing algorithm c alled RepeatBAND , as specified in section 3.5.6.2 . 

RepeatBAND is a scalable enumeration algorithm that allows responders to advertise their presence 
to enumerators without overload ing the network. In this scheme, each responder independently 

throttles its outbound network traffic by counting the LLTD frames that it sees. Responders measure 
the network load due to LLTD over a number of loosely synchronized rounds, also called blocks,  of 
approximately fixed duration. Each responder uses these load measurements to calculate a current 
estimate of the number of responders that are active on the network. Each responder then sends a 
frame in a block with a probability that depends on this e stimate (for an analysis of an earlier 
version of this algorithm which did not accommodate multiple simultaneous enumerators, see 
[BAND] ). These frames each contain a set of properties (or Type - Length - Values (TLVs) ) that the 

responders are advertising to the enumerator.  

1.3.2   Topology Discovery Tests  

In Topology Discovery Tests, the roles of stations are as the mapper  and the responders. Topology 
discovery tests are an extension of quick discovery , and they can only be performed after quick 
discovery is complete. During quick discovery, a mapper temporarily fulfills the role of an 

enumerator while negotiating its intention to perform topology discovery tests with all responders 
involved.  

http://go.microsoft.com/fwlink/?LinkId=90254
http://go.microsoft.com/fwlink/?LinkId=89818


 

16  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Each respo nder that participates in quick discovery associates itself with a mapper if it does not 
already have an active association. It is only through this association that a responder accepts and 

responds to the associated mapper's topology discovery test comman ds. This association is also 
reported by each responder in all quick discovery packet exchanges. While it is the ultimate goal to 

have only one mapper associated with all responders in a specific Ethernet broadcast domain , 
this mecha nism puts the onus on the mapper to ensure that it stops itself completely (and releases 
any active associations) if it sees a quick discovery packet from any responder that is reporting an 
association to another mapper.  

The mapping session  makes assumptions about the behavior of the network infrastructure that 
interconnects the available responders, such as switches and hubs . Information about network 
interfaces and results from particular operations on respond ers provide the mapper with information 

to assess the network's topology. One key assumption made is that after a switch has learned a 
responder's segment, it does not forward traffic destined to that responder's Ethernet address to 
other segments.  

After q uick discovery, the mapper knows of available responders and the types of networks they are 
connected to (such as Ethernet or 802.11 wireless). If the application or higher - layer protocol sees 

two responders on Ethernet, it could direct the LLTD Protocol t o request a responder to send 

Ethernet frames on the wire by using different source and destination MAC addresses  and ask the 
other responder which of the Ethernet frames it received. The MAC addresses used are dedicated for 
use by L LTD.  

The choice of which responder to use and the parameters of the topology discovery test are up to 
the application or higher - layer protocol. An LLTD implementation merely allows applications to learn 
link details, with which they can construct topology  maps using application -specific algorithms.  

The LLTD Protocol is used by such an application to request that a chosen responder send LLTD 

frames with a specified source and destination MAC address, where the source MAC address may or 
may not be the respon der's own MAC address. To avoid interfering with other nodes' MAC 
addresses, the LLTD Protocol defines a reserved range of MAC addresses that applications can use 
when they request that a responder use a source MAC address that it does not own.  

The LLTD Pr otocol is also used by such an application to ask other responders which test frames 
they have seen. This information allows the application to infer the existence of switches and hubs. 
For example, because a switch will remember a segment that it has seen , forwarding frames with 

the corresponding MAC address to that segment and flooding  all segments for frames with 
previously unseen MAC addresses, applications can generate tests to determine whether a switch or 
a hub interconnects tw o responders.  

For example, the application using LLTD might do the following. The application might direct one 
responder to use a specific LLTD MAC address and train a switch about the segment to which it is 
connected by sending a frame from that MAC addre ss. The application might then invoke LLTD to 

request that a second responder send a frame to that MAC address. Finally, the application could 
ask a third responder for the test frames that it saw. If the third responder did not see the test 
frame (after m ultiple such tests to reduce the chance of packet loss), the application can conclude 
that the first and third responders are on different segments; that is, that a switch separates them.  

A responder must also be able to perform both quick discovery and to pology discovery tests with 

different stations, where one is functioning as an enumerator and the other is functioning as a 
mapper.  

In addition, this service also allows the mapper to ask a responder for additional property data that 
is too large to fit in to the quick discovery responses.  



 

17  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

1.3.3   QoS Diagnostics: Network Test  

QoS diagnostics for network tests facilitates the determination of a network path's bottleneck 
bandwidth (or "capacity"), its available bandwidth, and the existence of a prioritization mechanism 

in a network equipment over a network path. Each of these is a form of network test operation that 
can be achieved by the use of two roles: a controller  and a sink . The controller role is initiated by 
a local application. The sink role is implemented in a responder.  

The controller's job is to manage a network test session by initializing and resetting the sink, 
sending test frames to the sink, and accepting test frames that the sink sends back.  

For each network path (defined as the network link between a controller and a sink), a higher - layer 
application may use the time stamp and success code that is returned via the controller to compute 

the bandwidth. Applications can also learn about the existence of a prioritization mechanism by 
instructing controllers to have sinks m anipulate the 802.1q tag header for returning test frames (see 
the T -bit and 802.1p value in the QosProbe frame defined in section 2.2.5.4 ). For more information 
on how the tag header influences Ethernet  frame routing, see [IEEE802.1Q] . 

1.3.4   QoS Diagnostics: Cross - Traffic Analysis  

QoS diagnostics for cross - traffic analysis facilitates the detection of network traffic congestion by 
means of analyzing network packet counters. An application can analyzes these packet counters by 
invoking the role of the cross - traf fic analysis initiator . The application explicitly identifies each 
responder from which it wants to obtain the counters. (The application may have previously learned 
the responders via quick discovery, or any other method. Hence, this service does not nece ssarily 
require that quick discovery is performed first.) The initiator's role is simply to make these counters 
available to the application, where possible.  

Responders that support this feature maintain a history of the following counters:  

Á Number of bytes  received.  

Á Number of bytes sent.  

Á Number of frames received.  

Á Number of frames sent.  

Intermediate devices, such as access points (APs)  and bridges, can make per -network interface 
counters and aggregate link counters available through th is protocol. These counters allow cross -
traffic detection even in the absence of responders on the segment. Examples of available network 
interfaces on a typical AP device are:  

Á Basic service set identifier (BSSID)  of a wireless band . Note that multiband APs use 

separate BSSIDs for each band that they support.  

Á Wired Ethernet network interface that is usually connected to a built - in switch.  

The aggregate (across all network interfaces on the same link) counters ind icate the amount of 
traffic that is entering and leaving the link, which enables consideration of the capacity of the uplink 

in QoS wireless area network (WAN) admission decisions.  

It is assumed that the bottleneck point for an AP is always the wireless li nk. As such, APs are not 
required to provide the wired local area network (LAN) counters.  

http://go.microsoft.com/fwlink/?LinkId=89909


 

18  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

1.3.5   Charge  

A mapper's requests have the potential to trigger non - trivial amounts of network traffic originating 
from the responders . If the requests are carried out too frequently, they could contribute to network 

congestion. Therefore, the mapper is required to charge the responder to enable it to send out 
Ethernet frames at the mapper's request during topology discovery. The charge requirement spaces 
out the requests, mitigating Denial of Service attacks or inadvertent flooding.  

Charging involves sending special frames to the responder to build up the charge. Only after enough 
charge has been accumulated can the mapper request the re sponder to carry out a topology test. 
Once the responder has verified that it has enough charge, it consumes the charge and fulfills the 
topology test.  

Section 1.3.5.1  summarizes frames used during charg ing.  

Section 1.3.5.2  summarizes how charge is tracked by responders.  

Responders perform the following actions when receiving a Charge frame or Emit frame:  

 

1) Accumulating charge from the frame (section 1.3.5.3 ).  

2) Determining the charge requirements for the request (section 1.3.5.4 ).  

3) Consuming charge (section 1.3.5.5 ).  

4) Sending out frames.  

1.3.5.1   Frame Summary  

The frames described in this section convey or consume charge . Charge frames and Emit frames can 
be unacknowledged or acknowledged. Charge frames and Emit frames are considered acknowledged 
if they contain a nonzero sequence number (see section 2.2.4  for frame lay out). Such frames are 

intended to elicit a response from a responder indicating receipt and processing of the Charge frame 
or Emit frame (using either a Flat frame or an Ack frame). Unacknowledged Charge frames and Emit 
frames are those with sequence numbe rs of zero; they do not elicit a response indicating if or how 
the frame was processed.  

Charge frames : The primary purpose of the Charge frame is to transfer charge (see section 
1.3.5.3 ) to responders in  preparation for an Emit frame containing one or more probe targets 
(EmiteeDesc items in the Emit frame). Acknowledged Charge frames can also instruct a responder 

to report its current charge using a Flat frame.  

Emit frames : The primary purpose of an Emit frame is to request the sending of one or more Train 
or Probe frames by the responder. Emit frames also carry charge, but such charge is immediately 
consumed by fulfilling the Emit request. The only exception is when the responder does not have 
enough char ge to satisfy the request. If this is the case, and the Emit frame was acknowledged, a 
Flat frame is sent to (1) notify the mapper that the request was not satisfied, and (2) report the 

amount of charge on the responder.  

Flat frames : Flat frames are sent b y a responder back to a mapper to indicate the responder's 
current charge. Flat frames are sent in response to acknowledged Charge frames or Emit frames. 
The amount of charge reported in the Flat frame is the charge on the responder before accumulating 
the  charge of the Charge frame or Emit frame. Unacknowledged Charge frames or Emit frames do 
not elicit a Flat frame response from a responder. Flat frames consume charge. Emit frames always 



 

19  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

carry enough implicit charge to send one Flat frame, but Charge fram es (which are smaller than Flat 
frames) have to be padded in order to carry enough charge to send the Flat frame response.  

Ack frames : Ack frames are sent by a responder back to a mapper when it has finished processing 
all of the commands in an acknowledge d Emit frame. Ack frames consume charge; Emit frames 

always carry enough implicit charge to send one Ack frame.  

1.3.5.2   Tracking Charge  

Charge is represented by using two counters:  

Á Frame Charge (FC): The number of frames the responder is capable of sending (unsigned 8 -bit 

number).  

Á Byte Charge (BC): The number of bytes the responder is capable of sending (unsigned 16 -bit 

number).  

These counters are collectively referred to as the Current Transmit Credit (CTC) . 

1.3.5.3   Accumulating Charge  

Charge  is accumulated by responders on receipt of a Charge frame or Emit frame. The Frame 

Charge (FC) is incremented by 1 (representing the 1 frame received). The Byte Charge (BC) is 
incremented by the combined size, in bytes, of the Destination MAC, Source MAC,  EtherType, and 
Payload fields of the Ethernet frame encapsulating the Charge frame or Emit frame. This allows 
mappers to increase BC artificially by padding the Ethernet payload beyond the size required to 
contain the Charge frame or Emit frame being tran smitted.  

To limit the ability of a rogue mapper from accumulating dangerous amounts of charge (from which 
a Denial -of -Service could be performed on a target), responders are responsible for implementing 

limits on the amount of FC and BC which can be accumu lated. For more information about the 
implementation of these limits, see sections 3.6.5.1  and 3.6.5.2 . 

1.3.5.4   Charge Requirements  

Charge  requirements are based on how many frames are to be sent and how many bytes are in 
those frames. Charge requirements for each frame are: one Frame Charge (FC), and Byte Charge 
(BC) equivalent to the combined size, in bytes, of the Destination MAC, Source MAC, EtherType, and 

Payload fields of the Ethernet frame.  

The number of frames to be sent varies based on whether a Charge frame or an Emit frame is 
received and whether that frame is unacknowledged or acknowledged. (For the definition of 
unacknowledged an d acknowledged Charge frames and Emit frames, see section 1.3.5.1 . For further 
details about determining charge requirements, see section 3.2.4.3 .)  

As an example, an acknowledged Emit frame containing 5 EmiteeDesc entries would elicit 5 Probe 
frames and 1 Ack frame. Probe frames and Ack frames are both 32 bytes in size. Therefore, the 

charge required would be 6 FC and 192 BC. (For details about how this  example was calculated, see 
section 4.3 .)  

1.3.5.5   Consuming Charge  

If the responder is sending a Flat frame (which it does when failing an acknowledged Emit request 
or responding to an acknowledged Charge request), the amount of charge consumed from the 

Current Transmit Credit (CTC)  is equivalent to the charge required for the outgoing Flat frame.  



 

20  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

However, if the responder has accepted an Emit request, acknowledged or unacknowledged, the 
responder clears the CTC of all charge, including any charge above and beyond that required for t he 

Emit frame. This forces the mapper to rebuild charge on the responder if any future Emit frames are 
to be sent.  

As noted in section 3.2.4.3 , unacknowledged Charge frames elicit no response and consume  no 
charge.  

1.4   Relationship to Other Protocols  

The LLTD Protocol operates directly over Ethernet (including media such as 802.11 that support 
Ethernet encapsulation and hence appear as Ethernet to protocols) and is not used as a transport 
for other protocols. Therefore, it is a stand -alone protocol.  

HTTP is often used in parallel with this protocol because this protocol transfers information that may 
be directly used by HTTP.  

Link Layer Topology Discovery (LLTD) is part of the Windows Rally technologies for enhancing the 

user experience for computer and  device interaction (for more information about Vista Rally, see 
[RALLY] ). LLTD does not have a dependency on any of the other Rally technologies, nor do other 
Rally technologies depend on LLTD.  

1.5   Prerequisites/Preconditions  

This protocol requires that the implementation have a random number generator whose seed value 
does not depend solely on the current time because the time could be synchronized on the network. 
Indeed, for a computer with multiple network interfaces, the ti me is identical on each network 
interface. An easily available alternate seed is to use the MAC address of the network interface.  

This protocol requires access to counters for the total number of bytes and packets sent and 

received (due to any network acti vity, not just the LLTD implementation) over each network 
interface.  

1.6   Applicability Statement  

This protocol operates at Layer 2 (the link - layer) in the OSI reference model and is therefore not 
routable. The protocol is suitable only for discovering the link - layer topology of networks that 
constitute a single link, such as a small office network or a home network. It is not applicable for 

discovering the Layer 3 (network - layer) topology of a larger network, or for discovering the Layer 2 
topology of a link to which the LLTD implementation is not directly attached.  

LLTD is designed to scale up to 10,0 00 nodes on the same link.  

However, LLTD assumes the total latency involved in the network and frame processing at the nodes 
is less than the safeguards built into the protocol. For example, the timer periods of the reset 
procedure as specified in section 3.1.7  or the timers of the RepeatBAND algorithm specified in 
section 3.5.6.2 . If the latency is higher, unexpected results may occur.  

1.7   Versioning and Capability Negotiation  

This protocol has no capability negotiation or versioning aspects, except that messages include a 
version number for future extensibility.  

http://go.microsoft.com/fwlink/?LinkId=90254


 

21  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

1.8   Vendor - Extensible Fields  

This protocol defines a range of special MAC addresses  that applications can use when they conduct 
network topology tests. This range is 0x000D3AD7F140 through 0x000D3AFFFFFF. These MAC 

addresses do not conflict with actual MAC addresses because the range is built from an assigned 
Organizationally Unique Iden tifier (OUI), as described in section 1.9 . To minimize the probability of 
collisions between two such applications on the same link, while still allowing addresses that the 
same application uses to be si milar (simply for ease in debugging), applications using the Link Layer 
Topology Discovery Protocol SHOULD construct such MAC addresses by using the OUI, followed by a 
random number in the range 0xD7F2 to 0xFFFF, and leaving 8 bits that can be used to give  256 
MAC addresses. The Link Layer Topology Discovery Protocol contains a generation number  field 

that can be used as a seed in a pseudo - random number generator.  

1.9   Standards Assignments  

Parameter  Value  Reference  

Organizationally Unique Identifier (OUI)  0x000D3A  [IEEE OUI]  

Ether type  0x88D9  [IEEE EtherType]  

http://go.microsoft.com/fwlink/?LinkId=89895
http://go.microsoft.com/fwlink/?LinkId=89894


 

22  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

2   Messages  

The following sections specify how Link Layer Topology Discovery Protocol messages are 
encapsulated on the wire and common LLTD data types.  

2.1   Transport  

LLTD messages MUST be transported over raw Ethernet, as specified in [IEEE802.3] , with the value 
of the Ethernet Header Ethertype  field set to 0x88D9.  

2.2   Message Syntax  

The following diagram shows the position of each layer of header in the Link Layer Topology 
Discovery Protocol.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Ethernet_Header  

...  

...  

...  LLTD_Demultiplex_Header  

...  LLTD_Base_and_Upper_Layer_Header (variable)  

...  

Ethernet_Header (14 bytes):  802.3 defined frame format, as specified in [IEEE802.3] , with 
Ethertype value set to 0x88D9.  

LLTD_Demultiplex_Header (4 bytes):  LLTD framing that indicates message types as 
specified in section 2.2.3.1 . 

LLTD_Base_and_Upper_Layer_Header (variable):  Service and message -specific framing 
header as specified in sections 2.2.4 , 2.2.5 , and 2.2.6 . 

2.2.1   Common Data Types  

2.2.1.1   Attributes  

Attributes are used in Hello frames (as specified in section 2.2.4.3 ) that responders send to 

enumerators during quick discovery.  

All attributes are TLVs  and MUST comply with the following format, except when Type  is 0x00.  

http://go.microsoft.com/fwlink/?LinkId=89911
http://go.microsoft.com/fwlink/?LinkId=89911


 

23  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Value (variable)  

...  

Type (1 byte):  The Type  field identifies each attribute. Legal values are specified in the 
following table, and each attribute is specified in its own subsection.  

Value  Meaning  

0x00  End-of -Property List marker (section 2.2.1.1.1 ) . 

0x01  Host ID (section 2.2.1.1.2 )  that uniquely identifies the host on which the responder is 

running.  

0x02  Characteristics (section 2.2.1.1.3 ) . 

0x03  Physical Medium (section 2.2.1.1.4 ) . 

0x04  Wireless Mode (section 2.2.1.1.5 ) . 

0x05  802.11 Basic Service Set Identifier (BSSID) (section 2.2.1.1.6 ) . 

0x06  802.11 Service Set Identifier (SSID) (section 2.2.1.1.7 ) . 

0x07  IPv4 Address (section 2.2.1.1.8 ) . 

0x08  IPv6 Address (section 2.2.1.1.9 ) . 

0x09  802.11 Maximum Operational Rate (section 2. 2.1.1.10 ) . 

0x0A  Performance Counter Frequency (section 2.2.1.1.11 ) . 

0x0C  Link Speed (section 2.2.1.1.12 ) . 

0x0D  802.11 Received Signal Strength Indication (RSSI) (section 2.2.1.1.13 ) . 

0x0E  Icon Image (section 2.2.1.1.14 ) . 

0x0F  Machine  Name (section 2.2.1.1.15 ) . 

0x10  Support Information (section 2.2.1.1.16 )  that identifies the device manufacturer's support 

information.  

0x11  Friendly Name (section 2.2.1.1.17 ) . 

0x12  Device Universally Unique Identifier (UUID) (section 2.2.1.1.18 ) . 

0x13  Hardware ID (section 2.2.1.1.19 ) . 

0x14  QoS Characteristics (section 2.2.1.1.20 ) . 

0x15  802.11 Physical Medium (section 2.2.1.1.21 ) . 

0x16  AP Association Table (section 2.2.1.1.22 ) . 



 

24  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Value  Meaning  

0x18  Detailed Icon Image (section 2.2.1.1.23 ) . 

0x19  Sees-List Working Set (section 2.2.1.1.24 ) . 

0x1A  Component Table (section 2.2.1.1.25 ) . 

0x1B  Repeater AP Lineage (section 2.2.1.1.26 ) . 

0x1C  Repeater AP Table (section 2.2.1.1.27 ) . 

Length (1 byte):  This field specifies the le ngth, in bytes, of the Value  field.  

Value (variable):  This field specifies information that is specific to the attribute, as specified in 

the corresponding subsection.  

2.2.1.1.1   End - of - Property List Marker  

The End -of -Property List Marker attribute signals the end of the TLV list. All responders MUST 
include this marker in every Hello frame.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  

Type (1 byte):  This field MUST be set to 0x00.  

2.2.1.1.2   Host ID  

The Host ID attribute uniquely identifies the host on which the responder is running. All responders 

MUST include this attribute in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  MAC_address  

...  

Type (1 byte):  This field MUST be set to 0x01.  

Length (1 byte):  This field MUST be set to 0x06.  

MAC_address (6 bytes):  This field MUST be the MAC address  of the host upon which the 

responder is running. On a host with multiple network interfaces, this field SHOULD be the 
lowest MAC address across the network interfaces.  

2.2.1.1.3   Characteristics  

The Characteristics attribute identifies various characteristics of the responder host and network 
interface. This attribute is mandatory. All responders MUST include this attribute in all Hello frames.  



 

25  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  P X F M L Reserved  

Type (1 byte):  This field MUST be set to 0x02.  

Length (1 byte):  This field MUST be set to 0x02.  

P (1 bit):  Network interface is the public side of a network address translation (NAT), as 
specified in [RFC3022] . 

X (1 bit):  Network interface is the private side of a NAT.  

F (1 bit):  Network interface is in full duplex mode.  

M (1 bit):  Responder MUST set this field if it has a management web page accessible via the 

HTTP protocol. A management web page is optional. A responder MAY support it. The mapper 
SHOULD construct a URL from the reported IPv6 address. If one is not available, the IPv4 
address MUST be used instead. The URL MUST be of the form: "http://<ip -address>/", where 
"<ip -address>" is either an IPv6 address in IPv6 literal notation (as specified in [RFC3513]  
section 2.2) or an IPv4 address in four -part dotted decimal notation (as specified in 
[RFC1123]  section 2.1).  

L (1 bit):  Network interface is looping back outbound packets; the outbound packet is sent over 

the network interface and also looped back to the interface sending the packet (allowing other 
protocols bound to the interface to receive the packet).  

Reserved (11 bits):  MUST be set to zero when se nt and ignored on receipt.  

2.2.1.1.4   Physical Medium  

The Physical Medium attribute identifies the physical medium of a network interface by using one of 

the IANA -published ifType object enumeration values. This attribute is mandatory. All responders  

MUST include this attribute in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Physical Medium  

...  

Type (1 byte):  This field MUST be set to 0x03.  

Length (1 byte):  This field MUST be set to 0x04.  

Physical Medium (4 bytes):  This field MUST be set to the physical medium type of the 
network interface that the responder is using. The values are published by the Internet 
Assigned Numbers Authority (IANA) for the ifType object, as specified in [IANAifType] .  

http://go.microsoft.com/fwlink/?LinkId=90403
http://go.microsoft.com/fwlink/?LinkId=90427
http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=89884


 

26  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

2.2.1.1.5   Wireless Mode  

The Wireless Mode attribute identifies how an Institute of Electrical and Electronics Engineers (IEEE) 
802.11, as specified in [IEEE802.11 -2007] , network interface connects to the network. 

Implementations with responders in 802.11 stations MUST include this attribute in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Mode  

Type (1 byte):  This field MUST be set to 0x04.  

Length (1 byte):  This field MUST be set to 0x01.  

Mode (1 byte):  This field specifies the method by which a responder's IEEE 802.11 network 
interface connects to the network. The following table shows  valid values.  

Value  Meaning  

0x00  802.11 IBSS or ad -hoc mode, as specified in [IEEE802.11 -2007] . 

0x01  802.11 infrastructure mode, as specified in [IEEE802.11 -2007] . 

2.2.1.1.6   802.11 BSSID  

The 802.11 BSSID attribute specifies an IEEE 802.11 network interface's associated AP. 
Implementations with responders in 802.11 stations MUST include this attribute in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  BSSID  

...  

Type (1 byte):  This field MUST be set to 0x05.  

Length (1 byte):  This field MUST be set to 0x06.  

BSSID (6 bytes):  This field specifies the MAC address  of the AP with which a wireless 
responder's wireless network interface is associated.  

2.2.1.1.7   802.11 SSID  

The 802.11 SSID attribute specifies an IEEE 802.11 network interface's associated AP. 

Implementations with responders in 802.11 stations MUST include this attribute in all Hello frames.  

http://go.microsoft.com/fwlink/?LinkId=89905
http://go.microsoft.com/fwlink/?LinkId=89905
http://go.microsoft.com/fwlink/?LinkId=89905


 

27  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  SSID_String (variable)  

...  

Type (1 byte):  This field MUST be set to 0x06.  

Length (1 byte):  This field specifies the length in bytes of the SSID_String  field.  

SSID_String (variable):  The ASCII representation of the SSID  for the basic service set with 
which a wireless responder's  wireless network interface associates. Note that the string MUST 

NOT be null - terminated and MUST be treated as case -sensitive. The maximum length of the 
string is 32 characters.  

2.2.1.1.8   IPv4 Address  

The IPv4 Address attribute specifies an IPv4 network address of the responder. This attribute is 
optional; implementations SHOULD include it in Hello frames if they have an IPv4 address.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  IPv4 Address  

...  

Type (1 byte):  This field MUST be set to 0x07.  

Length (1 byte):  This field MUST be set to 0x04.  

IPv4 Address (4 bytes):  This field specifies an IPv4 address of the responder. This field's 
value MUST be an address of the network interface over which the frame is sent, if it has an 
IPv4 address. If there are multiple IPv4 addresses on the network interface, the device is free  
to choose any one of them. If an IPv4 address is not available on the network interface over 
which the frame is sent, the device MAY use an IPv4 address on a different network interface. 

However, if the responder sets the M bit in the Characteristics  attribute, the address MUST be 
one which is reachable via the interface over which the frame is sent. If no such address 
exists, the responder MUST NOT include the IPv4 Address attribute.  

2.2.1.1.9   IPv6 Address  

The IPv6 Address attribute specifies an IPv6 network address of the responder. This attribute is 
optional; implementations SHOULD include it in all Hello frames if they have an IPv6 address.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  IPv6 Address  



 

28  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

...  

...  

...  

...  

Type (1 byte):  This field MUST be set to 0x08.  

Length (1 byte):  This field MUST be set to 0x10.  

IPv6 Address (16 bytes):  This field specifies an IPv6 address of the responder. This field's 

value MUST be an address of the network interface over which the frame is sent, if it has an 
IPv6 address. If there are multiple IPv6 addresses on the network interface, the device is free  

to choose any one of them. If an IPv6 address is not available on the network interface over 
which the frame is sent, the device MAY use an IPv6 address on a different network interface. 
However, if the responder sets the MW bit in the Characteristics  attribute, the address MUST 
be one which is reachable via the interface over which the frame is sent, and if there is no 

such address, the responder MUST NOT include the IPv6 Address attribute.  

2.2.1.1.10   802.11 Maximum Operational Rate  

The 802.11 Maximum Operational Rate attribute specifies the maximum data rate at which the radio 
can run. This attribute is optional; responders operating on 802.11 station network interfaces MAY 
include it in Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Rate  

Type (1 byte):  This field MUST be set to 0x08.  

Length (1 byte):  This field MUST be set to 0x02.  

Rate (2 bytes):  This field specifies the maximum data rate, in network byte order, at which the 
802.11 interface can run, in units of 0.5 megabits per second (Mbps).  

2.2.1.1.11   Performance Counter Frequency  

The Performance Counter Frequency attribute specifies how fast the time stamp counters run in 
ticks per second. This information is particularly useful for deciphering the results from timed probe 
and probegap tests in the QoS diagnostics type of service. This attribute is optional; 
implementations SHOULD include it in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Perf Counter Frequency  



 

29  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

...  

...  

Type (1 byte):  This field MUST be set to 0x0A.  

Length (1 byte):  This field MUST be set to 0x08.  

Perf Counter Frequency (8 bytes):  This field specifies the number of ticks per second, in 

network byte order, at which the responder's time stamp counters function.  

2.2.1.1.12   Link Speed  

The Link Speed attribute specifies the network interface's maximum speed in units of 100 bits per 
second (bps). This attribute is optional; implementations SHOULD include it in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Link_Speed  

...  

Type (1 byte):  This field MUST be set to 0x0C.  

