

1 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS - FSRM -Diff]:

File Server Resource Manager Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologies support. Additionally,

ove rview documents cover inter -protocol relationships and interactions .

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
document ation, you may can make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and may can
distribute portions of it in your implementations using that use these technologies or in your
documentation as necessary to properly document the implementation. You may can also distribute

in your implementation, with or without modification, any schema, IDL's schemas, IDLs , or code
samples that are included in the documentation. This permissi on also applies to any documents
that are referenced in the Open Specifications . documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Á Patents . Microsoft has patents that may might cover your implementati ons of the technologies
described in the Open Specifications . documentation. Neither this notice nor Microsoft's delivery of
the this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification m aySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise . If you would prefer a

written license, or if the technologies described in the Open Specifications this documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com .

Á Trademarks . The names of companies and products contained in this documentation may might
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses und er those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, e-mail email
addresses, logos, peop le, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications dodocumentation does not require the use of Microsoft progr amming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments , you are free to take advantage of them. Certain
Open Specifications documents are intended for use i n conjunction with publicly available
standard standards specifications and network programming art , and assumes , as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

1/25/2008 0.1 Major MCPP Milestone RSAT Initial Availability

3/14/2008 0.1.1 Editorial Changed language and formatting in the technical content.

5/16/2008 0.1.2 Editorial Changed language and formatting in the technical content.

6/20/2008 0.2 Minor Clarified the meaning of the technical content.

7/25/2008 1.0 Major Updated and revised the technical content.

8/29/2008 2.0 Major Major update to IDL content throughout the document.

10/24/2008 2.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 3.0 Major Updated and revised the technical content.

1/16/2009 4.0 Major Updated and revised the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 7.0 Major Updated and revised the technical content.

7/2/2009 8.0 Major Updated and revised the technical content.

8/14/2009 9.0 Major Updated and revised the technical content.

9/25/2009 10.0 Major Updated and revised the technical content.

11/6/2009 11.0 Major Updated and revised the technical content.

12/18/2009 12.0 Major Updated and revised the technical content.

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 14.0 Major Updated and revised the technical content.

4/23/2010 15.0 Major Updated and revised the technical content.

6/4/2010 16.0 Major Updated and revised the technical content.

7/16/2010 17.0 Major Updated and revised the technical content.

8/27/2010 18.0 Major Updated and revised the technical content.

10/8/2010 19.0 Major Updated and revised the technical content.

11/19/2010 19.1 Minor Clarified the meaning of the technical content.

1/7/2011 19.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 20.0 Major Updated and revised the technical content.

3/25/2011 21.0 Major Updated and revised the technical content.

5/6/2011 22.0 Major Updated and revised the technical content.

3 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

6/17/2011 23.0 Major Updated and revised the technical content.

9/23/2011 24.0 Major Updated and revised the technical content.

12/16/2011 25.0 Major Updated and revised the technical content.

3/30/2012 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 26.0 Major Updated and revised the technical content.

10/25/2012 27.0 Major Updated and revised the technical content.

1/31/2013 28.0 Major Updated and revised the technical content.

8/8/2013 29.0 Major Updated and revised the technical content.

11/14/2013 30.0 Major Updated and revised the technical content.

2/13/2014 30.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 30.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 31.0 Major Significantly changed the technical content.

10/16/2015 31.0
No
Change None

No changes to the meaning, language, or formatting of the
technical content.

4 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction 16
1.1 Glossary 16
1.2 References 21

1.2.1 Normative References 21
1.2.2 Informative References 21

1.3 Overview 22
1.4 Relationship to Other Protocols 24
1.5 Prerequisites/Preconditions 25
1.6 Applicability Statement 25
1.7 Versioning and Capability Negotiation 25
1.8 Vendor -Extensible Fields 25
1.9 Standards Assignments 25

2 Messages 29
2.1 Transport 29
2.2 Message Syntax 29

2.2.1 Common Data Types 29
2.2.1.1 Data Types 29

2.2.1.1.1 FSRM_OBJECT_ID 30
2.2.1.1.2 FSRM_QUOTA_THRESHOLD 30

2.2.1.2 Enumerations 30
2.2.1.2.1 FsrmQuotaFlags 30
2.2.1.2.2 FsrmFileScreenFlags 31
2.2.1.2.3 FsrmRuleFlags 31
2.2.1.2.4 FsrmCollectionState 31
2.2.1.2.5 FsrmEnumOptions 32
2.2.1.2.6 FsrmCommitOptions 32
2.2.1.2.7 FsrmTemplateApplyOptions 32
2.2.1.2.8 FsrmAccountType 33
2.2.1.2.9 FsrmActionType 33
2.2.1.2.10 FsrmReportType 34
2.2.1.2.11 FsrmRuleType 35
2.2.1.2.12 FsrmPipelineModuleType 35
2.2.1.2.13 FsrmRepo rtRunningStatus 35
2.2.1.2.14 FsrmReportFormat 36
2.2.1.2.15 FsrmReportGenerationContext 36
2.2.1.2.16 FsrmReportFilter 37
2.2.1.2.17 FsrmReportLimit 37
2.2.1.2.18 AdsCacheFlags 38
2.2.1.2.19 AdsCachePropertyFlags 39
2.2.1.2.20 FCI_ADS_SECURE_PROPERTY_TYPE 39

2.2.1.3 Structures 39
2.2.2 Interface -Specific Data Types 40

2.2.2.1 IFsrmActionEventLog Data Types 40
2.2.2.1.1 Enumerations 40

2.2.2.1.1.1 FsrmEventType 40
2.2.2.2 IFsrmAutoApplyQuota Data Types 40

2.2.2.2.1 Data Types 40
2.2.2.2.1.1 FsrmMaxExcludeFolders 40

2.2.2.3 IFsrmPropertyDefinition Data Types 40
2.2.2.3.1 Enumerations 40

2.2.2.3.1.1 FsrmPropertyDefinit ionType 41
2.2.2.4 IFsrmPropertyDefinition2 Data Types 41

2.2.2.4.1 Enumerations 41
2.2.2.4.1.1 FsrmPropertyDefinitionFlags 41

5 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.4.1.2 FsrmPropertyDefinitionAppliesTo 42
2.2.2.5 IFsrmClassificationRule Data Types 42

2.2.2.5.1 Enumerations 42
2.2.2.5.1.1 FsrmExecutionOption 42
2.2.2.5.1.2 FsrmGetFilePropertyOptions 43

2.2.2.6 IFsrmPr operty Data Types 43
2.2.2.6.1 Enumerations 43

2.2.2.6.1.1 FsrmPropertyFlags 43
2.2.2.7 IFsrmClassificationManager Data Types 45

2.2.2.7.1 Enumerations 45
2.2.2.7.1.1 FsrmClassificationLoggingFlags 45

2.2.2.8 IFsrmStorageModuleDefinition Data Types 45
2.2.2.8.1 Enumerations 45

2.2.2.8.1.1 FsrmStorageModuleCaps 45
2.2.2.8.1.2 FsrmSto rageModuleType 46

2.2.2.9 IFsrmFileManagementJob Data Types 46
2.2.2.9.1 Enumerations 46

2.2.2.9.1.1 FsrmFileManagementType 47
2.2.2.9.1.2 FsrmFileManagementLoggingFlags 47

2.2.2.10 IFsrmPropertyCondition Data Types 47
2.2.2.10.1 Enumerations 47

2.2.2.10.1.1 FsrmPropertyConditionType 48
2.2.3 XML Import and Export Formats 49

2.2.3.1 XML Data Types 49
2.2.3.1.1 Standard Data Types 49
2.2.3.1.2 guidType Simple Type 49

2.2.3.2 XML Schema 49
2.2.3.2.1 Action Element 51
2.2.3.2.2 DatascreenTemplate Element 53
2.2.3.2.3 FileGroup Element 55
2.2.3.2.4 QuotaTemplate Element 56

2.2.4 Error Codes 57
2.3 Directory Service Schema Elements 58

2.3.1 Interacti on Summary 58
2.3.2 Resource Property Lists 59
2.3.3 Resource Properties 59
2.3.4 ValueType References of msDS -ValueTypeReference 60
2.3.5 XML Schema of msDS -ClaimPossibleValues 60

3 Protocol Details 62
3.1 Client Role Details 62

3.1.1 Abstract Data Model 62
3.1.2 Timers 62
3.1.3 Initialization 62
3.1.4 Message Processing Events and Sequencing Rules 63

3.1.4.1 Processing Server Replies to Method Calls 63
3. 1.4.1.1 File Server Resource Manager Protocol Object Relationships 63
3.1.4.1.2 Quota Objects 65
3.1.4.1.3 File Screen Objects 66
3.1.4.1.4 Storage Report Objects 67
3.1.4.1.5 Classification Objects 67
3.1.4.1.6 File Management Job Objects 68

3.1.4.2 Processing No tifications Sent from the Server to the Client 69
3.1.5 Timer Events 69
3.1.6 Other Local Events 69

3.2 Server Role Details 69
3.2.1 Abstract Data Model 69

3.2.1.1 FSRM Base Object 70

6 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.2 Quota Model 71
3.2.1.2.1 Directory Quotas 72

3.2.1.2.1.1 Persisted Directory Quota 73
3.2.1.2.1.2 Non -Persisted Directory Quota Instance 73

3.2.1.2.2 Auto Apply Quotas 74
3.2.1.2.2.1 Persisted Auto Apply Quota 74
3.2.1.2.2.2 Non -Persisted Auto Apply Quota Instance 74

3.2.1.2.3 Directory Quota Templates 75
3.2.1.2.3.1 Persisted Directory Quota Template 75
3.2.1.2.3.2 Non -Persisted Directory Quota Template Instance 75

3.2.1.3 File Screen Model 76
3.2.1.3.1 File Screens 77

3.2.1.3.1.1 Persisted File Screen 78
3.2.1.3.1.2 Non -Persisted File Screen Instance 78

3.2.1.3.2 File Screen Exceptions 79
3.2.1.3.2.1 Persisted File Screen Exception 79
3.2.1.3.2.2 Non -Persisted File Screen Exception Instance 79

3.2.1.3.3 File Screen Templates 80
3.2.1.3.3.1 Persisted File Screen Template 80
3.2.1.3.3.2 Non -Persisted File Screen Template Instance 81

3.2.1.3.4 File Groups 81
3. 2.1.3.4.1 Persisted File Group 81
3.2.1.3.4.2 Non -Persisted File Group Instance 82

3.2.1.4 Notification Model 82
3.2.1.5 Storage Reports Model 84

3.2.1.5.1 Report Jobs 84
3.2.1.5.1.1 Persisted Report Job 85
3.2.1.5.1.2 Non -Persisted Report Job Instance 86
3.2.1.5.1.3 Running Job 86

3.2.1.5.2 Reports 86
3.2.1.5.3 Report Settings 88

3.2.1.6 Classification Model 89
3.2.1.6.1 Property Definitions 90

3.2.1.6.1.1 Persisted P roperty Definition 90
3.2.1.6.1.2 Non -Persisted Property Definition Instance 91
3.2.1.6.1.3 Property Value Definition 91

3.2.1.6.2 Module Definitions 91
3.2.1.6.2.1 Persisted Module Definition 93
3.2.1.6.2.2 Non -Persisted Module Definition Instance 93

3.2.1.6.3 Rules 93
3.2.1.6.3.1 Persisted Rule 94
3.2.1.6.3.2 Non -Persisted Rule Instance 95

3.2.1.6.4 Classification Job 95
3.2.1.6.5 Property Definition Instance 96

3.2.1.7 File Management Model 96
3.2.1.7.1 File Management Job 96

3.2.1.7.1.1 Persisted File Management Job 99
3.2.1.7.1.2 Non -Persisted File Management Job Instance 99

3.2.1.7.2 Property Condition 99
3.2.1.7.3 Notification period 100

3.2.1.8 FolderUsage Model 101
3.2.1.8.1 FolderUsage Insta nce 101

3.2.1.9 General Settings Model 101
3.2.1.10 Management of FSRM Objects 102
3.2.1.11 Enumeration of FSRM Objects 102
3.2.1.12 Asynchronous Tasks 103

3.2.1.12.1 Running Report Task 103
3.2.1.12.2 Running Classification Task 106

7 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.12.3 Running File Management Task 107
3.2.1.12.4 Quota Scanning 113
3.2.1.12.5 Active Directory Synchronization 113

3.2.2 Timers 116
3.2.3 Initialization 116
3.2.4 Message Processing Events and Sequencing Rules 118

3.2.4.1 Sequencing Rules 118
3.2.4.2 Message Processing Details 120

3.2.4.2.1 IFsrmCollection Methods 121
3.2.4.2.1.1 _NewEnum (Opnum 7) 122
3.2.4.2.1.2 Item (get) (Opnum 8) 122
3.2.4.2.1.3 Count (ge t) (Opnum 9) 123
3.2.4.2.1.4 State (get) (Opnum 10) 123
3.2.4.2.1.5 Cancel (Opnum 11) 124
3.2.4.2.1.6 WaitForCompletion (Opnum 12) 124
3.2.4.2.1.7 GetById (Opnum 13) 125

3.2.4.2.2 IFsrmMutableCollection Methods 125
3.2.4.2.2.1 Add (Opnum 14) 126
3.2.4.2.2.2 Remove (Opnum 15) 126
3.2.4.2.2.3 RemoveById (Opnum 16) 127
3.2.4.2.2.4 Clone (Opnum 17) 127

3.2.4.2.3 IFsrmCommittableCollection Methods 128
3.2.4.2.3.1 Commit (Opnum 18) 128

3.2.4.2.4 IFsrmAction Methods 129
3.2.4.2.4.1 Id (get) (Opnum 7) 129
3.2.4.2.4.2 ActionType (get) (Opnum 8) 130
3.2.4.2.4.3 RunLimitInterval (get) (Opnum 9) 130
3.2.4.2.4.4 RunLimitInterval (put) (Opnum 10) 131
3.2.4.2.4.5 Delete (Opnum 11) 131

3.2.4.2.5 IFsrmActionEm ail Methods 131
3.2.4.2.5.1 MailFrom (get) (Opnum 12) 132
3.2.4.2.5.2 MailFrom (put) (Opnum 13) 133
3.2.4.2.5.3 MailReplyTo (get) (Opnum 14) 133
3.2.4.2.5.4 MailReplyTo (put) (Opnum 15) 134
3.2.4.2.5.5 MailTo (get) (Opnum 16) 134
3.2.4.2.5.6 MailT o (put) (Opnum 17) 135
3.2.4.2.5.7 MailCc (get) (Opnum 18) 135
3.2.4.2.5.8 MailCc (put) (Opnum 19) 136
3.2.4.2.5.9 MailB cc (get) (Opnum 20) 136
3.2.4.2.5.10 MailBcc (put) (Opnum 21) 137
3.2.4.2.5.11 MailSubject (get) (Opnum 22) 137
3.2.4.2.5.12 MailSubject (put) (Opnum 23) 138
3.2.4.2.5.13 MessageText (get) (Opnum 24) 139
3.2.4.2.5.14 MessageText (put) (Opnum 25) 139

3.2.4.2. 6 IFsrmActionEmail2 Methods 140
3.2.4.2.6.1 AttachmentFileListSize (get) (Opnum 26) 140
3.2.4.2.6.2 AttachmentFileListSize (put) (Opnum 27) 140

3.2.4.2.7 IFsrmActionReport Methods 141
3.2.4.2.7.1 ReportTypes (get) (Opnum 12) 141
3.2.4.2.7.2 ReportTypes (put) (Opnum 13) 142
3.2.4.2.7.3 MailTo (get) (Opnum 14) 142
3.2.4.2.7.4 MailTo (put) (Opnum 15) 143

3.2.4.2.8 IFsrmAc tionEventLog Methods 143
3.2.4.2.8.1 EventType (get) (Opnum 12) 144
3.2.4.2.8.2 EventType (put) (Opnum 13) 144
3.2.4.2.8.3 MessageText (get) (Opnum 14) 145
3.2.4.2.8.4 MessageText (put) (Opnum 15) 145