Length (1 byte):  This field MUST be set to 0x04.  

Link_Speed (4 bytes):  This field specifies the maximum speed, in network byte order, of the 
sender's network interface, in units of 100 bps.  

2.2.1.1.13   802.11 RSSI  

The 802.11 RSSI attribute specifies an IEEE 802.11 network interface's RSSI, as specified in 
[IEEE802.11 -2007] . This attribute is optional; responders  operating on 802.11 station network 

interfaces Windows Server  2008 Datacenter SHOULD <1>  include it in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  RSSI  

...  

Type (1 byte):  This field MUST be set to 0x0D.  

Length (1 byte):  This field MUST be set to 0x04.  

RSSI (4 bytes):  This field specifies an aligned integer that identifies the IEEE 802.11 network 
interfaces' RSSI. If the actual RSSI value is available, this field MUST be a negative value (the 
normal range for an RSSI value is -10 through -200), in decibels referenced to  a milliwatt 
(dBm) in network byte order.  

http://go.microsoft.com/fwlink/?LinkId=89905


 

30  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

If the actual RSSI value is not available, but the implementation has some other estimate of 
the signal strength, <2>  this field MUST be a value in the range 0 to 100, where a value of 50 

mean s an "average" link quality and a value of 100 means a "perfect" link.  

2.2.1.1.14   Icon Image  

The Icon Image attribute specifies that the responder has an icon image that represents the host 
running the responder  and is willing to provide it if a QueryLargeTLV frame requests it. This 
attribute is optional; implementations MAY include it in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field MUST be set to 0x0E.  

Length (1 byte):  This field MUST be set to 0x00.  

2.2.1.1.15   Machine Name  

The Machine Name attribute specifies an unterminated UCS- 2LE  string that identifies the device's 
host name. This attribute is mandatory; implementations MUST include it in Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Device Host Name (variable)  

...  

Type (1 byte):  This field MUST be set to 0x0F.  

Length (1 byte):  This field specifies the length of the Device Host Name  field, in bytes. This 
field's value MUST be in the range 2 to 32 (that is, 1 to 16 Unicode characters).  

Device Host Name (variable):  This field specifies a UCS -2LE string that specifies the device's 
host name, where host name SHOULD be a non - fully qualified domain name. The string MUST 
NOT be null - terminated.  

2.2.1.1.16   Support Information  

The Support Information attribute specifies the device manufacturer's support information (for 
example, telephone number and support URL). This attribute is optional; implementations MAY 
include it in Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Device manufacturer's support information (variable)  



 

31  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

...  

Type (1 byte):  This field MUST be set to 0x10.  

Length (1 byte):  This field MUST specify a length of 64 octets or less.  

Device manufacturer's support information (variable):  This field specifies a UCS -2LE string 
that specifies the device manufacturer's support information (such as telephone number). The 
maximum length of the string is 32 characters or 64 octets. Note that the string MUST NOT be 
null - terminated.  

2.2.1.1.17   Friendly Name  

The Friendly Name attribute indicates that the device has a friendly name and is willing to provide it 
if a QueryLargeTLV frame requests it. This attribute is optional; implementations MAY include it in 
Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field MUST be set to 0x11.  

Length (1 byte):  This field MUST be set to 0x00.  

2.2.1.1.18   Device UUID  

The Device UUID attribute specifies a UUID  and uniquely identifies a device that supports Universal 

Plug and Play (UPnP) [UPnP] . This attribute is used to identify a responder residing on a UPnP 
device. Devices that include UPnP functionality MAY include the Device UUID attribute in Hello 

frames in order to identify themselves as UPnP -capable.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Device UUID  

...  

...  

...  

...  

Type (1 byte):  This field MUST be set to 0x12.  

Length (1 byte):  This field MUST be set to 0x16.  

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90553


 

32  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Device UUID (16 bytes):  This field specifies the UUID that is found in the device unique 
service name (USN) portion of an Simple Service Discovery Protocol (SSDP) discovery 

response (as specified in [UPnP]  section 1.2.3 ) in UUID binary format.  

2.2.1.1.19   Hardware ID  

The Hardware ID attribute is used by a responder to indicate that it has a Hardware ID property 
(see section 2.2.2.3 ) and is willing to provide it if a QueryLargeTLV frame requests it. This attribute 
is optional for responders in UPnP devices; that is, implementations that include UPnP functionality 
MAY include it in Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field MUST be set to 0x13.  

Length (1 byte):  This field MUST be set to 0x00.  

2.2.1.1.20   QoS Characteristics  

The QoS Characteristics attribute specifies various QoS ïrelated characteristics of the responder  host 

and network interface. This attribute is mandatory for responders that support layer 2 forwarding, 
VLAN tagging, or 802.1p priority tagging; implementations MUST include it in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  E Q P Reserved  

Type (1 byte):  This field MUST be set to 0x14.  

Length (1 byte):  This field MUST be set to 0x04.  

E (1 bit):  This field MUST be set if the responder is not providing any Layer 2 forwarding 
between segments on this link.  

Q (1 bit):  This field MUST be set if the interface supports 802.1q virtual local area network 
(VLAN) tagging, as specified in [IEEE802.1Q]  section 9.  

P (1 bit):  This field MUST be set if the network interface supports setting the User Priority  
field in the Tag Control Information of the tag header (802.1p priority tagging), as specified 

in [IEEE802.1Q]  section 9.3.2.1  

Reserved (13 bits):  MUST be set to zero when sent and MUST be ignored on receipt.  

2.2.1.1.21   802.11 Physical Medium  

The 802.11 Physical Medium attribute is sent by responders in 802.11 stations to indicate the 
wireless physical medium used by the station; implementations MAY <3>  include it in all Hello 
frames.  

http://go.microsoft.com/fwlink/?LinkId=90553
http://go.microsoft.com/fwlink/?LinkId=89909
http://go.microsoft.com/fwlink/?LinkId=89909


 

33  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  PHY_Type  

Type (1 byte):  This field MUST be set to 0x15.  

Length (1 byte):  This field MUST be set to 0x01.  

PHY_Type (1 byte):  A wireless responder MUST use this field to report the 802.11 physical 
medium in use per dot11PHYType in 802dot11 -MIB, as specified in [IEEE802.11 -2007]  
Appendix D. The following table shows the valid values.  

Value  Meaning  

0x00  Unknown  

0x01  FHSS 2.4 gigahertz (GHz)  

0x02  DSSS 2.4 GHz  

0x03  IR Baseband  

0x04  OFDM 5 GHz  

0x05  HRDSSS 

0x06  ERP 

0x07 ð 0xFF Reserved for future use.  

2.2.1.1.22   AP Association Table  

The AP Association Table attribute indicates that the responder is an AP  with an AP Association Table 

that lists wireless hosts that are associated with it and is willing to provide it if a QueryLargeTLV 
frame requests it. This attribute is mandatory for 802.11 access point responders; APs MUST include 
it in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field MUST be set to 0x16.  

Length (1 byte):  This field MUST be set to 0x00.  

2.2.1.1.23   Detailed Icon Image  

The presence of a Detailed Icon Image attribute indicates that the responder  has a Detailed Icon 
Image and is willing to provide it if a QueryLargeTLV requests it. A Detailed Icon Image is a high -
resolution graphical representation of the device running the responder, as opposed to an Icon 
Image  attribute, which is lower resolution. This attribute is optional; implementations MAY include it 

in Hello frames.  

http://go.microsoft.com/fwlink/?LinkId=89905


 

34  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

If a responder includes this attribute, it SHOULD also include the smaller Icon Image attribute. If 
space is restricted such  that only one icon image is available in the responder, the responder MUST 

return the Icon Image in the Hello frame if the image is less than or equal to 32,768 octets, or it 
MUST return this Detailed Icon Image attribute in the Hello frame if the icon im age is greater than 

32,768 octets and less than or equal to 262,144 octets.  

The Detailed Icon Image attribute MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field MUST be set to 0x18.  

Length (1 byte):  This field MUST be set to 0x00.  

2.2.1.1.24   Sees - List Working Set  

The Sees -List Working Set attribute specifies the maximum entry count in the responder's  sees- list 
database. This attribute is mandatory for responders that can only maintain a list of less than 2^16 
entries; such implementations MUST include it in all Hello frames. Responders that have capacity to 
maintain at least 2^16 entries SHOULD NOT in clude it. The absence of this attribute indicates that 

the responder supports at least 2^16 entries.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Max Entries  

Type (1 byte):  This field MUST be set to 0x19.  

Length (1 byte):  This field MUST be set to 0x02.  

Max Entries (2 bytes):  The maximum count, in network byte order, of RecveeDesc  entries 
(as specified in section 2.2.4.9 )  that may be stored in its sees - list database.  

2.2.1.1.25   Component Table  

The presence of the Component Table attribute indicates that the responder  has a Component Table 
that specifies a responder's internal components, allowing the mapper to generate a more accurate 
topology map, and that the responder is willing to provide it if a QueryLargeTLV requests it. 

Responder implementations in multifunctio n devices MUST include this attribute in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field MUST be set to 0x1A.  

Length (1 byte):  This field MUST be set to 0x00.  



 

35  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

2.2.1.1.26   Repeater AP Lineage  

The Repeater AP Lineage attribute specifies the address of the parent and may optionally hold the 
chain of parents up to the root of the 802.11 Distribution System, as specified in [IEEE802.11 -2007]  

section 5.2.2. A responder in an access point operating in repeater mode MUST use this attribute to 
provide the address of the parent (which MUST be the same as the reported BSSID  because this 
device is also a client) and each subsequent parent toward the root, if available.  

Responders in 802.11 access points MUST include this attribute in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Address Path to Root (variable)  

...  

Type (1 byte):  This field MUST be set to 0x1B.  

Length (1 byte):  This field MUST be set to a multiple of 6, with a maximum of 36.  

6 

12  
18  
24  
30  
36  
 

Address Path to Root (variable):  If the sender is the root of the 802.11 Distribution System, 
this field MUST be empty (not present). Otherwise, it MUST contain a list of up to six MAC 
addresses, where the first address is the parent AP address, the secon d address is that AP's 

parent, and so forth until either the root MAC address is reached or six addresses have been 
included.  

2.2.1.1.27   Repeater AP Table  

The Repeater AP Table attribute indicates that the responder  has the routing table that a responder 
is using for packets to addresses that are not directly associated, and that the responder is willing to 
provide it if a QueryLargeTLV requests it. If the access point is a repeater AP as part of a Wireless 
Distribut ion System, this information permits the mapper to generate a more accurate topology 
map. This attribute is mandatory for responders in 802.11 repeater access points; such 
implementations MUST include it in all Hello frames.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field MUST be set to 0x1C.  

Length (1 byte):  This field MUST be set to 0x00.  

http://go.microsoft.com/fwlink/?LinkId=89905


 

36  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

2.2.2   Large Data Properties  

The QueryLargeTlvResp  frame, as specified in 2.2.4.14 , is used to return (portions of) data 
properties that are declared as zero length in Hello frames.  

2.2.2.1   Icon Image  

The property data MUST be an icon image, at most 32,768 bytes long. The image MUST be in any 
image format that has a unique signature at the beginning, so that the receiver can detect the 
image format purely by inspecting the image. There are many file for mats that meet this 
requirement, including GIF and JPEG. A responder supports this property MAY use any such format, 
and the mapper MAY <4>  recognize any such formats it chooses. If the image is not in a format that 

the mapper recogni zes, the mapper MUST use a default image that it has, in place of the one it 
received from the responder.  

2.2.2.2   Friendly Name  

The Friendly Name property contains a non -NULL- terminated UCS -2LE string that identifies the 
device's friendly name . This property's value MUST be between 2 and 64 bytes (1 and 32 
characters) in length.  

2.2.2.3   Hardware ID  

The Hardware ID property contains a non -NULL- terminated UCS -2LE string. This information MUST 
come from the UPnP device description phase, as specified in [UPnP]  section 2.1. <5>  

The Hardware ID MUST follow these formatting rules:  

Á Characters with an ASCII value less than 0x20 are not allowed.  

Á Characters with an ASCII value greater than 0x80 are not allowed.  

Á Commas are not allowed.  

Á All spaces " " MUST be replaced with an underscore character "_".  

Note that the string MUST NOT be null - terminated.  

The maximum length of the string is 200 characters (400 octets) and MUST be provided in UCS -2LE 

format.  

2.2.2.4   AP Association Table  

A wireless access point responder  uses this data object to report the wireless hosts that are 
associated with it. This information is particularly useful for discovering legacy wireless devices that 
do not implement the responder. Additionally, it allows the mapper to conclusively match w ireless 
hosts that are associated with the same access point via different BSSIDs (for example, one for each 

supported band).  

The table MUST contain 0 or more entries for associated stations, where each entry MUST have the 
following format.  

http://go.microsoft.com/fwlink/?LinkId=90553


 

37  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

MAC_address_of_wireless_host  

...  Max_Oper_Rate  

PHY_type  Reserved  

MAC_address_of_wireless_host (6 bytes):  MAC address of the particular 802.11 station 
that is associated with the AP.  

Max_Oper_Rate (2 bytes):  The maximum operational data rate at which the selected radio 
can run to the given host, in network byte order. The data rate MUST be encoded in units of  
0.5 Mbps.  

PHY_type (1 byte):  The physical medium type for the given host. Valid values are defined in 
section 2.2.1.1.21 . 

Reserved (1 byte):  MUST be set to zero when sent and MUST be ignored on receipt.  

If the size of the actual AP Association Table exceeds 409 entries, the responder MUST make only 
409 entries available in this data object. It is up to the implementer to choose which stations t o 
make available in that case.  

2.2.2.5   Detailed Icon Image  

The Detailed Icon Image property's data MUST be a high - resolution icon image, at most 262,144 

bytes in length. The image format requirements are the same as specified in section 2.2.2.1 .  

2.2.2.6   Component Table  

The Component Table data object is used by multifunction devices such as APs to report their 
internal components.  

The table MUST be at most 4096 bytes in size and contain 0 or more entries for the sender's 
components, where each entry MUST begin with a header that is 2 octets in length.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Version  Reserved  

Version (1 byte):  This field MUST be set to 0x01.  

Reserved (1 byte):  MUST be set to zero when sent and MUST be ignored on receipt.  

2.2.2.6.1   Component Descriptors  

The Component Table  header MUST be followed by an arbitrary number of component descriptors, 
each carrying a mandatory header.  



 

38  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  

Type (1 byte):  This field is the component type. The following table shows the valid values.  

Value  Meaning  

0x00  A bridge that interconnects all identified wireless local area network (WLAN) and LAN 

segments. It is assumed that the responder reporting the Component Table  attribute is 

connected directly into this bridge.  

0x01  This field is the 802.11 access point.  

0x02  This field is a built - in switch. If a bridge component (type 0x00) also exists, it indicates 

that this switch connects directly into the bridge. If a brid ge component does not exist, it 

indicates that the switch is connected directly to the built - in responder.  

Length (1 byte):  This field specifies the length (in octets) of the descriptor payload 
immediately following this header.  

2.2.2.6.1.1   Bridge Component Descriptor  

A bridge component descriptor with Type  value 0x00 MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Behavior  

Type (1 byte):  This field MUST be set to 0x00.  

Length (1 byte):  This field MUST be set to 0x01.  

Behavior (1 byte):  This field identifies the behavior of the bridge. Valid values are the 
following.  

Value  Meaning  

Hub  

0x00  

All packets transitioning through the bridge are seen on the responder.  

Switch  

0x01  

Packets from LAN or WLAN are seen only on the responder if they are 

broadcast or explicitly targeted at the responder.  

Internal_hub_switch  

0x02  

Packets transitioning through the bridge are seen on the responder; 

however, the bridge learns addresses like a switch, provided that they 

initiate on components other than the responder.  

2.2.2.6.1.2   802.11 Access Point Component Descriptor  

An 802.11 AP component descriptor with Type  value 0x01 MUST have the following format.  



 

39  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Max_Oper_Rate  

PHY_type  Mode  BSSID  

...  

Type (1 byte):  This field MUST be set to 0x01.  

Length (1 byte):  This field MUST be set to 0x0A.  

Max_Oper_Rate (2 bytes):  The maximum operational data rate at which the radio can 
function, encoded in units of 0.5 Mbps in network byte order.  

PHY_type (1 byte):  This field is the physical medium type. Valid values are defined in section 
2.2.1.1.21 . 

Mode (1 byte):  This field specifies how the radio connects to the wireless network. Valid values 

are defined in section 2.2.1.1.5 . 

BSSID (6  bytes):  The MAC address of the AP that is hosting the SSID.  

2.2.2.6.1.3   Built - in Switch Component Descriptor  

A built - in switch component descriptor with Type  value 0x02 MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Length  Link_Speed  

...  

Type (1 byte):  This field MUST be set to 0x01.  

Length (1 byte):  This field MUST be set to 0x04.  

Link_Speed (4 bytes):  The maximum speed of the switch, in units of 100 bps in network byte 
order.  

2.2.2.7   Repeater AP Table  

The Repeater AP Table  data object is used by repeater access points to report station routing 
information.  

The table MUST contain a list of 0 or more entries where each entry represents a host and AP pair. 

Each table entry is 12 octets in length, and the format MUST be the following.  



 

40  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

MAC_address_of_destination_host  

...  MAC_address_of_next_hop_access_point  

...  

MAC_address_of_destination_host (6 bytes):  This field specifies the MAC address of the 
particular 802.11 station that is associated with another AP.  

MAC_address_of_next_hop_access_point (6 bytes):  This field MUST be one of the BSSID 
addresses that are listed in the AP Association Table  through which the AP can reach the 
destination host. The impleme nter is free to choose any such BSSID address.  

If the size of the actual Repeater AP Table exceeds 256 entries, the responder MUST make only 256 
entries available in this property. It is up to the implementer to choose which host and AP pairs are 

made avai lable in that case.  

2.2.3   Base Specification  

All Link Layer Topology Discovery Protocol implementations MUST use and accept the following base 
specification format.  

2.2.3.1   Demultiplex Header Format  

The Demultiplex header format is defined as follows.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Version  Type_of_Service  Reserved  Function  

Version (1 byte):  This field specifies the version of the Demultiplex header. This field MUST be 
set to 0x01.  

Type_of_Service (1 byte):  This field specifies the intent of the sender. When a sender sends a 
Discover frame with Type_of_Service set to Topology discovery (0x00)  or Quick discovery 
(0x01), any Hello frame sent by a responder in response MUST have the Type_of_Service field 
set to either Topology discovery (0x00) or Quick discovery (0x01).  

Value  Meaning  

0x00  Topology discovery  

0x01  Quick discovery  

0x02  QoS diagnostics (Network Test and Cross Traffic Analysis)  

Reserved (1 byte):  MUST be set to zero when sent and MUST be ignored on receipt.  



 

41  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Function (1 byte):  This field is the type of message for a given type of service. The following 
functions are vali d for service type 0x00.  

Value  Meaning  

0x00  Discover  

0x01  Hello  

0x02  Emit  

0x03  Train  

0x04  Probe  

0x05  Ack  

0x06  Query  

0x07  QueryResp  

0x08  Reset  

0x09  Charge  

0x0A  Flat  

0x0B  QueryLargeTlv  

0x0C  QueryLargeTlvResp  

The following functions are valid for service type 0x01.  

Value  Meaning  

0x00  Discover  

0x01  Hello  

0x08  Reset  

The following functions are valid for service type 0x02.  

Value  Meaning  

0x00  QosInitializeSink  

0x01  QosReady  

0x02  QosProbe  

0x03  QosQuery  

0x04  QosQueryResp  

0x05  QosReset  



 

42  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Value  Meaning  

0x06  QosError  

0x07  QosAck  

0x08  QosCounterSnapshot  

0x09  QosCounterResult  

0x0A  QosCounterLease  

2.2.4   Topology Discovery Tests and Quick Discovery  

2.2.4.1   Base Header Format  

This base header MUST be used when the Type of Service value in the Demultiplex  header is set to 

0x00 (Topology discovery) or 0x01 (Quick discovery).  

The Base header MUST be the following.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Real_Destination_Address  

...  Real_Source_Address  

...  

Sequence_Number_or_XID  

Real_Destination_Address (6 bytes):  This field specifies the intended destination's real MAC 
address .  

Real_Source_Address (6 bytes):  This field specifies the sender's real MAC address. A sender 
MUST set the real source and destination MAC addresses to its own MAC address and its 
intended destination MAC address, respectively. These fields are required because the source 
and destination address fields of the Ethernet header are rewritten by some network devices 
and thus may not survive an end - to -end transmission.  

Sequence_Number_or_XID (2 bytes):  If the frame is a Discover frame or a Reset frame, this 

field MUST contain a transaction ID (XID). Otherwise, it MUST contain a sequence number.  

A sequence number, in network byte order, correlates a response to a specific request and 
increments using ones -complement arithmetic. The sequence number ensures reliability of 

acknowledged request fram es in the protocol, that is Emit, Charge, Query, and QueryLargeTlv 
frames.  Emit and Charge frames can be both acknowledged and unacknowledged. 
Acknowledged frames MUST use nonzero sequence numbers.  Unacknowledged frames, that 
is Emit, Charge, Hello, Trai n, and Probe frames, are frames for which the protocol does not 

guarantee reliability and MUST use a sequence number of zero.  



 

43  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

An XID is used to uniquely identify the mapper or enumerator session. For a Discover Frame, 
the mapper MUST randomly generate two XIDs at initialization: one MUST be used for 

topology discovery tests, and one MUST be used for quick discovery.  

With stable storage, a XID value for quick discovery SHOULD be sequential to the previous 

XID value for quick discovery and a XID value for to pology discovery SHOULD be sequential 
to the previous XID value for topology discovery; without stable storage, XID values MAY be 
assigned at random. For a Reset frame, the XID MUST be set to zero. Sequential XIDs are 
preferable, because they reduce the pr obability of incorrect association with a previous 
session.  

2.2.4.2   Discover Upper - Level Header Format  

A Discover frame is broadcast by an enumerator to all responders to initiate quick discovery and 
cause responders to start responding with Hello frames.  

The Discover header MUST immediately follow the Base header.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Generation_Number  Number_of_Stations  

Station_List (variable)  

...  

Generation_Number (2 bytes):  This field contains an unsigned integer in network byte order. 
This field allows the mapper to negotiate a generation number with the responders that 
respond to a Discover frame. The number allows the mapper to generate a uniq ue range of 
MAC addresses that falls between 00 -0D-3A-D7-F1-40 and 00 -0D-3A-FF-FF-FF (the topology 

discovery address pool reserved for the Microsoft Corporation as specified in [IEEE OUI] ), that 
does not conflict with those from a recent topology discovery test.  

Number_of_Stations (2 bytes):  This field specifies an unsigned integer. This field indicates 

the number of station addresses that are present in the following station list.  

Station_List (variable):  This field MUST be a sequence of 6 -octet MAC addresses where the 
number of addresses in the sequence is given by the Number_of_Stations  field.  

2.2.4.3   Hello Upper - Level Header Format  

Hello frames MUST be sent to the Ethernet all -ones broadcast address so all switches can learn the 

source port of all responders. The Real Destination Address  field in the Base header of the Hello 
frame SHOULD be set to FF -FF-FF-FF-FF-FF. 

The Hello header following a Base header MUST be the following.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Generation_Number  Current_Mapper_Address  

http://go.microsoft.com/fwlink/?LinkId=89895


 

44  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

...  

Apparent_Mapper_Address  

...  TLV_List (variable)  

...  

Generation_Number (2 bytes):  This field specifies an unsigned integer that indicates the 
responder's current generation number.  

Current_Mapper_Address (6 bytes):  The active mapper's real MAC address as given in the 

Real Source Address  field in the Base header of the Discover frame that initiated the active 
topology mapping request. This field MUST be set to zero if there is no act ive topology 
mapping session.  

Apparent_Mapper_Address (6 bytes):  This field specifies the mapper's MAC address as given 
in the Source Address  field in the Ethernet header of the Discover frame that initiated the 
active topology mapping request. This field MUST be set to zero if there is no active topology 

mapping session.  

TLV_List (variable):  This field specifies properties (as specified in se ction 2.2.1.1 ) that the 
responder knows about the network interface on which it is running. A TLV MUST NOT occur in 
the list more than once.  

2.2.4.4   Emit Upper - Level Header Format  

A mapper sends an Emit frame to a responder to request that the responder transmit a set of Train 

or Probe frames, each with specified source and destination MAC addresses , after a specified pause 
time, and optionally that the responder immediately acknowledge the Emit frame with an Ack frame. 
The pause is used because some switches require approximately 150 milliseconds to update their 

port filtering databases, so back - to -back Train and Probe frames are not forwarded correctly.  

Emit frames also carry inherent charge. See section 3.6.5.2  for details on how charge is 
accumulated from Emit frames.  

The Emit frame following a  Base header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Num_Descs  EmiteeDescs (variable)  

...  

Num_Descs (2 bytes):  This field specifies the unsigned integer count, in network byte order, 
of the number of EmiteeDesc items in the EmiteeDescs  field. This field's value MUST be in 
the range 1 to 105.  

EmiteeDescs (variable):  This field specifies a list of EmiteeDesc items, where each 
EmiteeDesc item is a 14 -octet structure.  



 

45  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Pause Source_Address  

...  

Destination_Address  

...  

Type (1 byte):  This field specifies the type of packet to emit. The following table shows 
valid values.  

Value  Meaning  

0x00  Train  

0x01  Probe  

Pause (1 byte):  This field specifies the number of milliseconds to pause before the 
associated packet is emitted. The sum of t he Pause values in all EmiteeDesc entries in 
an Emit frame MUST NOT exceed 1 second.  

Source_Address (6 bytes):  This field specifies the source MAC address of the packet to 
emit. The source MAC address MUST be either the responder's real MAC address to 
whi ch the frame is sent or a MAC address from the special LLTD ïspecific MAC address 
range 0x000D3AD7F140 to 0x000D3AFFFFFF.  

Destination_Address (6 bytes):  This field specifies the destination MAC address of the 
packet to emit. The destination address MUST NOT be a multicast address because 

these addresses could amplify traffic.  

2.2.4.5   Train Upper - Level Header Format  

A mapper sends an Emit request to a responder, sometimes commanding it to send the Train frame. 
This Train frame is intended to allow a switch that is connected to the responder to learn the origin 
of a MAC address. The Train frame is ignored by all responders on reception.  

The Train frame has no upper - level header other than the Base header itself.  

2.2.4.6   Probe Upper - Level Header Format  

A mapper sends an Emit request to a responder, sometimes commanding it to send a Probe frame 
to another responder. This Probe frame is meant to be seen and recorded by that responder.  

The Probe frame has no upper - level header other than the Base header itself.  

2.2.4.7   Ack Upper - Level Header Format  

A responder sends an Ack frame to a mapper in response to an Emit request that contains a nonzero 
sequence number.  



 

46  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Ack frames are not acknowledged, but the Sequence Number  field in the Base  header MUST be 
nonzero; that is, the sequence number of the request that is being acknowledged.  

The Ack frame has no upper - level header other than the Base header itself.  

2.2.4.8   Query Upper - Level Header Format  

A mapper sends a Query frame to a responder to retrieve Probe events that the responder has 
observed on the wire.  

The Query frame has no upper - level header other than the Base header itself.  

The sequence number in the base header MUST be nonzero for Query frames, because the purpose 
of the Query frame is to elicit a QueryResp frame response from a responder. Responders ignore 
Query frames with the sequence number set to zero.  

2.2.4.9   QueryResp Upper - Level Header Format  

A responder sends a QueryResp frame to a mapper  in response to a Query request. It lists which 
recordable events (such as Ethernet source and Ethernet destination addresses from Probe frames 
that the responder has observed on the wire during a session) are available since the previous 
Query frame. Quer yResp frames are not acknowledged but MUST set the Base  header's Sequence 

Number  field to match the Query frame to which they are generated in response.  

The QueryResp frame that follows a Base header MUS T have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

M E Num_Descs  RecveeDescs (variable)  

...  

M (1 bit):  This field MUST be set if there are more RecveeDescs  than will fit in this frame.  

E (1 bit):  This field MUST be set if the responder is unable to store a RecveeDesc record due to 
lack of memory.  

Num_Descs (14 bits):  This field specifies the count of returned RecveeDesc  structures that 
are included in the frame.  

RecveeDescs (variable):  This field specifies a list of RecveeDesc  items, where each Recvee 
item is formatted as specified in the following table. Responders that are sending this frame 
MUST NOT merge identical recordable events (RecveeDescs items) even if they occur multiple 
times. The ordering of RecveeDesc items in this frame MUST represent arrival - time ordering.  

Each RecveeDesc item MUST have the following 20 -octet structure.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Real_Source_Address  



 

47  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

...  

EthernetSource_Address  

...  Ethernet_Destination_Address  

...  

Type (2 bytes):  This field specifies the recorded protocol type. The following table shows 
the valid values.  

Value  Meaning  

0x00  Probe  

0x01  Address Resolution Protocol (ARP), as specified in [RFC826] , or Internet Message 

Control Protocol for the Internet Protocol Version 6 (ICMPv6) Neighbor Discovery, as 

specified in [RFC2461] . 

Real_Source_Address (6 bytes):  This field specifies the real source MAC address.  

For ARP, this field corresponds to the ar$sha  field in an ARP response packet, as 
specified in [RFC826] . 

For ICMPv6, this corresponds to the optional target link - layer address option in a 

neighbor discovery packet, as specified in [RFC24 61]  section 4.  

EthernetSource_Address (6 bytes):  This field specifies the source MAC address in the 
Ethernet frame.  

Ethernet_Destination_Address (6 bytes):  This field specifies the destination MAC 

address in the Ethernet frame.  

2.2.4.10   Reset Upper - Level Header Format  

A mapper broadcasts a Reset frame to all responders to abort a mapping generation either because 
someone else is mapping or because mapping is over.  

The Reset frame has no upper - level header other than the Base header itself.  

2.2.4.11   Charge Upper - Level Header Format  

A mapper sends a Charge frame to a responder  to match the number of frames and amount of bytes 
that is to be requested in an upcoming Emit frame. This action is intended to prevent bandwidth 

amplification attacks. A charge frame is not required if the upcoming Emit frame has enough 
inherent charge t o satisfy its own request, for example, if the Emit frame requests that a single 

train/probe frame be transmitted.  

The Charge frame has no upper - level header other than the Base header itself.  

2.2.4.12   Flat Upper - Level Header Format  

A responder sends a Flat frame to a mapper in response to the following:  

http://go.microsoft.com/fwlink/?LinkId=90498
http://go.microsoft.com/fwlink/?LinkId=90358
http://go.microsoft.com/fwlink/?LinkId=90498
http://go.microsoft.com/fwlink/?LinkId=90358


 

48  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á An Emit frame that has a nonzero sequence number and requires more charges than the 

responder has. The Flat frame tells the mapper to retry the Emit request, preceded by a fixed 

count of Charge frames to build up the needed charge.  

Á A Charge frame that has a nonzero sequence number, which effectively forces the responder to 

report its current charge count.  

Such a charge frame MUST contain enough padding to satisfy the charge required for the responder 
to send the Flat Frame response.  

The Flat frame following  a Base header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Current_Transmit_Credit_in_Bytes  

CTC_in_Packets  

Current_Transmit_Credit_in_Bytes (4 bytes):  (CTC) This field specifies the value of the CTC 
byte counter at the responder, in network byte order.  

CTC_in_Packets (1 byte):  This field specifies the value of the CTC packet counter at the 
responder, in network byte order.  

2.2.4.13   QueryLargeTlv Upper - Level Header Format  

The QueryLargeTlv frame allows the mapper to query a responder for TLV  data that is too large to 
be included in a Hello frame. The inclusion of a zero - length TLV in the Hello frame indicates that 

such data is available and that the responder is willing to provide the data in a QueryLargeTlvResp 
response. Each QueryLargeTlv r equest results in a maximum of one QueryLargeTlvResp response. 
Repeated QueryLargeTlv requests have to be made for sufficiently large TLVs that do not fit in a 

single QueryLargelvVResp response frame.  

The sequence number in the base header MUST be nonzero for QueryLargeTlv frames, because the 
purpose of the QueryLargeTlv frame is to elicit a QueryLargeTlvResp frame response from a 
responder. Responders ignore QueryLargeTlv frames with the sequence number set to zero.  

The QueryLargeTlv frame that follows a B ase header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Type  Offset  

Type (1 byte):  This field specifies the type of TLV that is requested. It MUST be one of the 
following values.  

Value  Meaning  

0x0E  Icon image (section 2.2.2.1 ) 

0x11  Friendly Name (section 2.2.2.2 )  



 

49  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Value  Meaning  

0x13  Hardware ID (section 2.2.2.3 ) 

0x16  AP Assoc iation Table (section 2.2.2.4 )  

0x18  Detailed Icon Image (section 2.2.2.5 )  

0x1A  Component Table (section 2.2.2.6 )  

0x1C  Repeater AP Table (section 2.2.2.7 ) 

Offset (3 bytes):  This field specifies the offset in octets, in network byte order, within the TLV 
data to query.  

2.2.4.14   QueryLargeTlvResp Upper - Level Header Format  

A responder sends the QueryLargeTlvResp frame to a mapper  in response to a QueryLargeTlv 
request. It returns up to the maximum number of octets that fit into a response frame over the 
Ethernet media, starting from a requested offset.  

The QueryLargeTlvResp header MUST immediately follow the Base header and have t he following 

format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

M R Length  Data (variable)  

...  

M (1 bit):  This field MUST be set if there is more data than will fit in this frame.  

R (1 bit):  MUST be set to zero when sent and MUST be ignored on receipt.  

Length (14 bits):  This field specifies the octet count, in network byte order, of data that is 
returned in the QueryLargeTlvResp frame. This field MUST be set to 0x00 if the QueryLargeTlv 
reque st is for an unsupported TLV type.  

Value  Meaning  

QueryLargeTlv  

0x00  

An unsupported TLV type  

Data (variable):  This field specifies the information that was requested in the QueryLargeTlv 
frame. The format of the data objects are specified in section 2.2.2 . This field MUST contain a 
portion of the requested data object, starting at the offset requested in the QueryLargeTlv 

frame, and contain as many bytes of the data object as will fit in the frame.  



 

50  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

2.2.5   QoS Diagnostics Specification for Network Test  

2.2.5.1   Base Header Format  

This Base header MUST be used when the Type of Service value in the Demultiplex  header is set to 
0x02 (QoS diagnostics) and the Function value is in the range 0x00 (QosInitializeSink) to 0x07 
(QosAck ).  

The Base header format MUST be the following.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Real_Destination_Address  

...  Real_Source_Address  

...  

Sequence_Number  

Real_Destination_Address (6 bytes):  This field specifies the intended destination's real MAC 
address.  

Real_Source_Address (6 bytes):  This field specifies the sender's real MAC address.  

A sender MUST set the real source and destination MAC addresses to its own MAC address 
and its intended destination MAC address, respectively. This field is required because some 
network devices rewrite t he Source Address  and Destination Address  fields of the 
Ethernet header and thus may not survive an end - to -end transmission.  

Sequence_Number (2 bytes):  This field specifies the sequence number that correlates a 
response (QosReady, QosQueryResp, QosError, or QosAck) to a specific request 

(QosInitializeSink, QosProbe, QosQuery, or QosReset). The correlation provided by the 
sequence number enables request senders to ensure a response is received for a given 
request.  

2.2.5.2   QosInitializeSink Upper - Level Header Format  

A controller sends the QosInitializeSink frame to a sink to set up a network test session.  

The QosInitializeSink header that follows the Base header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Interrupt_Mod  

Interrupt_Mod (1 byte):  This field specifies the interrupt moderation  requirement of a 
network test session. The following table shows the possible values.  



 

51  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Value  Meaning  

0x00  Disable interrupt moderation.  

0xFF Use the existing interrupt moderation setting.  

2.2.5.3   QosReady Upper - Level Header Format  

A sink sends a QosReady frame to a controller, in reply to a QosInitializeSink frame, to notify the 
controller that a network test session is successfully established.  

The QosReady header that follows a Base header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Sink_Link_Speed  

Performance_Counter_Frequency  

...  

Sink_Link_Speed (4 bytes):  This field specifies the responder's link speed in 100 -bit -per -
second units in network byte order.  

Performance_Counter_Frequency (8 bytes):  This field allows a responder to identify how 

fast its time stamp counters run in ticks  per second in network byte order.  

2.2.5.4   QosProbe Upper - Level Header Format  

A controller sends a QosProbe frame to a sink and by a sink back to a controller. It carries time 

stamp values that an application can use on the controller to calculate network bandwidth.  

The QosProbe header that follows the Base header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Controller_Transmit_Timestamp  

...  

Sink_Receive_Timestamp  

...  

Sink_Transmit_Timestamp  

...  



 

52  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Test_Type  Packet ID  T 802.1p Value  Payload  

...  

Controller_Transmit_Timestamp (8 bytes):  This field specifies the time stamp, in network 
byte order, of the controller on transmission, in units per Performance Counter Frequency (as 
specified in section 2.2.1.1.11 ).  

Sink_Receive_Timestamp (8 b ytes):  This field specifies the time stamp, in network byte 
order, of the sink on receipt in units per Performance Counter Frequency (as specified in 
section 2.2.1.1.11 ). This field MUST be set to zero in a timed probe test. In a probegap test, 
this field MUST be set to zero on transmission from the controller.  

Sink_Transmit_Timestamp (8 bytes):  This field specifies the time stamp, in network byte 
order, of the sink on transmission in units per Performa nce Counter Frequency (as specified in 

section 2.2.1.1.11 ). This field MUST be set to zero in a timed probe test. In a probegap test, 

this field MUST be set to zero on transmission from the controller.  

Test_Type (1 byte):  This field specifies the test type in which this packet is involved. The 
following table shows the possible values.  

Value  Meaning  

0x00  Timed probe.  

0x01  Probegap originating from the controller.  

0x02  Probegap originating from the sink.  

Packet ID (1 byte):  The controller MUST assign an ID to the packet so it can be uniquely 
identified when it is returned in either a QoSProbe  or QosQueryResp .  

T (1 bit):  This bit indicates whether or not the encapsulat ing Ethernet frame for the QueryProbe 
frame returned by a sink contains a tag header as specified in [IEEE802.1Q]  section 9. The 
Tag Control Information portion of the tag header is set to all ze ros except the user_priority 

field, whose value is set from the 802.1p value. This value is only valid for probegap tests 
(Test_Type = 0x01), and otherwise MUST be set to zero when sent and ignored on receipt.  

802.1p Value (7 bits):  If the T flag is set, this field contains the value to be set as the 
user_priority field of the Tag Contol Information portion of the tag header as specified in 
[IEEE802.1Q]  section 9 for each QosProbe packet that is reflected to the controller in the case 
of a probegap test. If the T flag is not set, this field MUST be set to zero when sent and MUST 
be ignored on receipt.  

Payload (5 bytes):  This field specifies arbitrary data that is used to pad the frame to the 
corr ect frame size. In a probegap experiment, the payload content that a sink receives MUST 
be duplicated on the sink's send path.  

2.2.5.5   QosQuery Upper - Level Header Format  

A controller sends a QosQuery frame to a sink following the last QosProbe frame in a timed probe 
test.  

http://go.microsoft.com/fwlink/?LinkId=89909
http://go.microsoft.com/fwlink/?LinkId=89909


 

53  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

The QosQuery frame has no upper - level header other than the Base header itself. The sequence 
number MUST be nonzero.  

2.2.5.6   QosQueryResp Upper - Level Header Format  

A sink sends the QosQueryResp frame to the controller, in response to a QosQuery frame. It lists 
QosProbe events (also known as QosEventDesc  structures) that have been observed since the 
previous QosQuery frame. QosQueryResp frames MUST NOT be acknowledged. The Base header's  
Identifier  field of the QosQueryResp  MUST match the QosQuery frame  that is generated in 
response to the QosQueryResp frame. The ordering of QosEventDesc items in this frame MUST 
represent the ordering of the arrival time.  

The QosQueryResp header that follows the Base header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

R E Num Events  QosEventDesc list (variable)  

...  

R (1 bit):  This field MUST be set to 0x00 and MUST be ignored upon receipt.  

E (1 bit):  This field MUST be set if the responder is unable to allocate enough memory for one 
or more QosEventDesc  structures.  

Num Events (14 bits):  This field specifies the count, in network byte order, of QosEventDesc 
items that follow. If the E bit is set, this  field MUST be zero.  

QosEventDesc list (variable):  This field specifies a set of QosEventDesc  items, where each 

QosEventDesc  item is an 18 -octet structure. If the Num Events  field is zero, this field MUST 
NOT be present.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Controller_Transmit_Timestamp  

...  

Sink_Receive_Timestamp  

...  

Packet_ID  Reserved  

Controller_Transmit_Timestamp (8 bytes):  This field specifies the time stamp, in 
network byte order, of the controller on event transmission in units per Performance 

Counter Frequency.  

Sink_Receive_Timestamp (8 bytes):  This field specifies the time stamp, in network 
byte order, of the sink on event reception in units per Performance Counter Frequency.  



 

54  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Packet_ID (1 byte):  This field specifies the value of the Packet ID  field from the 
QosProbe frame that generated the eve nt.  

Reserved (1 byte):  This field is not currently used, but it exists only to pad the structure 
to an even size. This field MUST be set to 0 on transmit and ignored on receipt.  

2.2.5.7   QosReset Upper - Level Header Format  

A controller sends a QosReset frame to a sink to terminate a network test session.  

The QosReset frame has no upper - level header other than the Base header itself.  

2.2.5.8   QosError Upper - Level Header Format  

A sink sends the QosError frame to notify a controller that a network test session cannot be 

initiated.  

The QosError header that follows the Base header MUST have the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Error_Code  

Error_Code (2 bytes):  This field specifies an error code that identifies the reason that a 

request failed, resulting in this response. The following table shows valid error code values.  

Value  Meaning  

0x00  Insufficient resources. The responder ran out of resources while attempting to set up the 

session.  

0x01  Busy; try again later. The responder has reached its session limit.  

0x02  Interrupt moderation not available. The interrupt moderation requirement cann ot be 

satisfied, or the ability to control it is not available.  

2.2.5.9   QosAck Upper - Level Header Format  

A sink sends the QosAck frame to a controller to notify it that a QosReset request has been 
processed.  

The QosAck frame has no upper - level header other than the Base header itself.  

2.2.6   QoS Diagnostics Specification for Cross - Traffic Analysis  

2.2.6.1   Base Header Format  

This Base header MUST be used when the Type of Service value in the Demultiplex  header is set to 
0x02 (QoS diagnostics) and the Function value is in the range 0x08 ( QosCounterSnapshot ) to 0x0A 

(QosCounterLease).  

The Base header format MUST be the following.  



 

55  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Real_Destination_Address  

...  Real_Source_Address  

...  

Sequence Number  

Real_Destination_Address (6 bytes):  This field specifies the intended destination's real MAC 
address. This field allows querying of per -network interface counters in wireless access points. 
For these devices, this address field MUST identify the BSSID.  

Real_Source_Address (6 bytes):  This field specifies the sender's real MAC address. This field 

is necessary because the Source Address  field of the Ethernet header is translated by some 
network devices and thus may not survive an end - to -end transmission.  

Sequence Number (2 bytes):  This field specifies the sequence number that correlates a 
response to a specific request.  

For function value 0x08, this field MUST be nonzero.  

2.2.6.2   QosCounterSnapshot Upper - Level Header Format  

A cross - traffic analysis initiator sends a QosCounterSnapshot frame to a responder to retrieve its 
history of network performance counters.  

The QosCounterSnapshot header MUST immediately follow the Base header, and it MUST have the 
following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

History_Size  

History_Size (1 byte):  This field specifies the maximum number of most recent full 4 - tuples to 
return from the history.  

2.2.6.3   QosCounterResult Upper - Level Header Format  

A responder sends a QosCounterResult frame to a cross - traffic analysis initiator in response to a 
QosCounterSnapshot  frame.  

At most, each QosCounterResult frame reports as many full 4 - tuple snapshots (see Snapshot_List 
definition following the QosCounterResult header illustration) as are requested in the preceding 
QosCounterSnapshot request. The sub -second snapshot (section 3.8.5.2 ) is also returned in the 
QosCounterResult frame.  

The QosCounterResult header immediately follows the Base header, and it MUST have the following 
format.  



 

56  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Subsecond_Span  Byte_Scale  Packet_Scale  History_Size  

Snapshot_List (variable)  

...  

Subsecond_Span (1 byte):  This field specifies the time span (expressed as 1/256ths of a 
second) since the last sampling interval, taken at the time that the QosCounterSnapshot 
request is received. A value of zero means that the time span is less than 1/256 of a second 
(approximate ly 3.9 milliseconds).  

Byte_Scale (1 byte):  This field's value MUST be in the range 0 to 255, where a value of n 
indicates that all byte counters are expressed in units of (n+1) kilobytes.  

Packet_Scale (1 byte):  This field's value MUST be in the range 0 t o 255, where a value of n 

indicates that all packet counters are expressed in units of (n+1) packets.  

History_Size (1 byte):  This field specifies the number of full 4 - tuples that the responder can 
return. This number MUST NOT include the sub -second snapsh ot that is taken when the 
QosCounterSnapshot request is received (section 3.8.5.2 ).  

Snapshot_List (variable):  This field MUST include the 4 - tuple snapshots that were counted by 
the History Size  field, p lus the sub -second snapshot. Entries in the snapshot list MUST be 
arranged starting with the oldest 4 - tuple snapshot and ending with the sub -second 4 - tuple 

snapshot.  

Each snapshot has the following format.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Bytes_Received  Packets_Received  

Bytes_Sent  Packets_Sent  

Note   A 1,500 -byte Ethernet frame is large enough to fit 184 entries, which is more than 3 minutes 
of historical data.  

2.2.6.4   QosCounterLease Upper - Level Header Format  

A cross - traffic analysis initiator broadcasts a QosCounterLease frame to all responders to request 

that they start collecting the network performance counters that are returned in the 
QosCounterResult  frame.  

The QosCounterLease frame has no upper - level header other than the Base header itself.  



 

57  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3   Protocol Details  

As described in section 1.3 , this protocol defines the following roles:  

Á Enumerator : This role MAY <6>  be supported by LLTD implementations.  

Á Mapper : This role MAY <7>  be supported by LLTD implementations. If supported, the 

implementation MUST also support the Enumerator role.  

Á QoS Controller : This role MAY <8>  be supported by LLTD implementations. If supported, the 

implementation MUST also support the Enumerator role.  

Á Cross -Traffic Analysis Initiator : This role MAY <9>  be supported by LLTD implementations. If 

supported, the implementation MUST also support the Enumerator role.  

Á Responder  (Quick Discovery) : This role MUST be supported by LLTD implementations.  

Á Responder (Topology Discovery) : This role MUST be supported by LLTD implementations.  

Á QoS Sink : This role MUST be supported by LLTD implementations.  

Á Responder (QoS Cross -Traffic) : This role MUST be supported by LLTD implementations.  

Each role is described in the following sections .  

An implementation MUST be able to execute all roles that it supports at the same time, but only as 
allowed by the following limitations and dependencies among the different roles:  

Á An initiator (enumerator, mapper, QoS controller, or Cross -Traffic Analys is initiator) MUST at the 

same time act as responder (Quick Discovery, Topology Discovery, QoS Sink, or QoS Cross -
Traffic).  

Á All responder roles MUST be able to execute simultaneously, with the exception that the state 

machine of the Quick Discovery respon der impacts the Topology Discovery as specified in the 

corresponding sections (see specification of Session Table in sections 3.5.1  and 3.6.1 ). 
Specifically, the Topology Discovery responder is associated with the mapper that is selected by 

the Quick Discovery responder as the current mapper (see section 3.5.5.1 ).  

This specification covers pr ocessing rules for error conditions, such as out -of -memory conditions, to 
ensure that all roles maintain a consistent state. However, error conditions in one role may impact 
the functionality of other roles, including the ability to discover all LLTD -capab le stations on the 
network.  

3.1   Enumerator Details  

This section details the role of an enumerator that is used in LLTD quick discovery. An enumerator 
seeks to discover all LLTD -capable stations (responders ) on the network. The enumerator starts by 
broadcasting a Discover frame. This frame contains a set of responder MAC addresses that the 
enumerator has seen (initially the empty set) and an XID value that helps all responders detect an 
enumerator that has r eset itself without notifying other responders via the Reset frame. A station 

MUST NOT have more than one instance of an enumerator active at any time.  

An important aspect of quick discovery is avoiding the network overload that is caused by either a 

very large network or one of the more malicious mappers. The RepeatBAND algorithm (as specified 
in section 3.5.6.2 ) is used for this purpose, and it forces responders to throttle their own 
transmissions based  on seeing other responders' frames.  



 

58  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

An enumerator MAY support multiple network interfaces. Quick discovery is a networking protocol 
that is bound to a specific network interface. If an enumerator supports multiple network interfaces, 

it MUST create a sepa rate protocol instance for each supported network interface and the higher -
layer protocol or application MUST specify the network interface to use for quick discovery. It is 

recommended that the higher - layer protocol or application does not initiate quick discovery on 
multiple network interfaces at the same time, because network interfaces might be connected to the 
same network and there can only be one quick discovery running on a network at any point in time, 
as specified in section 3.1.5.1.1 . 

Message request/response pairs that are sent during quick discovery are defined as follows.  

Sent by enumerator  Sent by responder  

Discover  Hello  

Reset  N/A  

3.1.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behaviors are consistent with those described in this 
document.  

The data elements required in any enumerator implementation are:  

Á Current Generation Number: This data element spe cifies the most recently accepted generation 

number that a responder volunteered in the Hello frame. This data element is an unsigned 16 -bit 
value.  

Á Last -Seen Station List: This list holds all unique responder MAC addresses seen via Hello frames 

since the e numerator sent the last Discover frame.  

Á Seen Station List: This list holds an entry for each unique responder that was seen since the start 

of the quick discovery process. It is keyed by the responder's MAC address and also contains a 
list of TLVs for the responder.  

Á DiscoveryInProgress Flag: This flag indicates whether quick discovery is currently in progress 

(TRUE) or not (FALSE).  

Á DiscoveryFrameSent Flag: A flag indicating whether the enumerator has sent out a Discover 

frame.  

Á Application Request List: A li st of identifiers indicating the higher - layer protocols or applications 

interested in the results of the quick discovery in progress, if any.   

Á Cancelled Flag: A flag indicating whether the quick discovery in progress, if any, has been 

canceled.  

Á Network Me dium Connected Flag: A flag indicating whether the network interface is connected to 

a network medium.  

Á Network Interface Identifier: An identifier that uniquely identifies the network interface used by 

the enumerator. It is set during initialization and d oes not change during the lifetime of the 
enumerator instance.  



 

59  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Note   The previous conceptual data can be implemented by using a variety of techniques. An 
implementer can implement such data in any way it pleases.  

3.1.2   Timers  

The Enumerator  role has the following timer:  

Á Block timer: This recurring timer is used to periodically broadcast Discover frames. The timer 

SHOULD be set to fire at 300 -millisecond intervals.  

3.1.3   Initialization  

During initialization, the following conditions must be met:  

Á The Block timer MUST be stopped.  

Á The Application Request List  MUST be empty.  

Á The Last - Seen Station List  MUST be empty.  

Á The Current Generation Number  MUST be set to zero.  

Á The DiscoveryInProgress  flag MUST be FALSE.  

Á The DiscoveryFrameSent  flag MUST be set to FALSE.  

Á The Cancelled  flag MUST be set to FALSE.  

Á The Network Medium Connected Flag  is set to TRUE if the network interface is currently 

connected to a network medium; oth erwise it is set to FALSE.  

Á The Network Interface Identifier  is set to identify the network interface that the enumerator 

instance is handling during its lifetime.  

3.1.4   Higher - Layer Triggered Events  

3.1.4.1   Quick Discovery Startup  

When a higher - layer protocol or application requests startup of the quick discovery  process, the 

Network Medium Connected Flag is checked first. If the network is currently disconnected, the 
request is rejected. Otherwise, the requesting higher - layer protocol or application MUST first be 
added to the Application Request List .  

If the Disc overyInProgress  flag is FALSE, carry out the following steps in order:  

1.  Set the DiscoveryInProgress  flag to TRUE.  

2.  Set the Cancelled  flag to FALSE.  

3.  Set the DiscoverFrameSent  flag to FA LSE. 

4.  Reset Quick Discovery as specified in section 3.1.7 , which clears out the state for any previous 
Quick Discovery.  

5.  Check the Cancelled  flag (in case it changed during step 4):  

Á If TRUE, Quick Discover y shutdown MUST be initiated as specified in section 3.1.8 . 



 

60  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á If FALSE, the Block timer MUST be started.  

If the DiscoveryInProgress  flag is TRUE, no additional steps need to be taken other than adding 
the application to the Application Request List  as explained above.  

3.1.4.2   Quick Discovery Shutdown  

When a higher - layer protocol requests a shutdown of the quick discovery process, and the 
Cancelled  flag is FALSE, the enumerator MUST set the Cancelled  flag to TRUE and quick discovery 
shutdown MUST be initiated as specified in section 3.1.8 . 

3.1.5   Message Processing Events and Sequencing Rules  

The enumerator only processes messages received on the network interface identified by the 
Network Interface Identifier . It ignores all other messages.  

When an enumerator receives an LLTD frame, it MUST check the LLTD header to determine whether 

it is a valid Hello frame, and it must also check whether the DiscoverFrameSent  flag is TRUE, 
which indicates that the enumerator has solicited a response from re sponders. If either condition is 
not met, the message MUST be ignored.  

3.1.5.1   Receiving a Hello Frame  

The source Ethernet MAC address of the Hello frame (that is, the responder's MAC address from the 
Ethernet header) MUST first be recorded in the Last - Seen Station List , if it is not already listed.  

Also, a similar check MUST be made on the Seen Station List. If there is no existing entry in this list, 
the Hello frame MUST then be parsed for its TLV list (that is, the TLV_List  field). If any entry in this 
TLV list is malformed, the frame MUST be ignor ed and the corresponding entry removed from the 
Last - Seen Station List . If the TLV list is valid, the enumerator MUST attempt to add a new entry 

containing all of these newly -discovered details into the Seen Station List. If the enumerator cannot 
allocate enough memory for this new entry, it MUST immediately shut down quick discovery as 
specified in section 3.1.8 . 

Hello frames received by the enumerator while the block timer is not running MUST be ignored . 
Such packets either do not belong to the current session (since a discover packet has not yet been 
sent by the enumerator) or have arrived after the enumerator has stopped the discovery session.  

3.1.5.1.1   Enumerator Also Functioning in the Mapper Role  

If the enumerator is also functioning as a mapper, it MUST also do the following.  

First, upon receipt of the Hello message, it MUST immediately check whether the Current Mapper 
Address  field in the Hello header is equal to the MAC address of the network interface that it 
received the message about. In case of inequality, the mapper MUST immediately shut down quick 
discovery as specified in section 3.1.8 . 

Next, after all of the normal enumerator tasks are performed, it MUST decide which generation 
number ( Generation Number  field in Hello frame) to use for mapping, as follows. If the Current 

Generation Number  is zero, the generation numb er from the Hello frame MUST be incremented by 
one using ones -complement arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 
0x0000) and stored as the current generation number. Otherwise, the current generation number 
MUST be subtracted fr om the generation number in the Hello frame. If the resulting value is less 
than or equal to 0x7FFF, the generation number from the Hello frame MUST be incremented by one 

and stored as current generation number. If the resulting value is greater than 0x7FF F, the 
generation number that the responder volunteers MUST be ignored.  



 

61  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

If no responder volunteered a nonzero generation number, the mapper MUST select a new, nonzero 
generation number at random and broadcast a final Discover frame to disseminate the gener ation 

number to all responders.  

This process permits a mapper to select a generation number before knowing that all possible 

responders have sent a Hello frame. The mapper MUST follow this process because it cannot 
determine when it will receive a late Hel lo frame.  

For more information about generation numbers, see section 3.2.1 . 