3.2.4.2.9 IFsrmActionCommand Methods 146

8 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2.9.1 ExecutablePath (get) (Opnum 12) 146
3.2.4.2.9.2 ExecutablePath (put) (Opnum 13) 147
3.2.4.2.9.3 Arguments (get) (Opnum 14) 148
3.2.4.2.9.4 Arguments (put) (Opnum 15) 148
3.2.4.2.9.5 Account (get) (Opnum 16) 149
3.2.4.2.9.6 Account (put) (Opnum 17) 149
3.2.4.2.9.7 WorkingDirectory (get) (Opnum 18) 150
3.2.4. 2.9.8 WorkingDirectory (put) (Opnum 19) 151
3.2.4.2.9.9 MonitorCommand (get) (Opnum 20) 151
3.2.4.2.9.10 MonitorCommand (put) (Opnum 21) 151
3.2.4.2.9.11 KillTimeout (get) (Opnum 22) 152
3.2.4.2.9.12 KillTimeout (put) (Opnum 23) 152
3.2.4.2.9.13 LogResult (get) (Opnum 24) 153
3.2.4.2.9.14 LogResult (put) (Opnum 25) 153

3.2.4.2.10 IFsrmObject Methods 154
3.2.4.2.10.1 Id (get) (Opnum 7) 154
3.2.4.2.10.2 Description (get) (Opnum 8) 155
3.2.4.2.10.3 Description (put) (Opnum 9) 155
3.2.4.2.10.4 Delete (Opnum 10) 156
3.2.4.2.10.5 Commit (Opnum 11) 156

3.2.4.2.11 IFsrmSetting Methods 157
3.2.4.2.11.1 SmtpServer (get) (Opnum 7) 158
3.2.4.2.11.2 SmtpServ er (put) (Opnum 8) 158
3.2.4.2.11.3 MailFrom (get) (Opnum 9) 159
3.2.4.2.11.4 MailFrom (put) (Opnum 10) 159
3.2.4.2.11.5 AdminEmail (get) (Opnum 11) 159
3.2.4.2.11.6 AdminEmail (put) (Opnum 12) 160
3.2.4.2.11.7 DisableCommandLine (get) (Opnum 13) 160
3.2.4.2.11.8 DisableCommandLine (put) (Opnum 14) 161
3.2.4.2.11.9 EnableScreeningAudit (get) (Opnum 15) 161
3.2.4.2.11.10 EnableScreeningAudit (put) (Opnum 16) 162
3.2.4.2.11.11 EmailTest (Opnum 17) 162
3.2.4.2.11.12 SetActionRunLimitInterval (Opnum 18) 163
3.2.4.2.11.13 GetActionRunLimitInterval (Opnum 19) 163

3.2.4.2.12 IFsrmPathMapper Methods 164
3.2.4.2.12.1 GetSharePathsForLocalPath (Opnum 7) 164

3.2.4.2.13 IFsrmDerivedObjectsResult Methods 165
3.2.4.2.13.1 DerivedObjects (get) (Opnum 7) 165
3.2.4.2.13.2 Results (get) (Opnum 8) 166

3.2.4.2.14 IFsrmQ uotaBase Methods 166
3.2.4.2.14.1 Commit (Opnum 11) 167
3.2.4.2.14.2 QuotaLimit (get) (Opnum 12) 167
3.2.4.2.14.3 QuotaLimit (put) (Opnum 13) 168
3.2.4.2.14.4 QuotaFlags (get) (Opnum 14) 168
3.2.4.2.14.5 QuotaFlags (put) (Opnum 15) 169
3.2.4.2.14.6 Thresholds (get) (Opnum 16) 169
3.2.4.2.14.7 AddThreshold (Opnum 17) 170
3.2.4.2.14.8 DeleteThreshold (Opnum 18) 170
3.2.4.2.14.9 ModifyThreshold (Opnum 19) 171
3.2.4.2.14.10 Creat eThresholdAction (Opnum 20) 172
3.2.4.2.14.11 EnumThresholdActions (Opnum 21) 172

3.2.4.2.15 IFsrmQuotaObject Methods 173
3.2.4.2.15.1 Commit (Opnum 11) 174
3.2.4.2.15.2 Path (get) (Opnum 22) 174
3.2.4.2.15.3 UserSid (get) (Opnum 23) 174
3.2.4.2.15.4 UserAccount (get) (Opnum 24) 175
3.2.4.2.15.5 SourceTemplateName (get) (Opnum 25) 175
3.2.4.2.15.6 MatchesSourceTemplate (get) (Opnum 26) 176

9 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2.15.7 ApplyTemplate (Opnum 27) 176
3.2.4.2.16 IFsrmQuota Methods 177

3.2.4.2.16.1 Commit (Opnum 11) 177
3.2.4.2.16.2 QuotaUsed (get) (Opnum 28) 178
3.2.4.2.16.3 QuotaPeakUsage (get) (Opnum 29) 179
3.2.4.2.16.4 QuotaPeakUsageTime (get) (Opnum 30) 179
3.2.4.2.16.5 ResetPeakUsage (Opnum 31) 180
3.2.4.2.16.6 RefreshUsageProperties (Opnum 32) 180

3.2.4. 2.17 IFsrmAutoApplyQuota Methods 181
3.2.4.2.17.1 Commit (Opnum 11) 181
3.2.4.2.17.2 ExcludeFolders (get) (Opnum 28) 182
3.2.4.2.17.3 ExcludeFolders (put) (Opnum 29) 182
3.2.4.2. 17.4 CommitAndUpdateDerived (Opnum 30) 183

3.2.4.2.18 IFsrmQuotaManager Methods 184
3.2.4.2.18.1 ActionVariables (get) (Opnum 7) 184
3.2.4.2.18.2 ActionVariableDescriptions (get) (Opnum 8) 185
3.2.4.2.18.3 CreateQuota (Opnum 9) 185
3.2.4.2.18.4 CreateAutoApplyQuota (Opnum 10) 186
3.2.4.2.18.5 GetQuota (Opnum 11) 187
3.2.4.2.18.6 GetAutoApplyQuota (Opnum 12) 188
3.2.4.2.18.7 GetRestrictiveQuota (Opnum 13) 189
3.2.4.2.18.8 EnumQuotas (Opnum 14) 190
3.2.4.2.18.9 EnumAutoApplyQuotas (Opnum 15) 191
3.2.4.2.18.10 EnumEffectiveQuotas (Opnum 16) 192
3.2.4.2.18.11 Scan (Opnum 17) 193
3.2.4.2.18.12 CreateQuotaCollection (Opnum 18) 194

3.2.4. 2.19 IFsrmQuotaManagerEx Methods 194
3.2.4.2.19.1 IsAffectedByQuota (Opnum 19) 195

3.2.4.2.20 IFsrmQuotaTemplate Methods 195
3.2.4.2.20.1 Commit (Opnum 11) 196
3.2.4.2.20.2 QuotaFlags (put) (Opnum 15) 197
3.2.4.2.20.3 Name (get) (Opnum 22) 197
3.2.4.2.20.4 Name (put) (Opnum 23) 197
3.2.4.2.20.5 CopyTemplate (Opnum 24) 198
3.2.4.2.20.6 CommitAndUpdateDerived (Opnum 25) 198

3.2.4.2.21 IFsrmQuotaTemplateImported Methods 199
3.2.4. 2.21.1 OverwriteOnCommit (get) (Opnum 16) 200
3.2.4.2.21.2 OverwriteOnCommit (put) (Opnum 17) 200

3.2.4.2.22 IFsrmQuotaTemplateManager Methods 201
3.2.4.2.22.1 CreateTemplate (Opnum 7) 201
3.2.4.2.22.2 GetTemplate (Opnum 8) 202
3.2.4.2.22.3 EnumTemplates (Opnum 9) 203
3.2.4.2.22.4 ExportTemplates (Opnum 10) 204
3.2.4.2.22.5 ImportTemplates (Opnum 11) 205

3.2.4.2.23 IFsrmFileGroup Methods 206
3. 2.4.2.23.1 Commit (Opnum 11) 206
3.2.4.2.23.2 Name (get) (Opnum 12) 207
3.2.4.2.23.3 Name (put) (Opnum 13) 207
3.2.4.2.23.4 Member s (get) (Opnum 14) 208
3.2.4.2.23.5 Members (put) (Opnum 15) 208
3.2.4.2.23.6 NonMembers (get) (Opnum 16) 209
3.2.4.2.23.7 NonMembers (put) (Opnum 17) 210

3.2.4.2.24 IFsrmFileGroupImported Methods 210
3.2.4.2.24.1 OverwriteOnCommit (get) (Opnum 18) 210
3.2. 4.2.24.2 OverwriteOnCommit (put) (Opnum 19) 211

3.2.4.2.25 IFsrmFileGroupManager Methods 211
3.2.4.2.25.1 CreateFileGroup (Opnum 7) 212
3.2.4.2.25.2 GetFileGroup (Opnum 8) 212

10 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2.25.3 EnumFileGroups (Opnum 9) 213
3.2.4.2.25.4 ExportFileGroups (Opnum 10) 214
3.2.4.2.25.5 ImportFileGroups (Opnum 11) 215

3.2.4.2.26 IFsrmFileScreenBase Methods 216
3.2.4.2.26.1 BlockedFileGroups (get) (Opnum 12) 216
3.2.4.2.26.2 BlockedFileGroups (put) (Opnum 13) 21 7
3.2.4.2.26.3 FileScreenFlags (get) (Opnum 14) 217
3.2.4.2.26.4 FileScreenFlags (put) (Opnum 15) 218
3.2.4. 2.26.5 CreateAction (Opnum 16) 218
3.2.4.2.26.6 EnumActions (Opnum 17) 219

3.2.4.2.27 IFsrmFileScreen Methods 220
3.2.4.2.27.1 Commit (Opnum 11) 220
3.2.4.2.27.2 Path (get) (Opnum 18) 221
3.2.4.2.27.3 SourceTemplateName (get) (Opnum 19) 221
3.2.4.2.27.4 MatchesSou rceTemplate (get) (Opnum 20) 222
3.2.4.2.27.5 UserSid (get) (Opnum 21) 223
3.2.4.2.27.6 UserAccount (get) (Opnum 22) 223
3.2.4.2.27 .7 ApplyTemplate (Opnum 23) 224

3.2.4.2.28 IFsrmFileScreenException Methods 224
3.2.4.2.28.1 Commit (Opnum 11) 225
3.2.4.2.28.2 Path (get) (Opnum 12) 225
3.2.4.2.28.3 AllowedFileGroups (get) (Opnum 13) 226
3.2.4.2.28.4 AllowedFileGroups (put) (Opnum 14) 226

3.2. 4.2.29 IFsrmFileScreenManager Methods 227
3.2.4.2.29.1 ActionVariables (Opnum 7) 227
3.2.4.2.29.2 ActionVariableDescriptions (Opnum 8) 228
3.2.4.2.29.3 CreateFileScreen (Opnum 9) 228
3.2.4.2.29.4 GetFileScreen (Opnum 10) 229
3.2.4.2.29.5 EnumFileScreens (Opnum 11) 230
3.2.4.2.29.6 CreateFileScreenException (Opnum 12) 231
3.2.4.2.29.7 GetFileScreenException (Opnum 13) 232
3.2.4.2.29.8 EnumFileScreenExceptions (Opnum 14) 233
3.2. 4.2.29.9 CreateFileScreenCollection (Opnum 15) 234

3.2.4.2.30 IFsrmFileScreenTemplate Methods 235
3.2.4.2.30.1 Commit (Opnum 11) 235
3.2.4.2.30.2 Name (get) (Opnum 18) 236
3.2.4.2.30.3 Name (put) (Opnum 19) 237
3.2.4.2.30.4 CopyTemplate (Opnum 20) 237
3.2.4.2.30.5 CommitAndUpdateDerived (Opnum 21) 238

3.2.4.2.31 IFsrmFileScreenTemplateImported Methods 239
3.2.4.2.31.1 OverwriteOnCommit (get) (Opnum 22) 239
3.2.4.2.31.2 OverwriteOnCommit (put) (Opnum 23) 239

3.2.4.2.32 IFsrmFileScreenTemplateManager Methods 240
3.2.4.2.32.1 CreateTemplate (Opnum 7) 240
3.2.4.2.32.2 GetTemplate (Opnum 8) 241
3.2.4.2.32.3 EnumTemplates (Opnum 9) 242
3.2.4.2.32.4 ExportTemplates (Opnum 10) 243
3.2.4.2.32.5 ImportTemplates (Opnum 11) 244

3.2.4.2.33 IFsrmReportManager Methods 245
3.2.4.2.33.1 EnumReportJobs (Opnum 7) 245
3.2.4.2.33.2 CreateReportJob (Opnum 8) 246
3.2.4.2.33.3 GetReportJob (Opnum 9) 247
3.2.4.2.33.4 GetOutputDirectory (Opnum 10) 248
3.2.4.2.33 .5 SetOutputDirectory (Opnum 11) 249
3.2.4.2.33.6 IsFilterValidForReportType (Opnum 12) 250
3.2.4.2.33.7 GetDefaultFilter (Opnum 13) 250
3.2.4.2.33.8 SetDefaultFilter (Opnum 14) 251
3.2.4.2.33.9 GetReportSizeLimit (Opnum 15) 252

11 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2.33.10 SetReportSizeLimit (Opnum 16) 253
3.2.4.2.34 IFsrmReportJob Methods 253

3.2.4.2.34.1 Commit (Opnum 11) 254
3.2.4.2.34.2 Task (get) (Opnum 12) 255
3.2.4.2.34.3 Task (put) (Opnum 13) 256
3.2.4.2.34.4 NamespaceRoots (get) (Opnum 14) 256
3.2.4.2.34.5 NamespaceRoots (put) (Opnum 15) 257
3.2.4.2.34.6 Formats (get) (Opnum 16) 257
3.2.4.2.34.7 Formats (put) (Opnum 17) 258
3.2.4.2.34.8 MailTo (get) (Opnum 18) 258
3.2.4.2.34.9 MailTo (pu t) (Opnum 19) 259
3.2.4.2.34.10 RunningStatus (get) (Opnum 20) 260
3.2.4.2.34.11 LastRun (get) (Opnum 21) 260
3.2.4.2.34.12 LastError (get) (Opnum 22) 261
3.2.4.2.34.13 LastGeneratedInDirectory (get) (Opnum 23) 261
3.2.4.2.34.14 EnumReports (Opnum 24) 262
3.2.4.2.34.15 CreateReport (Opnum 25) 262
3.2.4.2.34.16 Run (Opnum 26) 263
3.2.4.2.34.17 WaitForCompletion (Opnum 27) 264
3.2.4.2.34.18 Cancel (Opnum 28) 265

3.2.4.2.35 IFsrmReport Methods 265
3.2.4.2.35.1 Type (get) (Opnum 7) 266
3.2.4.2.35.2 Name (get) (Opnum 8) 266
3.2.4.2.35.3 Name (put) (Opnum 9) 267
3.2.4.2.35.4 Description (get) (Opnum 10) 267
3.2.4.2.35.5 Description (put) (Opnum 11) 268
3.2.4.2.35.6 LastGeneratedFileNamePrefix (get) (Opnum 12) 268
3.2.4.2.35.7 GetFilter (Opnum 13) 268
3.2.4.2.35.8 SetFilter (Opnum 14) 269
3.2.4.2.35.9 Delete (Opnum 15) 270

3.2.4.2.36 IFsrmReportScheduler Methods 270
3.2.4.2.36.1 VerifyNamespaces (Opnum 7) 270
3.2.4.2.36.2 CreateScheduleTask (Opnum 8) 271
3.2.4.2.36.3 ModifyScheduleTask (Opnum 9) 272
3.2.4.2.36.4 DeleteScheduleTask (Opnum 10) 273

3.2.4.2.37 IFsrmPropertyDefinition 273
3.2.4.2.37.1 Commit (Opnum 11) 274
3.2.4.2.37.2 Name (get) (Opnum 12) 275
3.2.4.2.37.3 Name (put) (Opnum 13) 275
3.2.4.2.37.4 Type (get) (Opnum 14) 276
3.2.4.2.37.5 Type (put) (Opnum 15) 276
3.2.4.2.37.6 PossibleValues (get) (Opnum 16) 277
3.2.4.2.37.7 PossibleValues (put) (Opnum 17) 277
3.2.4.2.37.8 ValueDescriptions (get) (Opnum 18) 278
3.2.4.2.37.9 ValueDescriptions (put) (Opnum 19) 278
3.2.4.2.37.10 Parameters (get) (Opnum 20) 279
3.2.4.2.37.11 Parameters (put) (Opnum 21) 279

3.2.4.2.38 IFsrmPropertyDefinition2 280
3.2.4.2.38.1 PropertyDefinitionFlags (get) (Opnum 22) 280
3.2.4.2.38.2 DisplayName (get) (Opnum 23) 281
3.2.4.2.38.3 DisplayName (put) (Opnum 24) 282
3.2.4.2.38.4 AppliesTo (get) (Opnum 25) 282
3.2.4.2.38.5 AppliesTo (put) (Opnum 26) 282
3.2.4.2.38.6 ValueDefinitions (get) (Opnum 27) 283

3.2.4. 2.39 IFsrmPropertyDefinitionValue 283
3.2.4.2.39.1 Name (get) (Opnum 12) 284
3.2.4.2.39.2 DisplayName (get) (Opnum 13) 284
3.2.4.2.39.3 Description (get) (Opnum 14) 285

12 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2.39 .4 UniqueID (get) (Opnum 15) 285
3.2.4.2.40 IFsrmProperty 286

3.2.4.2.40.1 Name (get) (Opnum 12) 286
3.2.4.2.40.2 Value (get) (Opnum 13) 287
3.2.4.2.40.3 Sources (get) (Opnum 14) 287
3.2.4.2.40.4 PropertyFlags (get) (Opnum 15) 288

3.2.4.2.41 IFsrmR ule 288
3.2.4.2.41.1 Name (get) (Opnum 12) 289
3.2.4.2.41.2 Name (put) (Opnum 13) 289
3.2.4.2.41.3 RuleTy pe (get) (Opnum 14) 289
3.2.4.2.41.4 ModuleDefinitionName (get) (Opnum 15) 290
3.2.4.2.41.5 ModuleDefinitionName (put) (Opnum 16) 290
3.2.4.2.41.6 NamespaceRoots (get) (Opnum 17) 291
3.2.4.2.41.7 NamespaceRoots (put) (Opnum 18) 291
3.2.4.2.41.8 RuleFlags (get) (Opnum 19) 292
3.2.4.2.41.9 RuleFlags (put) (Opnum 20) 292
3.2.4.2.41.10 Parameters (get) (Opnum 21) 293
3.2.4.2.41.11 Parameters (put) (Opnum 22) 293
3.2.4.2.41.12 LastModified (get) (Opnum 23) 294

3.2.4.2.42 IFsrmClassificationRule 294
3.2.4.2.42.1 Commit (Opnum 11) 295
3.2.4.2.42.2 ExecutionOption (get) (Opnum 24) 296
3.2.4.2.42.3 ExecutionOption (put) (Opnum 25) 297
3.2.4.2.42.4 PropertyAffected (get) (Opnum 26) 297
3.2.4.2.42.5 PropertyAffected (put) (Opnum 27) 298
3.2.4.2.42.6 Value (get) (Opnum 28) 298
3.2.4.2.42.7 Value (put) (Opnum 29) 299

3.2.4.2.43 IFsrmPipelineModuleDefinition 299
3.2.4.2.43.1 ModuleClsid (get) (Opnum 12) 300
3.2.4.2.43.2 ModuleClsid (put) (Opnum 13) 301
3.2.4.2.43.3 Name (get) (Opnum 14) 301
3.2.4.2.43.4 Name (put) (Opnum 15) 302
3.2.4.2.43.5 Compan y (get) (Opnum 16) 302
3.2.4.2.43.6 Company (put) (Opnum 17) 302
3.2.4.2.43.7 Version (get) (Opnum 18) 303
3.2.4.2.43.8 Version (put) (Opnum 19) 303
3.2.4.2.43.9 ModuleType (get) (Opnum 20) 303
3.2.4.2.43.10 Enabled (get) (Opnum 21) 304
3.2.4.2.43.11 Enabled (put) (Opnum 22) 305
3.2.4.2.43.12 NeedsFileContent (get) (Opnum 23) 305
3.2.4.2.43.13 NeedsFileContent (put) (Opnum 24) 305
3.2.4.2.43.14 Account (get) (Opnum 25) 306
3. 2.4.2.43.15 Account (put) (Opnum 26) 306
3.2.4.2.43.16 SupportedExtensions (get) (Opnum 27) 307
3.2.4.2.43.17 SupportedExtensions (put) (Opnum 28) 307
3.2.4.2.43.18 Parameters (get) (Opnum 29) 308
3.2.4.2.43.19 Parameters (put) (Opnum 30) 308

3.2.4.2.44 IFsrmClassifierModuleDefinition 309
3.2.4.2.44.1 Commit (Opnum 11) 309
3.2.4.2.44.2 PropertiesAffected (get) (Opnum 31) 310
3.2. 4.2.44.3 PropertiesAffected (put) (Opnum 32) 311
3.2.4.2.44.4 PropertiesUsed (get) (Opnum 33) 311
3.2.4.2.44.5 PropertiesUsed (put) (Opnum 34) 312
3.2.4.2.44.6 NeedsExplicitValue (get) (Opnum 35) 312
3.2. 4.2.44.7 NeedsExplicitValue (put) (Opnum 36) 313

3.2.4.2.45 IFsrmClassificationManager 313
3.2.4.2.45.1 ClassificationReportFormats (get) (Opnum 7) 314
3.2.4.2.45.2 ClassificationReportFormats (put) (Opnum 8) 314

13 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2.45.3 Logging (get) (Opnum 9) 315
3.2.4.2.45.4 Logging (put) (Opnum 10) 315
3.2.4.2.45.5 ClassificationReportMailTo (get) (Opnum 11) 316
3.2.4.2.45.6 ClassificationReportMailTo (put) (Opnum 12) 316
3.2.4.2.45.7 ClassificationReportEnabled (get) (Opnum 13) 317
3.2.4.2.45.8 ClassificationReportEnabled (put) (Opnum 14) 317
3.2.4.2.45.9 ClassificationLastReportPathWithoutExtension (get) (Opnum 15) 318
3.2.4.2.45.10 ClassificationLastError (get) (Opnum 16) 318
3.2.4.2.45.11 ClassificationRunningStatus (get) (Opnum 17) 319
3.2.4.2.45.12 EnumPropertyDefinitions (Opnum 18) 319
3.2. 4.2.45.13 CreatePropertyDefinition (Opnum 19) 320
3.2.4.2.45.14 GetPropertyDefinition (Opnum 20) 321
3.2.4.2.45.15 EnumRules (Opnum 21) 322
3.2.4.2.45.16 CreateRule (Opnum 22) 323
3.2.4.2.45.17 Get Rule (Opnum 23) 324
3.2.4.2.45.18 EnumModuleDefinitions (Opnum 24) 325
3.2.4.2.45.19 CreateModuleDefinition (Opnum 25) 326
3.2.4.2.45.20 GetModuleDefinition (Opnum 26) 328
3.2.4.2.45.21 RunClassification (Opnum 27) 329
3.2.4.2.45.22 WaitForClassificationCompletion (Opnum 28) 330
3.2.4.2.45.23 CancelClassification (Opnum 29) 330
3.2.4.2.45.24 EnumFileProperties (Opnum 30) 331
3.2.4.2.45.25 GetFileProperty (Opnum 31) 332
3.2.4.2.45.26 SetFileProperty (Opnum 32) 333
3.2.4.2.45.27 ClearFileProperty (Opnum 33) 335

3.2.4.2.46 IFsrmClassificationManager2 335
3.2.4.2.46.1 ClassifyFiles (Opnum 34) 336

3.2.4.2.47 IFsrmStorageModuleDefinition 337
3.2.4.2.47.1 Commit (Opnum 11) 337
3.2.4.2.47.2 Capabilities (get) (Opnum 31) 339
3.2.4.2.47.3 Capabilities (put) (Opnum 32) 339
3.2.4.2.47.4 StorageType (get) (Opnum 33) 340
3.2.4.2.47 .5 StorageType (put) (Opnum 34) 340
3.2.4.2.47.6 UpdatesFileContent (get) (Opnum 35) 340
3.2.4.2.47.7 UpdatesFileContent (put) (Opnum 36) 341

3.2.4.2.48 IFsrmFileManagementJob 341
3.2.4.2.48.1 Commit (Opnum 11) 343
3.2.4.2.48.2 Name (get) (Opnum 12) 345
3.2.4.2.48.3 Name (put) (Opnum 13) 346
3.2.4.2.48.4 NamespaceRoots (get) (Opnum 14) 346
3.2.4.2.48.5 NamespaceRoots (put) (Opnum 15) 347
3.2.4.2. 48.6 Enabled (get) (Opnum 16) 347
3.2.4.2.48.7 Enabled (put) (Opnum 17) 348
3.2.4.2.48.8 OperationType (get) (Opnum 18) 348
3.2.4.2.48.9 OperationType (put) (Opnum 19) 349
3.2.4.2.48.10 ExpirationDirectory (get) (Opnum 20) 349
3.2.4.2.48.11 ExpirationDirectory (put) (Opnum 21) 350
3.2.4.2.48.12 CustomAction (get) (Opnum 22) 350
3.2.4.2.48.13 Notifications (get) (Opnum 23) 351
3.2.4.2.48.14 Logging (get) (Opnum 24) 351
3.2.4.2.48.15 Logging (put) (Opnum 25) 352
3.2.4.2.48.16 ReportEnabled (get) (Opnum 26) 352
3.2.4.2.48.17 ReportEnabled (put) (Opnum 27) 353
3.2.4.2.48.18 Formats (get) (Opnum 28) 354
3.2.4.2.48.19 Formats (put) (Opnum 29) 354
3.2.4.2.48.20 MailTo (get) (Opnum 30) 355
3.2.4.2.48.21 MailTo (put) (Opnum 31) 355
3.2.4.2.48.22 DaysSinceFileCreated (get) (Opnum 32) 356

14 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2.48.23 DaysSinceFileCreated (put) (Opnum 33) 356
3.2.4.2.48.24 DaysSinceFileLastAccessed (get) (Opnum 34) 357
3.2.4.2.48.25 DaysSinceFileLastAccessed (put) (Opnum 35) 357
3.2.4.2.48.26 DaysSinceFileLastModified (get) (Opnum 36) 358
3.2.4.2.48.27 DaysSinceFileLastModified (put) (Opnum 37) 358
3.2.4.2.48.28 PropertyConditions (get) (Opnum 38) 359
3. 2.4.2.48.29 FromDate (get) (Opnum 39) 359
3.2.4.2.48.30 FromDate (put) (Opnum 40) 360
3.2.4.2.48.31 Task (get) (Opnum 41) 360
3.2.4.2.48.32 Task (put) (Opnum 42) 361
3.2.4.2.48.33 Parameters (get) (Opnum 43) 361
3.2.4.2.48.34 Parameters (put) (Opnum 44) 362
3.2.4.2.48.35 RunningStatus (get) (Opnum 45) 362
3.2.4.2.48.36 LastError (get) (Opnum 46) 363
3.2.4.2.48.37 LastReportPathWithoutExtension (get) (Opnum 47) 364
3.2.4.2.48.38 LastRun (get) (Opnum 48) 364
3.2.4.2.48.39 FileNamePattern (get) (Opnum 49) 365
3.2.4.2.48.40 FileNamePattern (put) (Opnum 50) 365
3.2.4.2.48.41 Run (Opnum 51) 366
3.2.4.2.48.42 WaitForCompletion (Opnum 52) 367
3.2.4.2.48.43 Cancel (Opnum 53) 368
3.2.4.2.48.44 AddNotification (Opnum 54) 368
3.2.4.2.48.45 DeleteNotification (Opnum 55) 369
3.2.4.2.48.46 ModifyNotification (Opnum 56) 369
3.2.4.2. 48.47 CreateNotificationAction (Opnum 57) 370
3.2.4.2.48.48 EnumNotificationActions (Opnum 58) 372
3.2.4.2.48.49 CreatePropertyCondition (Opnum 59) 373
3.2.4.2.48.50 CreateCustomAction (Opnum 60) 374

3.2.4.2. 49 IFsrmPropertyCondition 374
3.2.4.2.49.1 Name (get) (Opnum 7) 37 5
3.2.4.2.49.2 Name (put) (Opnum 8) 375
3.2.4.2.49.3 Type (get) (Opnum 9) 376
3.2.4.2.49.4 Type (put) (Opnum 10) 376
3.2.4.2.49.5 Value (get) (Opnum 11) 377
3.2.4.2.49.6 Value (put) (Opnum 12) 377
3.2.4.2.49.7 Delete (Opnum 13) 378

3.2.4.2.50 IFsrmFileManagementJobManager 378
3.2.4.2.50.1 EnumFileManagementJobs (Opnum 7) 378
3.2.4.2.50.2 CreateFileManagementJob (Opnum 8) 379
3.2.4.2.50.3 GetFileManagementJob (Opnum 9) 381

3.2.4.3 Macro Usage 382
3.2.4.3.1 Quota Macros 382
3.2.4.3.2 File Screen Macros 385
3.2.4.3.3 File Management Job Macros 387
3.2.4.3.4 General Macros 389

3.2.4.4 Running Notifications 390
3.2.4.4.1 Command Line Action Type 390
3.2.4.4.2 Email Action Type 391
3.2.4.4.3 Event Log Action Type 391
3.2.4.4.4 Report Action Type 391

3.2.4.5 Aggregating Property Definition Instance Values 392
3.2.4.6 Validating Property Values 392

3.2.5 General Classification Actions 393
3.2.5.1 Retrieve stored classification properties 393
3.2.5.2 Generate New Classification Properties 394
3.2.5. 3 Store classification properties 396

3.2.6 Timer Events 396
3.2.7 Other Local Events 396

15 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.1 Quota Events 396
3.2.7.2 Quota Usage Update Events 397
3.2.7.3 Peak Quota Usage Events 397
3.2.7.4 File Screen Events 397
3.2.7.5 Directory Creation Events 398
3.2.7.6 Directory Deletion Events 398
3.2.7.7 Directory R ename Events 398
3.2.7.8 Volume Discovery Events 398
3.2.7.9 Volume Removal Events 398
3.2.7.10 File Classification Security Propagation 398
3.2.7.11 File Classification Event 399

4 Protocol Examples 400
4.1 Query Enumeration of Fi le Server Resource Manager Protocol Directory Quotas 400
4.2 Retrieving Properties of File Server Resource Manager Protocol File Screens 402
4.3 Modifying File Server Resource Manager Protocol Directory Quota Properties Derived

from Templates 404
4.4 Scheduling File Server Resource Manager Protocol Storage Reports 406
4.5 Modifying File Server Resource Manager Protocol Global Settings 408
4.6 Enumerating Classification Properties 409
4.7 Adding Classification Rules 410
4.8 Modifying File Ma nagement Jobs 411
4.9 Updating Property Values for a File 413

5 Security 416

6 Appendix A: Full IDL 417

7 Appendix B: Product Behavior 452

8 Change Tracking 466

9 Index 467

16 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The File Server Resource Manager (FSRM) Protocol is a set of DCOM interfaces for managing the
configuration of directory quotas , file screens , classification properties, classification rules , file
management jobs, report jobs , classifier modules, and storage modules on a machine. The File
Server Resource Manager Protocol deals with operating system, file system, and storage concepts.
Although t he basic concepts are outlined in this specification, the specification assumes that the

reader has familiarity with these technologies. For background information about storage, disk, and
volume concepts, see [MSDN -STC] , [MSDN -DISKMAN] , and [MSDN -PARTITIO NINFO] .

This protocol is used to programmatically enumerate and configure directory quotas, file screens,
report jobs, classifier modules, and storage modules on local and remote machines. <1>

Sections 1. 5, 1. 8, 1.9 , 2, and 3 of this specification are norma tive and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119] . Sections 1.5 and 1.9 are also

normative but do not contain those terms . All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document :

Active Directory : A general -purpose network directory service. Active Directory also refers to
the Windows implementation of a directory service. Active Directory stores information about
a variety of objects in the network. Importantly, user accounts, computer accounts, groups, and
all related credential information used by the Windows implementation of Kerberos are stored in
Active Directory . Active Directory is either deployed as Active Directory Domain Services
(AD DS) or Active Directory Lightweight Directory Services (AD LDS) . [MS -ADTS]
describes both forms. For more information, see [MS -AUTHSOD] section 1.1.1.5.2, Lightweight

Directory Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

Active Directory Domain Services (AD DS) : A directory service (DS) implemented by a domain

controller (DC). The DS provides a data store for objects that is distributed across multiple DCs.
The DCs interoperate as peers to ensure that a local change to an object replicates correctly
across DCs. For more information, see [MS -AUTHSOD] section 1.1.1.5.2 and [MS -ADTS]. For
information about product versions, see [MS -ADTS] section 1. See also Active Directory .