3.1.6   Timer Events  

3.1.6.1   Block Timer Expiry  

When the Block timer fires, the enumerator MUST construct a Discover frame by filling the Station 
List  field with entries from the Last - Seen Station List . If there are more entries in the list than 
will fit in the Discover frame, additional Discover frames MUST be created to hold these additional 

entries. All Discover frames are then broadcast over the network. Finally, the Last - Seen Station 
List  MUST be c leared.  

The DiscoverFrameSent  flag MUST be set to TRUE after sending the Discover frames. This triggers 

the sending of reset frames during shutdown to clean up responder state.  

If the enumerator is not satisfied that it has given enough time for all respon ders to respond, the 
timer MUST be restarted. How the enumerator determines whether or not enough time has passed 
can be done in any implementation -specific <10>  way. For example, the RepeatBAND algorithm (as 
specified in section 3.5.6.2 ) predicts that if the Seen Station List  does not grow for three 
consecutive Block timer expirations, it can be assumed that all responders have reported.  

If the enumerator is satisfied that it has gi ven enough time for all responders to respond, it must 

shut down quick discovery as specified in section 3.1.8 . 

The enumerator MUST set the Generation Number  field in the Discover header to zero, unless the 

enumerator is also functioning in the Mapper role (as specified in section 3.1.6.1.1 ).  

3.1.6.1.1   Enumerator Also Functioning in the Mapper Role  

If the enumerator is also functioning as a mapper, it MUST populate the Generation Number  field 
in the Discover header with the current generation number. Otherwise, the field MUST be set to 

zero.  

3.1.7   Resetting Quick Discovery  

Resetting quick discovery involves resetting session state on each responder. This is accomplished 
by the enumerator broadcasting a Reset frame.  

To reset quick discovery, the enumerator MUST broadcast a total of three Reset frames, one every 
150 milliseconds. Although a single Reset frame is sufficient to reset state on any given responder, 

three Reset frames are broadcasted to compensate for any p acket loss due to network conditions.  

Quick discovery MUST reset at the following times:  

Á When starting quick discovery, which clears out previous session state from responders if a reset 

wasn't performed after the last quick discovery  



 

62  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á When quick discovery is aborted by a higher - layer application and the DiscoverFrameSent  flag 

is TRUE 

Á After quick discovery has completed (only for enumerators not functioning in the mapper role)  

Á After topology discovery has completed (only for enumerators functioning in the ma pper role)  

3.1.8   Shutting Down Quick Discovery and Returning Results  

When Quick Discovery has finished (either success or failure) or has been aborted, the results need 
to be communicated back to the higher - layer applications or protocols.  

The Block timer MUST immediately be stopped if currently started.  

If the DiscoverFrameSent  flag is TRUE, the following needs to happen:  

1.  The DiscoverFrameSent  flag MUST be set to FALS E. 

2.  Quick Discovery MUST be reset (see section 3.1.7 ) unless the enumerator is also functioning as a 
mapper and Quick Discovery has not been canceled ( Cancelled  flag is FALSE).  

If the Cancelled  flag is TR UE, the enumerator should signal a failure to the applications identified in 
the Application Request List . 

If the Cancelled  flag is FALSE, the enumerator should return the Seen Station List  to the 

applications identified in the Application Request List .  

The Application Request List  MUST be cleared after returning the results.  

The DiscoveryInProgress  flag MUST be set to FALSE.  

3.1.9   Other Local Events  

None.  

3.1.9.1   Media Connect/Disconnect Event  

When a Media Connect Event or Media Disconnect Event is received for the network interface 
identified by the Network Interface Identifier , the Network Medium Connected Flag is set 
accordingly.  

3.2   Mapper Details  

This section details the role of a mapper station that is used in LLTD topology discovery tests. A 

station MUST NOT have more than one instance of a mapper operational at any time. In addition to 
performing the role of an enumerator , a mapper also seeks to achieve the following:  

Á Associate with all responders that are discovered via the Enumerator  role.  

Á Negotiate a generation number with the responders.  

Á Determine if another mapper i s active.  

Á Infer the network topology by sending zero or more Emit requests to one or more responders.  

Message request/response pairs applicable to topology discovery tests are defined as follows.  



 

63  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Sent by mapper  Sent by responder  

Emit  Ack / Flat (*)  

Quer y QueryResp  

QueryLargeTlv  QueryLargeTlvResp  

Charge  Flat (*)  

Reset  N/A  

* If the request frame does not contain a nonzero sequence number, the responder does not send a 
response.  

3.2.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 

maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behaviors are consistent with those specified in this 
document.  

The data elements required in any mapper implementation are:  

Á Generation Number: The mapper uses generation number s to generate fresh MAC addresses that 

are unknown to switches in the network. This avoids the requirement of restarting switches 
between mapping runs, so it is critical to choose an as -yet -unused generation number. Note that 
mappers do not store previous generation numbers because multiple mappers may be operating 
on a network, and mappers do not participate in any process to keep their generation numbers 
synchronized.  

Á Network Topology Test Session List: This data element tracks outstanding requests to res ponders 

and allows unique sequence numbers for each request. It is populated after quick discovery has 
been completed (see section 3.2.7.1 ), with an entry for each discovered responder. Each entry is 
ide ntified by the responder's MAC address and also contains the following additional fields:  

Á Sequence Number : This field specifies a nonzero 16 -bit unsigned value to be used as the 

sequence number in frames sent to the responder where a response is expected 
(acknowledged Charge frames, acknowledged Emit frames, Query frames, and QueryLargeTlv 
frames). This sequence number MUST NOT be zero since responders treat a sequence number 
of zero to mean "no response required". When a mapper initializes this entry, it M UST use a 
newly generated nonzero sequence number. When issuing commands/requests (for example, 
a QueryLargeTlv frame), the mapper populates the sequence number in the Base header of 
the frame using this value. After receiving a response from the responder  to the 

command/request, this sequence number is incremented using ones -complement arithmetic 
(this guarantees a nonzero value for subsequent commands/requests).  

Á Pended Request : This field specifies a request per responder for which a corresponding 

respons e is expected. A pended request is uniquely identified by its function code (the 
Function  field in the Demultiplex header ) and sequence number.  

Á Network Medium Connected Flag : A flag indicating whether th e network interface is 

connected to a network medium.  



 

64  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Note   The previous conceptual data can be implemented by using a variety of techniques. An 
implementer can implement such data in any way it pleases.  

3.2.2   Timers  

The Mapper  role has one timer:  

(Per -Responder) Response timer: This one -shot timer, per entry in the Seen Station List, is used to 
ensure timely response or to detect lack of response to Emit, Query, or QueryLargeTlv requests that 
expect responses. An Emit Frame with a non -zero sequence  number expects a response. An Emit 
Frame with a zero sequence number does not. Query and QueryLargeTlv Frames always contain 
non -zero sequence numbers and always expect responses. This process works because only one 
such request can be pended per responde r.  

3.2.3   Initialization  

During initialization, the following conditions MUST be met:  

Á All timers must be disabled.  

Á The Network Medium Connected Flag is set to TRUE if the network interface is currently 

connected to a network medium; otherwise it is set to FALSE.  

3.2.4   Higher - Layer Triggered Events  

3.2.4.1   Startup Trigger  

When a higher - layer application or protocol triggers startup of topology discovery tests , the Network 
Medium Connected Flag is checked first. If the network is currently disconnected, the request is 

rejected. Otherwise the mapper MUST assume the role of an enumerator and begin quick discovery, 
as specified in section 3.1.4.1 . 

3.2.4.2   Retrieve a Large Data Property  

When an application or higher - layer protocol requests a large data property for a given Type and 
responder MAC address, the mapper  MUST check the Network Topology Test Session List for the 
entry for the responder using the MAC address. If an entry does not exist, or if there is already an 

outstanding request for the responder (that is, the Pended Request field is not empty), then the  
mapper MUST ignore the request.  

If an entry exists and there is no outstanding request, the mapper MUST send a QueryLargeTlv 
frame to that responder using the sequence number in the Sequence Number field of the entry, 
store the frame as the Pended Request  in the Network Topology Test Session List entry, and set the 
Per-Responder Response timer to expire in 350 milliseconds.  

3.2.4.3   Perform a Network Topology Test  

A higher - layer application or protocol requests that LLTD perform a network topology test by 

supplying the mapper with the following:  

Á CommandList : A list of one or more commands that are to be sent as part of the test.  

Á ResponderAddress : The MAC address of the responder that should process the commands and 

send out the Train or Probe frames.  



 

65  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á AcknowledgementRequired : A flag indicating whether the hig her - level application or protocol 

is to be notified when the responder has finished processing the commands. This controls 

whether the Emit frame will be unacknowledged (if the flag is set to FALSE) or acknowledged (if 

the flag is set to TRUE). If the Emit  frame is acknowledged, it will occupy a Network Topology 
Test Session List entry.  

Note: If a higher - layer application or protocol does not require acknowledgement of the Emit 
request, it has to decide on its own when to issue the follow -up Test Result Que ry. It could do 
this by waiting for a period of time relative to the cumulative pause time for the CommandList  
entries, multiplied by some factor to accommodate transmission time.  

The mapper MUST ignore the request if the ResponderAddress  is set to the bro adcast address. 

The mapper must also validate the CommandList . Each entry in the CommandList  represents an 
EmiteeDesc item (defined in section 2.2.4.4 ) that will be placed in the Emit frame sent by the 
m apper to the responder, and each field must meet the validation criteria described in that section. 
If any entry does not meet the criteria, including that of the cumulative Pause fields from all of the 
commands not exceeding 1 second, then the mapper MUST  ignore the request.  

If AcknowledgementRequired  is TRUE and the Network Topology Test Session List does not have 
an entry for the responder, or if there is already an outstanding request for the responder (that is, 

the Pended Request field is not empty), t hen the mapper MUST ignore the request. If 
AcknowledgementRequired  is FALSE, then the Emit frame will not be eliciting a response from 
the responder, and it does not need to be tracked in the Network Topology Test Session List.  

The responder needs to be ch arged in order to conduct the topology test (see section 1.3.5.4 ).  

The mapper MAY query the responder's current charge, as described in section 3.2.4. 5, to 
determine charge requirements. This is not recommended as a reliable mechanism for synchronizing 

charge, as the responder frequently resets its charge (see section 3.6.6.1 ). Implementations 
SHOULD assume that the responder charge is zero.  

The mapper MUST send enough Charge frames to accommodate the charge requirements. It MUST 
then send an Emit frame to the responder, completing the charge requirements (Emit frames also 
carry charge). The mapper can  determine the minimum charge needed, by determining how many 

Train frames, Probe frames, Flat frames, or Ack frames are being requested, and how many bytes 
are in those frames. Charge requirements for each frame are: one Frame Charge (FC), and Byte 

Charge  (BC) equivalent to the combined size, in bytes, of the Destination MAC, Source MAC, 
EtherType, and Payload fields of the Ethernet frame. The following table shows the charge required 
for each of the frames sent by the responder on behalf of the mapper:  

Fr ame  Size  Reference  

Flat  1 FC; 37 BC  section 2.2.4.12  

Probe  1 FC; 32 BC  section 2.2.4.6  

Train  1 FC; 32 BC  section 2.2.4.5  

Ack  1 FC; 32 BC  section 2.2.4.7  

The following formulas summarize the charge requirements (see section 1.3.5.4  for a charge 
overview):  

Frame Received  Frames to Send  Charge Required  

Charge (unacknowledged)  None  None  



 

66  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Frame Received  Frames to Send  Charge Required  

Charge (acknowledged)  1 × Flat  1 FC; 37 BC **  

Emit (unacknowledged)  N × Probe/Train  N FC; N × 32 BC  

Emit (acknowledged)  1 × Flat  

or *  

1 × Ack + N × Probe/Train  

1 FC; 37 BC  

or  

(1 + N) FC; (1 + N) × 32 BC  

* Acknowledged Emit frames only result in a Flat frame being sent if there is not enough charge to 

fulfill the request. Such a Flat frame should always be sendable, because Emit frames always carry 
enough implicit charge to accommodate the Flat frame.  

** C harge frames are smaller than Flat frames. Mappers that request a Flat frame must pad the 
payload of the Ethernet frame encapsulating the acknowledged Charge frame, to at least the size of 
the Flat frame. Such Charge frames also result in at most a net inc rease in the Byte Charge (BC), 

because the Flat frame response consumes the Frame Charge (FC) provided by the Charge frame.  

The fields in the Charge frame MUST be as follows:  

Á Real_Source_Address : Set to the real MAC address of the mapper.  

Á Real_Destination_ Address : Set to the real MAC address of the responder.  

Á Sequence_Number_or_XID : MUST be zero unless querying for the current charge (see section 

3.2.4.5 )  

The fields in the Emit frame MUST be as follows:  

Á Real_Source_Address : Set to the real MAC address of the mapper.  

Á Real_Destination_Address : Set to the real MAC address of the responder.  

Á Sequence_Number_or_XID : If AcknowledgementRequired  is TRUE, this MUST be a 

nonzero sequence number; otherwise it MUST be zero.  

Á Num_Descs : Set to the number of entries in the CommandList .  

Á EmiteeDescs : Filled with the entries in the CommandList .  

If AcknowledgementRequired  is TRUE, then after sending the Emit frame the mapper MUST store 
the frame in the Pended Request field of the responder's entry in the Network Topology Test Session 
List.  

3.2.4.4   Perform a Test Result Query  

When a higher - layer application or protocol directs LLTD to request a list of Probe frames seen by a 
given responder, the mapper  MUST check the Network Topology Test Session List for the entry for 
the responder using the MAC address. If an entry does not exist, or if there is already an 

outstanding request for the responder (that is, the Pended Request field is not empty), then the  
mapper MUST ignore the request.  

If an entry exists and there is no outstanding request, the mapper MUST send a Query frame to that 

responder using the sequence number in the Sequence Number field of the entry, store the frame as 
the Pended Request in the Network Topology Test Session List, and set the Per -Responder Response 
timer to expire in 350 milliseconds.  



 

67  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Query frames are intended to elicit a response from the responder, so they MUST contain a nonzero 
sequence number; otherwise, the frame will be igno red by the responder.  

3.2.4.5   Query for Responder Charge  

Charge is abstracted away from higher - layer applications and protocols. There is no direct higher -
layer event to query for the responder charge. However, a mapper  MAY query for responder charge 
in response to a network topology test issued by a higher - layer application or protocol for a specific 
responder (see section 3.2.4.3 ).  

Before querying for the current cha rge, the mapper must first check the Network Topology Test 
Session List for an entry for the responder. If no entry exists, or if there is an outstanding request 
(the Pended Request field is not empty), then the mapper MUST NOT query for current charge and  

MUST ignore the higher - layer application or protocol request for the network topology test.  

If there is an entry and no outstanding request, the mapper sends an acknowledged Charge frame 
using the sequence number in the Sequence Number field of the entry and stores the frame in the 
Pended Request field. Acknowledged Charge frames MUST be padded to the size of a Flat frame in 

order to carry enough implicit charge for the Flat frame response.  

Once the Flat frame has been received, the mapper can continue to charge the responder.  

3.2.4.6   Shutdown Trigger  

When the higher - layer application or protocol that initially triggered the startup shuts down the 
topology discovery tests, the mapper MUST shut down quick discovery as specified in section 
3.1.4.2 . 

Any outstanding per - responder response timers MUST be stopped, and the Network Topology Test 
Session List MUST be cleared.  

3.2.5   Message Processing Events and Sequencing Rules  

When a message arrives, the mapper MUST first check whether it is a valid Ack, Flat, QueryResp, or 
QueryLargeTlvResp frame or not. If not, it MUST be dropped.  

3.2.5.1   Receiving an Ack Frame  

Upon receipt of an Ack frame, the mapper MUST first validate the Ack frame by verifying that all of 

the following statements are true:  

Á The mapper did indeed solicit the response via an Emit frame, as tracked by the pended request 

state.  

Á The Real Source Address  field in the Base header of the Ack frame matches the MAC address 

of the destination responder in the Emit request.  

Á The Sequence N umber  field in the Base header of the Ack frame matches that used in the Emit 

request.  

Upon successful validation, the relevant Per -Responder Response timer MUST be stopped, and the 
sequence number for the affected responder MUST be incremented by one usin g ones -complement 
arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) for the next request 
with a nonzero sequence number.  



 

68  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

If the Ack frame completes the last test that the application requests, the mapper MUST delete the 
old Pended  request and indicate to the application that the network tests have been completed.  

3.2.5.2   Receiving a Flat Frame  

Upon receiving a Flat Frame, the mapper MUST validate it by verifying that the following are true:  

Á The mapper did indeed solicit the response via an Emit or Charge frame, as tracked by the 

pended request state.  

Á The Real Source Address  field in the Base header of the Flat frame matches the MAC address 

of the destination responder in the original request.  

Á The Sequence Number  field in the Base header of the Flat frame matches that used in the 

original request.  

Upon succ essful validation, the relevant Per -Responder Response timer MUST be stopped, and the 
sequence number for the affected responder MUST be incremented by one using ones -complement 

arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) fo r the next request 
with a nonzero sequence number. The Pended Request  entry for the Emit or Charge frame that 
solicited the Flat frame response MUST be cleared.  

3.2.5.3   Receiving a QueryResp Frame  

A responder sends a QueryResp frame in response to a valid Query request with a nonzero sequence 
number. The mapper MUST validate the QueryResp frame by verifying that the following are true:  

Á The mapper did indeed solicit the response via a Query frame, as tracked by the pended request 

state.  

Á The Real Source Address  field in the Base header of the QueryResp frame matches the MAC 

address of the destination responder in the Query request.  

Á The Seq uence Number  field in the Base header of the QueryResp frame matches that used in 

the Query request.  

If the QueryResp frame is not valid, it MUST be ignored. Otherwise, it MUST be processed as 
follows.  

The relevant Per -Responder Response timer MUST be stop ped. The sequence number for the 
affected responder MUST be incremented by one using ones -complement arithmetic (that is, it 
MUST advance from 0xFFFF to 0x0001 and skip 0x0000) for the next request with a nonzero 
sequence number.  

If the More flag in the Qu eryResp header is set, the mapper SHOULD follow up with a subsequent 
Query request. This action MUST continue until either a QueryResp frame is returned without the 
More flag set or the responder returns more total records than the mapper is prepared to ha ndle.  

If the Error flag in the QueryResp header is set, the mapper may indicate to the higher level 
application that the mapping information is incomplete or inaccurate.  

The Pended Request  entry for the Query frame that solicited the QueryResp frame respon se MUST 
be cleared.  



 

69  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.2.5.4   Receiving a QueryLargeTlvResp Frame  

Upon receiving a QueryLargeTlvResp, the mapper MUST first validate it by verifying that the 
following are true:  

Á The mapper did indeed solicit the response via a QueryLargeTlv frame as tracked by the pended 

request state.  

Á The Real Source Address  field in the Base header of the QueryLargeTlvResp frame matches the 

MAC address of the destination responder in the QueryLa rgeTlv request.  

Á The Sequence Number  field in the Base header of the QueryLargeTlvResp frame matches that 

used in the QueryLargeTlv request.  

Upon successful validation, the relevant Per -Responder Response timer MUST be stopped. The 
sequence number for the a ffected responder MUST be incremented by one using ones -complement 
arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) for the next request 
with a nonzero sequence number.  

The Pended Request  entry for the QueryLargeTlv frame that so licited the QueryLargeTlvResp 
frame response MUST be cleared.  

If the More flag in the QueryLargeTlvResp header is set, the mapper SHOULD follow up with a 
subsequent QueryLargeTlv request. This action MUST continue until a QueryLargeTlvResp frame is 
returne d without the More flag set or if the responder returns more bytes than the mapper is 
required to accommodate for the given TLV type.  

If a subsequent QueryLargeTlv request is sent, the mapper MUST store the frame as the Pended 
request in the topology disco very test session and set the Per -Request Response timer to expire in 
350 milliseconds. Otherwise, the mapper MUST pass the retrieved data back to the application or 

higher - layer protocol.  

3.2.6   Timer Events  

3.2.6.1   Per - Responder Response Timer Expiry  

When a Per -Responder Response Timer fires, the mapper MUST retransmit the pended request 

frame (the sequence number MUST be unchanged), and the timer MUST be restarted in that case.  

The mapper MAY <11>  give up retrying communication with the responder if the timer has fired 
more than once. If the mapper opts to continue with the topology discovery tests, it SHOULD NOT 
communicate with this responder for the duration of the disco very process since the sequence 
numbering is likely tainted, and the responder will likely not respond.  

3.2.7   Other Local Events  

3.2.7.1   Enumerator Finishes Enumerating Responders  

After the Enumerator role is fulfilled (that is, when the Block timer is stopped, as specified in section 

3.1.6.1 ), an entry in the Network Topology Test Session List MUST be created for each responder 
that is discovered. The Sequence Number field MUST be initialized to a nonzero number (by means 
of any random number generator). All subsequent requests with a nonzero  sequence number that 
the mapper sends MUST adhere to the defined sequence numbering rule. The Pended Request field 

for the initialized entry MUST be empty.  



 

70  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

At this point, the mapper MUST indicate to the application or higher - layer protocol that it is read y to 
perform network topology tests.  

3.2.7.2   Media Connect/Disconnect Event  

When a Media Connect Event or Media Disconnect Event is received, the Network Medium Connected 
Flag is set accordingly.  

3.3   QoS Controller Details  

This section details the role of a controller station that is used in the LLTD QoS network test type of 
service.  

Message request/response pairs applicable to a controller are defined as follows.  

Sent by controller  Sent by sink   

QosInitializeSink  QosError / QosReady  

QosProbe  QosProbe (*)  

QosQuery  QosQueryResp  

QosReset  QosAck  

* If the request frame does not contain a nonzero sequence number, the sink does not send a 
response.  

3.3.1   Abstract Data Model  

This section specifies a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The specified organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 

adhere to this model as long as their external behaviors are consistent with those specified in this 
document.  

The data elements required in any controller implementation are:  

Á Network Test Session Table: A list of network te st sessions MAY <12>  be maintained if the 

controller chooses to support more than one simultaneous sink. Otherwise, the controller MUST 
instead support a single network test session. Because QoS  sinks ide ntify sessions based on the 
MAC address of the controller's network interface, QoS controller implementations MUST fail 
requests to initiate a test session  with a sink with an existing session.  Implementations MUST 
NOT allow multiple instances of the controller to be present unless the Network Test Session 

Table can be synchronized to prevent simultaneous requests to the same sink.  

Each network test session is identified by the MAC address of the sink station and MUST have the  
following additional fields:  

Á Probegap Request Table : When a probegap test is requested by a higher - layer application 

or protocol, it is registered in this table. Each entry in this table MUST be identified by a 
unique sequence number (unsigned 16 -bit valu e) that is then used in the received QosProbe 

response from the sink station. For more information about the probegap test, see section 
3.3.4 . 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf


 

71  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á Timed - Probe Request Table : When a timed probe test is reques ted by a higher - layer 

application or protocol, it is registered in this table. Each entry in this table MUST be identified 

by a unique sequence number (unsigned 16 -bit value) that is then used in the received 

QosQueryResp response from the sink stations. F or more information about the timed -probe 
test, see section 3.3.4 . 

Á Sequence Number : Each network test in a network test session MUST be identified via a 

nonzero sequence number unique to that session. Th is field holds the sequence number to use 
in the Base header of the next network test frame. It is initialized with a nonzero unsigned 16 -
bit value and incremented every time it is used with ones complement arithmetic (that is, it 
MUST advance from 0xFFFF to 0x0001 and skip 0x0000).  

Á Network Medium Connected Flag : A flag indicating whether the network interface is 

connected to a network medium.  

Note   The previous conceptual data can be implemented by using a variety of techniques. An 
implementer can impleme nt such data in any way it pleases.  

3.3.2   Timers  

Each Network Test  session has the following timers:  

Á Per-QosInitializeSink Response timer: This timer is used to ensure response (or non - response) to 

a QosInitializeSink request. This timer is only valid while the controller attempts to establish a 
network test session with the sink.  

Á Per-QosReset Response ti mer: This timer is used to ensure response (or non - response) to a 

QosReset request. This timer is only valid while the controller attempts to shut down a network 

test session.  

Each entry in a Probegap Request Table  has the following timer:  

Á Per-QosProbe Res ponse timer: This one -shot timer is used to ensure response (or non - response) 

to a QosProbe request where the Test Type  field in the QosProbe header is set to 0x01 (that is, 

a probegap test). This timer MUST be tied to the originating QosProbe frame by mea ns of the 
corresponding entry in the Probegap Request Table . In other words, as long as the sink has 

not responded to the QosProbe frame, the timer MUST remain active.  

Each entry in a Timed - Probe Request Table  has the following timer:  

Á Per-QosQuery Response  timer: This timer is used to ensure timely response (or non - response) to 

a QosQuery request. This timer MUST be tied to the originating QosQuery frame by means of the 
corresponding entry in the Timed - Probe Request Table . In other words, as long as the sin k 
has not responded to the QosQuery frame, the timer MUST remain active.  

3.3.3   Initialization  

During initialization, the following conditions MUST be met:  

Á All timers must be disabled.  

Á The Network Medium Connected Flag is set to TRUE if the network interface is currently 

connected to a network medium; otherwise it is set to FALSE.  



 

72  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.3.4   Higher - Layer Triggered Events  

3.3.4.1   Start Network Test Session  

A higher - layer application or protocol must first instantiate a network test session with a sink before 
it can request subsequent timed probe or probegap tests with the sink.  

When a higher - layer application or protocol requests a network test session with a given sink, the 
Network Medium Connected Flag is checked first. If the network is currently disconnected, the 
request is rejected. Otherwise the controller MUST check whethe r it already has a network test 
session in progress to the same sink station, and, if so, it MUST fail the request.  

Otherwise, it MUST attempt to create a network test session state with a random nonzero sequence 

number. If it cannot create the state, it M UST fail the request.  

It MUST then send a QosInitializeSink frame (see section 2.2.5.2 ) to the specified sink and set the 
Per-QosInitializeSink Response timer to expire after 100 milliseconds. The value of the 
Interrupt_Mod  field of the QosInitializeSink frame can be set by a higher - layer application or 

protocol. If the higher - layer application or protocol does not specify the value, 0xFF MUST be used 
to indicate that the existing interrupt moderation set ting should be used during tests. The fields in 

the base header of the QosInitializeSink frame must be set to the following:  

Á Real_Source_Address  : real MAC address of the controller  

Á Real_Destination_Address  : real MAC address of the sink  

Á Sequence_Number  : the nonzero sequence number associated with the network test session 

(the session sequence number is then incremented using ones -complement arithmetic)  

A timed probe test requires that the higher - layer application or protocol submit to the controller a 

set  of one or more descriptors that identify the content of each QosProbe frame that it wants to 
send to the sink. When the controller receives this set, it MUST construct a QosProbe frame for each 
descriptor in the set. When all the frames are constructed, t he controller MUST assign the next 
available sequence number (from the session) to all of the frames and then time stamp each frame 

(Controller Transmit Timestamp  field in QosProbe header) as it is transmitted. Immediately 
following the last frame, the con troller MUST construct a QosQuery frame with the same sequence 

number to be sent to the sink. The controller MUST attempt to create a new entry for the newly 
chosen sequence number and place it in the Probegap Request Table , before the QosQuery frame 
is se nt. If a new entry cannot be created due to the lack of memory, the test request MUST be failed 
and all of the frames that were created MUST be deleted. The frames MUST be sent only after the 
appropriate entry can be created and placed in the Probegap Requ est Table . After the QosQuery 
frame is sent, the Per -QosQuery Response timer must be enabled and set to expire after 100 
milliseconds.  

A probegap test requires that the higher - layer application or protocol submit just one descriptor to 
be used for a timed -probe. When the controller receives this descriptor, it MUST construct a 
QosProbe frame using the next available sequence number (from the session). The Controller 
Transmit Timestamp  field in the QosProbe header MUST be updated as the frame is transmitted.  
The controller MUST attempt to create a new entry for the newly chosen sequence number and 

place it in the Timed - Probe Request Table , before the QosProbe frame is sent. If a new entry 
cannot be created due to lack of memory, the test request MUST be faile d and all of the frames that 

were created MUST be deleted. The frames MUST be sent only after the appropriate entry can be 
created and placed in the Timed - Probe Request Table . After the QosProbe is sent, the Per -
QosProbe Response timer MUST be set to expir e after 100 milliseconds.  



 

73  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

An example of different specifications that MAY <13>  be applied on QosProbe frames sent by the 
controller is in the size or content (the data following the QosProbe header itself; this is ignored by 

the contr oller and sink, but it can be used to exercise the network equipment in interesting ways).  

For both timed probe and probegap tests, each time the next available sequence number is 

required, one is generated by incrementing the last used sequence number by one using ones -
complement arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000).  

If the controller has failed the request due to any of the conditions mentioned previously, it should 
notify the higher - layer application or protocol of the failure. The details that are provided in the 
failure notification are up to the implementation. The controller implementation should consider the 
nature of the failure to enable diagnostics by the higher - layer application or protocol.  

3.3.4.2   Stop Network Test Session  

When the higher - layer application or protocol for a previously -established network test session  
requests that the session be stopped, the Per -QosReset Response timer MUST be set to expire in 
100 milliseconds and its logic (see section 3.3.6.4 ) invoked immediately. The request to shut down 

a sessio n MUST always succeed, even if the QosAck response is not received from the sink. The next 
available sequence number MUST be used by all of these QosReset frames.  

3.3.5   Message Processing Events and Sequencing Rules  

When a message arrives, the controller MUST first check whether or not it is a valid QosError, 
QosReady, QosProbe, QosQueryResp, or QosAck frame. If not, it MUST be dropped.  

3.3.5.1   Receiving a QosProbe Frame  

When a QosProbe frame is received, the controller MUST first verify that the Test Type  field in the 

QosProbe header is set to 0x02 (that is, the sink  returns the probegap test result). If not, the frame 
MUST be ignored.  

Otherwise, the controller MUST attempt to locate a corresponding entry in the Probegap Request 

Table  by matching its identifier against the Sequence Number  field in the Base header of t he 
received frame. If one is not found, the frame MUST be ignored.  

Otherwise, the associated Per -QosProbe Response timer MUST be stopped. The controller MUST 
ensure that a high - resolution time stamp is sampled at the time the frame is received. It MUST the n 

return this time stamp with the contents of the Sink Receive Timestamp  and Sink Transmit 
Timestamp  fields in the QosProbe header to the higher - layer application or protocol that requested 
the probegap test. The associated Per -QosProbe Response timer MUST  then be stopped, and the 
corresponding entry MUST be removed from the Probegap Request Table .  

3.3.5.2   Receiving a QosQueryResp Frame  

When a QosQueryResp frame is received, the controller MUST attempt to match the sequence 

number of this QosQueryResp to the identifier of an entry in the Timed - Probe Request Table . If 
one cannot be found, the QosQueryResp frame MUST be ignored.  

If the count of QosEventDesc  structures in the QosQueryResp header is greater than the count of 
descriptors in the array (as specified in section 2.2.5.6 ) given to the controller to start the test, the 
QosQueryResp MUST be ignored.  

Otherwise, the QosEventDesc List  field in the QosQueryResp header MUST be returned to the 

higher - layer application or protocol that initiated the timed probe tes t.  



 

74  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

If the QosQueryResp is processed successfully, the associated Per -QosQuery Response timer MUST 
be stopped and the corresponding entry MUST be removed from the Timed - Probe Request Table . 

3.3.5.3   Receiving a QosError Frame  

When a QosError frame is received, the controller MUST attempt to match the Sequence Number  
field in the Base header and the Source MAC address  field in the Ethernet header of the received 
frame against an existing network test session. If a session cannot be found, the frame MUST be 
ignored.  

Otherwise, the Error Code  field in the QosError header MUST be used to inform the higher - layer 
application or protocol of why the request failed. The Per -QosInitializeSink Respo nse timer MUST be 
stopped, and the corresponding network test session MUST be deleted.  

3.3.5.4   Receiving a QosReady Frame  

When a QosReady frame is received, the controller MUST attempt to match the Sequence Number  

field in the Base header and the Source MAC address  field in the Ethernet header of the received 
frame against an existing network test session. If a session cannot be found, the frame MUST be 
ignored.  

Otherwise, the controller MUST notify the higher - layer application or protocol that the network test 
session has been established. The Per -QosInitializeSink Response timer MUST be stopped.  

3.3.5.5   Receiving a QosAck Frame  

When a QosAck frame is received, the controller MUST attempt to match the Sequence Number  
field in the Base header and the Source MAC address  field in the Ethernet header of the received 
frame against an existing network test session. If a session cannot be found, the frame MUST be 

ignored.  

Otherwise, the controller MUST delete the associated network test session and MUST stop the Per -
QosReset Response timer.  

3.3.6   Timer Events  

3.3.6.1   Per - QosInitializeSink Response Timer Expiry  

When this timer fires, the controller SHOULD attempt to send another QosInitializeSink frame to the 
sink  and restart the timer to expire after 100 milliseconds. The fifth consecutive time that the timer 
expires, the controller MUST instead stop and return a time -out error result to the higher - layer 
application or protocol that originally requested the creati on of the network test session. The 
associated network test session MUST also be deleted.  

3.3.6.2   Per - QosProbe Response Timer Expiry  

When this timer fires, the controller  MUST NOT attempt to resend the associated QosProbe frame. 
Instead, it MUST return a time -out error result to the higher - layer application or protocol that 

initiated the probegap test and the associated entry from the Probegap Request Table  MUST be 
deleted . 

3.3.6.3   Per - QosQuery Response Timer Expiry  

When this timer fires, the controller SHOULD attempt to send another QosQuery frame to the sink  

and restart the timer to expire after 100 milliseconds. The fifth consecutive time the timer expires, 



 

75  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

the controller MUST instead stop and return a time -out error result to the higher - layer application or 
protocol that initiated the timed probe test, and the associated entry from the Timed - Probe 

Request Table  MUST be deleted.  

3.3.6.4   Per - QosReset Response Timer Expiry  

When this timer fires, the controller SHOULD attempt to send another QosReset frame to the sink  
and restart the timer to expire after 100 milliseconds. The fifth consecutive time the timer expires, it 
MUST stop sending the QosReset and delete the associated network test session.  

3.3.7   Other Local Events  

None.  

3.3.7.1   Media Connect/Disconnect Event  

When a Media Connect Event or Media Disconnect Event is received, the Network Medium Connected 

Flag is set accordingly.  

3.4   Cross - Traffic Analysis Initiator Details  

This section details the role of a controller station used in the LLTD QoS cross - traffic analysis  type of 

service.  A station MUST NOT have more than one instance of a Cross -Traffic Analysis Initiator 
active at any time.  

Applicable message request/response pairs are defined as follows.  

Sent by initiator  Sent by sink   

QosCounterSnapshot  QosCounterResult  

QosCounterLease  N/A  

3.4.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol on a per - interface basis. The described organization is 
provided to facilitate the explanation of how the protocol beha ves. This document does not mandate 
that implementations adhere to this model as long as their external behaviors are consistent with 
what is described in this document.  

The data elements required in any implementation are:  

Á Lease Period: This data element specifies the time period over which the cross - traffic analysis is 

performed. The period SHOULD be at least 5 minutes long.  

Á Sequence Number: Each time a higher - layer application or protocol requests the values of the 

cross - traffic analysis counters from a responder, the initiator MUST generate a unique sequence 

number for the QosCounterSnapshot  request that it sends to the responder. This sequence 
number is an unsigned 16 -bit value.  

Á Snapshot Request Table : This table tracks the counter snapshot requests that higher - layer 

applications or protocols issue. Each entry in the table is identified by a unique sequence number.  



 

76  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á Network Medium Connected Flag: A flag indicating whether the network interface is connec ted to 

a network medium,  

Note   The previous conceptual data can be implemented by using a variety of techniques. An 

implementer can implement such data in any way.  

3.4.2   Timers  

The Cross -Traffic Analysis Initiator  role has one timer per network interface ðthe Per - Interface 
Lease Renewal timer. This recurring timer broadcasts the QosCounterLease frame. This timer 
remains active for as long as any higher - layer application or protocol performs cross - traffic analysis. 
This timer SHOULD have a lower period than the lease period so responders can keep collecting 

their counter histories.  

Each entry in the Snapshot Request Table  has a Per -Snapshot Response timer. This one -shot 
timer ensures a timely response (or non - respons e) to a QosCounterSnapshot  request.  

3.4.3   Initialization  

During initialization, the following conditions must be met:  

Á All timers MUST be disabled.  

Á The Network Medium Connected Flag is set to TRUE if the network interface is currently 

connected to a network medium; otherwise it is set to FALSE.  

3.4.4   Higher - Layer Triggered Events  

3.4.4.1   Start Cross - Traffic Analysis  

When a higher - layer application or protocol requests cross - traffic analysis  on a given interface, the 
Network Medium Connected Flag is checked first. If the network is currently disconnected, the 
request is rejected. Otherwise, the initiator MUST broadcast a QosCounterLease  fra me over that 

interface, and start the interface's periodic Lease Renewal timer. The timer SHOULD be set to expire 
every 3 minutes.  

An initiator SHOULD support multiple higher - layer application or protocol requests simultaneously. 
In this case, it MUST do t he initialization described above for the first request. It SHOULD NOT send 

a QosCounterLease frame for consecutive requests; it MUST NOT reinitialize the periodic Lease 
Renewal timer, but continue with the current timer period.  

The Base header fields of t he QosCounterLease frame MUST be set as follows.  

Á The Real Source Address  field MUST be set to the MAC address of the interface of the initiator.  

Á The Real Destination Address  field MUST be set to the broadcast  address.  

Á The Sequence Num ber  field is ignored by the responder and MUST be set to zero.  

3.4.4.2   Request Counters  

When a higher - layer application or protocol requests the values of the cross - traffic analysis counters 
for a specific responder (specified by the responder's MAC address  and the initiator's network 
interface), the initiator MUST transmit a QosCounterSnapshot  request to that responder on the 
specified network interface. The next available sequence number MUST be assigned  to the request, 



 

77  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

and an entry MUST be created in the Snapshot Request Table before it is sent. The Per -Snapshot 
Response timer MUST be set to expire in 100 milliseconds.  

The higher - layer application can also specify that a special MAC address is set in the  Real 
Destination Address  field of the Base header of the QosCounterSnapshot request to further refine 

the scope of the counters that are returned. For more information, see section 3.8.5.2 . Unless this 
special MAC address is provided, the Cross -Traffic Analysis Initiator  MUST always set this particular 
field to be equal to that used in the Source MAC Address  field in the Ethernet header.  

If the cross - t raffic analysis counters are requested by a higher - layer application or protocol before a 
request to start cross - traffic analysis has been received (see section 3.4.4.1 ), then the Cross -Traffic 
Analysis Initiator MUST fail the request.  

3.4.4.3   Stop Cross - Traffic Analysis  

When a higher - layer application or protocol indicates that it is finished with cross - traffic analysis on 
a given interface, the initiator MUST stop the interface's Lease Renewal timer.  

If an initiator supports multiple higher - layer application or protocol requests simultaneously, it MUST 
stop the Lease Renewal timer only if all higher - layer applications or protocols have finished.  

3.4.5   Message Processing Events and Sequencing Rules  

When a message arrives, the initiator MUST first check whether it is a valid QosCounterResult  frame 
or not. If not, it MUST be dropped.  

3.4.5.1   Receiving a QosCounterResult Frame  

When a QosCounterResult  frame is received, the Sequence Number  field in the Base header of the 
received frame MUST be used to look up a matching sequence number identifier in the Snapshot 

Request Table . If a matching sequence number is not found, the frame MUST be ignored.  

Otherwise, the result MUST be passed back to  the higher - layer application or protocol that 

requested the snapshot in the first place. The associated entry in the Snapshot Request Table MUST 
then be deleted, and the Per -Snapshot Response timer MUST be disabled.  

3.4.6   Timer Events  

3.4.6.1   Per - Interface Lease Renewal Timer Expiry  

When this timer fires, a QosCounterLease frame MUST be broadcast over the network.  

3.4.6.2   Per - Snapshot Response Timer Expiry  

When this timer fires, the controller SHOULD attempt to send another QosCounterSnapshot  frame to 
the responder and reset the timer to expire after 100 milliseconds. The fifth consecutive time the 
timer expires, the controller MUST instead stop and return a time -out error result to the higher - layer 

application or protocol that initiated the r equest, and the associated entry from the Snapshot 

Request Table  MUST be deleted.  

3.4.7   Other Local Events  

None.  



 

78  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.4.7.1   Media Connect/Disconnect Event  

When a Media Connect Event or Media Disconnect Event is received, the Network Medium Connected 
Flag is set accordingly.  

3.5   Responder (Quick Discovery) Details  

A responder  MAY support multiple network interfaces. If a responder supports multiple network 
interfaces, it MUST create a separate instance of the responder protocol specified in this section for 
each supported network interface.  

The following figure shows the worki ngs of a responder's quick discovery state engine, also known 
as the enumeration state engine.  

 

Figure 1: Possible Responder's Quick Discovery states  



 

79  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

While in Quiescent state, responders only listen to broadcast frames a nd wait for a Discover frame 
to trigger an association with a mapper (only for topology discovery) or initiate enumeration 

session.  

The Pausing state is critical to scalable discovery of the responders. During Pausing state, 

responders execute the RepeatBA ND algorithm (see section 3.5.6.2 ) to estimate the overall network 
load and to delay the transmission of the Hello frame accordingly. The Pausing state is the only 
state where responders send the Hello f rame. During the Wait state, the responder waits for 
enumerators or the mapper to finalize their sessions via the Reset frame. Responders leave the Wait 
state for the Quiescent state when all enumerators have either timed out due to inactivity or have 
successfully sent the Reset command.  

Message request/response pairs applicable to quick discovery are defined as follows.  

Sent by mapper  Sent by responder  

Discover (as BROADCAST)  Hello (as BROADCAST)  

Reset (as either UNICAST or BROADCAST)  N/A  

3.5.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 

adhere to this model as long as their external behaviors are consistent with those described in this 
document.  

The data elements required in any responder implementation are:  

Á Enumeration state engine state: This data element  specifies the current state in the enumeration 

state engine.  

Á Generation Number: This data element stores the generation number for the responder. This 

number is updated during quick discovery.  

Á Alpha: This data element specifies a RepeatBAND constant, and it MUST be set to 45.  

Á Beta: This data element specifies a RepeatBAND constant, and it MUST be set to 2.  

Á Gamma: This data element specifies a RepeatBAND constant, and it MUST be set to 10.  

Á Nmax: This data element specifies a RepeatBAND constant, being the m aximum number of 

responders on a link, and it MUST be set to 10,000.  

Á r: This data element specifies the observed count of Discover and Hello frames over the network 

during the pausing state (see section 3.5.5.1.1.2 ).  

Á I: This data element specifies the ideal time spacing between two Hello frames seen on the 

network. This data element MUST be set to 6.67 milliseconds.  

Á N: This data element specifies an estimate of the number of responders that have yet to re spond.  

Á Begun flag: This data element flags the presence of a new enumerator or mapper station.  

Á Tb: This data element specifies a RepeatBAND constant that MUST be set to 300 milliseconds.  



 

80  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á Session Table: This data element stores enumerator state information and thereby enables the 

enumeration state engine to decide when to transmit Hello frames and when to transition to the 

Wait state. The table is indexed by the enumerator station's MAC address (given by the 

Real_Source_Address in the base header) and the ty pe of service identifier (that is, quick 
discovery or topology discovery). Each entry MUST have the following fields:  

Á Transaction ID (XID) : The XID  field is an unsigned 16 -bit integer that uniquely identifies 

the mapper or enumerator session.  

Á State : This f ield specifies the current state in the Session Table State Machine, as shown in 

the following figure.  

 

Figure 2: Responder's Quick Discovery Session Table State  

A session is created for each enumerator and mapper detect ed on the network, as specified in 
section 3.5.5.1 . The Pending state refers to sessions that have not yet acknowledged the 

receiving of a Hello frame from the responder. The Complete state refers to ses sions that 
have received such an acknowledgement. The Temporary state is a special state for when 
more than one mapper is observed on the same network. In this case, some mappers are 
expected to shut down until there is only one mapper left on the network,  as specified in 
section 3.1.5.1.1 . 

Á Active Time : This field specifies the time at which the last Discover frame was received.  

Á Txc : This field specifies the per -session Hello frame retransmission counter.  

Á TXC : This field specifies the maximum number of Hellos to retransmit per session. This is a 

constant and it MUST be set to 4.  

Note   The previous conceptual data can be implemented by using a variety of techniques. An 
implementer can implement such data in  any way it pleases.  



 

81  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.5.2   Timers  

The Responder (Quick Discovery)  role has three timers:  

Á Session Inactivity timer: This periodic timer checks each session in the session table for 

inactivity.  

Á Block timer: This periodic timer operates the RepeatBAND network load control algorithm 

(section 3.5.6.2 ). It is only active when the enumeration state engine is in the Pausing state.  

Á Hello timer: This o ne-shot timer delays the sending of a Hello frame until RepeatBAND (section 

3.5.6.2 ) determines that it is time to send one.  

3.5.3   Initialization  

During initialization, the following conditions must be met:  

Á All timers MUST be disabled.  

Á The enumeration state engine MUST be in Quiescent state.  

Á The Session Table MUST be empty.  

3.5.4   Higher - Layer Triggered Events  

None.  

3.5.5   Message Processing Events and Sequencing Rules  

The enumeration state engine MUST ignore any arriving message that is not explicitly identified in 
the following sections and pass them on to the topology discovery state engine, as detailed in 

section 3.6 . 

3.5.5.1   Receiving a Discover Frame  

A responder MUST first check if the frame's destination address matches either its own MAC address 
or the broadcast  address, because its network interface might have been set to promiscuous mode 
by the topology discovery role (see section 3.6 ). Frames that do not match any of these addresses 

MUST be discarded.  

The re sponder MUST attempt to match the MAC address (given by the Real_Source_Address in the 
base header) and type of service code of the sender against an entry in the Session Table.  

If no entry exists, or the entry has a different XID, the responder MUST then attempt to create a 
new session entry. If a session entry cannot be created due to the lack of memory, the Discover 
frame MUST be ignored silently. The XID of the new session table entry is set to the XID of the 
Discover frame. If the responder's MAC addre ss exists in the Station List  field in the Discover 

frame (indicating that the responder's Hello request is being acknowledged), the state of the new 
session table entry MUST be set to complete. Otherwise, it MUST be set to pending. The active time 

MUST be  set to the current time. The Xtc datum MUST be set to the value of XTC.  

If a session table entry exists (and has the same XID), the active time MUST be updated. If the 
responder's MAC address exists in the Station List  field in the Discover frame (indicat ing that the 
responder's Hello request is being acknowledged), the entry state MUST be set to complete. If the 
session table entry state is set to complete, then the responder must update the generation number 

with the generation number from the Discover F rame.  



 

82  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

The responder MUST NOT set more than one session for topology discovery (as specified by the type 
of service) to pending or complete. If there is such a session already and the responder creates 

another session according to the above rules, the new S ession Table entry MUST be set to the 
temporary state (notwithstanding the previous paragraphs of this section).  

Lastly, the enumeration state engine MUST transition to the Pausing, Wait, or Quiescent state, as 
indicated in section 3.5.5.4 . 

For each Discover frame that is not discarded according to the above rules, the responder MUST 
increment r by one. For further specifications about the use of this counter, see section 3.5.5.1.1.2 . 

3.5.5.1.1   Network Load Control  

Network load control and scalability of the enumeration process are handled by an algorithm called 

RepeatBAND (see section 3.5.6.2 ). Responders  send Hello frames in the Pausing state, but they do 
not send them immediately. Instead, responders MUST measure the network load over a number of 
loosely synchronized rounds, also called blocks, of approximately fixed duration Tb (the "block 
time").  

Secti on 4.4  has several examples of the RepeatBAND algorithm in effect during different scenarios.  

3.5.5.1.1.1   Load Initialization  

When the enumeration state engine transitions to the Pausing state, it MUST initialize N to Nmax 
and set r to 0. It then MUST begin the first block round.  

The responder  MUST NOT begin to monitor the network load until it is ready to transmit; otherwise, 
many similar machines might think that the network load is low and become ready simultaneously.  

3.5.5.1.1.2   Dynamic Behavior  

At the start of each round (triggered by the expiration of the Block timer) in the Pausing state, a 
responder  MUST sample its random number generator and choose a time that is uniformly 

distributed between 0 and N times I. If the chosen time is less than Tb, the responder MUST set the 
Hello timer to the chosen time. If the time is greater than or equal to Tb, the  responder MUST NOT 
send a Hello frame in this round (because the Hello timer will not expire during the round).  

During the block, the responder MUST count the Hello and Discover messages on the network 
(including its own transmission if any) in the variab le r, so at the end of the block, the responder 

can use this information to update its estimate of the number of active responders, as specified in 
section 3.5.6.2 . 

3.5.5.1.1.3   Effect of Discover over Network Load Control  

Discover frames are handled differently, depending on whether the enumerator is known to the 
responder (that is, a session already exists in the Session Table) and the responder is 
acknowledged.  

A Discover frame is counted toward load estimation (that is, causes r to be incremented) if it results 

in either of the following (described in detail in section 3.5.5.1 ):  

Á A new session being created in the Pending state.  

Á An existing session transitioning to the Complete state AND the enumeration state engine 

simultaneously transitioning out of the Pausing state because all the session entries in the 

Session Table are in the Complete state (see section 3.5.5.4 ).  



 

83  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

The Txc  counter for the session MUST be set to TXC . If the session is causing a transition to 
Pausing state (see section 3.5.5.4  for how a new  session impacts the state), the load control MUST 

be initialized as specified in section 3.5.5.1.1.1 . If this new session is not causing a transition to 
Pausing state, the Begun flag MUST be set, which impacts load control at the end of the current 

block.  

3.5.5.2   Receiving a Hello Frame  

A responder MUST first check if the frame's destination address matches either its own MAC address 
or the broadcast  address, because its network interface might have been set to promiscuous mode 
by the topology discovery role (see section 3.6 ). Frames that do not match any of these addresses 
MUST be discarded.  

For ea ch Hello frame that is not discarded, the responder MUST increment r by one. For further 
specifications about the use of this counter, see section 3.5.5.1.1.2 . 

3.5.5.3   Receiving a Reset Frame  

A responder MUST first check if the destination address matches either its own MAC address or the 
broadcast  address, because its network interface might have been set to promiscuous mode by the 

topology discovery role (see section 3.6 ). Frames that do not match any of these addresses MUST 
be discarded.  

When a  Reset frame is received, the responder MUST first look for a corresponding session entry in 
the Session Table by matching the Real Source Address  field from the Base header to the 
enumerator's MAC address and the Type of Service  field from the Demultiplex  header to the 
entry's type of service identifier.  

If no corresponding session entry is found, the Reset frame MUST be ignored. If a corresponding 

session entry is found, it MUST be deleted. If the session table becomes empty as a result, the 
enumeration s tate engine MUST proceed to the Quiescent state.  

The Quick Discovery Responder role and the Topology Discovery Responder role are coupled through 

the selection of the Current Mapper (see section 3.6.1 ). If the Reset frame is for a topology 
discovery session entry that corresponds to the Current Mapper, the topology discovery state engine 
MUST also be reset to the Quiescent state. This constitutes the Reset command for the topology 
discovery state engine ( see section 3.6 ). In addition, all sessions of the Session Table of the Quick 

Discovery Responder that are in the Temporary state MUST be reset.  

3.5.5.4   State Transition Rules  

When a new Session Table entry is created, or an existing Session Table entry is modified, or an 
existing Session Table entry is deleted, the topology state machine state MUST be updated 
according to the following rules.  

If the Session Table is empty, the enumeration state engine MUST proceed to the Quiescent state. If 

all entries of the Session Table are in the Complete state, the enumeration state engine MUST 
proceed to the Wait state. In all other cases (that is, when t here are Session Table entries in the 
Pending or Temporary state), the enumeration state engine MUST proceed to the Pausing state.  

If the enumeration state engine changes its state, the rules for entering a new state (see sections 
3.5.7.2 , 3.5.7.3 , and 3.5.7.4 ) MUST be followed.  



 

84  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.5.6   Timer Events  

3.5.6.1   Session Inactivity Timer Expiry  

When this timer fires, each entry in the Session Table MUST be checked for inactivity as follows. If 
the session  is not in the temporary state and its type of service identifier is topology discovery, and 
the topology discovery state engine is in the Command state, the session MUST be considered 
inactive if 60 seconds or more have elapsed since the active time. Othe rwise, the session MUST be 
considered inactive if 30 seconds or more have elapsed since the active time.  

If a session is considered inactive, it MUST be removed, and the enumeration state engine's state 
MUST be updated as specified in section 3.5.5.4 . 

This timer MUST be reset so it continues firing until the enumeration state engine transitions back to 
the Quiescent state.  

3.5.6.2   Block Timer Expiry  

When the Block timer fires (signaling the end of the block), the responder  MUST update the 
estimate of the number of active responders on the network based on the count of frames during 
the block and the measured length of the block (in milliseconds), which is called Ta (note that Ta is 

likely about the same as the period of the  block timer (Tb), but on some platforms, it can be longer 
due to scheduling delays). The estimate MUST be calculated by using the RepeatBAND algorithm as 
follows.  

Value = RoundUp( r * Nold * I / Ta )  

Bound = RoundUp( Nold * Gamma / (Beta * Alpha) )  

Nnew =  Max( Bound, Min( 100 * Nold , Value ) )  

 

If the implementation is accomplished carefully, this value is never zero or negative and can be 

implemented entirely in integer arithmetic.  

The responder then MUST check the Begun flag. If it is set, then the esti mate N MUST be doubled. If 

doubling N would cause the value to exceed Nmax, then N MUST instead be set to Nmax. The Begun 
flag MUST then be cleared.  

Finally, the responder MUST set r to zero and begin the next round.  

See section 4.4  for several examples of the RepeatBAND algorithm in effect during different 
scenarios.  

3.5.6.3   Hello Timer Expiry  

After this timer fires, a Hello frame MUST be sent, the Txc counter MUST be decremented for each 
pending session in the Session Table, and each session  in the temporary state MUST be deleted. 
When this counter reaches zero, the session MUST be marked complete even if it has not been 
acknowledged.  

The generation number used in the Hello frame must be the current generation number stored by 
responder. If a  stored generation number is not defined, the generation number SHOULD be set to 

zero.  



 

85  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.5.7   Other Local Events  

3.5.7.1   Media Disconnect Event  

When the Media Disconnect event is received, all timers MUST be disabled. The enumeration state 
engine MUST transition to the Quiescent state. The Session Table MUST be cleared. If the topology 
discovery state engine is not already in Quiescent state, it M UST transition to the Quiescent state.  

3.5.7.2   Entering Quiescent State  

When the enumeration state engine enters the Quiescent state, all timers MUST be disabled. It is 
assumed that the Session Table is already empty before entering this state.  

3.5.7.3   Entering Pausing State  

When the enumeration state engine enters the Pausing State, the Begun flag MUST be set to false. 
N MUST be set to Nmax. The Block timer MUST be started and set to expire after 300 milliseconds. 

The Session Inactivity timer MUST also be started and SHOULD b e set to expire after 30 seconds.  

The enumeration state engine MUST immediately decide, as specified in section 3.5.5.1.1.2 , if a 
Hello timer is to be set.  

3.5.7.4   Entering Wait State  

When the enumeration state engine enters the Wait State, the Block timer and any pending Hello 
timer MUST be disabled.  

3.6   Responder (Topology Discovery) Details  

A responder  MAY support multiple network interfaces. If a responder supports multiple network 

interfaces, it MUST create a separate instance of the responder protocol specified in this section for 
each supported network interface.  

This section details the workings of  a responder's topology discovery state engine. This state engine 
operates in one of three states, as outlined in the following figure (this figure is only a clarifying 
summary. For the complete state engine, please refer to the figure in section 3.6.1 ).  



 

86  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

Figure 3: Typical initial transition of Responder's topology discovery states  

Responders in the Quiescent state ignore all frames that are marked for topology discover y. The 

Command state is reached when the enumeration state engine (see section 3.5 ) successfully 
associates with a mapper (and only one mapper). The Command state is where responders spend 
most of their time during topology discovery tests. In the Command state, responders execute Emit 

and Query commands from the mapper and operate with the network interface in promiscuous 
mode. The Emit state is reached only if responders receive the Emit command. As soo n as the 
command is fully processed, responders return to the Command state. Responders return to the 
Quiescent state after the Reset command or after timing out due to inactivity. The Reset command 

is triggered by the enumeration state engine (see section  3.5.5.3 ) when certain Reset frames have 
been received.  