Active Director y Lightweight Directory Services (AD LDS) : A directory service (DS)
implemented by a domain controller (DC). The most significant difference between AD LDS and
Active Directory Domain Services (AD DS) is that AD LDS does not host domain naming
contexts (domain NCs) . A server can host multiple AD LDS DCs. Each DC is an independent
AD LDS instance, with its own independent state. AD LDS can be run as an operating system
DS or as a directory service provided by a standalone application (Active Directory App lication
Mode (ADAM)). For more information, see [MS -ADTS]. See also Active Directory .

Active Directory possible value : A collection consisting of name, display name, and description.

Active Directory property definition : Global Property Definitions stored in Active Directory. See

Directory Service Schema Elements for details.

application programming interface (API) : A set of routines used by an application program to
direct the performance of procedures used by the computer's operating system. Also called
application program interface.

auto apply quota : An FSRM object associated with a file system directory that causes

directory quotas to be automatically created on all subdirectories that currently exist or are
created in the future. See section 3.2.1.2.2 for details.

17 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

classification module : A module definition that encapsulates a mechanism to classify files. It
contains logic to determine what value a specific classification property on a file might be set to,

based on information about the file and the co ntents of the file. See section 3.2.1.6.2 for details.

classification rule : A FSRM object that defines a rule, which invokes a classification module

on the files in a set of directories to apply property definition instances to each of those files.

cluster : A group of computers that are able to dynamically assign resource tasks among nodes in
a group.

collection object : A collection that contains zero or more objects all of the same type. Collection
objects are generally returned from enumeration methods, b ut are also returned for some
object elements that have zero or more entries. For more information, see section 3.2.1.11.

common name (CN) : A string attribute of a certificate (1) that is one component of a

distinguished name (DN) . In Microsoft Enterprise uses, a CN must be unique within the forest
where it is defined and any forests that share trust with the defining forest. The website or email
address of the certificate owner is often used as a common name. Client applications often refer

to a certificat ion authority (CA) by the CN of its signing certificate.

Component Object Model (COM) : An object -oriented programming model that defines how
objects interact within a single process or between processes. In COM , clients have access to an

object through int erfaces implemented on the object. For more information, see [MS -DCOM] .

directory quota : An FSRM object that is associated with a file system directory that limits the
amount of data, which the system or any user can store in a directory.

directory quota t emplate : An FSRM object that captures all the properties of a directory
quota but is not associated with a specific file system directory. Templates are identified by a
name and are used to simplify configuration of directory quotas . See section 3.2.1.2.3 for
details.

directory quota threshold : A target directory size value that is represented as a percentage of
the directory quota limit. When the size of all data in the directory reaches the target, the

FSRM server can raise one or more FSRM notifications .

distinguished name (DN) : A name that uniquely identifies an object by using the relative
distinguished name (RDN) for the object, and the names of container objects and domains
that contain the object. The distinguished name (DN) identifies the object and its location in a
tree.

Distributed Component Object Model (DCOM) : The Microsoft Component Object Model (COM)
specification that defines how components communicate over networks, as specified in [MS -
DCOM].

domain naming context (domain NC) : A partition of the directory that contains information
about the domain and is replicated with other domain controllers (DCs) in the same domain.

drive path : See mounted folder.

endpoint : A network -specific address of a remote procedure call (RPC) server process for remote

procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being u sed. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706] .

event log : A collection of records, each of which corresponds to an event.

18 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FCI Alternate Data Stream : An alternate data stream in NTFS used by FSRM to store property
definition instances for a file. See [MS -FCIADS] section 2, for details on storing class ification

properties.

file extension : The sequence of characters in a file's name between the end of the file's name and

the last "." character. Vendors of applications choose such sequences for the applications to
uniquely identify files that were created by those applications. This allows file management
software to determine which application should are to be used to open a file.

file group : An FSRM object that contains a logical collection of file name patterns, which are
identified by name that is used to define file screens and file screen exceptions . File group
definitions can also be used for generating report jobs that are based on the file type.

file management job : A scheduled task that applies a command to a set of files as determined by

a list of conditions and a list of namespaces.

file name pattern : A string expression that defines a set of file names. The expression can
contain the wild card characters "*" and "?", which are evaluated as follows: a "*" matches 0 or

more characters and a "?" mat ches exactly 1 character. For example, the file name
"example.cpp" matches the pattern "e*.cpp", but not "e?.cpp". The file name "ex.cpp" would
match both patterns. Note that when the file name pattern is compared to a specific file name,

the pattern match is case - insensitive, as specified in section 3.2.7.4.

file screen : An FSRM object that is associated with a file system directory that limits the types
of files that the system or any user can store in a directory. When a restricted file is detected,
the FSRM server can raise one or more FSRM notifications .

file screen exception : An FSRM object associated with a file system directory that specifically
excludes types of files from file screen processing. See section 3.2.1.3.2 for details.

file screen template : An FSRM object that captures all the properties of a file screen but is not

associated with a specific file system directory. Templates are identified by a name and are
used to simplify configuration of file screens . See section 3.2.1.3.3 for det ails.

file security descriptor : A data structure containing the security information associated with a
securable object. See [MS -AZOD] section 1.1.1.3 for more information. Identifies an object's
owner by its security identifier (SID) . The format of the structure is as specified in [MS -DTYP]
section 2.4.6.

file system : A set of data structures for naming, organizing, and storing files in a volume . NTFS ,

FAT, and FAT32 are examples of file system types.

FSRM object : A general term refer ring to an object that can be manipulated by FSRM, where the
object can be any kind specified in section 3.2.1. Examples of FSRM objects include directory
quotas , file screens , and report jobs .

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does no t imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID . See also universally unique
identifier (UUID) .

interface : A group of related function prototypes in a specific order, analogous to a C++ virtual
interface. Multiple objects, of different object class, may implement the same interface. A
derived interface may be created by adding methods after the end of an existing interface. In

the Distributed Component Object Model (DCOM), all interfaces initially derive from IUnknown.

19 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

module definition : An FSRM object that implements a locally called API to participate in
determining how files are classified or how the property definition instances are stored for each

file. See section 3.2.1.6.2 for details.

NT fi le system (NTFS) : NT file system (NTFS) is a A proprietary Microsoft File System file

system . For more information, see [MSFT -NTFS] .

path : When referring to a file path on a file system, a hierarchical sequence of folders. When
referring to a connection to a storage device, a connection through which a machine can
communicate with the storage device.

process identifier (PID) : A nonzero integer used by some operating systems (for example,
Windows and UNIX) to uniquely identify a process. For more information, see [PROCESS] .

property condition : An FSRM object that defines a constraint for a file management job which

encapsulates a reference to a property definition , a comparison operator, and a value to
compare property definition instances against. See section 3.2.1.7.2 for details.

property definition : An FSRM object that encapsulates a metadata definition that indicates the

name of the metadata object and the type of values associated with it. See section 3.2.1.6.1 for
details.

property schema : A collection of FSRM objects that define the metadata parameters that can be

assigned to files.

property value : The value assigned to the property definition instance associated with a file.

quota template : A group of default quotas that can be applied t o a site collection. It is stored in
the configuration database.

relative distinguished name (RDN) : The name of an object relative to its parent. This is the
leftmost attribute -value pair in the distinguished name (DN) of an object. For example, in the
DN "cn=Peter Houston, ou=NTDEV, dc=microsoft, dc=com", the RDN is "cn=Peter Houston".

For more information, see [RFC2251] .

remote procedure call (RPC) : A context -dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC

exchange". (*) A single message from an exchange as defined in the previous definition. The
preferr ed usage for this term is "RPC message". For more information about RPC, see [C706].

report job : An FSRM object that specifies a set of directories to be scanned to generate one or
more different report types that allow an administrator to analyze how the storage in the
directories in question is used. The job can also be associated with a scheduled task that will
trigger report generation. See section 3.2.1.5.1 for details.

RPC protocol sequence : A character string that represents a valid combination of a remote

procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS -RPCE].

security audit log : An event log that records audited security events on the server.

security identifier (SID) : An identif ier for security principals in Windows that is used to identify
an account or a group. Conceptually, the SID is composed of an account authority portion
(typically a domain) and a smaller integer representing an identity relative to the account

authority, termed the relative identifier (RID). The SID format is specified in [MS -DTYP] section

20 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.4.2; a string representation of SIDs is specified in [MS -DTYP] section 2.4.2 and [MS -AZOD]
section 1.1.1.2.

storage module : A module definition that encapsulates a mec hanism to persist and/or provide
property definition instances for individual files on a file server.

Transmission Control Protocol (TCP) : A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almos t all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16

BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

unique identifier (UID) : A pai r consisting of a GUID and a version sequence number to identify
each resource uniquely. The UID is used to track the object for its entire lifetime through any

number of times that the object is modified or renamed.

Universal Naming Convention (UNC) : A st ring format that specifies the location of a resource.
For more information, see [MS -DTYP] section 2.2.57.

universally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime , to reliably identifying very
persistent objects in cross -process communication such as client and server interfaces, manager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the

use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

user principal name (UPN) : A user account name (sometimes referred to as the user logon

name) and a domain name that identifies the domain in which the user account is located. This
is the standard usage for logging on to a Windows domain. The format is:
someone@example.com (in th e form of an email address). In Active Directory , the
userPrincipalName attribute (2) of the account object, as described in [MS -ADTS].

volume : A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volu me is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume , and a volume can exist
on one or more partitions.

volume identifier (VolumeId) : A 128 -bit value used to represent a volume . The value of a
VolumeId is unique on a single computer (the local file system or a remote file server).

XML : The Extensible Markup Language, as described in [XML1.0] .

XML schema : A description of a type of XML document that is typically expressed in terms of

constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at a relativel y high level of abstraction.

XML Schema (XSD) : A language that defines the elements, attributes, namespaces, and data
types for XML documents as defined by [XMLSCHEMA1/2] and [W3C -XSD] standards. An XML

schema uses XML syntax for its language.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

21 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2 References

Links to a document in the Microsoft Open Specifications libra ry point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm th e correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS -ADA1] Microsoft Corporation, " Active Directory Schema Attributes A -L".

[MS -ADA2] Microsoft Corporation, " Active Directory Schema Attributes M ".

[MS -ADA3] Microsoft Corporation, " Active Directory Schema Attributes N -Z".

[MS -ADLS] Microsoft Corporation, " Active Directory Lightweight Directory Services Schema ".

[MS -ADSC] Microsoft Corporation, " Active Directory Schema Classes ".

[MS -DCOM] Microsoft Corporation, " Distributed Component Object Model (DCOM) Remote Protocol ".

[MS -DTYP] Microsoft Corporation, " Windows Da ta Types ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -FCIADS] Microsoft Corporation, " File Classification Infrastructure Alternate Data Stream (ADS)

File Format ".

[MS -OAUT] Microsoft Corporation, " OLE Automation Protocol ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extensions ".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC5322] Resnick, P., Ed., "Inte rnet Message Format", RFC 5322, October 2008, http://www.rfc -
editor.org/rfc/rfc5322.txt

[RFC821] Postel, J., "SIMPLE MAIL TRANSFER PROTOCOL", STD 10, RFC 821, August 1982,
http://www.rfc -editor.org/rfc/rfc821.txt

[W3C -XSD] World Wide Web Consortium, "XML S chema Part 2: Datatypes Second Edition", October

2004, http://www.w3.org/TR/2004/REC -xmlschema -2-20041028

1.2.2 Informative References

[MS -TSCH] Microsoft Corporation, " Task Scheduler Service Remoting Protocol ".

[MSDN -COMCLTSERVS] Microsoft Corporation, "COM Clients and Servers",
http://msdn.microsoft.com/en -us/library/ms683835(VS.85).aspx

22 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MSDN -DISKMAN] Microsoft Corporation, "Disk Management", http://msdn.microsoft.com/en -
us/library/aa363978.aspx

[MS DN-LocSvcAcct] Microsoft Corporation, "LocalService Account", http://msdn.microsoft.com/en -
us/library/ms684188(VS.85).aspx

[MSDN -LocSysAcct] Microsoft Corporation, "LocalSystem Account", http://msdn.microsoft.com/en -
us/library/ms684190(VS.85).aspx

[MSDN -NetworkSvcAcct] Microsoft Corporation, "NetworkService Account",
http://msdn.microsoft.com/en -us/library/ms684272(VS.85).aspx

[MSDN -NV] Microsoft Corporation, "Naming a Volume", http://msdn.microsoft.com/en -
us/library/aa365248(VS.85).aspx

[MSDN -ONO] Microsof t Corporation, "Owner of a New Object", http://msdn.microsoft.com/en -
us/library/aa379299(VS.85).aspx

[MSDN -PARTITIONINFO] Microsoft Corporation, "PARTITION_INFORMATION_EX structure",
http://msdn.microsoft.com/en -us/library/aa365448.aspx

[MSDN -RegEx] Micros oft Corporation, "Regular Expression Language Elements",

http://msdn.microsoft.com/en -us/library/az24scfc(VS.80).aspx

[MSDN -STC] Microsoft Corporation, "Storage Technologies Collection", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/61 6e5e77 -958b -42f0 -a87f -
ba229ccd81721033.mspx

[MSDN -WLD] Microsoft Corporation, "MS -DOS and Windows Wildcard Characters",
http://msdn.microsoft.com/en -us/library/ms690414(v=vs.85).aspx

[MSFT -WINCMD] Microsoft Corporation, "Windows Server Commands, References , and Tools", June

2009, http://technet.microsoft.com/en -us/library/dd560674(WS.10).aspx

1.3 Overview

Using the File Server Resource Manager (FSRM) Protocol, a client can perform the following

operations:

Á Limit the size of a given directory through directory quotas.

Á Restrict the type of data that can be stored under a given directory through file screens.

Á Define a property schema that can be used to label files stored on the server.

Á Retrieve and modify the values assigned to classification properties for files stored on the server.

Á Configure automatic mechanisms to assign values to classification properties.

Á Register classification modules to alter the behavior of how files are classified and properties

stored.

Á Register storage modules to alter the behavior of how the properties of a file are stored.

Á Apply policy to subsets of files.

Á Analyze storage utilization through report jobs.

The FSR M protocol is expressed as a set of DCOM interfaces. The FSRM server implements support for
the DCOM interface to manage FSRM objects . An FSRM client invokes method calls on the interface

23 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

to perform various FSRM object configuration tasks on the server. Mo re specifically, this protocol can
be used for the following purposes:

Á Creating, enumerating, modifying, and deleting directory quotas and related objects (auto apply
quotas and quota templates) on the FSRM server.

Á Creating, enumerating, modifying, and del eting file screens and related objects (file screen
exceptions and file groups) on the FSRM server.

Á Creating, enumerating, modifying, and deleting classification properties on the FSRM server.

Á Setting, enumerating, modifying, and deleting properties values for specific files on the FSRM
server.

Á Creating, enumerating, modifying, and deleting classification rules on the FSRM server.

Á Creating, enumerating, modifying, and deleting classification modules on the FSRM server.

Á Creating, enumerating, modifying, and deleting storage modules on the FSRM server.

Á Creating, enumerating, modifying, and deleting file management jobs on the FSRM server.

Á Creating, enumerating, modifying, and deleting report jobs on the FSRM server.

Á Querying and setting FSRM server general se ttings; for example, the Simple Mail Transfer Protocol
[RFC821] server name and report default parameters.

A typical FSRM session involves a client connecting to the server and requesting an interface that

allows performing high - level operations, such as e numeration and creation for a class of FSRM objects.
If the server accepts the request, it responds with the requested interface. The client can then use the
interface to request that the server enumerate the objects of the desired class. If the server acc epts
the request, it responds with a collection of interfaces that allow access to the requested type of FSRM
object. The client uses the interfaces returned by the server to send additional requests to the server
specifying the type of operation to perfor m and any operation -specific parameters. If the server
accepts the operation request, it attempts to query or change the state of the corresponding FSRM

object based on the request parameters and returns to the client the result of the operation. To persis t
changes to the manipulated FSRM objects, the client can explicitly request that the server commit any
outstanding changes.