It is important to note that the topology discovery state engine only processes frames after the 
enumeration state engine ignores them. By definiti on, the topology discovery state engine does not 
process Discover, Hello, and Reset frames. Moreover, when the topology discovery state engine is 
not in the Quiescent state, upon receipt of a Charge, Emit, Query, or QueryLargeTlv frame from the 
currently a ssociated mapper, it MUST update the current topology discovery session's active time 

field in the enumeration state engine's Session Table.  

Message request/response pairs applicable to topology discovery are defined as follows.  

Sent by mapper  Sent by res ponder  

Emit  Ack / Flat (*)  

Query  QueryResp  

Charge  Flat (*)  



 

87  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Sent by mapper  Sent by res ponder  

QueryLargeTlv  QueryLargeTlvResp  

*If the request frame has a sequence number of zero, the responder does not send a response.  

3.6.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behaviors are consistent with those described in this 

document.  

The data elements required in any responder implementation are:  

Á Topology State: This data element stores the curr ent state of the topology discovery state 

engine, as shown in the following figure.  



 

88  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

Figure 4: Responder's Topology Discovery state engine  

Á Generation Number: Knowing the correct generation number for a mapping iteration is necessary 

because of the way switches are forced to learn addresses. By the end of quick discovery, at 
most one mapper is active, and the mapper knows the correct generation number and all 
responders that are associated to it.  

Á Next Sequence Number: This  data element is a 16 -bit unsigned value. This data element MUST 

be initially set to zero, which indicates an invalid sequence number value. The first request that 
the mapper sends (via one of the Charge, Emit, Query, or QueryLargeTLV frames) that has a 
nonzero Sequence Number  field in the Base header is incremented and stored in this data 
element.  

Á Sees-List: This list MUST hold all of the information that is required to construct one or more 

RecveeDesc  structures that are returned in the QueryResp packet (as specified in section 



 

89  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

2.2.4.9 ). Entries in the list MUST be stored in such a way that the oldest entry can be returned 
first. A responder SHOULD support up to 10,000 entries in the Sees -List.  

Á Last -Sen t Response: The Last -Sent Response MUST be identified by the Function Number  field 

in the Demultiplex header of the Request frame and the Sequence Number  field in the Base 
header of the original request frame. Each time the responder sends out an Ack, Flat , QueryResp, 
or QueryLargeTlvResp frame, it updates this value as well as a copy of the response frame that it 
sent.  

Á Charge/CTC Counters: A responder MUST maintain its current charge (see section 1.3.5.2 ) or 

Current Transmit Credit (CTC). The CTC holds two counters: an 8 -bit unsigned integer Frame 
Count (FC), and a 16 -bit unsigned integer Byte Count (BC). See sections 1.3.5.3  and 1.3.5.5  for 

an overview of how charge is accumulated and consumed.  

Á Emit List: This data element is a list that stores the remaining EmiteeDescs  fields in the Emit 

header that need to be processed when the topology state is set  to Emit.  

Á Emit Sequence Value: This 16 -bit unsigned value stores the sequence number of the Emit frame 

that is being processed when the topology state is set to Emit.  

Á Error Flag: This is a global flag. It MUST be set to FALSE initially. It MUST be set to T RUE when a 

Probe frame arrives, and the responder is not able to accommodate it in the Sees -List.  

Á Large Data Property List: This data element is a set of large data properties, as specified in 

section 2. 2.2 , for the responder itself.  

Á Current Mapper: This data element contains the MAC address of the mapper the responder is 

associated with for the duration of topology discovery. The mapper associated with the responder 
is the sole enumerator whose entry has  a state field set to Complete in the Session Table 
described in section 3.5.1 , and is of the Topology discovery service type. The MAC address 
associated with that entry is the current mapper MAC address . If the Session Table has no entry 
with a state field set to Complete state, there is no current mapper. When the Session Table is 
updated, the current mapper MUST be updated accordingly.  

Note   The previous conceptual data can be implemented by using a va riety of techniques. An 

implementer can implement such data in any way.  

3.6.2   Timers  

The Responder (Topology Discovery)  role has two timers:  

Á Charge timer: This one -shot timer zeroes out the CTC counters. It MUST be set to expire 1000 

milliseconds after being started.  

Á Emit timer: This one -shot timer processes each EmiteeDesc  field in an Emit request.  

3.6.3   Initialization  

During initialization, the following conditions MUST be met:  

Á All timers MUST be disabled.  

Á The topology discovery state engine (topology state) MUST be in the Quiescent state.  

Á BC and FC counters from the CTC MUST be zero. The Sees -List MUST be empty.  

Á The Error flag MUST be cleared.  



 

90  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á The Last -Sent response MUST be zeroed.  

Á The Next Sequence Number MUST be zeroed.  

3.6.4   Higher - Layer Triggered Events  

None.  

3.6.5   Message Processing Events and Sequencing Rules  

When a message arrives, the responder MUST first check whether it is a valid Charge, Emit, Query, 
or QueryLargeTlv frame or not. If not, it MUST be dropped.  

The responder MUST check if the frame was sent from the currently associated mapper by matching 

the Real Source Address of the Base Header with the Current Mapper . If the addresses do not 
match, the responder MUST drop the message. Otherwise, the frame is processed as described in 
the following sections.  

3.6.5.1   Receiving a Charge Frame  

If the responder is in the Quiescent state, the Charge frame MUST be ignored.  

If the responder is in the Command or Emit state, the Active Time of the current mapping session 

MUST be updated to the current time. The Active Time of the session is updated irrespective of 
further processing rules which result in the Charge frame being discarded.  

If the topology state is in the Emit state, no more processing is done with the Charge frame. 
Otherwise, the Charge frame is processed as follows.  

If the Sequence Number  field in the Base header of the received Charge frame is nonzero, the 
respo nder MUST check this sequence number and function number ( Function Number  field in the 

Demultiplex header) against the Last -Sent Response. If there is a match, the frame saved MUST be 
resent and no further processing is done on the Charge frame. If there i s no match, and the 

sequence number in the frame is nonzero, the responder MUST validate this sequence number 
against the Next Sequence Number. If the Next Sequence Number is zero or if the numbers match, 
the sequence number from the Charge frame MUST be i ncremented by one using ones -complement 
arithmetic (that is, it MUST advance from 0xFFFF to 0x0001 and skip 0x0000) and store it in Next 
Sequence Number. Otherwise, if the numbers do not match, the responder MUST NOT continue 

processing the Charge frame.  

The responder MUST then zero out the Last -Sent Response (and delete any saved frame).  

The responder MUST then proceed to increase the CTC counters by incrementing the Frame Charge 
(FC) by 1, and the Byte Charge (BC) by the combined size, in bytes, of the De stination MAC, Source 
MAC, EtherType, and Payload fields of the Ethernet frame encapsulating the Charge frame, as 
described in section 1.3.5.3 . The CTC counters MUST be capped at a maximum value to preve nt a 
rogue mapper from accumulating a large amount of charge at multiple responders and releasing this 

charge at the same time against a target. The limits SHOULD be 65,536 BC and 64 FC. If the 
Charge timer is already running, the responder MUST restart th e Charge timer; otherwise, it MUST 

start the Charge timer.  

If the Charge frame is an acknowledged Charge frame (that is, it contains a nonzero sequence 
number), then the responder MUST also send a Flat frame in response. The Flat frame requires 1 FC 
and 37  BC of charge from the CTC counters.  If not enough charge exists to send the Flat frame, the 

Charge frame MUST be ignored and the CTC counters MUST be reverted to the previous values. As 



 

91  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

mentioned in section 3.2.4.3 , an acknowledged Charge frame has at most the net effect of 
increasing the BC, since the FC carried by the Charge frame is consumed in sending the Flat frame.  

The fields in the Flat frame MUST be as follows:  

Á Real_Source_Address : Set to the Re al_Destination_Address  field of the Charge frame.  

Á Real_Destination_Address : Set to the Real_Source_Address  field of the Charge frame.  

Á Sequence_Number_or_XID : MUST be set to the Sequence_Number_or_XID  field of the 

Charge frame.  

Á Current_Transmit_Credit_In_By tes : BC value at the time the Charge frame was received 

(that is, before the BC is updated with the byte count of the Charge frame).  

Á CTC_in_packets : FC value at the time the Charge frame was received (that is, before the FC is 

incremented to account for th e Charge frame).  

If the real source address ( Real Source Address  field in the Base header) of the Charge frame is 
not equal to the source address in the Ethernet header of the encapsulating Ethernet frame then the 
Flat frame must be broadcasted. Otherwise the destination address of the Flat frame should be set 
to the real source address.  

When the responder sends the Flat frame, it MUST record this information in the Last -Sent 
Response and update the Next Sequence Number with the sequence number of the Charg e frame 
incremented by one using ones -complement arithmetic (that is, it MUST advance from 0xFFFF to 
0x0001 and skip 0x0000).  

If the Charge frame is an unacknowledged Charge frame (that is, it contains a zero sequence 
number), then the responder MUST NOT s end a Flat frame in response.  

3.6.5.2   Receiving an Emit Frame  

A responder in the Quiescent state MUST ignore the Emit frame.  

If the responder is in the Command or Emit state, the Active Time of the current mapping session 
MUST be updated to the current time. The Active Time of the session is updated irrespective of 
further processing rules which result in error conditions or the  Emit frame being discarded.  

If the topology state is in the Emit state, no more processing is done with the Emit frame. 

Otherwise, the Emit frame is processed as follows.  

If the Sequence Number  field in the Base header of the received Emit frame is nonzer o, the 
responder MUST check this sequence number and function number ( Function Number  field in 
Demultiplex header) against the Last -Sent Response. If there is a match, the frame that is saved 
MUST be resent, and no further processing is done on the Emit fr ame.  

Otherwise, if there is match with the Last -Sent Response, the Emit frame MUST then be checked for 
validity by testing whether all of the following are true:  

Á The Emit frame was not sent to the broadcast address.  

Á Train and Probe Source Address  field val ues equal the responder's MAC address or are within 

the range of the OUI that is allocated for this protocol (see section 1.9 ).  

Á Trains and Probe Destination Address  field values are not an Ethernet broad cast or multicast 

address.  



 

92  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á The cumulative Pause value from all quadruples in the Emit frame MUST NOT exceed 1 second.  

If any of the previous statements are not true, the responder MUST perform no further processing 
on the Emit frame.  

If sequence number in the frame is nonzero, the responder MUST validate this sequence number 
against Next Sequence Number.  If the sequence number of the frame is zero, no validation is 
required.  

Validation against the Next Sequence Number succeeds if the Next Sequence Number i s zero or if 
the Next Sequence Number is nonzero and matches the sequence number of the Emit frame. 
Otherwise, validation fails and the responder MUST perform no further processing on the Emit 
frame.  

After validation succeeds, the responder MUST increase t he CTC by incrementing the Frame Charge 
(FC) by 1, and the Byte Charge (BC) by the combined size, in bytes, of the Destination MAC, Source 
MAC, EtherType, and Payload fields of the Ethernet frame encapsulating the Emit frame, as 
described in section 1.3.5.3 . The CTC counters MUST be capped at a maximum value to prevent a 

rogue mapper from accumulating a large amount of charge at multiple responders and releasing this 
charge at the same time against a targ et. The limits SHOULD be 65,536 BC and 64 FC.  

To avoid amplification attacks, the responder MUST require enough CTC (in both frames and bytes) 

to send a Train frame or Probe frame for each entry in the EmiteeDescs  field in the Emit frame.  If 
the Emit fram e is acknowledged (has a nonzero sequence number), enough CTC must also exist to 
send an Ack frame or Flat frame.  

The CTC required for each frame to be sent by the responder is as follows:  

Frame  Size  Reference  

Flat  1 FC; 37 BC  section 2.2.4.12  

Probe  1 FC; 32 BC  section 2.2.4.6  

Train  1 FC; 32 BC  section 2.2.4.5  

Ack  1 FC; 32 BC  section 2.2.4.7  

If not enough CTC exists, and the Emit frame is unacknowledged (that is, the sequence number is 
zero), the responder MUST perform no further processing on the Emit frame and the CTC coun ters 
MUST be reverted to the previous values.  

If not enough CTC exists, and the Emit frame is acknowledged (that is, a nonzero sequence number 
is present), a Flat frame MUST be returned to the mapper. An Emit frame always contains enough 
inherent charge to  send a Flat frame.  

The fields in the Flat frame MUST be as follows:  

Á Real_Source_Address : Set to the Real_Destination_Address  field of the Emit frame.  

Á Real_Destination_Address : Set to the Real_Source_Address  field of the Emit frame.  

Á Sequence_Number_or_XID :  MUST be set to the Sequence_Number_or_XID  field of the 

Emit frame.  

Á Current_Transmit_Credit_In_Bytes : BC value at the time the Emit frame was received (that 

is, before the BC is updated with the byte count of the Emit frame).  



 

93  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á CTC_in_packets : FC value at th e time the Emit frame was received (that is, before the FC is 

incremented to account for the Emit frame).  

When the responder sends the Flat frame, it MUST record this information in the Last -Sent 

Response and update the Next Sequence Number with the sequence number of the Emit frame 
incremented by one using ones -complement arithmetic (that is, it MUST advance from 0xFFFF to 
0x0001 and skip 0x0000). If the real source address ( Real Source Address  field in the Base 
header) of the Emit frame is not equal to the source address in the Ethernet header of the 
encapsulating Ethernet frame, then the Flat frame MUST be b roadcasted. Otherwise the destination 
address of the Flat frame SHOULD be set to the real source address.  

If enough CTC exists, the Last -Sent Response and the CTC counters MUST then be zeroed, whether 

or not the Emit frame is acknowledged (has a nonzero se quence number). The topology discovery 
state engine MUST then transition into the Emit state (by setting the topology state to Emit) while 
the Emit frame is being processed. The responder MUST attempt to copy the entire EmiteeDescs  
field in the Emit header  into the emit list. The sequence number of the Emit frame is copied into 
Emit Sequence Value (even if it is zero). The Emit timer MUST be started, with the expiration time 
delta set to the Pause value in the first quadruple in the Emit header. If the resp onder fails to copy 

the EmiteeDescs  field, it MUST silently ignore the Emit frame and the CTC counters MUST be 

zeroed.  

3.6.5.3   Receiving a Probe Frame  

Upon receiving a Probe frame, if the topology state is not in the Command or Emit state, the Probe 
frame MUST be ignored.  

Otherwise, the topology discovery state engine MUST attempt to add a new RecveeDesc  field to its 
Sees-List. If it runs out of memory, or reaches the maximum size of the Sees -List, it MUST indicate 

this by setting the Error Flag  Abstract Data Model element when responding to the Query request.  

The responder MUST record the following infor mation in the Sees -List entry:  

Á Real Source Address  field from the Base header.  

Á Source Address  field from the Ethernet header.  

Á Destination Address  field from the Ethernet header.  

3.6.5.4   Receiving a Query Frame  

When a Query frame is received, the Active Time of the current mapping session MUST be updated 
to the current time, notwithstanding any other rule to ignore the frame in the remainder of this 
section.  

If the topology state is not in the Command state, the Query frame MUST be ignored.  

Otherwise, if the Sequence Number  field in the Base header of the received Query frame is zero, 

the Query frame MUST be ignored. The responder MUST check this sequence numb er and function 
number ( Function Number  field in Demultiplex header) against the Last -Sent Response. If there is 

a match, the saved frame MUST be resent, and no further processing is done on the Query frame.  

If there is no match, the responder MUST validat e this sequence number against the Next Sequence 
Number. If the Next Sequence Number is zero, or if the numbers match, the sequence number from 
the Query frame MUST be incremented by one using ones -complement arithmetic (that is, it MUST 

advance from 0xFFF F to 0x0001 and skip 0x0000) and stored in Next Sequence Number. Otherwise, 
if the numbers do not match, the Query frame MUST be ignored.  



 

94  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

The responder MUST then zero out the Last -Sent Response (and delete any saved frame).  

The responder MUST now send a Qu eryResp frame to the mapper, including as many entries in its 
Sees-List as will fit in the frame. The responder MUST then remove the transmitted entries from its 
Sees-List. If the list contains more entries than will fit in a single QueryResp frame, the re sponder 

MUST set the More bit in the QueryResp header so that the mapper will continue sending Query 
frames until it has gathered all of the entries. If the real source address ( Real Source Address  
field in the Base header) of the Query frame is not equal to the source address in the Ethernet 
header of the encapsulating Ethernet frame, then the QueryResp frame must be broadcasted. 
Otherwise the destination of the QueryResp frame should be set to the real source address.  

If the Error Flag  Abstract Data Model  element is set, the responder MUST set the Error bit in the 
QueryResp header. If the Sees -List is empty, the Error flag MUST then be cleared.  

When the responder sends the QueryResp frame, it MUST record this information in the Last -Sent 
Response.  

3.6.5.5   Receiving a QueryLargeTlv Frame  

Some TLV pairs can be too large to return in a single Hello frame. These TLVs are returned by using 
the QueryLargeTlv header. For a list of these TLVs, see the Hello and QueryLargeTlv frame formats 

in sections 2.2.4.3  and 2.2.4.13 , respectively.  

The QueryLargeTlv and QueryLargeTlvResp frames (see section 2.2 .4.14 ) operate in a very similar 
way to the Query and QueryResp frames. A QueryLargeTlv frame is sent to the responder's topology 
discovery state engine and asks it to return as many octets as possible, starting from a specific 
offset, for a specific TLV t ype.  

When a QueryLargeTlv frame is received, the Active Time of the current mapping session MUST be 
updated to the current time, notwithstanding any other rule to ignore the frame in the remainder of 

this section.  

If the topology state is not in Command st ate, the QueryLargeTlv frame MUST be ignored.  

If the Sequence Number  field in the Base header of the received QueryLargeTlv frame is zero, the 
QueryLargeTlv frame MUST be ignored. Otherwise, the responder MUST check this sequence 
number and function number  (Function Number  field in Demultiplex header) against the Last -Sent 
Response. If there is a match, the saved frame MUST be resent, and no further processing is done 
on the QueryLargeTlv frame.  

If there is no match, the responder MUST validate this sequenc e number against the Next Sequence 
Number. If the Next Sequence Number is zero, or if the numbers match, the sequence number from 
the QueryLargeTlv frame MUST be incremented by one using ones -complement arithmetic (that is, it 
MUST advance from 0xFFFF to 0 x0001 and skip 0x0000) and stored in Next Sequence Number. 
Otherwise, if the numbers do not match, the QueryLargeTlv frame MUST be ignored.  

The responder MUST then zero out the Last -Sent Response (and delete any saved frame).  

The responder then MUST check whether it has a Large Data Property for the requested TLV type. If 
not, the responder SHOULD respond with a QueryLargeTlvResp, where the Length  field is set to 

zero.  

Otherwise, the responder MUST now acknowledge the QueryLargeTlv by returning the maximum 
possible number of octets of the requested Large Data Property that fit in a single Ethernet frame, 
starting from the specified offset. If there are more octets to return, the responder MUST set the 
More bit in the QueryLargeTlvResp frame to prompt the map per to continue sending QueryLargeTlv 

frames with updated offset values until it has gathered the full TLV. The mapper does not know how 



 

95  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

large the TLV is until the final QueryLargeTlvResp frame is returned (with the More bit set to zero). 
If the real sourc e address ( Real Source Address  field in the Base header) of the QueryLargeTlv 

frame is not equal to the source address in the Ethernet header of the encapsulating Ethernet 
frame, then the QueryLargeTlvResp frame must be broadcasted.   Otherwise the destina tion of the 

QueryLargeTlvResp frame should be set to the real source address.  

When the responder sends the QueryLargeTlvResp frame, it MUST record this information in the 
Last -Sent Response.  

3.6.6   Timer Events  

3.6.6.1   Charge Timer Expiry  

When the Charge Timer expires, the responder MUST zero out the CTC counters.  

3.6.6.2   Emit Timer Expiry  

When the Emit timer expires, the first EmiteeDesc entry (as specified in section 2.2.4.4 ) in the Emit 
List MUST be processed, which results in the sending of either a Train or Probe frame, as specified in 
the EmiteeDesc entry. The Source MAC Address  field in the Ethernet header MUST be the source 
MAC address that is specified in the EmiteeDes c entry. The Real Source Address  field in the Base 

header MUST be the MAC address of the responder itself on the network interface over which the 
frame is sent. Next, the processed entry MUST be removed from the Emit List. If the responder fails 
to transmi t the Train or Probe frame, it MUST transition the topology state to the Command state 
(by setting the topology state to Command). At this point, it is expected that the mapper retries the 
failed operation by sending corresponding command frames.  

If the Em it List is not empty, the Emit timer MUST be reactivated with the expiration time delta set 

to the Pause  field of the next entry in the Emit List.  

If the Emit List is empty, the Emit Sequence Value MUST be checked. If this value is zero, the 
topology stat e MUST transition to the Command state (by setting the topology state to Command) 
and the Emit timer MUST be stopped.  

Otherwise, if the Emit Sequence Value is nonzero, the responder MUST send an Ack response to the 
mapper by setting the Sequence Number  fie ld in the Base header of the Ack frame to the Emit 
Sequence Value. If the real source address ( Real Source Address  field in the Base header) of the 

Emit frame that contained the Emit list was not equal to the source address in the Ethernet header 
of the en capsulating Ethernet frame, then the Ack frame must be broadcasted. Otherwise the 
destination of the Ack frame should be set to the real source address of the Emit frame. It MUST 
record the Ack frame  in the Last -Sent Response. The topology state MUST now transition to the 
Command state (by setting the topology state to Command) and the Emit timer MUST be stopped.  

If at any time the topology state transitions to the Command state, and if Emit Sequence Value is 
nonzero, it MUST be incremented by one using on es-complement arithmetic (that is, it MUST 

advance from 0xFFFF to 0x0001 and skip 0x0000) and stored in Next Sequence Number.  

3.6.7   Other Local Events  

3.6.7.1   Media Disconnect Event  

When the Media Disconnect event is received, the topology discovery state engine MUST transition 
to the Quiescent state. All the side effects of entering this state MUST be observed as specified in 

section 3.6.7.2 . 



 

96  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.6.7.2   Entering Quiescent State  

When the topology discovery state engine enters the Quiescent state, all timers MUST be disabled. 
CTC byte and frame counters MUST be zero. The Sees -List MUST be cleared. The Error flag MUST be 

cleared. The Last -Sent Response MUST be zeroed. The Next Seque nce Number MUST be zeroed.  

3.6.7.3   Entering Command State  

When the topology discovery state engine enters the Command state, the Emit timer MUST be 
stopped, the Emit List MUST be emptied, and the BC and FC counters from the CTC MUST be set to 
zero.  

3.6.7.4   Leaving Command State  

When the topology discovery state engine leaves the Command state, the Charge timer MUST be 
stopped.  

3.7   QoS Sink Details  

A responder MAY support multiple network interfaces. If a responder supports multiple network 
interfaces, it MUST create a separate instance of the responder protocol specified in this section for 

each supported network interface.  

This section details the workings of a responder's QoS network test engine.  

Message request/response pairs applicable to a sink are defined as follows.  

Sent by controller  Sent by sink   

QosInitializeSink  QosError / QosReady  

QosProbe  QosProbe (*)  

QosQue ry  QosQueryResp  

QosReset  QosAck  

*If the request frame does not contain a nonzero sequence number, the responder does not send a 
response.  

3.7.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does n ot mandate that implementations 

adhere to this model as long as their external behaviors are consistent with those described in this 
document.  

The data elements required in any sink implementation are:  

Á Original Interrupt Mod : This is the starting interrupt  moderation setting on the interface. It is 

set to one of the following values:  

Á InterruptModDisabled  

Á InterruptModEnabled  



 

97  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á InterruptModUnsupported  

Á Current Interrupt Mod : This is the current interrupt moderation setting on the interface. The 

possible values f or Current Interrupt Mod  are the same as the possible values for Original 

Interrupt Mod .  

Á Session List: This data element is a list of active network test sessions. A sink MUST support at 

least three unique network test sessions, up to a recommended maximum  of ten sessions. Each 
network test session is identified by the real address of the controller station, and each network 
test session also contains the following fields:  

Á Error Flag : This field is initially set to FALSE. Use this flag when the sink cannot allocate the 

memory for a sequence bucket.  

Á Last Active Time : This field specifies the time at which the last QosProbe or QosQuery frame 

for this network test session was received.  

Á Sequence Bucket : This field is a list of entries holding information that wa s obtained from 

incoming QosProbe frames with the Test Type  field set to 0x00, all belonging to the same 

nonzero sequence number. For further specifications about using this field, see section 
3.7.5.2 . 

Á I nterrupt Mod : This field contains the interrupt moderation setting specified in the 

QosInitializeSink frame that started this network test session. It is used to determine when 
interrupt moderation is to be re -enabled on the network interface when the sess ion is 
completed.  

Note   The previous conceptual data can be implemented by using a variety of techniques. An 
implementer can implement such data in any way.  

3.7.2   Timers  

The QoS Sink  role has one timer -  the Inactivity timer. This is a periodic timer that MUST operate at 
a period of 30 seconds. It is used to expire inactive network test sessions.  

3.7.3   Initialization  

During initialization, the following conditions must be met:  

Á All timers MUST be disabled.  

Á The Session List MUST be initialized to empty.  

Á Original Interrupt Mod  MUST be set to the interrupt moderation setting on the interface.  

Á Current Interrupt Mod  MUST be set to the same value as Original Interrupt Mod .  

3.7.4   Higher - Layer Triggered Events  

None.  

3.7.5   Message Processing Events and Sequencing Rules  

When a message arrives, the sink MUST first check whether it is valid according to the following 

criteria:  

Demultiplex Header:  



 

98  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á Type of Service field is set to 0x02 (QoS diagnostics).  

Á Function field is in one of the following: QosInitializeSink (0x00), QosProbe (0x02), QosQuery 

(0x03), or QosReset (0x05).  

Base Header:  

Á Real Source Address field must be a unicast MAC address.  

Á Real Destination Address field must be the real MAC address of the sink.  

Á Sequence Number field is nonzero.  

Additional validation is required based on the message function and is described in detail as part of 

the subsequent sections.  

If the message is not valid, it MUST be ignored.  

3.7.5.1   Receiving a QosInitializeSink Frame  

When a sink receives a QosInitializeSink frame, it MUST first check that the Sequence Number  
field in the Base header is nonzero. If it is zero, the QosInitializeSink frame MUST be ignored. Then 
the sink MUST find a matching network test session that already exists in the sink's Session List. If 

one exists, it MUST immediately reply with a QosRea dy frame. Otherwise, processing continues as 
follows.  

The Interrupt_Mod  field in the QosInitializeSink header specifies the interrupt moderation mode 
for the session to be established. If the Interrupt_Mod  field equals 0xFF, the sink need not take 
any acti on.  Otherwise, if the Interrupt_Mod  field equals 0x00, interrupt moderation is to be 
disabled on the network interface. If Current Interrupt Mod  is not already set to 
InterruptModDisabled, the sink issues a request to the network interface to disable inter rupt 

moderation.  If the network interface does not support disabling, or fails to disable, interrupt 
moderation,  the sink MUST send a QosError frame with the Error Code  value equal to 0x02. If 
interrupt moderation is successf ully disabled, Current Interrupt Mod  MUST be set to 

InterruptModDisabled.  

If the sink is successful in processing the requested interrupt mode, then the sink MUST attempt to 
create a network test session and add it to the Session List. A sink MUST use the Real Source 

Address  field in the Base header of the QosInitializeSink frame to identify the controller station. If a 
sink cannot support additional sessions, it MUST return a QosError frame with the Error Code value 
equal to 0x01. The Interrupt Mod  field o f the session table entry MUST be set to the 
Interrupt_Mod  field of the QosInitializeSink frame to keep track of when the interrupt moderation 
mode is to be restored on session completion.  

Otherwise, the sink MUST return a QosReady frame.  

If the Inactivity  timer has not already been started, it MUST be started as soon as the Session List is 

not empty.  

3.7.5.2   Receiving a QosProbe Frame  

After a network test session is established, the controller sends one or more QosProbe frames to the 
sink over a period of time. The exact action the sink takes in response to this frame depends on the 
Test Type  field in the QosProbe header.  

If the sequence number in a QosProbe frame is zero, the frame MUST be ignored.  

%5bMS-GLOS%5d.pdf


 

99  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

If the value of the field is 0x01, the controller has requested that the sink participate in a probegap 
test. On receipt of such a frame, the sink  MUST immediately copy the QosProbe frame as - is and 

return it to the controller with the following modifications:  

Á The Source Address  and Destination Address  fields in the Ethernet header MUST be 

exchanged.  

Á The Real Source Address  and Real Destination Addre ss  fields in the Base header MUST be 

exchanged.  

Á If the T bit is not set in the received QosProbe header, any existing tag header MUST be 

removed.  

If the T bit is set, a tag header MUST be returned. If one does not already exist in the frame, a 
new header M UST be added. The user_priority  field of the TCI (Tag Control Information)  
field of the tag header must be set to the 802.1p Value  field of the received QosProbe header. 
The CFI  and VID  fields of the TCI  field of the tag header must be set to zero.  

Á The Sin k Receive Timestamp  field MUST be updated with a high - resolution time stamp 

sampled at the earliest time possible when the QosProbe frame was received.  

Á The Sink Transmit Timestamp  field MUST be updated with a high - resolution time stamp 

sampled at the last possible moment before the outgoing QosProbe frame is sent.  

Á The Test Type  field in the outgoing QosProbe header MUST be changed to the value 0x02, which 

indicates to the controller that the QosProbe is sourced from a sink.  

If the value of the Test Type  fie ld is 0x00, the controller has requested that the sink participate in a 
timed probe test. This test requires that a sink receive and record up to 82 consecutive QosProbe 

frames, all of the same sequence number. All timed probe frames following the eighty -second frame 
MUST be ignored completely. The collection of QosProbe records for a specific sequence number is 
called a sequence bucket. The sink MUST attempt to record specific bits of information from each 
frame in the form of an 8 -octet high - resolution ti me stamp of the send operation on the controller 
side (the Controller_Transmit_Timestamp  field of the QosProbe frame), an 8 -octet high -

resolution time stamp of the receive operation on the sink side (determined by the local clock of the 
sink at the time th e QosProbe frame is received), and a 1 -octet identifier (the Packet ID  field of the 

QosProbe frame). The controller requests this recorded information immediately after the last 
QosProbe frame in the sequence is sent via the QosQuery frame. The exact numbe r of QosProbe 
frames sent will vary.  

In some rare cases, the QosQuery frame may be dropped and the controller may resend it if 
needed. However, such a retransmission implies the overlapping arrival of the next series of 
QosProbe frames under a subsequent s equence number. Meanwhile, the QosQuery frame for the 

previous sequence bucket can still arrive in the near future. In view of this possibility, the sink MUST 
be prepared to handle at least two sequence buckets worth of recordings at any point in time up t o 
a maximum of 10 sequence buckets where possible. As a new sequence bucket is needed, the oldest 
one SHOULD be cleared and reused.  

In case of memory allocation failure preventing the information in the frame from being recorded, 
the sink MUST set the netw ork test session's Error flag to TRUE, so that it reports the error condition 

in the Error bit in the QosQueryResp header when replying to a QosQuery request.  

The applicable network test session's last active time MUST be updated on receipt of this frame.  



 

100  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.7.5.3   Receiving a QosQuery Frame  

Upon receipt of a QosQuery frame, the sink MUST first match the Real Source Address  field in the 
Base header against an existing network test session's controller MAC address . If one cannot be 

found, the QosQuery frame MUST be ignored.  

Next, the sink MUST match the Sequence Number  field in the Base header against the sequence 
bucket in the associated network test session. If the Sequence Number  is zero or if a sequence 
bucket cannot be found, the QosQuery frame MUST be ignored.  

The sink MUST send only one QosQueryResp frame in response because there are no more records 
that are stored in a sequence bucket than will fit in a standard 1514 -octet Ethernet frame.  

If at any time the  sink encounters a memory allocation failure while attempting to allocate storage 

for the sequence bucket, it MUST set the network test session's Error flag.  

The applicable network test session's last active time MUST be updated on receipt of this frame.  

The sink MUST not clear the sequence bucket after sending a QosQueryResp frame in case the 
QosQuery frame is resent by the controller. The sequence bucket will eventually be reused if needed 
(see section 3.7.5.2 ).  

3.7.5.4   Receiving a QosReset Frame  

Upon receipt of a QosReset frame, the sink MUST first check that the Sequence Number  field in 
the Base header is nonzero. If it is zero, the OosReset frame MUST be ignored. The sink MUST 
attempt to match the Real Source Address  field in the Base header of the QosReset frame against 
its Session List. If a session is found, the session must be deleted from the Session List and the sink 
MUST send a QosAck response. Otherwise, the sink MUST NOT send a response.  

The fields of the QosAck frame should be set to the following:  

Á Real_Source_Address  -  Real_Destination_Address  of the QosReset frame  

Á Real_Destination_Address  -  Real_Source_Address  of the QosReset frame  

Á Sequence_Number  -  Sequence_Number  of the QosReset frame  

I f the Session List is empty, the Inactivity timer MUST be disabled.  

If the Session List is empty or all remaining sessions have the Interrupt Mod  field of the session 

table entry set to 0xFF, and if Current Interrupt Mod  does not equal Original Interrupt M od , 
then the interrupt moderation mode on the network interface MUST be restored to Original 
Interrupt Mod . Current Interrupt Mod  MUST then be reset to Original Interrupt Mod .  

3.7.6   Timer Events  

3.7.6.1   Inactivity Timer Expiry  

When the Inactivity timer expires, the sink SHOULD <14>  remove any network test sessions that 

have had at least 2 minutes of inactivity as computed from the last active time.  

If the Session List is empty after removing all inactive test sessions, the Inactivity timer MUST be 
disabled.  

If the Session List is empty or all remaining sessions have the Interrupt Mod  field of the session 
table entry set to 0xFF, and if Current Interr upt Mod  does not equal Original Interrupt Mod , 



 

101  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

then the interrupt moderation mode on the network interface MUST be restored to Original 
Interrupt Mod . Current Interrupt Mod  MUST then be reset to Original Interrupt Mod .  

3.7.7   Other Local Events  

3.7.7.1   Media Disconnect Event  

When the Media Disconnect event is received, the sink MUST remove all sessions from the Session 
List. All timers MUST be disabled. The interrupt moderation mode on the network interface MUST be 
restored to Original Interrupt Mod . Current Interrupt Mod  MUST then be reset to Original 
Interrupt Mod .  

3.8   Responder (QoS Cross - Traffic) Details  

This section details the workings of a responder's QoS cross - traffic engine.  

A responder MAY support multiple network interfaces. If a responder supports multiple network 

interfaces, it MUST create a separate instance of the responder protocol specified in this section for 
each supported network interface.  

Applicable message reques t/response pairs are defined as follows.  

Sent by controller  Sent by responder  

QosCounterSnapshot  QosCounterResult  

QosCounterLease  N/A  

3.8.1   Abstract Data Model  

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 

explanation of how the protocol behaves. This document does n ot mandate that implementations 
adhere to this model as long as their external behaviors are consistent with those described in this 

document.  

The data elements required in any responder implementation are:  

Á Counter History: This data element specifies a co llection of counters for the total number of bytes 

and packets sent and received (due to any network activity, not just the responder). The Counter 
History maintains separate counters for each network interface on the device that implements 
the responder. Each history buffer is normally implemented as a circular -buffer. Both byte counts 
and packet counts use a fixed scaling factor inclusively between 1 and 256 kilobytes or packet 

units respectively. Each individual implementation of the protocol is free to choose its own scaling 
factor. <15>  

All counters MUST be sampled at 1 -second intervals, with each counter measured relative to that 
from the previous interval. Thus, when starting the measurement, the first data set is only 

available after the first interval has elapsed. An implementation can store the absolute counter 
values in the history internally and then calculate the relative values when the values are being 

read from the history. This requires keeping an initial counter entry i n the history which does not 
correspond to a measurement interval.  

At least 3 seconds of history MUST be maintained for each counter. Devices with sufficient spare 
memory SHOULD collect up to 30 seconds of history.  



 

102  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Each row in the collection contains the following counters:  

Á Number of bytes received: This counter MUST be available.  

Á Number of bytes sent: This counter MUST be available.  

Á Number of packets received: Devices SHOULD collect this counter.  

Á Number of packets sent: Devices SHOULD collect this counter . 

A responder SHOULD use one set of timers and one counter history to serve multiple controllers 
(see section 3.8.2 ).  

Note   The previous conceptual data can be implemented by using a variety of technique s. An 
implementer can implement such data in any way.  

3.8.2   Timers  

The Responder (QoS Cross -Traffic)  role has two timers:  

Á Lease timer: A one -shot timer that is started and renewed when a QosCounterLease frame is 

received. The period MUST be 5 minutes in length. This timer enforces the Lease Period. While 
this timer is active, the counter history is guaranteed to be available for query by the server via 

the QosCounterSnapshot  request.  

Á Snapshot timer: This periodic timer is active only when the lease timer is running. This timer 

MUST have a period of 1 second.  

A responder SHOU LD use one set of timers and one counter history to serve multiple controllers. 
This is transparent to the controllers as each controller has to ensure that the lease period is active 
at least as long as the controller intends to query the responder for th e current history.  

3.8.3   Initialization  

During initialization, the following conditions must be met:  

Á All timers MUST be disabled.  

Á The counter history MUST be empty.  

3.8.4   Higher - Layer Triggered Events  

None.  

3.8.5   Message Processing Events and Sequencing Rules  

When a message arrives, the responder MUST first check whether it is a valid QosCounterLease or 
QosCounterSnapshot  frame or not. If not, it MUST be dropped. The subsequent sections contain the 
validation and processing steps for these frames.  

3.8.5.1   Receiving a QosCounterLease Frame  

On receipt of this request, a responder  MUST set the Lease timer to expire after 5 minutes. If the 
timer is already running, it is restarted. If the Snapshot timer is not already running, it MUST be 
started as well, and set to expire after 1 second.  



 

103  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

If a responder chooses to implement separate instances of the timers and counter history per 
requesting controller, it has to find the appropriate context based on the controller's MAC address, 

or create a new context if there is no context yet. The controller's MAC address is specified by the 
Real S ource Address  field of the Base header. If this field does not contain a unicast address, and 

the responder implements per -controller contexts, the frame MUST be ignored.  

The Real Destination Address  and Sequence Number  fields of the Base header are not us ed in 
processing the QosCounterLease  frame, and MUST be ignored.  

3.8.5.2   Receiving a QosCounterSnapshot Frame  

When a responder receives a QosCounterSnapshot  frame, it SHOULD respond to the frame even if a 
Lease Period is not in effect because the server failed to send QosCounterLease frames in time to 

create it or to keep it going until the present time.  

If the responder chooses to implement separate instance s of the timers and counter history per 
requesting controller, it has to find the appropriate context based on the controller's MAC address. If 
there is no context for the requesting controller, the responder MAY simply ignore this frame.  

Otherwise, the re sponder MUST send a QosCounterResult  frame in response. At this point, a 4 - tuple 
snapshot (section 2.2.6.3 ) is immediately taken. This is the sub -seco nd snapshot. It is 

indistinguishable from all other snapshots (section 3.8.1 ), except that the counters for the sub -
second snapshot are not sampled at a full 1 -second interval from the previous snapshot,  resulting in 
a shorter interval. Additionally, the time span since the last sampling interval is recorded in the 
SubSecond_Span  field. If a lease period is not in effect, the SubSecond_Span  field MUST be set 
to zero. The sub -second snapshot is not added t o the counter history. The QosCounterSnapshot 
frame carries a sequence number that MUST be quoted in the transmission of the QosCounterResult 
response. The QosCounterResult response MUST return at most the History Size  field's (from the 

QosCounterSnapshot header) count of snapshots from the counter history, starting with the oldest 
snapshot available. The last snapshot in the QosCounterResult response MUST be the sub -second 
sample, whose existence is always implied and not reflected by the History Size  fiel d.  

The Real Destination Address  field in the Base header of the QosCounterSnapshot frame indicates 

the network interface for which the counter history is to be returned. In some cases, the Real 
Destination Address  field in the Base header does not equal th e destination MAC address in the 
Ethernet header. This is intended to be used in the case where the responder is an access point 

device, where the Real Destination Address  is the BSSID address of one of its wireless bands or a 
special FF:FF:FF:FF:FF:FF add ress.  

If the responder is not an access point device and the Real Destination Address  field in the Base 
header does not match the Ethernet destination MAC address, the responder SHOULD ignore the 
frame. If the responder is an access point, the responder SH OULD return only the relevant counter 
history given the specified BSSID specified by the Real Destination Address , or in the case of the 

special address, return the aggregate of the counter histories for all of its network interfaces, 
including the wireles s bands it supports. If the address is not recognizable, the QosCounterSnapshot 
request MUST be ignored.  

3.8.6   Timer Events  

3.8.6.1   Lease Timer Expiry  

When the Lease timer fires, the Snapshot timer MUST be stopped. Any existing counter history 
MUST be cleared.  



 

104  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

3.8.6.2   Snapshot Timer Expiry  

When the Snapshot timer fires, the responder  MUST take a snapshot of the current number of bytes 
and packets that were sent and received for each network interface that is available on the device. 

It MUST then add this value to the appropriate counter history. If a history reaches its maximum 
size, the oldest snapshot MUST be removed to make room for the new snapshot.  

3.8.7   Other Local Events  

None.  

3.8.7.1   Media Disconnect Event  

The responder does not take any special action if an interface is disconnected. If the snapshot timer 
is running, it will continue accumulating for all interfaces. Upon disconnection, interfaces will not 
have any further changes in counters but the data ac cumulated before the disconnect MUST be 
available for aggregation in case a QosCounterSnapshot  frame is received with the special 

FF:FF:FF:FF:FF:FF address in the RealDestinationAddressField.  



 

105  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

4   Protocol Examples  

The following sections describe several operations as used in common scenarios to illustrate the 
function of the Link Layer Topology Discovery Protocol.  

4.1   Example 1: Mapping a Network  

The following figure shows a typical network that interconnects two computers and a printer. The 
user may have connection problems between the two computers or between a computer and the 
printer for a variety of reasons, including a mismatch in IP addressi ng on the network. Application 

problems may motivate the user to generate a map of his or her network to help discover the 
problem.  

The user uses one of the computers as a Mapper , and the printer (R1) an d laptop PC (R2) function 
as responders. They are interconnected with an Ethernet hub.  

 

Figure 5: Typical two - computers, one - printer network  

The following figure shows the protocol exchange between the mapper and the two  responders that 
are on the network.  



 

106  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

Figure 6: Protocol exchange between networked mapper and two responders  

The following list describes each step in the protocol exchange:  

1.  The Mapper broadcasts a Discover frame with a Generation Number of zero to determine what 
responders are available on the network.  

2.  Responder 1 (R1) broadcasts a Hello frame that indicates its current Generation Number and 
basic  information, such as Host ID, Characteristics, and Physical Medium (Ethernet in this case) 
in its TLV_List .  

3.  The Mapper broadcasts another Discover frame with the generation number given by R1, 
including R1's responder in the Station List.  



 

107  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

4.  Responder 2 (R2)  broadcasts a Hello frame that indicates its current Generation Number of zero, 
and basic information, such as Host ID, Characteristics, and Physical Medium (Ethernet in this 

case) in its TLV_List .  

Note   R2 used its RepeatBAND load control mechanism (sect ion 3.5.6.2 ) to not respond to the 

first Discover with a Hello response.  

5.  The Mapper broadcasts another Discover frame with the generation number given by R1, 
including R2's MAC address in the Station Lis t.  

6.  The application now invokes LLTD with a series of tests for R1. to test the network topology. The 
LLTD Mapper sends a Charge frame to R1 to generate sufficient byte and frame credits in R1 for 
a request that will follow.  

7.  The Mapper sends an Emit frame t o R1, indicating that R1 is to send a Probe frame with a Source 

MAC Address of 00 -0D-3A-D7-F2-01 and a Destination MAC Address of 00 -0D-3A-D7-F1-41.  

8.  R1 transmits the Probe frame.  

Note   The Destination MAC Address does not address any machine in particular,  so it traverses 
the network like a broadcast address.  

9.  R1 sends an Ack frame to the Mapper to indicate that it has completed the Emit request. At this 
point, the Mapper indicates to the application that the series of tests has completed.  

10. The application as ks LLTD to send a Query to R1 to get the list of MAC address seen by this 
responder.  

11. The application also asks LLTD to send a Query to R2 to get the list of MAC address that this 
responder has seen.  

12. R1 sends a QueryResp to the Mapper with no MAC address in  the list, and the Mapper completes 
the application's request from step 10.  

13. R2 sends a QueryResp to the Mapper with an entry that indicates it saw a frame with a Source 

MAC Address of 00 -0D-3A-D7-F2-01 and a Destination MAC Address of 00 -0D-3A-D7-F1-41. Th e 
Mapper completes the application's request from step 11.  

14. The application decides to conduct another test and gives LLTD another set of commands for R1. 
The Mapper sends a Charge frame to R1 to generate sufficient byte and frame credits in R1 for a 
reques t that will follow.  

15. The Mapper sends an Emit frame to R1, indicating that R1 is to send a Probe frame with a Source 
MAC Address of 00 -0D-3A-D7-F2-02 and R2's Destination MAC Address.  

16. R1 sends a Probe frame destined to R2 with a Source MAC Address of 00 -0D-3A-D7-F2-02.  

17. R1 sends an Ack frame to the Mapper to indicate it has completed the Emit request. At this point, 
the Mapper indicates to the application that the latest test has complet ed.  

18. The application asks LLTD to send a Query to R2 to get the list of MAC addresses that this 

responder has seen.  

19. R2 sends a QueryResp to the Mapper with an entry that indicates that it saw a frame with a 

Source MAC Address of 00 -0D-3A-D7-F2-02 and a R2's  MAC address as the destination. LLTD 
indicates this information to the application.  



 

108  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Note   R2 did not return the MAC address pair that it reported in step 13 because after sending 
that information in step 13, it cleared that information from memory.  

20. The ap plication asks LLTD to perform another test from R2, and the Mapper sends an Emit to R2 
with a Sequence Number of zero and a request for R2 to send a Probe using R2's MAC address 

for the source and R1's MAC address for the destination.  

Note   A zero sequenc e number indicates to R2 that it does not send an Ack frame to the Mapper 
when it has completed the Emit request. Hence, the Mapper completes the application's request 
immediately.  

21. R2 sends a Probe using R2's MAC address for the source and R1's MAC address  for the 
destination.  

22. The application asks LLTD to perform another test from R1, and the Mapper sends a Charge 

frame to R1 to generate sufficient byte and frame credits in R1 for a request that will follow.  

23. The Mapper sends a second Charge frame to R1 to generate sufficient byte and frame credits in 

R1 for a request that will follow.  

24. The Mapper sends an Emit frame to R1 that requests R1 to send a Train frame using a Source 
MAC Address of 00 -0D-3A-D7-F2-03 and  R2's MAC address as the destination. The Mapper also 
sends a Probe frame using R1's MAC address as the Source and 00 -0D-3A-D7-F2-03 as the 

Destination MAC Address.  

25. R1 sends a Train frame using a Source MAC Address of 00 -0D-3A-D7-F2-03 and R2's MAC 
address  as the destination.  

26. R1 sends a Probe using R1's MAC address for the Source and 00 -0D-3A-D7-F2-03 as the 
Destination MAC Address.  

27. R1 sends an Ack frame to the Mapper to indicate that it has completed the Emit request, and the 
Mapper completes the applicati on's request from step 22.  

28. The application asks LLTD to send a Query to R1 to get the list of MAC addresses that this 
responder has seen.  

29. The application also asks LLTD to send a Query to R2 to get the list of MAC addresses that this 
responder has seen.  

30. R1 sends a QueryResp to the Mapper with an entry that indicates that it saw a frame with R2's 
MAC address as the Source MAC address and R1's MAC address as the Destination MAC address. 
The Mapper completes the application's request from step 28.  

31. R2 sends a Q ueryResp to the Mapper with an entry that indicates it saw a frame with R1's MAC 
address as the Source MAC Address and Destination MAC Address of 00 -0D-3A-D7-F2-03. The 
Mapper completes the application's request from step 29.  

32. The application finally direct s LLTD to terminate the topology discovery session, and the Mapper 
broadcasts a Reset to indicate that the mapping session is complete.  

4.2   Example 2: Measuring Network Capacity  

The following figure shows the layout of an example network that interconnects a media server and 
a TV with an integrated media player.  



 

109  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

 

Figure 7: Example media server and TV, integrated media player network  

The media server is used to stream media content to the TV. The QoS support in LLTD can be used 
to assess the capacity of the connection between the two endpoints to determine if adequa te 
bandwidth is available for a requested stream. This example describes the LLTD QoS exchange for 
testing the bandwidth using a Test Type of Timed probes.  

The following figure shows the protocol exchange between the media server and the TV. 
Communication between the controller and the sink is done using their real MAC addresses (no LLTD 

OUIïbased MAC addresses) and the LLTD Ethertype.  

 

Figure 8: Protocol exchange between media server and TV  



 

110  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

The following list describes e ach step in the protocol exchange:  

1.  The controller sends a QosInitializeSink header to the sink and indicates that the sink should use 
its existing interrupt moderation setting (Inter rupt Mod is set to 0xFF).  

2.  The sink returns a QosReady header to confirm the creation of a network test session. The sink 

indicates that the Sink Link Speed is 54 Mbps (value of 540,000 or 0x83D60) and that its time -
stamp counter has an accuracy of 1 micros econd (value 1,000,000 or 0xF4240).  

3.  The controller creates its first QosProbe frame, time stamps it, and then transmits it to the sink. 
The controller indicates in the QosProbe frame that the Test Type is a Timed probe. The 802.1p  
field is indicated as not  used. The sink time stamps this frame when it arrives and saves it for 
returning the header information to the controller when the controller requests it.  

4.  The controller immediately creates a second QosProbe frame, time stamps it, and transmits it to 

the sink using the same parameters as in step 3. The sink time stamps this frame when it arrives 
and saves it for returning the header information to the controller when the controller requests it.  

5.  The controller immediately creates a third QosProbe frame, tim e stamps it, and transmits it to 
the sink using the same parameters as in step 3. The sink time stamps this frame when it arrives 
and saves it for returning the header information to the controller when the controller requests it.  

6.  The controller sends a Qo sQuery to the sink to retrieve the header information from the 

QosProbe frames.  

7.  The sink sends a QosQueryResp to the controller and indicates that it has received three events. 
The QosProbe headers with both the controller and sink time stamps are included  in the frame.  

8.  The controller sends a QosReset to the sink to indicate that it is done running QoS tests.  

9.  The sink confirms reception of the QosReset header with a QosAck header.  

4.3   Example 3: Charging a Responder  

Mappers must charge a responder with enough charge to fulfill an upcoming Emit request. There 
must be enough Frame Charge (FC) and Byte Charge (BC) for each frame that would be generated 
by such a request.  

The following example illustrates how a mapper would charge a responder.  

Calculating required charge  

A mapper is to issue a request to a responder to emit 5 Probe frames to targets on the network, and 
the responder is to acknowledge receipt and processing of the request. The mapper would calculate 

the required charge as follows.  

First it would determine the necessary FC:  

Á 5 Probe frames + 1 Ack frame = 6 frames.  

Á Each frame takes 1 FC, so 6 FC is required.  

Then it would determine the necessary BC:  

Á The requir ed BC is the number of bytes of all the Ethernet frames for the frames to be sent. Both 

Ack frames and Probe frames have the following size layout:  



 

111  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Á 14 bytes (Ethernet Header) + 4 bytes (Demultiplex Header) + 14 bytes (Base Header) = 32 

bytes.  

Á Because there  are 6 total frames to send, the required BC can be calculated as follows:  

Á 32 bytes per frame × 6 frames = 192 bytes.  

Á Each byte takes 1 BC, so 192 BC is required.  

Thus, the total charge requirement is 6 FC and 192 BC.  

Charging the responder  

The mapper must  now charge 6 FC and 192 BC on the responder. One approach would be to send 5 
unacknowledged Charge frames followed by 1 acknowledged Emit frame. The progression of charge 

buildup on the responder would be as follows:  

FC BC Frame Received  

0 0 None (initial charge)  

1 32  1st Charge frame at 32 bytes  

2 64  2nd Charge frame at 32 bytes  

3 96  3rd Charge frame at 32 bytes  

4 128  4th Charge frame at 32 bytes  

5 160  5th Charge frame at 32 bytes  

6 264  Emit frame at 104 bytes*  

*The Emit frame is 32 bytes, plus 2 bytes for the number of EmiteeDesc entries, plus 5 EmiteeDesc 
entries at 14 bytes each. 32 + 2 + 5 × 14 = 104.  

4.4   Example 4: RepeatBAND Algorithm  

This example shows the values calculated by the RepeatBAND algorithm for a number of rounds 
under various scenarios.  

In each example, T a, or the time between blocks, is assumed to be T b, or 300 (except in the first 
round, which starts immediately after transitioning into Pausing, where T a is zero). N is also 
initialized to N max , or 10000, to simulate the responder transitioning into the Pausing state.  

Refer to section 3.5.6.2  for the formulas used to calculate the new value of N in each round after 
Block Timer Expiry. Section 3.5.5.1.1.2  describes how the new value of N is used to det ermine 
whether or not the Hello timer is started.  

4.4.1   Scenario 1: No Hello/Discover Frames Received After Initial Discover Frame 

Moves Responder into the Pausing State  

Round  N old  r  Value  Bound  N new  Chance  of  Transmission T b /  (  N new  ×  i  )  

1*  10000  0 0 1112  1112  0.04 = 4%  

2 1112  0 0 124  124  0.36 = 36%  



 

112  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Round  N old  r  Value  Bound  N new  Chance  of  Transmission T b /  (  N new  ×  i  )  

3 124  0 0 14  14  3.19 = 319%  

4 14  0 0 2 2 21.42 = 2142%  

5 2 0 0 1 1 42.85 = 4285%  

6 1 0 0 1 1 42.85 = 4285%  

*This round is triggered immediately upon entering the Pausing state when a new session  is created 

and the session table was previously empty.  

Notice that when no Hello/Discover packets are observed by a responder, it will always schedule the 
Hello timer after round 3 at the latest. Round 3 will take place approximately 600 milliseconds afte r 
the initial Discover was received.  

4.4.2   Scenario 2: Small Network -  A Few Hello/Discover Frames Received During 

Each Round  

Round  N old  r  Value  Bound  N new  Chance  of  Transmission T b /  (  N new  ×  i  )  

1*  10000  0 0 1112  1112  0.04 = 4%  

2 1112  5 75  124  124  0.36 = 36%  

3 124  2 14  14  14  3.19 = 319%  

4 14  0 1 2 2 21.42 = 2142%  

5 2 0 0 1 1 42.85 = 4285%  

6 1 0 0 1 1 42.85 = 4285%  

*This round is triggered immediately upon entering the Pausing state when a new session is created 
and the session table was previously empty.  

In this scenario, the small number of frames seen during each block does not have any overall effect 
in slowing down the sending of the Hello frame. This is acceptable since the chance of congesting 
the network is small with the low volume of traffic being  generated.  

4.4.3   Scenario 3: Large Network -  A Steady Flow of a Few Hello/Discover Frames 

Received During Each Round  

Round  N old  r  Value  Bound  N new  Chance  of  Transmission T b /  (  N new  ×  i  )  

1*  10000  0 0 1112  1112  0.040 = 4%  

2 1112  40  989  124  989  0.045 = 4%  

3 989  40  880  110  880  0.051 = 5%  

4 880  40  793  98  793  0.057 = 5%  

5 783  40  697  87  697  0.064 = 6%  

6 697  40  620  78  620  0.072 = 7%  



 

113  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Round  N old  r  Value  Bound  N new  Chance  of  Transmission T b /  (  N new  ×  i  )  

7 620  40  552  69  552  0.081 = 8%  

8 552  40  491  62  491  0.091 = 9%  

9 491  40  437  55  437  0.102 = 10%  

10  437  40  389  49  389  0.115 = 11%  

*This round is triggered immediately upon entering the Pausing state when a new session is created 

and the session table was previously empty.  