The following are FSRM objects:

Directory Quotas :

A directory quota restricts the size of a specific directory to a configurable qu ota limit. In addition to
the limit, a directory quota can be configured with one or more directory quota thresholds that

define a set of highly customizable FSRM notifications that will be raised when the quota usage
reaches the threshold value.

Director y quotas can be created and configured in several different ways. A client can manipulate
directory quotas by directly querying and setting quota properties or by modifying properties in bulk
by applying a quota template. Alternatively, a client can config ure an auto apply quota, which will

automatically create directory quotas on existing and newly created subfolders.

File Screens :

A file screen restricts the types of files that can be stored in a specific directory and its subdirectories.
For each file sc reen, there is a configurable list of blocked file groups that define a set of patterns,
based on the file name, that will be restricted. When a file is created or renamed, the server evaluates
whether the file name matches a pattern in any file group conf igured on a parent portion of the path.
If a match is found, the file is blocked, and a set of highly customizable FSRM notifications configured
for the file screen will be raised.

24 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

In addition to configuring file screens, a client can request that the serv er create a file screen
exception that defines a list of file groups that are specifically allowed in a specific directory and its

subdirectories. A file screen exception will typically be configured on a directory that is in the subtree
of a directory wit h a file screen. In this case, the file screen exception list takes precedence when

evaluating screening rules and files with names that match the name patterns in the allowed file
groups that will not be blocked.

File screens can be created and configured in several different ways. A client can manipulate file
screens by directly querying and setting file screen properties or by modifying properties in bulk by
applying a file screen template .

Classification Properties :

A classification property defines one piece of metadata to be associated with files on the file server. It

specifies the type of property (boolean, string, date, number, ordered list, multi -choice, multi -string).
For certain types (ordered list, multi -choice) possible values are specified. So me properties (boolean,
ordered list, multi -choice) can have descriptions assigned to each possible value.

Classification Rules :

Classification values are applied automatically to files on the file server on a global schedule based on
a set of rules. Each of these rules will determine which portion of the volumes connected to the server

that classification rules are applied to. They use one of the registered classification modules to
determine what the property values might be. When the scheduled classifica tion is run, it scans the
files on the system and determines which rules, if any, apply to each file. It will then invoke all rules
on the file and aggregate the property values to determine the property values for the file.

File Management Jobs :

File Management Jobs are scheduled tasks that process a subset of files on the file server. For each
file in this subset, a command is executed. By default this command moves the file to a configured

directory (known as an "expiration" operation). Custom comman ds can be configured to be performed
instead. The subset of files that the command will be applied to is determined by the scope of the file
management job (a list of directories) and a set of condition checks against certain file properties and

any proper ty values associated with the file. File management jobs can also produce FSRM
notifications at configurable intervals before a file is affected by the configured task.

Report Jobs :

A report job specifies a set of directories that will be analyzed to gener ate one or more different report

types that will allow administrators to better understand how storage is utilized in the directories in
question. The client can configure report jobs that execute according to a schedule or can configure
report jobs that e xecute on -demand. In addition, the client can also query and set properties on the
report job to manipulate report generation parameters, format options, email delivery information,
and others. <2>

Classification Module :

A classification module is an intern al software component that can be used to discover new property
values to be associated with files, according to the current set of classification rules.

Storage Module :

A storage module is an internal software component that can be used to store or retrieve existing
property values associated with files.

1.4 Relationship to Other Protocols

The File Server Resource Manager Protocol relies on the Distributed Component Object Mod el (DCOM)
Remote Protocol, which uses remote procedure call (RPC) as its transport.

25 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The File Server Resource Manager Protocol uses Active Directory to retrieve property definitions
stored at the global level and synchronize them locally. See section 2.3 fo r details. <3>

1.5 Prerequisites/Preconditions

The File Server Resource Manager (FSRM) Protocol is implemented over DCOM and RPC and has the
prerequisites specified in [MS -DCOM] , [MS -OAUT] , and [MS -RPCE] that are common to DCOM, DCOM
"automation", and RPC interfaces.

The FSRM protocol assumes that a client has obtained the name of a server that supports this protocol

suite before the protocol is invoked. This name can be obtain ed using any implementation -specific
method. This protocol also assumes that the client has sufficient security privileges to configure FSRM
objects on the server.

An operating system on which an implementation of this protocol runs is required to support the
dynamic enumeration of directory quotas, file screens, and report jobs that are configured on the
server at run time. See sections 3.2.1.2 , 3.2.1.3 , 3.2.1.5 , and 3.2.1.4 , for more information about
these requirements.

The FSRM protocol classification f unctionality relies on COM servers that implement the functionality
for classification modules (section 3.2.4.2.44) and storage modules (section 3.2.4.2.47). As a
prerequisite for using these modules within FSRM, the necessary COM servers are required to b e
deployed and registered with the COM infrastructure. <4> See section 3.2.1.6.2 for more information
about this requirement.

1.6 Applicability Statement

The File Server Resource Manager Protocol is applicable when an application is required to remotely
configure directory quotas, file screens, and report jobs on the server. <5>

1.7 Versioning and Capability Negotiation

Supported Transports : The FSRM protocol uses the Distributed Component Object Model (DCOM)
Remote Protocol [MS -DCOM] , which in turn uses RPC over TCP , as its only transport. See section 2.1
for details.

Protocol Version : This protocol consists of 46 DCOM i nterfaces, all of which are version 1.0. <6>

Functionality Negotiation : The client negotiates for a given set of server functionalities by

specifying the UUID corresponding to the requested RPC interface via COM
IUnknown:: QueryInterface when binding to the server. Certain interfaces are implemented by only
particular objects on the server. See section 2.1 for details.

Security and Authentication Methods : This protocol relies on the security and authentication
provided by DCOM and by Remote Procedure Call Pro tocol Extensions [MS -RPCE] and configures it as
specified in section 2.1.

1.8 Vendor -Extensible Fields

This protocol does not define any vendor -extensible fields.

1.9 Standards Assignments

 Parameter Value

Reference

RPC Interface UUID for IFsrmCollection F76FBF3B -8DDD -4B42 -B05A - None

26 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Parameter Value

Reference

CB1C3FF1FEE8

RPC Interface UUID for IFsrmMutableCollection 1BB617B8 -3886 -49DC -AF82 -
A6C90FA35DDA

None

RPC Interface UUID for IFsrmCommittableCollection 96DEB3B5 -8B91 -4A2A -9D93 -
80A35D8AA847

None

RPC Interface UUID for IFsrmAction 6CD6408A -AE60 -463B -9EF1-
E117534D69DC

None

RPC Interface UUID for IFsrmActionEmail D646567D -26AE -4CAA-9F84 -
4E0AAD207FCA

None

RPC Interface UUID for IFsrmActionEmail2 8276702F -2532 -4839 -89BF -

4872609A2EA4

None

RPC Interface UUID for IFsrmActionReport 2DBE63C4 -B340 -48A0 -A5B0 -
158E07FC567E

None

RPC Interface UUID for IFsrmActionEventLog 4C8F96C3 -5D94 -4F37 -A4F4 -
F56AB463546F

None

RPC Interface UUID for IFsrmActionCommand 12937789 -E247 -4917 -9C20 -
F3EE9C7EE783

None

RPC Interface UUID for IFsrmObject 22BCEF93 -4A3F -4183 -89F9 -
2F8B8A628AEE

None

RPC Interface UUID for IFsrmSe tting F411D4FD -14BE -4260 -8C40 -
03B7C95E608A

None

Class ID for IFsrmSetting F556D708 -6D4D -4594 -9C61 -
7DBB0DAE2A46

None

RPC Interface UUID for IFsrmPathMapper 6F4DBFFF-6920 -4821 -A6C3 -
B7E94C1FD60C

None

Class ID for IFsrmPathMapper F3BE42BD -8AC2 -409E -BBD8 -
FAF9B6B41FEB

None

RPC Interface UUID for IFsrmDerivedObjectsResult 39322A2D -38EE-4D0D -8095 -
421A80849A82

None

RPC Interface UUID for IFsrmQuotaBase 1568A795 -3924 -4118 -B74B -
68D8F0FA5DAF

None

RPC Interface UUID for IFsrmQuotaObject 42DC3511 -61D5 -48AE -B6DC-
59FC00C0A8D6

None

RPC Interface UUID for IFsrmQuota 377F739D -9647 -4B8E -97D2 -
5FFCE6D759CD

None

RPC Interface UUID for IFsrmAutoApplyQuota F82E5729 -6ABA-4740 -BFC7-
C7F58F75FB7B

None

RPC Interface UUID for IFsrmQuotaManager 8BB68C7D -19D8 -4FFB-809E -
BE4FC1734014

None

Class ID for IFsrmQuotaManager 90DCAB7F -347C -4BFC-B543 -
540326305FBE

None

27 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Parameter Value

Reference

RPC Interface UUID for IFsrmQuotaManagerEx 4846CB01 -D430 -494F -ABB4 -
B1054999FB09

None

RPC Interface UUID for IFsrmQuotaTemplate A2EFAB31 -29 5E-46BB -B976 -
E86D58B52E8B

None

RPC Interface UUID for IFsrmQuotaTemplateImported 9A2BF113 -A329 -44CC-809A -
5C00FCE8DA40

None

RPC Interface UUID for IFsrmQuotaTemplateManager 4173AC41 -172D -4D52 -963C -
FDC7E415F717

None

Class ID for IFsrmQuotaTemplateManager 97D3D443 -251C -4337 -81E7 -
B32E8F4EE65E

None

RPC Interface UUID for IFsrmFileGroup 8DD04909 -0E34 -4D55 -AFAA-
89E1F1A1BBB9

None

RPC Interface UUID for IFsrmFileGroupImported AD55F10B -5F11 -4BE7 -94EF-
D9EE2E470DED

None

RPC Interface UUID for IFsrmFileGroupManage r 426677D5 -018C -485C -8A51 -
20B86D00BDC4

None

Class ID for IFsrmFileGroupManager 8F1363F6 -656F -4496 -9226 -
13AECBD7718F

None

RPC Interface UUID for IFsrmFileScreenBase F3637E80 -5B22 -4A2B -A637 -
BBB642B41CFC

None

RPC Interface UUID for IFsrmFileScreen 5F6325D3 -CE88-4733 -84C1 -
2D6AEFC5EA07

None

RPC Interface UUID for IFsrmFileScreenException BEE7CE02 -DF77 -4515 -9389 -
78F01C5AFC1A

None

RPC Interface UUID for IFsrmFileScreenManager FF4FA04E-5A94 -4BDA -A3A0 -
D5B4D3C52EBA

None

Class ID for IFsrmFileScreenManager 95941183 -DB53 -4C5F-B37B -
7D0921CF9DC7

None

RPC Interface UUID for IFsrmFileScreenTemplate 205BEBF8 -DD93 -452A -95A6 -
32B566B35828

None

RPC Interface UUID for
IFsrmFileScreenTemplateImported

E1010359 -3E5D -4ECD-9FE4-
EF48622FDF30

None

RPC Interface UUID for
IFsrmFileScreenTemplateManager

CFE36CBA-1949 -4E74 -A14F -
F1D580CEAF13

None

Class ID for IFsrmFileScreenTemplateManager 243111DF -E474 -46AA -A054 -
EAA33EDC292A

None

RPC Interface UUID for IFsrmReportManager 27B899FE -6FFA-4481 -A184 -
D3DAAD E8A02B

None

Class ID for IFsrmReportManager 0058EF37 -AA66 -4C48 -BD5B -
2FCE432AB0C8

None

RPC Interface UUID for IFsrmReportJob 38E87280 -715C -4C7D -A280 -
EA1651A19FEF

None

28 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Parameter Value

Reference

RPC Interface UUID for IFsrmReport D8CC81D9 -46B8 -4FA4 -BFA5-
4AA9DEC9B638

None

RPC Interface UUID for IFsrmReportScheduler 6879CAF9 -6617 -4484 -8719 -
71C3D8645F94

None

Class ID for IFsrmReportScheduler EA25F1B8 -1B8D -4290 -8EE8-
E17C12C2FE20

None

RPC Interface UUID for
IFsrmFileManagementJobManager

EE321ECB-D95E -48E9 -907C -
C7685A013235

None

Class ID for IFsrmFileManagementJobManager EB18F9B2 -4C3A -4321 -B203 -
205120CFF614

None

RPC Interface UUID for IFsrmFileManagementJob 0770687E -9F36 -4D6F -8778 -
599D188461C9

None

RPC Interface UUID for IFsrmPropertyCondition 326AF66F -2AC0 -4F68 -BF8C-
4759F054FA29

None

RPC Interface UUID for IFsrmPropertyDefinition EDE0150F -E9A3 -419C -877C -
01FE5D24C5D3

None

RPC Interface UUID for IFsrmProperty 4A73FEE4 -4102 -4FCC-9FFB-
38614F9EE768

None

RPC Interface UUID for IFsrmRule CB0DF960 -16F5-4495 -9079 -
3F9360D831DF

None

RPC Interface UUID for IFsrmClassificationRule AFC052C2 -5315 -45AB -841B -
C6DB0E120148

None

RPC Interface UUID for IFsrmPipelineModuleDefinition 515C1277 -2C81 -440E -8FCF-
367921ED4F59

None

RPC Interface UUID for
IFsrmClassifierModuleDefinition

BB36EA26 -6318 -4B8C -8592 -
F72DD602E7A5

None

RPC Interface UUID for IFsrmStorageModuleDefinition 15A81350 -497D -4ABA-80E9 -
D4DBCC5521FE

None

Class ID for IFsrmClassificationManager B15C0E47 -C391 -45B9 -95C8 -
EB596C853F3A

None

RPC Interface UUID for IFsrmClassificationManager D2DC89DA -EE91-48A0 -85D8 -
CC72A56F7D04

None

29 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

The File Server Resource Manager (FSRM) Protocol uses the Distributed Component Object Model

(DCOM) Remote Protocol [MS -DCOM] as its transport. The DCOM Remote Protocol uses the following
RPC protocol sequence : RPC over TCP [MS -RPCE].

The FSRM interfaces use the underlying DCOM security framework [MS -DCOM] and rely upon it for
access control. DCOM differentiates between launch and access. An FSRM implementation may can
differentiate between launch and access permission and impose differe nt authorization requirements
on each interface. <7> To access an interface, an FSRM client requests a DCOM connection to its

object UUID endpoint on the server, as described in section 1.9 .

An FSRM implementation MAY configure its DCOM implementation or un derlying RPC transport with
authentication parameters to restrict client connections. The details of this behavior are

implementation -specific. <8>

The RPC version number for all interfaces is 5.0.

2.2 Message Syntax

The FSR M protocol references commonly used data types as defined in [MS -DTYP] , in addition to RPC
base types and definitions specified in [C706] and [MS -RPCE]. Protocol -specific data types are defined
in this section.

The following table summarizes the types that are defined in this specification. <9>

Data type Section Description

Common data types 2.2.1 The data types, enumerations, and structures that are used in this
protocol.

Interface -specific data
types

2.2.2 The data types and enumerations that are used only in specific FSRM
interfaces.

XML import and export
formats

2.2.3 The XML data types and schema that define the format for import and
export objects.

Error codes 2.2.4 Error return values that are specific to the FSRM protocol.

2.2.1 Common Data Types

This section describes the data types, enumerations, and structures used in this protocol.

2.2.1.1 Data Types

The following data types are specified in [MS -DTYP] :

Á BSTR

Á DWORD

The following data types are specified in [MS -OAUT] :

30 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á DATE

Á DECIMAL

Á SAFEARRAY

Á VARIANT

Á VARIANT_BOOL

The following data types are specified in this document:

Á FSRM_OBJECT_ID

Á FSRM_QUOTA_THRESHOLD

2.2.1.1.1 FSRM_OBJECT_ID

The FSRM_OBJECT_ID data type defines the FSRM object identifier (ID) as a globally unique

identifier (GUID) , as defined in [MS -DTYP] sections 2.3.4, 2.3.4.2, and 2.3.4.3, for FSRM storage
objects.

This type is declared a s follows:

 typedef GUID FSRM_OBJECT_ID;

2.2.1.1.2 FSRM_QUOTA_THRESHOLD

The FSRM_QUOTA_THRESHOLD data type defines the percentage of disk space used as an integer.
Once the percentage of disk space used is matching or exceeding this integer value, the server
triggers actions associated with the threshold. The value MUST be greater than 0 and less than 251.

This type is declared as follows:

 typedef long FSRM_QUOTA_THRESHOLD;

2.2.1.2 Enumerations

2.2.1.2.1 FsrmQuotaFlags

The FsrmQuotaFlags enumeration de fines bitmasks for the possible states of the quota objects in the
File Server Resource Manager Protocol.

 typedef enum _FsrmQuotaFlags

 {

 FsrmQuotaFlags_Enforce = 0x00000100,

 FsrmQuotaFlags_Disable = 0x00000200,

 FsrmQuotaFlags_StatusIncomplete = 0x00 010000,

 FsrmQuotaFlags_StatusRebuilding = 0x00020000

 } FsrmQuotaFlags;

FsrmQuotaFlags_Enforce: If the FsrmQuotaFlags_Enforce bitmask is set as part of the QuotaFlags
property of an IFsrmQuotaBase object, the server fails an I/O operation that causes the disk
space usage to exceed the quota limit. If not set, the server does not fail operations that violate
the I/O limit, but still run actions associated with the quota limit.

31 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FsrmQuotaFlags_Disable: If the FsrmQuotaFlags_Disable bitmask is set as part of the QuotaFlags
property of an IFsrmQuotaBase object, the server does not track quota data for the quota and

does not run any actions associated with quota thresholds.

FsrmQuotaFlags_StatusIncomplete: If the FsrmQuotaFlags_StatusIncomplete bitmask is set as

part of the QuotaFlags property of an IFsrmQuotaBase object, a quota is defined on the server
but the rebuilding procedure has not yet started.

FsrmQuotaFlags_Status Rebuilding: If the FsrmQuotaFlags_StatusRebuilding bitmask is set as
part of the QuotaFlags property of an IFsrmQuotaBase object, a quota is rebuilding its data from
the disk.

2.2.1.2.2 FsrmFileScreenFlags

The FsrmFileScreenFl ags enumeration defines bitmasks for possible states of the file screen objects in
the File Server Resource Manager Protocol.

 typedef enum _FsrmFileScreenFlags

 {

 FsrmFileScreenFlags_Enforce = 0x00000001

 } FsrmFileScreenFlags;

FsrmFileScreenFlags_Enforce : If this bitmask is set as part of the fileScreenFlags member of a
IFsrmFileScreenBase object, the server fails any I/O operation that violates the file screen. If
not set, the server does not fail operations that violate the file screen but still run ac tions
associated with the file screen.

2.2.1.2.3 FsrmRuleFlags

The FsrmRuleFlags enumeration defines the possible states of the rule objects in the File Server
Resource Manager Protocol.

 typedef enum _FsrmRuleFlags

 {

 FsrmRuleFlags _Disabled = 0x00000100,

 FsrmRuleFlags_Invalid = 0x00001000

 } FsrmRuleFlags;

FsrmRuleFlags_Disabled: If set, the server does not run the rule when classifying a file.

FsrmRuleFlags_Invalid: If the FsrmRuleFlags_Invalid flag is set, the rule defines an i nvalid set of
parameters and will not be run when classifying a file.

2.2.1.2.4 FsrmCollectionState

The FsrmCollectionState enumeration defines the possible states of collection objects in the File
Server Resource Manager Proto col.

 typedef enum _FsrmCollectionState

 {

 FsrmCollectionState_Fetching = 1,

 FsrmCollectionState_Committing = 2,

 FsrmCollectionState_Complete = 3,

 FsrmCollectionState_Cancelled = 4

 } FsrmCollectionState;

FsrmCollectionState_Fetching: The collection object is currently fetching data.

32 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FsrmCollectionState_Committing: The collection object is currently committing its data.

FsrmCollectionState_Complete: The collection object is complete and has stopped fetching or

committing data.

FsrmCo llectionState_Canceled: The collection's fetching or committing action was canceled.

2.2.1.2.5 FsrmEnumOptions

The FsrmEnumOptions enumeration defines the different options that can be used when enumerating
collections of File Server Resource Manager Protocol objects.

 typedef enum _FsrmEnumOptions

 {

 FsrmEnumOptions_None = 0x00000000,

 FsrmEnumOptions_Asynchronous = 0x00000001,

 FsrmEnumOptions_CheckRecycleBin = 0x00000002,

 FsrmEnumOptions_IncludeClusterNodes = 0x00000004,

 FsrmEnumOptions_IncludeDeprecatedObjects = 0x00000008

 } FsrmEnumOptions;

FsrmEnumOptions_None: Use no options and enumerate objects synchronously.

FsrmEnumOptions_Asynchronous: Enumerate the objects asynchronously.

FsrmEnumOptions_CheckRecycleBin: In clude items that are in the Recycle Bin when
enumerating. This will include files that are located in a folder that has "$RECYCLE.BIN" in its path
regardless of capitalization. Without this option, those files will be excluded.

FsrmEnumOptions_IncludeClust erNodes: If the system is configured to be part of a cluster ,
include all objects even if they are not currently available on the system (identified by the machine
name). Without this option, only objects available on the current system will be included.

FsrmEnumOptions_IncludeDeprecatedObjects: If any objects were marked Deprecated, they will

appear only when enumerated with this option.

2.2.1.2.6 FsrmCommitOptions

The FsrmCommitOptions enumeration defines the different options that can be used when committing
a collection of File Server Resource Manager Protocol objects.

 typedef enum _FsrmCommitOptions

 {

 FsrmCommitOptions_None = 0x00000000,

 FsrmCommitOptions_Asynchronous = 0x00000001

 } FsrmCommitOptions;

FsrmCommitOptions_ None: Use no options and commit the collection of objects synchronously.

FsrmCommitOptions_Asynchronous: Commit the collection of objects asynchronously.

2.2.1.2.7 FsrmTemplateApplyOptions

The FsrmTemplateApplyOptions enumeration defines the different options that are available when
applying changes that have been made to a template to the objects derived from that template.

 typedef enum _FsrmTemplateApplyOptions

 {

 FsrmTemplateApplyOptions_ApplyToDerivedMatching = 1,

33 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 FsrmTemplateApplyOptions_ApplyToDerivedAll = 2

 } FsrmTemplateApplyOptions;

FsrmTemplateApplyOptions_ApplyToDerivedMatching: Apply template changes only to derived
objects whose properties match the template.

FsrmTemplateApplyOptions_ApplyToDerivedAll: Apply template changes to all derived objects,
whether their properties match the template's or not.

2.2.1.2.8 FsrmAccountType

The FsrmAccountType enumeration defines the set of machine account types under which an
FsrmActionType _Command action or a module definition can be run.

 typedef enum _FsrmAccountType

 {

 FsrmAccountType_Unknown = 0,

 FsrmAccountType_NetworkService = 1,

 FsrmAccountType_LocalService = 2,

 FsrmAccountType_LocalSystem = 3,

 FsrmAccountType_InProc = 4,

 FsrmAccountType_External = 5,

 FsrmAccountType_Automatic = 500

 } FsrmAccountType;

FsrmAccountType_Unknown: This enumeration value is not used by FSRM and MUST NOT be
referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmAccountType_NetworkService: Run the command or module definition under a restricted
account with network access (see [MSDN -NetworkSvcAcct] for more information). <10>

FsrmAccountType_LocalService: Run the command or module definition under a restricted

account without network access (see [MSDN -LocSvcAcct] for more information). <11>

FsrmAccountType_LocalSystem: Run the command or module definition under an administrative
account with network access. See [MSDN -LocSysAc ct] for more information. <12>

FsrmAccountType_InProc: Run the module definition in an administrative account in the same

process used for pipeline processing. <13>

FsrmAccountType_External: Run the module definition in its own process. <14>

FsrmAccountType _Automatic: Run the module definition in a process determined by the
server. <15>

2.2.1.2.9 FsrmActionType

The FsrmActionType enumeration defines the set of the action types that can be triggered in response

to a quota or file screen event.

 typedef enum _FsrmActionType

 {

 FsrmActionType_Unknown = 0,

 FsrmActionType_EventLog = 1,

 FsrmActionType_Email = 2,

 FsrmActionType_Command = 3,

 FsrmActionType_Report = 4

 } FsrmActionType;

34 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FsrmActionType_Unknown: This enumeration val ue is not used by FSRM and MUST NOT be
referenced. If the server receives this enumeration value, it MUST consider the value invalid and

not apply any changes.

FsrmActionType_EventLog: The action will log an event to the application event log.

FsrmActionT ype_Email: The action will send an email.

FsrmActionType_Command: The action will execute a command or script.

FsrmActionType_Report: The action will generate a report.

2.2.1.2.10 FsrmReportType

The FsrmReportType enumeration defines the set of report types that can be generated by the File
Server Resource Manager Protocol.

 typedef enum _FsrmReportType

 {

 FsrmReportType_Unknown = 0,

 FsrmReportType_LargeFiles = 1,

 FsrmReportType_FilesByType = 2,

 FsrmReportType_LeastRecen tlyAccessed = 3,

 FsrmReportType_MostRecentlyAccessed = 4,

 FsrmReportType_QuotaUsage = 5,

 FsrmReportType_FilesByOwner = 6,

 FsrmReportType_ExportReport = 7,

 FsrmReportType_DuplicateFiles = 8,

 FsrmReportType_FileScreenAudit = 9,

 FsrmReportType_FilesByProperty = 10,

 FsrmReportType_AutomaticClassification = 11,

 FsrmReportType_Expiration = 12,

 FsrmReportType_FoldersByProperty = 13

 } FsrmReportType;

FsrmReportType_Unknown: This enumeration value is not used by FSRM and MUST N OT be

referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmReportType_LargeFiles: This report type lists files over a given size.

FsrmReportType_FilesByType: This report type lists f iles grouped by type.

FsrmReportType_LeastRecentlyAccessed: This report type lists files that have not been accessed
recently.

FsrmReportType_MostRecentlyAccessed: This report type lists files that have been accessed
most recently.

FsrmReportType_QuotaUs age: This report type lists quotas that exceed a certain threshold.

FsrmReportType_FilesByOwner: This report lists files grouped by their owner.

FsrmReportType_ExportReport: This report lists files without any grouping or limiting.

FsrmReportType_Duplic ateFiles: This report lists duplicate files. <16>

FsrmReportType_FileScreenAudit: This report lists file screening events that have occurred.

FsrmReportType_FilesByProperty: This report lists files grouped by classification property.

35 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FsrmReportType_Autom aticClassification: This report lists files that have been classified during
an automatic classification run.

FsrmReportType_Expiration: This report lists files that have been expired during a file
management operation.

FsrmReportType_FoldersByProperty: This report lists folders grouped by classification property.

2.2.1.2.11 FsrmRuleType

The FsrmRuleType enumeration defines the set of rule types that can be defined for automatic file
classification.

 typedef enum _FsrmRuleType

 {

 FsrmRuleType_Unknown = 0,

 FsrmRuleType_Classification = 1,

 FsrmRuleType_Generic = 2

 } FsrmRuleType;

FsrmRuleType_Unknown: The rule is of an unknown type.

FsrmRuleType_Classification: The rule defines parameters for how a classification module will
operate on a file.

FsrmRuleType_Generic: The rule defines parameters for how modules that are not classification
modules will operate on a file.

2.2.1.2.12 FsrmPipelineModuleType

The FsrmPipelineModuleType enumeration define s the set of types of modules used in the File Server

Resource Manager classification pipeline.

 typedef enum _FsrmPipelineModuleType

 {

 FsrmPipelineModuleType_Unknown = 0,

 FsrmPipelineModuleType_Storage = 1,

 FsrmPipelineModuleType_Classifier = 2,

 } F srmPipelineModuleType;

FsrmPipelineModuleType_Unknown: This enumeration value is not used by FSRM and MUST NOT
be referenced. If the server receives this enumeration value, it MUST consider the value invalid
and not apply any changes.

FsrmPipelineModuleTy pe_Storage: The module is a storage module , which can persist or

retrieve property values for files that it processes.

FsrmPipelineModuleType_Classifier: The module is a classifier, which can assign property values
to files that it processes based on cla ssification rules.

2.2.1.2.13 FsrmReportRunningStatus

The FsrmReportRunningStatus enumeration defines the set of running states for a report,
classification, or file management job.

 typedef enum _FsrmReportRunningStatus

 {

 FsrmReportRunningStatus_Unknown = 0,

36 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 FsrmReportRunningStatus_NotRunning = 1,

 FsrmReportRunningStatus_Queued = 2,

 FsrmReportRunningStatus_Running = 3

 } FsrmReportRunningStatus;

FsrmReportRunningStatus_Unknown: This enumeration value is not used by F SRM and MUST
NOT be referenced. If the server receives this enumeration value, it MUST consider the value
invalid and not apply any changes.

FsrmReportRunningStatus_NotRunning: The report, classification, or file management job is not
running.

FsrmReportR unningStatus_Queued: The request to run the Report job , Classification job , or
File Management Job has been made and an associated Running Job (section 3.2.1.5.1.3),
Running Classification job has been added to the Running Report Job Queue , Running
Classi fication Job Queue , or Running File Management Job Queue respectively, but the task
is not running at the moment.

FsrmReportRunningStatus_Running: The Report job , Classification job , or File Management
Job is running.

2.2.1.2.14 FsrmReportFormat

The FsrmReportFormat enumeration defines the set of formats that the File Server Resource Manager
Protocol can use when generating reports.

 typedef enum _FsrmReportFormat

 {

 FsrmReportFormat_Unknown = 0,

 FsrmReportF ormat_DHtml = 1,

 FsrmReportFormat_Html = 2,

 FsrmReportFormat_Txt = 3,

 FsrmReportFormat_Csv = 4,

 FsrmReportFormat_Xml = 5

 } FsrmReportFormat;

FsrmReportFormat_Unknown: This enumeration value is not used by FSRM and MUST NOT be
referenced. If the se rver receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmReportFormat_DHtml: The report is rendered in Dynamic Hypertext Markup Language
(DHTML).

FsrmReportFormat_Html: The report is rendered in HTML.

FsrmRe portFormat_Txt: The report is rendered as a text file.

FsrmReportFormat_Csv: The report is rendered as a comma -separated value file.

FsrmReportFormat_Xml: The report is rendered in XML.

2.2.1.2.15 FsrmReportGenerationContext

The FsrmReportGenerationContext enumeration defines the set of contexts under which a report is
run.

 typedef enum _FsrmReportGenerationContext

 {

 FsrmReportGenerationContext_Undefined = 1,

 FsrmReportGenerationContext_ScheduledReport = 2,

37 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 FsrmReportGenerationContext_InteractiveReport = 3,

 FsrmReportGenerationContext_IncidentReport = 4

 } FsrmReportGenerationContext;

FsrmReportGenerationContext_Undefined: This enumeration value is not used by FSRM and
MUST NOT be referenced. If the server rece ives this enumeration value, it MUST consider the

value invalid and not apply any changes.

FsrmReportGenerationContext_ScheduledReport: The report will run as a scheduled report.

FsrmReportGenerationContext_InteractiveReport: The report will run on demand.

FsrmReportGenerationContext_IncidentReport: The report will run in response to a quota or file
screen event.

2.2.1.2.16 FsrmReportFilter

The FsrmReportFilter enumeration defines the set of filters that can be used to limit the files listed in a

report.

 typedef enum _FsrmReportFilter

 {

 FsrmReportFilter_MinSize = 1,

 FsrmReportFilter_MinAgeDays = 2,

 FsrmReportFilter_MaxAgeDays = 3,

 FsrmReportFilter_MinQuotaUsage = 4,

 FsrmReportFilter_FileGroups = 5,

 FsrmReportFilter_Owners = 6,

 FsrmReportFilter_NamePattern = 7,

 FsrmReportFilter_Property = 8

 } FsrmReportFilter;

FsrmReportFilter_MinSize: The report will only show files that meet a minimum size.

FsrmReportFilter_MinAgeDays: The report will only s how files that were accessed more than a
minimum number of days ago.

FsrmReportFilter_MaxAgeDays: The report will only show files that were accessed prior to a
maximum number of days ago.