In this scenario, the steady stream of Hello/Discover frames witnessed by the responder initially 
lowers the chan ces of the responder to 4%. However, as each round persists, the chance gets 
slightly higher, giving the responder a greater chance of sending the Hello and being Acknowledged 
by the enumerator.  



 

114  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

5   Security  

The following sections specify security considerations for implementers of the Link Layer Topology 
Discovery Protocol.  

5.1   Security Considerations for Implementers  

While the LLTD Protocol performs no security checks, it includes measures (the RepeatBAND 
mechanism, as specified in section 3.5.6.2 , and the Charge mechanism, as specified in section 3.6 ) 
to prevent traffic amplification that could be used in a DoS attack. The intent is that an attacker can 

do no more harm using the LLTD Protocol th an the attacker could do by simply sending Ethernet 
frames in a non ïLLTD environment.  

5.2   Index of Security Parameters  

None.  



 

115  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

6   Appendix A: Product Behavior  

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs:  

Á Windows  XP operating system Service Pack 2 (SP2)  

Á Windows  Vista operating system  

Á Windows Server  2008 operating system  

Á Windows  7 operating system  

Á Windows Server  2008  R2 operating system  

Á Windows 8 operating system  

Á Windows Server 2012 operating system  

Á Windows 8.1 operating system  

Á Windows Server 2012 R2 operating system  

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number 
appears with the product version, behavior changed in that service pack or QFE. The new behavior 
also applies to subsequent service packs of the product unless otherwise specified. If a product 
edition appears with the product version, behavior is different in that product edition.  

Unless otherwise specified, any statement of optional behavior in this spec ification that is prescribed 

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD 
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product 
does not follow the prescription.  

<1> Section 2.2.1.1.13: If the responder service started after the 802.11 connection became 

active, Windows  Vista, Windows Server  2008, Windows  7, Windows Server  2008  R2, Windows 8, 
Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 responders only include the 
802.11 RSSI attribute once the responder service has been running for some time (approximately a 

minute for most wireless drivers).  

<2> Section 2.2.1.1.13: Some wireless drivers do not expose the RSSI b ut do expose a signal 
strength indicator between 0 and 100. Windows  XP only reports the RSSI if available and does not 
include the attribute if it is not. However, Windows  Vista, Windows Server  2008, Windows  7, 
Windows Server  2008  R2, Windows 8, Windows Se rver 2012, Windows 8.1, and Windows Server 
2012 R2 report the signal strength indicator as provided by the driver, when the driver does not 

provide the actual RSSI.  

<3> Section 2.2.1.1.21: Windows  XP SP2 includes the 802.11 Physical Medium attribute.  

<4> Section 2.2.2.1: Windows only sends ICO format images as a responder and only recognizes 
ICO format images as a mapper. For more information about ICO, see [MSDN - ICO] . 

<5> Section 2.2.2.3: For a UPnP device, the required information comes from the UPnP device 
description phase that has the XML elements that Plug and Play Extension uses to derive the PnP 
hardware ID string. This pr operty is the string that Plug and Play uses to match a device with an INF 

file on a Windows -based computer.  

http://go.microsoft.com/fwlink/?LinkId=90018


 

116  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

<6> Section 3: Windows  Vista, Windows Server  2008, Windows  7, Windows Server  2008  R2, 
Windows 8, Windows Server 2012, Window s 8.1, and Windows Server 2012 R2 support the 

Enumerator role.  

<7> Section 3: Windows  Vista, Windows Server  2008, Windows  7, Windows Server  2008  R2, 

Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 support the Mapper 
role.  

<8> Section 3: Windows  Vista, Windows  7, Windows 8, and Windows 8.1 support the QoS 
Controller role.  

<9> Section 3: Windows  Vista, Windows  7, Windows 8, and Windows 8.1 support the Cross -Traffic 
Analysis Initiator role.  

<10> Section 3.1.6.1: Windows  Vista, Windows Server  2008, Windows  7, Windows Server  2008  R2, 

Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 stop the quick 
discovery process when the See n Station List  does not grow for three consecutive Block timer 
expirations.  

<11> Section 3.2.6.1: Windows  Vista, Windows Server  2008, Windows  7, Windows Server  2008  R2, 
Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 stop retrying 
communication with a responder after five consecutive per - responder response timer expirations.  

<12> Section 3.3.1: Windows  Vista, Windows Server  2008, Windows  7, Windows Server  2008  R2, 
Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 support up to 10 
network test sessions.  

<13> Secti on 3.3.4.1: Windows  Vista, Windows Server  2008, Windows  7, Windows Server  2008  R2, 
Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 support transmission 
of arbitrary QosProbe frame size with randomized or zeroed content.  

<14> Section 3.7.6.1: Windows implements the period of inactivity at an aggressive 5 seconds.  

<15> Section 3.8.1: Windows uses a byte scaling of 1 kilobyte and packet scaling of 1 packet.  



 

117  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

7   Change Tracking  

No table of changes is available. The document is either new or has had no changes since its last 
release.  



 

118  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

8   Index  

A  

Abstract data model  
cross - traffic analysis initiator  75  
enumerator  58  
mapper  63  
QoS controller  70  
QoS sink  96  
responder (QoS cross - traffic)  101  
responder (quick discovery)  79  
responder (topology discovery)  87  

access_point_component_descriptor_802_11 
packet  38  

Ack frame  67  
Applicability  20  
Attributes packet  22  
Attributes_AP_Association_Table packe t  33  
Attributes_Repeater_AP_Table packet  35  

B  

Base specification  40  
Block timer ( section 3.1.6.1  61 , section 3.5.6.2  84 )  
Bridge_Component_Descriptor packet  38  
bssid_802_11 packet  26  
Built_in_Switch_Component_Descriptor packet  39  

C 

Capability negotiation  20  
Change tracking  117  
Characteristics packet  24  

Charge frame  90  
Charge timer  95  
Command state  96  
Component_Descriptors packet  37  
Component_Table packet  34  
Component_Table2 packet  37  
Cross - traffic analysis  

start  76  
stop  77  

Cross - traffic analysis initiator  
abstract data model  75  
higher - layer triggered events  76  
initialization  76  
local events  77  
message processing  77  
overview  75  
sequencing rules  77  
timer events  77  
timers  76  

D  

Data model -  abstract  
cross - traffic analysis initiator  75  
enumer ator  58  
mapper  63  
QoS controller  70  

QoS sink  96  
responde r (QoS cross - traffic)  101  
responder (quick discovery)  79  
responder (topology discovery)  87  

Data types  22  
Demultiplex_Header_Format packet  40  
Detailed icon image  37  
Detailed_Icon_Image packet  33  
Device_UUID packet  31  
Discover frame  81  
Discover_Upper_Level_Header_Format packet  43  
Dynamic behavior  82  

E 

Effect of discover over network load control  82  
Emit frame  91  
Emit timer  95  
Emit_Upper_Level_Header_Format packet  44  
End_Of_Property_list_marker packet  24  
Enumerator  

abstract data model  58  
higher - layer triggered events  59  
initialization  59  
local events  62  
message processing  60  
overview  57  
sequencing rules  60  
timer events  61  
timers  59  

Enumerator as mapper ( section 3.1.5.1.1  60 , 
section 3.1.6.1.1  61 ) 

Enumerator finishes responders  69  
Examples  

network mapping example  105  
network measuring capacity example  108  
overview  105  
RepeatBAND algorithm  111  

F 

Fields -  vendor -extensible  21  
Flat frame  68  
Flat_Upper_Level_Header_Format packet  47  
Friendly name  36  
Friendly_Name packet  31  

H  

Hardware ID  36  
Hardware_ID packet  32  
Hello frame ( section 3.1.5.1  60 , section 3.5.5 .2  83 )  
Hello timer  84  
Hello_Upper_Level_Header_Format packet  43  
Higher - layer triggered events  

cross - traffi c analysis initiator  76  
enumerator  59  
mapper  64  
QoS controller  72  



 

119  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

QoS sink  97  
responder (QoS cross - traffic)  102  
responder (quick discovery)  81  
responder (topology discovery)  90  

Host_ID packet  24  

I  

Icon image  36  
Icon_Image packet  30  
Implementer -  security considerations  114  
Inactivity timer  100  
Index of security parameters  114  
Informative references  14  
Initialization  

cross - traffic analysis initiator  76  
enumerator  59  
mapper  64  
QoS controller  71  

QoS sink  97  
responder (QoS cross - traffic)  102  
responder (quick discovery)  81  
responder (topology discovery)  89  

Introduction  11  
IPv4_Address packet  27  
IPv6_Address packet  27  

L  

Large data properties  36  
Large data property  64  
Large_Data_Properties_AP_Association_Table 

packet  36  
Large_Data_Properties_Repeater_AP_Table packet  

39  
Lease timer  103  
Link_Speed packet  29  
Load initialization  82  
Local events  

cross - traffic analysis initiator  77  
enumerator  62  
mapper  69  
QoS controller  75  
QoS sink  101  
responder (QoS cross - traffic)  104  
responder (quick discovery)  85  
responder (topology discovery)  95  

M  

Machine_Name packet  30  
Mapper  

abstract data model  63  
higher - layer triggered events  64  
initialization  64  
local events  69  
message processing  67  

overview  62  
sequencing rules  67  
timer events  69  
timers  64  

maximum_o perational_rate_802_11 packet  28  

Media disconnect  104  
Media disconnect event ( section 3.5.7.1  85 , section 

3.6.7.1  95 , section 3.7.7.1  101 )  
Message processing  

cross - traffic analysis initiator  77  
enumerator  60  
mapper  67  
QoS controller  73  
QoS sink  97  
responder (QoS cross - traffic)  102  
responder (quick discovery)  81  
responder (topology discovery)  90  

Message_Syntax packet  22  
Messages  

base specification  40  
data types  22  
large data properties  36  
overview  22  
QoS diagnostics -  cross - traffic analysis  54  
QoS diagnostics -  network test  50  
quick discovery  42  
syntax  22  
topology discovery tests  42  

transport  22  

N  

Network load control  82  
Network load control -  effect of discover  82  
Network mapping example  105  
Network measuring capacity example  108  
Network test session ( section 3.3.4.1  72 , section 

3.3.4.2  73 ) 
Network topology test  64  
Normative references  13  

O 

Overview (synopsis)  15  

P 

Parameters -  security index  114  
Pausing state  85  
Performance_Counter_Frequency packet  28  
Per- interface lease renewal timer  77  
Per-QosInitializeSink response timer  74  
Per-QosProbe response timer  74  
Per-QosQuery response timer  74  
Per-QosReset response timer  75  
Per-Responder Response Timer  69  
Per-sna pshot response timer  77  
Physical_Medium packet  25  
physical_medium_802_11 packet  32  
Preconditions  20  
Prerequisites  20  
Probe frame  93  

Product behavior  115  

Q 

QoS controller  



 

120  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

abstract data model  70  
higher - layer triggered events  72  
initialization  71  
local events  75  
message processing  73  
overview  70  
sequencing rules  73  
time r events  74  
timers  71  

QoS diagnostics  
cross - traffic analysis  17  
network test ( section 1.3.3  17 , section 2.2.5  50 )  

QoS diagnostics -  cross - traffic analysis  54  
QoS sink  

abstract data model  96  
higher - layer triggered events  97  
initialization  97  
local events  101  
message processing  97  
overview  96  
sequencing rules  97  
timer events  100  
timers  97  

QoS_Characteristics packet  32  
Qos_Diagnostics_Specification_for_Cross_Traffic_A

nalysis_Base_Header_Format packet  54  
QoS_Diagnostics_Specification_for_Network_Test_B

ase_Header_Format packet  50  
QosAck frame  74  
QosAck upper - level header format  54  
QosCounterLease frame  102  
QosCounterLease upper - level header format  56  
QosCounterResult frame  77  
QosCounterResult packet  55  
QosCounterSnapshot frame  103  
QosCounterSnapshot packet  55  
QosError frame  74  
QosError_Upper_Level_Header_Format packet  54  
QosInitializeSink frame  98  
QosInitializeSink_Upper_Level_Header_Format 

packet  50  
QosProbe frame ( section 3.3.5.1  73 , section 3.7.5.2  

98 ) 
QosProbe_Upper_Level_Header_Form at packet  51  
QosQuery frame  100  
QosQueryResp frame  73  
QosQueryResp_Upper_Level_Header_Format packet  

53  
QosReady frame  74  
QosReady_Upper_Level_Header_Format packet  51  
QosReset frame  100  
Query frame  93  
QueryLargeTlv frame  94  
QueryLargeTlv_Upper_Level_Header_Format packet  

48  
QueryLargeTlvResp frame  69  
QueryLargeTlvResp_Upper_Level_Header packet  49  
QueryResp frame  68  
QueryResp_Upper_Level_Header_Format packet  46  
Quick discovery ( section 1.3.1  15 , section 2.2.4  42 ) 
Quick discovery shutdown  60  

Quick discovery startup  59  
Quie scent state ( section 3.5.7.2  85 , section 3.6.7. 2 

96 ) 

R 

References  
informative  14  
normative  13  

Relationship to other protocols  20  
RepeatBAND algorithm example  111  
Repeater_AP_Lineage packet  35  
Request counters  76  
Reset frame  83  
Responder (QoS cross - traffic)  

abstract data model  101  
higher - layer triggered events  102  
initialization  102  
local events  104  

message processing  102  
overview  101  
sequencing rules  102  
timer events  103  
timers  102  

Responder (quick discovery)  
abstract data model  79  
higher - layer triggered events  81  
initialization  81  
local events  85  
message processing  81  
overview  78  
sequencing rules  81  
timer events  84  
timers  81  

Responder (topology discovery)  
abstract data model  87  
higher - layer triggered eve nts  90  
higher - layer triggers  89  
local events  95  
message processing  90  
overview  85  
sequencing rules  90  
timer events  95  
timers  89  

rssi_802_11 packet  29  

S 

Security  
implementer considerations  114  
overview  114  
parameter index  114  

Sees_list_Working_Set packet  34  
Sequencing rules  

cross - traffic analysis initiator  77  
enumerator  60  
mapper  67  
QoS controller  73  
QoS sink  97  
responder (QoS cross - traffic)  102  
responder (quick discovery)  81  

responder (topology discovery)  90  



 

121  /  121  

[MS -LLTD] ð v20140124   
 Link Layer Topology Discovery (LLTD) Protocol  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, February 13, 2014  

Session inactivity timer  84  
Shutdown trigger  67  
Snapshot timer  104  
ssid_802_11 packet  26  
Standards assignments  21  
Startup trigger  64  
Support_Information packet  30  
Syntax  22  

base specification  40  
data types  22  
large data properties  36  
QoS diagnostics -  cross - traffic analysis  54  
QoS diagnostics -  network test  50  
quick discovery  42  
topology discovery tests  42  

T 

Test result query  66  

Timer events  
cross - traffic analysis initiator  77  
enumerator  61  
mapper  69  
QoS controller  74  
QoS sink  100  
responder (QoS cross - traffic)  103  
responder (quick discovery)  84  
responder (topology discovery)  95  

Timers  
cross - traffic analysis initiator  76  
enumerator  59  
mapper  64  
QoS controller  71  
QoS sink  97  
responder (QoS cross - traffic)  102  
responder (quick discovery)  81  
responder (topology discovery)  89  

Topology discovery tests ( section 1.3.2  15 , section 
2.2.4  42 ) 

Topology_Discovery_Tests_and_Quick_Discovery_B
ase_Header_Format packet  42  

Tracking changes  117  
Transport  22  
Triggered events -  higher - layer  

cross - traffic analysis initiator  76  
enumerator  59  
mapper  64  
QoS controller  72  
QoS sink  97  
responder (QoS cross - traffic)  102  
responder (quick discovery)  81  
responder (topology discovery)  90  

V  

Vendor -extensible fields  21  
Versioning  20  

W  

Wait state  85  
Wireless_Mode packet  26  


	Contents
	1   Introduction
	1.1   Glossary
	1.2   References
	1.2.1   Normative References
	1.2.2   Informative References

	1.3   Overview
	1.3.1   Quick Discovery
	1.3.2   Topology Discovery Tests
	1.3.3   QoS Diagnostics: Network Test
	1.3.4   QoS Diagnostics: Cross-Traffic Analysis
	1.3.5   Charge
	1.3.5.1   Frame Summary
	1.3.5.2   Tracking Charge
	1.3.5.3   Accumulating Charge
	1.3.5.4   Charge Requirements
	1.3.5.5   Consuming Charge


	1.4   Relationship to Other Protocols
	1.5   Prerequisites/Preconditions
	1.6   Applicability Statement
	1.7   Versioning and Capability Negotiation
	1.8   Vendor-Extensible Fields
	1.9   Standards Assignments

	2   Messages
	2.1   Transport
	2.2   Message Syntax
	2.2.1   Common Data Types
	2.2.1.1   Attributes
	2.2.1.1.1   End-of-Property List Marker
	2.2.1.1.2   Host ID
	2.2.1.1.3   Characteristics
	2.2.1.1.4   Physical Medium
	2.2.1.1.5   Wireless Mode
	2.2.1.1.6   802.11 BSSID
	2.2.1.1.7   802.11 SSID
	2.2.1.1.8   IPv4 Address
	2.2.1.1.9   IPv6 Address
	2.2.1.1.10   802.11 Maximum Operational Rate
	2.2.1.1.11   Performance Counter Frequency
	2.2.1.1.12   Link Speed
	2.2.1.1.13   802.11 RSSI
	2.2.1.1.14   Icon Image
	2.2.1.1.15   Machine Name
	2.2.1.1.16   Support Information
	2.2.1.1.17   Friendly Name
	2.2.1.1.18   Device UUID
	2.2.1.1.19   Hardware ID
	2.2.1.1.20   QoS Characteristics
	2.2.1.1.21   802.11 Physical Medium
	2.2.1.1.22   AP Association Table
	2.2.1.1.23   Detailed Icon Image
	2.2.1.1.24   Sees-List Working Set
	2.2.1.1.25   Component Table
	2.2.1.1.26   Repeater AP Lineage
	2.2.1.1.27   Repeater AP Table


	2.2.2   Large Data Properties
	2.2.2.1   Icon Image
	2.2.2.2   Friendly Name
	2.2.2.3   Hardware ID
	2.2.2.4   AP Association Table
	2.2.2.5   Detailed Icon Image
	2.2.2.6   Component Table
	2.2.2.6.1   Component Descriptors
	2.2.2.6.1.1   Bridge Component Descriptor
	2.2.2.6.1.2   802.11 Access Point Component Descriptor
	2.2.2.6.1.3   Built-in Switch Component Descriptor


	2.2.2.7   Repeater AP Table

	2.2.3   Base Specification
	2.2.3.1   Demultiplex Header Format

	2.2.4   Topology Discovery Tests and Quick Discovery
	2.2.4.1   Base Header Format
	2.2.4.2   Discover Upper-Level Header Format
	2.2.4.3   Hello Upper-Level Header Format
	2.2.4.4   Emit Upper-Level Header Format
	2.2.4.5   Train Upper-Level Header Format
	2.2.4.6   Probe Upper-Level Header Format
	2.2.4.7   Ack Upper-Level Header Format
	2.2.4.8   Query Upper-Level Header Format
	2.2.4.9   QueryResp Upper-Level Header Format
	2.2.4.10   Reset Upper-Level Header Format
	2.2.4.11   Charge Upper-Level Header Format
	2.2.4.12   Flat Upper-Level Header Format
	2.2.4.13   QueryLargeTlv Upper-Level Header Format
	2.2.4.14   QueryLargeTlvResp Upper-Level Header Format

	2.2.5   QoS Diagnostics Specification for Network Test
	2.2.5.1   Base Header Format
	2.2.5.2   QosInitializeSink Upper-Level Header Format
	2.2.5.3   QosReady Upper-Level Header Format
	2.2.5.4   QosProbe Upper-Level Header Format
	2.2.5.5   QosQuery Upper-Level Header Format
	2.2.5.6   QosQueryResp Upper-Level Header Format
	2.2.5.7   QosReset Upper-Level Header Format
	2.2.5.8   QosError Upper-Level Header Format
	2.2.5.9   QosAck Upper-Level Header Format

	2.2.6   QoS Diagnostics Specification for Cross-Traffic Analysis
	2.2.6.1   Base Header Format
	2.2.6.2   QosCounterSnapshot Upper-Level Header Format
	2.2.6.3   QosCounterResult Upper-Level Header Format
	2.2.6.4   QosCounterLease Upper-Level Header Format



	3   Protocol Details
	3.1   Enumerator Details
	3.1.1   Abstract Data Model
	3.1.2   Timers
	3.1.3   Initialization
	3.1.4   Higher-Layer Triggered Events
	3.1.4.1   Quick Discovery Startup
	3.1.4.2   Quick Discovery Shutdown

	3.1.5   Message Processing Events and Sequencing Rules
	3.1.5.1   Receiving a Hello Frame
	3.1.5.1.1   Enumerator Also Functioning in the Mapper Role


	3.1.6   Timer Events
	3.1.6.1   Block Timer Expiry
	3.1.6.1.1   Enumerator Also Functioning in the Mapper Role


	3.1.7   Resetting Quick Discovery
	3.1.8   Shutting Down Quick Discovery and Returning Results
	3.1.9   Other Local Events
	3.1.9.1   Media Connect/Disconnect Event


	3.2   Mapper Details
	3.2.1   Abstract Data Model
	3.2.2   Timers
	3.2.3   Initialization
	3.2.4   Higher-Layer Triggered Events
	3.2.4.1   Startup Trigger
	3.2.4.2   Retrieve a Large Data Property
	3.2.4.3   Perform a Network Topology Test
	3.2.4.4   Perform a Test Result Query
	3.2.4.5   Query for Responder Charge
	3.2.4.6   Shutdown Trigger

	3.2.5   Message Processing Events and Sequencing Rules
	3.2.5.1   Receiving an Ack Frame
	3.2.5.2   Receiving a Flat Frame
	3.2.5.3   Receiving a QueryResp Frame
	3.2.5.4   Receiving a QueryLargeTlvResp Frame

	3.2.6   Timer Events
	3.2.6.1   Per-Responder Response Timer Expiry

	3.2.7   Other Local Events
	3.2.7.1   Enumerator Finishes Enumerating Responders
	3.2.7.2   Media Connect/Disconnect Event


	3.3   QoS Controller Details
	3.3.1   Abstract Data Model
	3.3.2   Timers
	3.3.3   Initialization
	3.3.4   Higher-Layer Triggered Events
	3.3.4.1   Start Network Test Session
	3.3.4.2   Stop Network Test Session

	3.3.5   Message Processing Events and Sequencing Rules
	3.3.5.1   Receiving a QosProbe Frame
	3.3.5.2   Receiving a QosQueryResp Frame
	3.3.5.3   Receiving a QosError Frame
	3.3.5.4   Receiving a QosReady Frame
	3.3.5.5   Receiving a QosAck Frame

	3.3.6   Timer Events
	3.3.6.1   Per-QosInitializeSink Response Timer Expiry
	3.3.6.2   Per-QosProbe Response Timer Expiry
	3.3.6.3   Per-QosQuery Response Timer Expiry
	3.3.6.4   Per-QosReset Response Timer Expiry

	3.3.7   Other Local Events
	3.3.7.1   Media Connect/Disconnect Event


	3.4   Cross-Traffic Analysis Initiator Details
	3.4.1   Abstract Data Model
	3.4.2   Timers
	3.4.3   Initialization
	3.4.4   Higher-Layer Triggered Events
	3.4.4.1   Start Cross-Traffic Analysis
	3.4.4.2   Request Counters
	3.4.4.3   Stop Cross-Traffic Analysis

	3.4.5   Message Processing Events and Sequencing Rules
	3.4.5.1   Receiving a QosCounterResult Frame

	3.4.6   Timer Events
	3.4.6.1   Per-Interface Lease Renewal Timer Expiry
	3.4.6.2   Per-Snapshot Response Timer Expiry

	3.4.7   Other Local Events
	3.4.7.1   Media Connect/Disconnect Event


	3.5   Responder (Quick Discovery) Details
	3.5.1   Abstract Data Model
	3.5.2   Timers
	3.5.3   Initialization
	3.5.4   Higher-Layer Triggered Events
	3.5.5   Message Processing Events and Sequencing Rules
	3.5.5.1   Receiving a Discover Frame
	3.5.5.1.1   Network Load Control
	3.5.5.1.1.1   Load Initialization
	3.5.5.1.1.2   Dynamic Behavior
	3.5.5.1.1.3   Effect of Discover over Network Load Control


	3.5.5.2   Receiving a Hello Frame
	3.5.5.3   Receiving a Reset Frame
	3.5.5.4   State Transition Rules

	3.5.6   Timer Events
	3.5.6.1   Session Inactivity Timer Expiry
	3.5.6.2   Block Timer Expiry
	3.5.6.3   Hello Timer Expiry

	3.5.7   Other Local Events
	3.5.7.1   Media Disconnect Event
	3.5.7.2   Entering Quiescent State
	3.5.7.3   Entering Pausing State
	3.5.7.4   Entering Wait State


	3.6   Responder (Topology Discovery) Details
	3.6.1   Abstract Data Model
	3.6.2   Timers
	3.6.3   Initialization
	3.6.4   Higher-Layer Triggered Events
	3.6.5   Message Processing Events and Sequencing Rules
	3.6.5.1   Receiving a Charge Frame
	3.6.5.2   Receiving an Emit Frame
	3.6.5.3   Receiving a Probe Frame
	3.6.5.4   Receiving a Query Frame
	3.6.5.5   Receiving a QueryLargeTlv Frame

	3.6.6   Timer Events
	3.6.6.1   Charge Timer Expiry
	3.6.6.2   Emit Timer Expiry

	3.6.7   Other Local Events
	3.6.7.1   Media Disconnect Event
	3.6.7.2   Entering Quiescent State
	3.6.7.3   Entering Command State
	3.6.7.4   Leaving Command State


	3.7   QoS Sink Details
	3.7.1   Abstract Data Model
	3.7.2   Timers
	3.7.3   Initialization
	3.7.4   Higher-Layer Triggered Events
	3.7.5   Message Processing Events and Sequencing Rules
	3.7.5.1   Receiving a QosInitializeSink Frame
	3.7.5.2   Receiving a QosProbe Frame
	3.7.5.3   Receiving a QosQuery Frame
	3.7.5.4   Receiving a QosReset Frame

	3.7.6   Timer Events
	3.7.6.1   Inactivity Timer Expiry

	3.7.7   Other Local Events
	3.7.7.1   Media Disconnect Event


	3.8   Responder (QoS Cross-Traffic) Details
	3.8.1   Abstract Data Model
	3.8.2   Timers
	3.8.3   Initialization
	3.8.4   Higher-Layer Triggered Events
	3.8.5   Message Processing Events and Sequencing Rules
	3.8.5.1   Receiving a QosCounterLease Frame
	3.8.5.2   Receiving a QosCounterSnapshot Frame

	3.8.6   Timer Events
	3.8.6.1   Lease Timer Expiry
	3.8.6.2   Snapshot Timer Expiry

	3.8.7   Other Local Events
	3.8.7.1   Media Disconnect Event



	4   Protocol Examples
	4.1   Example 1: Mapping a Network
	4.2   Example 2: Measuring Network Capacity
	4.3   Example 3: Charging a Responder
	4.4   Example 4: RepeatBAND Algorithm
	4.4.1   Scenario 1: No Hello/Discover Frames Received After Initial Discover Frame Moves Responder into the Pausing State
	4.4.2   Scenario 2: Small Network - A Few Hello/Discover Frames Received During Each Round
	4.4.3   Scenario 3: Large Network - A Steady Flow of a Few Hello/Discover Frames Received During Each Round


	5   Security
	5.1   Security Considerations for Implementers
	5.2   Index of Security Parameters

	6   Appendix A: Product Behavior
	7   Change Tracking
	8   Index