FsrmReportFilter_MinQuotaUsage: The report will only show quotas t hat meet a certain disk
space usage level.

FsrmReportFilter_FileGroups: The report will only show files from a given set of groups.

FsrmReportFilter_Owners: The report will only show files that belong to a certain set of owners.

FsrmReportFilter_NamePatt ern: The report will only show files whose name matches the given
pattern.

FsrmReportFilter_Property: The report will show only files whose property matches the given
property name.

2.2.1.2.17 FsrmReportLimit

The FsrmReportLimit e numeration defines the set of maxima that can be used to limit the files listed in
a report.

 typedef enum _FsrmReportLimit

 {

38 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 FsrmReportLimit_MaxFiles = 1,

 FsrmReportLimit_MaxFileGroups = 2,

 FsrmReportLimit_MaxOwners = 3,

 FsrmReportLimit_MaxFilesPerFileGroup = 4,

 FsrmReportLimit_MaxFilesPerOwner = 5,

 FsrmReportLimit_MaxFilesPerDuplGroup = 6,

 FsrmReportLimit_MaxDuplicateGroups = 7,

 FsrmReportLimit_MaxQuotas = 8,

 FsrmReportLimit_MaxFileScreenEvents = 9,

 FsrmReportLimit_MaxPropertyValues = 10,

 FsrmReportLimit_MaxFilesPerPropertyValue = 11,

 FsrmReportLimit_MaxFolders = 12

 } FsrmReportLimit;

FsrmReportLimit_MaxFiles: The report will list a maximum number of files.

FsrmReportLimit_MaxFileGroups: The report will list a maximum number of file groups.

FsrmReportLimit_MaxOwners: The report will list a maximum number of owners.

FsrmReportLimit_MaxFilesPerFileGroup: The report will list a maximum number of files per file
group.

FsrmReportLimit_MaxFilesPerOwner: The report will be limited to a maximum number of files per
owner.

FsrmReportLimit_MaxFilesPerDuplGroup: The report will list a maximum number of file entries

per duplicated file.

FsrmReportLimit_MaxDuplicateGroups: The report will list a maximum number of groups for
duplicated files (each set of duplicate files is one group).

FsrmReportLimit_MaxQuotas: The report will list a maximum number of quotas.

FsrmReportLimit_MaxFileScreenEvents: The report will list a maximum number of file screen
events.

FsrmReportLimit_MaxPropertyValues: The report will list a maximum number of property values
per property.

FsrmReportLimit_MaxFilesPerPropertyValue: The report will list a maximum number of files per
property value.

FsrmReportLimit_MaxFolders: The report will list a maximum number of folders.

2.2.1.2.18 AdsCacheFlags

The AdsCacheFlags enumeration defines bitmasks for the possible states of the FCIADS stream in
the File Server Resource Manager protocol.

 typedef enum AdsCacheFlags

 {

 AdsCacheFlags_None = 0x00000000,

 AdsCacheFlags_Dirty = 0x00000001,

 AdsCacheFlags_PropertyFlagsValid = 0x00000002

 } AdsCacheFlags;

AdsCacheFlags_None: Indicates that no flags are set.

AdsCacheFlags_Dirty: If this flag is set, the cache may might be o ut -of -date.

39 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

AdsCacheFlags_PropertyFlagsValid: If this flag is set, property flags of the
ADSSecurePropertyHeader (see [MS -FCIADS] section 2.4) and

ADSNonSecurePropertyHeader (see [MS -FCIADS] section 2.5) will correspond to flags in the
FCIADS streamProper tyFlags instead of FsrmPropertyFlags .<17>

2.2.1.2.19 AdsCachePropertyFlags

The AdsCachePropertyFlags enumeration defines bitmasks for the possible states of the secure and
nonsecure properties of the FCIADS stream in the File Server Resource Manager protocol.

 typedef enum AdsCachePropertyFlags

 {

 AdsCachePropertyFlags_None = 0x00000000,

 AdsCachePropertyFlags_Manual = 0x00000001,

 AdsCachePropertyFlags_Deleted = 0x00000002,

 AdsCachePropertyFlags_PolicyDerived = 0x00000004 ,

 AdsCachePropertyFlags_Inherited = 0x00000008

 } AdsCachePropertyFlags;

AdsCachePropertyFlags_None: Indicates that no flags are set.

AdsCachePropertyFlags_Manual: The AdsCachePropertyFlags_Manual flag is set to indicate that a

property has been manually classified.

AdsCachePropertyFlags_Deleted: The AdsCachePropertyFlags_Deleted flag is set to indicate that a
property has been manually deleted.

AdsCachePropertyFlags_PolicyDerived: The AdsCachePropertyFlags_PolicyDerived flag is set to
indicate whether the value in the cache was derived from classification properties.

AdsCachePropertyFlags_Inherited: The AdsCachePropertyFlags_Inherited flag is set to indicate

whether a property name value was inherited from a container.

2.2.1.2.20 FCI_ADS_SECURE_PROPERTY_T YPE

The FCI_ADS_SECURE_PROPERTY_TYPE enumeration defines bitmasks for the possible types of the
secure property of the FCIADS.

 typedef enum FCI_ADS_SECURE_PROPERTY_TYPE

 {

 FCI_ADS_SECURE_PROPERTY_TYPE_INT64 = 1,

 FCI_ADS_SECURE_PROPERTY_TYPE_STRING = 2

 } FCI_ADS_SECURE_PROPERTY_TYPE;

FCI_ADS_SECURE_PROPERTY_TYPE_INT64: If this flag is set, the property definition is of
integer type.

FCI_ADS_SECURE_PROPERTY_TYPE_STRING: If this flag is set, the property definition is of
string type.

2.2.1.3 Structures

The File Server Resource Manager Protocol uses the VARIANT structure as specified in [MS -OAUT] .

40 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2 Interface -Specific Data Types

2.2.2.1 IFsrmActionEventLog Data Types

This section lists data types that are used exclusively by methods in the IFsrmActionEventLog
interface (section 3.2.4.2.8).

2.2.2.1.1 Enumerations

2.2.2.1.1.1 FsrmEventType

The FsrmEventType enumeration defines the set of event types that can be logged as part of an
FsrmActionType_EventLog action.

 typedef enum _FsrmEventType

 {

 FsrmEventType_Unknown = 0,

 FsrmEventType_Information = 1,

 FsrmEventType_Warning = 2,

 Fsr mEventType_Error = 3

 } FsrmEventType;

FsrmEventType_Unknown: This enumeration value is not used by FSRM and MUST NOT be
referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmEventType_ Information: The event is an information event.

FsrmEventType_Warning: The event is a warning event.

FsrmEventType_Error: The event is an error event.

2.2.2.2 IFsrmAutoApplyQuota Data Types

This section lists data types that are used exclusively by methods in t he IFsrmAutoApplyQuota
interface (section 3.2.4.2.17).

2.2.2.2.1 Data Types

2.2.2.2.1.1 FsrmMaxExcludeFolders

The FsrmMaxExcludeFolders data type defines the maximum number of subdirectories that can be in
the ExcludedFolders property of an auto apply quota. MUST be set to 32.

This type is declared as follows:

 typedef ULONG FsrmMaxExcludeFolders;

2.2.2.3 IFsrmPropertyDefinition Data Types

This section lists data types that are used exclusively by methods in the IFsrmPropertyDefinition
interface (section 3.2.4.2.37).

2.2.2.3.1 Enumerations

41 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.3.1.1 FsrmPropertyDefinitionType

The FsrmPropertyDefinitionType enumeration defines the set of property definition types that can
be used to define file classification properties.

 typedef enum _FsrmPropertyDefinitio nType

 {

 FsrmPropertyDefinitionType_Unknown = 0,

 FsrmPropertyDefinitionType_OrderedList = 1,

 FsrmPropertyDefinitionType_MultiChoiceList = 2,

 FsrmPropertyDefinitionType_SingleChoiceList = 3,

 FsrmPropertyDefinitionType_String = 4,

 FsrmPropertyDefi nitionType_MultiString = 5,

 FsrmPropertyDefinitionType_Int = 6,

 FsrmPropertyDefinitionType_Bool = 7,

 FsrmPropertyDefinitionType_Date = 8

 } FsrmPropertyDefinitionType;

FsrmPropertyDefinitionType_Unknown: The property definition type is unknown.

FsrmP ropertyDefinitionType_OrderedList: The property definition defines a list of possible
values, one of which can be assigned to the property.

FsrmPropertyDefinitionType_MultiChoiceList: The property definition defines a list of possible
values, one or more of which can be assigned to the property. When a property value of this type

is set for a file, the individual choices are separated with the "|" character.

FsrmPropertyDefinitionType_SingleChoiceList: The property definition defines a list of possible
values, one of which can be assigned to the property. <18>

FsrmPropertyDefinitionType_String: The property definition type indicates that an arbitrary string
value can be assigned to the property.

FsrmPropertyDefinitionType_MultiString: The property defini tion indicates that one or more
arbitrary string values can be assigned to the property. When a property value of this type is set

for a file, the individual strings are separated with the "|" character.

FsrmPropertyDefinitionType_Int: The property defini tion indicates that an integer value can be
assigned to the property.

FsrmPropertyDefinitionType_Bool: The property definition indicates that a Boolean value can be
assigned to the property.

FsrmPropertyDefinitionType_Date: The property definition indica tes that a date value can be

assigned to the property.

2.2.2.4 IFsrmPropertyDefinition2 Data Types

This section lists data types that are used exclusively by methods in the interface
IFsrmPropertyDefinition2 (section 3.2.4.2.38). <19>

2.2.2.4.1 Enumerations

2.2.2.4.1.1 FsrmPropertyDefinitionFlags

The FsrmPropertyDefinitionFlags enumeration defines bitmasks for the possible states of the property
definition objects in the File Server Resource Manager protocol.

 typedef enum F srmPropertyDefinitionFlags

42 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 {

 FsrmPropertyDefinitionFlags Global = 0x00000001,

 FsrmPropertyDefinitionFlags_Deprecated = 0x00000002,

 FsrmPropertyDefinitionFlags_Secure = 0x00000004

 } FsrmPropertyDefinitionFlags;

FsrmPropertyDefinitionFlags Global: If the FsrmPropertyDefinitionFlags_Global bitmask is set
as part of the PropertyDefinitionFlags property of an IFsrmPropertyDefinition2 object, the

server will not allow an API to modify the object.

FsrmPropertyDefinitionFlags_Deprecated: If the FsrmProperty DefinitionFlags_Deprecated
bitmask is set as part of the PropertyDefinitionFlags property of an
IFsrmPropertyDefinition2 object, the server will not allow an API to modify the object but will
allow the removal of the object from the server. Any other objec ts that reference this
IFsrmPropertyDefinition2 object should need to consider their configuration invalid.

FsrmPropertyDefinitionFlags_Secure: If the FsrmPropertyDefinitionFlags_Secure bitmask is

set as part of the PropertyDefinitionFlags property of a Pr opertyDefinitionFlags object, the

server will use instances of the property definition for security purposes. This flag is stored within
the file security descriptor of the file.

2.2.2.4.1.2 FsrmPropertyDefinitionAppliesTo

The FsrmPropertyDefinitionAppliesTo enumeration defines bitmasks for the possible states of the
property definition objects in the File Server Resource Manager Protocol.

 typedef enum FsrmPropertyDefinitionAppliesTo

 {

 FsrmPropertyDefinitionApplie sTo_Files = 0x00000001,

 FsrmPropertyDefinitionAppliesTo_Folders = 0x00000002

 } FsrmPropertyDefinitionAppliesTo;

FsrmPropertyDefinitionAppliesTo_Files: If the FsrmPropertyDefinitionAppliesTo_Files

bitmask is set as part of the AppliesTo property of an IFsrmPropertyDefinition2 object, the server

will allow instances of the property definition to be created for individual files.

FsrmPropertyDefinitionAppliesTo_Folders: If the FsrmPropertyDefinitionAppliesTo_Folders
bitmask is set as part of the AppliesTo property of an IFsrmPropertyDefinition2 object, the
server will allow instances of the property definition to be created for individual folders.

2.2.2.5 IFsrmClassificationRule Data Types

This section lists data types that are used exclusively by methods in the IFsrmClassificationRule
interface (section 3.2.4.2.42).

2.2.2.5.1 Enumerations

2.2.2.5.1.1 FsrmExecutionOption

The FsrmExecutionOption enumeration defines the set of execution options that can be used to specify
when a class ification rule will be evaluated.

 typedef enum _FsrmExecutionOption

 {

 FsrmExecutionOption_Unknown = 0,

 FsrmExecutionOption_EvaluateUnset = 1,

 FsrmExecutionOption_ReEvaluate_ConsiderExistingValue = 2,

 FsrmExecutionOption_ReEvaluate_IgnoreExistingValue = 3

43 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 } FsrmExecutionOption;

FsrmExecutionOption_Unknown: The execution option is unknown.

FsrmExecutionOption_EvaluateUnset: The classification rule will be evaluated only if the property
it sets is not already set on the file.

FsrmExecutionOption_ReEvaluate_ConsiderExistingValue: The classification rule will always be
evaluated and the property value it tries to set will be aggregated with the current value of the
property in the file, if any.

FsrmExec utionOption_ReEvaluate_IgnoreExistingValue: The classification rule will always be
evaluated and the property value it tries to set will not be aggregated with the current value of the
property in the file, if any.

2.2.2.5.1.2 FsrmGetFilePropertyOptions

The FsrmGetFilePropertyOptions enumeration defines how classification properties associated with a

file are retrieved.

 typedef enum _FsrmGetFilePropertyOptions

 {

 FsrmGetFilePropertyOptions_None = 0x00000000,

 FsrmGetFil ePropertyOptions_NoRuleEvaluation = 0x00000001,

 FsrmGetFilePropertyOptions_Persistent = 0x00000002,

 FsrmGetFilePropertyOptions_FailOnPersistErrors = 0x00000004,

 FsrmGetFilePropertyOptions_SkipOrphaned = 0x00000008

 } FsrmGetFilePropertyOptions;

FsrmGe tFilePropertyOptions_None: If the FsrmGetFilePropertyOptions_None flag is set, File
Server Resource Manager retrieves classification properties for the given file.

FsrmGetFilePropertyOptions_NoRuleEvaluation: If the

FsrmGetFilePropertyOptions_NoRuleEvalu ation flag is set, File Server Resource Manager retrieves
only classification properties that are not assigned by evaluating the current set of classification
rules.

FsrmGetFilePropertyOptions_Persistent: If the FsrmGetFilePropertyOptions_Persistent flag
is set, File Server Resource Manager retrieves classification properties and saves them.

FsrmGetFilePropertyOptions_FailOnPersistErrors: If the

FsrmGetFilePropertyOptions_FailOnPersistErrors flag is set, File Server Resource
Manager retrieves classification properties and fails the call if there are any errors while saving
them.

FsrmGetFilePropertyOptions_SkipOrphaned: If the
FsrmGetFilePropertyOptions_SkipOrphaned flag is set, File Server Resource Manager only
retrieves classificat ion properties for which a Persisted Property Definition exists.

2.2.2.6 IFsrmProperty Data Types

 This section lists data types that are used exclusively by methods in the IFsrmProperty interface
(section 3.2.4.2.40).

2.2.2.6.1 Enumerations

2.2.2.6.1.1 FsrmPropertyFlags

44 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The FsrmPropertyFlags enumeration defines the set of possible states of classification properties.

 typedef enum _FsrmPropertyFlags {

 {

 FsrmPropertyFlags_Orphaned = 0x00000001,

 FsrmPropertyFlags_RetrievedFromCache = 0x00000002,

 FsrmPropertyFlags_RetrievedFromStorage = 0x00000004,

 FsrmPropertyFlags_SetByClassifier = 0x00000008,

 FsrmPropertyFlags_Deleted = 0x00000010,

 FsrmPropertyFlags_Reclassified = 0x00000020,

 FsrmPropertyFlags_AggregationFailed = 0x0000004 0,

 FsrmPropertyFlags_Existing = 0x00000080,

 FsrmPropertyFlags_FailedLoadingProperties = x00000100 0x00000100 ,

 FsrmPropertyFlags_FailedClassifyingProperties = 0x00000200,

 FsrmPropertyFlags_FailedSavingProperties = 0x00000400,

 FsrmPropertyFlags_Secu re = 0x00000800,

 FsrmPropertyFlags_PolicyDerived = 0x00001000,

 FsrmPropertyFlags_Inherited = 0x00002000,

 FsrmPropertyFlags_Manual = 0x00004000,

 FsrmPropertyFlags_PropertySourceMask = 0x0000000E

 } FsrmPropertyFlags;

FsrmPropertyFlags_Orphaned: If s et, the classification property does not have a corresponding
property definition defined in the File Server Resource Manager.

FsrmPropertyFlags_RetrievedFromCache: If set, the value of the classification property was
retrieved from a cache storage module .

FsrmPropertyFlags_RetrievedFromStorage: If set, the value of the classification property was
retrieved from the file content.

FsrmPropertyFlags_SetByClassifier: If set, the value of the classification property was set by a
classification rule.

FsrmPropertyFlags_Deleted: If set, indicates that the classification property has been deleted.

FsrmPropertyFlags_Reclassified: If set, the value was loaded by a storage module but changed by

a classification module.

FsrmPropertyFlags_AggregationFailed: If set, the server could not properly aggregate different
values of the property supplied by different pipeline modules.

FsrmPropertyFlags_Existing: If set, the property was initially retrieved from a storage module.

FsrmPropertyFlags_FailedLoadingProperties: If set, the classification property may might only be
partially classified because a failure occurred while loading properties from storage.

FsrmPropertyFlags_FailedClassifyingProperties: If set, the classificati on property may might only

be partially classified because a failure occurred while classifying properties.

FsrmPropertyFlags_FailedSavingProperties: If set, the classification property failed to be saved
by a storage module.

FsrmPropertyFlags_Secure: If set, the classification property is defined to be a secure property.

FsrmPropertyFlags_PolicyDerived: If set, the classification property was applied as a result of a
classification rule.

FsrmPropertyFlags_Inherited: If set, the classification property value was inherited from the

property value of the file's parent folder.

FsrmPropertyFlags_Manual: If set, the classification property value was set manually.

45 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FsrmPropertyFlags_PropertySourceMask: This is the bitwise -OR'd combination of
FsrmPropertyFlags _RetrievedFromCache , FsrmPropertyFlags_RetrievedFromStorage ,

and FsrmPropertyFlags_SetByClassifier , which reference to the source of the property.

2.2.2.7 IFsrmClassificationManager Data Types

 This section lists data types that are used exclusively by methods i n the
IFsrmClassificationManager interface (section 3.2.4.2.45).

2.2.2.7.1 Enumerations

2.2.2.7.1.1 FsrmClassificationLoggingFlags

The FsrmClassificationLoggingFlags enumeration defines the different options for logging during
automatic classification.

 typedef enum _FsrmClassificationLoggingFlags

 {

 FsrmClassificationLoggingFlags_None = 0x00000000,

 FsrmClassificationLoggingFlags_ClassificationsInLogFile = 0x00000001,

 FsrmClassificationLoggingFlags_ErrorsInLogFile = 0x000000 02,

 FsrmClassificationLoggingFlags_ClassificationsInSystemLog = 0x00000004,

 FsrmClassificationLoggingFlags_ErrorsInSystemLog = 0x00000008

 } FsrmClassificationLoggingFlags;

FsrmClassificationLoggingFlags_None: Indicates that no flags are set.

FsrmClassificationLoggingFlags_ClassificationsInLogFile: If the
FsrmClassificationLoggingFlags_ClassificationsInLogFile flag is set, File Server Resource Manager
will log how files are classified during automatic classification in a log file.

FsrmClassifi cationLoggingFlags_ErrorsInLogFile: If the
FsrmClassificationLoggingFlags_ErrorsInLogFile flag is set, File Server Resource Manager will log

errors that occur during automatic classification in a log file.

FsrmClassificationLoggingFlags_ClassificationsInS ystemLog: If the

FsrmClassificationLoggingFlags_ClassificationsInSystemLog flag is set, File Server Resource
Manager will log how files are classified during automatic classification in the System event log.

FsrmClassificationLoggingFlags_ErrorsInSystemLo g: If the
FsrmClassificationLoggingFlags_ErrorsInSystemLog flag is set, File Server Resource Manager will
log errors that occur during automatic classification in the System event log.

2.2.2.8 IFsrmStorageModuleDefinition Data Types

This section lists data types that are used exclusively by methods in the
IFsrmStorageModuleDefinition interface (section 3.2.4.2.47).

2.2.2.8.1 Enumerations

2.2.2.8.1.1 FsrmStorageModuleCaps

The FsrmStorageModuleCaps enumeration define s the capabilities of the storage module.

 typedef enum _FsrmStorageModuleCaps

 {

 FsrmStorageModuleCaps_Unknown = 0x00000000,

46 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 FsrmStorageModuleCaps_CanGet = 0x00000001,

 FsrmStorageModuleCaps_CanSet = 0x00000002,

 FsrmStorageModuleCaps_CanHandleDirect ories = 0x00000004,

 FsrmStorageModuleCaps_CanHandleFiles = 0x00000008

 } FsrmStorageModuleCaps;

FsrmStorageModuleCaps_Unknown: This enumeration value is not used by FSRM and MUST NOT
be referenced. If the server receives this enumeration value, it MUST c onsider the value invalid

and not apply any changes.

FsrmStorageModuleCaps_CanGet: If the FsrmStorageModuleCaps_CanGet flag is set, the
storage module is allowed to retrieve classification properties.

FsrmStorageModuleCaps_CanSet: If the FsrmStorageModu leCaps_CanSet flag is set, the
storage module is allowed to store classification properties.

FsrmStorageModuleCaps_CanHandleDirectories: If the
FsrmStorageModuleCaps_CanHandleDirectories flag is set, the storage module can process

folders.

FsrmStorageModu leCaps_CanHandleFiles: If the FsrmStorageModuleCaps_CanHandleFiles
flag is set, the storage module can process files.

2.2.2.8.1.2 FsrmStorageModuleType

The FsrmStorageModuleType enumeration defines the possible storage module types.

 typedef enum _FsrmStorageModuleType

 {

 FsrmStorageModuleType_Unknown = 0x00000000,

 FsrmStorageModuleType_Cache = 0x00000001,

 FsrmStorageModuleType_InFile = 0x00000002,

 FsrmStorageModuleType_Database = 0x00000003,

 FsrmStorageModuleType_Sy stem = 0x00000064

 } FsrmStorageModuleType;

FsrmStorageModuleType_Unknown: The module type is unknown. Do not use this value.

FsrmStorageModuleType_Cache: If the FsrmStorageModuleType_Cache flag is set, the
classification properties are cached for quick access by storage module.

FsrmStorageModuleType_InFile: If the FsrmStorageModuleType_InFile flag is set, the
classification properties are cached within the file itself by storage.

FsrmStor ageModuleType_Database: If the FsrmStorageModuleType_Database flag is set, the

classification properties are cached outside the file (such as using a local database) by storage
module.

FsrmStorageModuleType_System: If the FsrmStorageModuleType_ System fl ag is set, the
classification properties are cached in a system -specific storage.

2.2.2.9 IFsrmFileManagementJob Data Types

 This section lists data types that are used exclusively by methods in the IFsrmFileManagementJob
interface (section 3.2.4.2.48).

2.2.2.9.1 Enumeratio ns

47 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.9.1.1 FsrmFileManagementType

The FsrmFileManagementType enumeration defines the set of file management job types that are
available in the File Server Resource Manager.

 typedef enum _FsrmFileManagementType

 {

 FsrmFi leManagementType_Unknown = 0,

 FsrmFileManagementType_Expiration = 1,

 FsrmFileManagementType_Custom = 2,

 FsrmFileManagementType_Rms = 3

 } FsrmFileManagementType;

FsrmFileManagementType_Unknown: The file management job type is unknown.

FsrmFileManagem entType_Expiration: This file management job performs an expiration policy on

files meeting a certain criteria.

FsrmFileManagementType_Custom: This file management job performs a custom policy on files
meeting a certain criteria.

FsrmFileManagementType_R ms: This file management job performs an Active Directory Rights
Management Services policy on files meeting certain criteria.

2.2.2.9.1.2 FsrmFileManagementLoggingFlags

The FsrmFileManagementLoggingFlags enumeration defines the different options for logging when
running a file management job.

 typedef enum _FsrmFileManagementLoggingFlags

 {

 FsrmFileManagementLoggingFlags_None = 0x00000000,

 FsrmFileManagementLoggingFlags_Error = 0x00000001,

 FsrmFileManagementLoggi ngFlags_Information = 0x00000002,

 FsrmFileManagementLoggingFlags_Audit = 0x00000004

 } FsrmFileManagementLoggingFlags;

FsrmFileManagementLoggingFlags_None: Indicates that no flags are set.

FsrmFileManagementLoggingFlags_Error: If the FsrmFileManagementLoggingFlags_Error flag is
set, File Server Resource Manager logs errors that occur when running the file management job to
the error log.

FsrmFileManagementLoggingFlags_Information: If the
FsrmFileManagementLoggingFlags_Information flag is set, File Server Resource Manager logs
information status messages that occur when running the file management job to the information

log.

FsrmFileManagementLoggingFlags_Audit: If the FsrmFileMana gementLoggingFlags_Audit flag is

set, File Server Resource Manager logs information about files that are processed when the server
is running the file management job to the server's security audit log .

2.2.2.10 IFsrmPropertyCondition Data Types

 This section lists data types that are used exclusively by methods in the IFsrmPropertyCondition
interface (section 3.2.4.2.49).

2.2.2.10.1 Enumerations

48 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.10.1.1 FsrmPropertyConditionType

The FsrmPropertyConditionType enumeration defines the set of c omparison operations that can be
used to determine whether a property value of a file meets a particular condition.

 typedef enum _FsrmPropertyConditionType

 {

 FsrmPropertyConditionType_Unknown = 0,

 FsrmPropertyConditionType_Equal = 1,

 FsrmPropertyCon ditionType_NotEqual = 2,

 FsrmPropertyConditionType_GreaterThan = 3,

 FsrmPropertyConditionType_LessThan = 4,

 FsrmPropertyConditionType_Contain = 5,

 FsrmPropertyConditionType_Exist = 6,

 FsrmPropertyConditionType_NotExist = 7,

 FsrmPropertyConditio nType_StartWith = 8,

 FsrmPropertyConditionType_EndWith = 9,

 FsrmPropertyConditionType_ContainedIn = 10,

 FsrmPropertyConditionType_PrefixOf = 11,

 FsrmPropertyConditionType_SuffixOf = 12

 } FsrmPropertyConditionType;

FsrmPropertyConditionType_Unknown: The property condition type is unknown.

FsrmPropertyConditionType_Equal: This property condition is met if the property value is equal to
a specified value.

FsrmPropertyConditionType_NotEqual: This property condition is met if the property value is not

equal to a specified value.

FsrmPropertyConditionType_GreaterThan: This property condition is met if the property value is
greater than a specified value.

FsrmPropertyConditionType_LessThan: This property condition is met if the property value is less
than a specified value.

FsrmPropertyConditionType_Contain: This property condition is met if the property value is
contains a specified value.

FsrmPropertyConditionType_Exist: This property cond ition is met if the property value exists.

FsrmPropertyConditionType_NotExist: This property condition is met if the property value does
not exist.

FsrmPropertyConditionType_StartWith: This property condition is met if the property value starts
with a sp ecified value.

FsrmPropertyConditionType_EndWith: This property condition is met if the property value ends
with a specified value.

FsrmPropertyConditionType_ContainedIn: This property condition is met if the property value is
one of a specified value.

FsrmPropertyConditionType_PrefixOf: This property condition is met if the property value is the
prefix of a specified value.

FsrmPropertyConditionType_SuffixOf: This property condition is met if the property value is the
suffix of a specified value.

49 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3 XML Import and Export Formats

The FSRM protocol uses XML to define all objects that can be imported or exported. The following
methods can be used for import:

Á IFsrmFileGroupManager::ImportFileGroups (section 3.2.4.2.25.5)

Á IFsrmFileScreenTemplateManager::ImportTemplates (section 3.2.4.2.32.5)

Á IFsrmQuotaTemplateManager::ImportTemplates (section 3.2.4.2.22.5)

The following methods can be used for export:

Á IFsrmFileGroupManager::ExportFileGroups (section 3.2.4.2.25.4)

Á IFsrmFileScreenTemplateManager::ExportTemplates (section 3.2.4.2.32 .4)

Á IFsrmQuotaTemplateManager::ExportTemplates (section 3.2.4.2.22.4)

Export and import XML documents MUST adhere to the XML schema (XSD) specified in this section.
The server validates an export or import XML document's conformance to this schema and retu rn an
error if invalid, as specified for each of the preceding methods.

2.2.3.1 XML Data Types

This section specifies the following common data types used in the FSRM XML schema :

Á Standard Data Types (section 2.2.3.1.1)

Á guidType Simple Type (section 2.2.3.1.2)

2.2.3.1.1 Stan dard Data Types

The FSRM XML schema (section 2.2.3.2) uses the following standard XML data types:

Á xs:decimal : A decimal value ([W3C -XSD] section 3.2.3).

Á xs:integer : An integer value ([W3C -XSD] section 3.2.13).

Á xs:string : A string ([W3C -XSD] section 3.2.1).

2.2.3.1.2 guidType Simple Type

The guidType simple type specifies a string that contains the representation of a GUID. The GUID
SHOULD be in the form {xxxxxxxx - xxxx - xxxx - xxxx - xxxxxxxxxxxx} , where x is a hexadecimal digit.

 <xs:simpleType name="guidType">

 <xs:restriction base="xs:string">

 <xs:pattern value=

 " \ {([0 - 9a- fA - F]){8}(\ - [0 - 9a- fA - F]{4}){3} \ - [0 - 9a- fA - F]{12} \ }"/>

 </xs:restriction>

 </xs:simpleType>

2.2.3.2 XML Schema

This section specifies the overall XML schema for exporting and importing FSRM dir ectory quota
templates , file screen templates, and file groups. The following referenced elements are specified in
sections that follow:

50 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á <Action> element (section 2.2.3.2.1)

Á <DatascreenTemplate> element (section 2.2.3.2.2)

Á <FileGroup> element (section 2.2. 3.2.3)

Á <QuotaTemplate> element (section 2.2.3.2.4)

 <?xml version="1.0" encoding="utf - 8"?>

 <xs:schema id="Root" xmlns=""

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:msdata="urn:schemas - microsoft - com:xml - msdata">

 <! - guidType Definition -- >

 <! ðAction De finition -- >

 <! ðQuotaTemplate Definition -- >

 <! ðFileGroup Definition -- >

 <! ðFileScreenTemplate Definition -- >

 <xs:element name="Root" msdata:IsDataSet="true"

 msdata:UseCurrentLocale="true">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Header">

 <xs:complexType>

 <xs:attribute name="DatabaseVersion" type="xs:decimal"

 use="required"/>

 </xs:complexType>

 </xs: element>

 <xs:element name="QuotaTemplates">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="QuotaTemplate" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequ ence>

 </xs:complexType>

 </xs:element>

 <xs:element name="DatascreenTemplates">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="DatascreenTemplate" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="FileGroups">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="FileGroup" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element >

 </xs:schema>

Header : This attribute MUST be present. It contains the header information for the XML file.

DatabaseVersion : This attribute MUST be present. It contains the version of the database
information in the XML file. For FSRM version 1.0, the vers ion of the database information MUST

be 2.0.

QuotaTemplates : This element MUST be present and MUST occur only once in the XML file. It is the
container for the individual directory quota templates.

51 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

QuotaTemplate : If present, this element MUST contain all t he information listed under the
<QuotaTemplate> element (section 2.2.3.2.4).

DatascreenTemplates : This element MUST be present and MUST occur only once in the XML file. It
is the container for the individual file screen templates.

DatascreenTemplate : If pr esent, this element MUST contain all of the information listed under the
<DatascreenTemplate> element (section 2.2.3.2.2).

FileGroups : This element MUST be present and MUST occur only once in the XML file. It is the
container for the individual file groups .

FileGroup : If present, this element MUST contain all of the information listed under the <FileGroup>
element (section 2.2.3.2.3).

2.2.3.2.1 Action Element

The <Action> element defines the properties of an action object, as specified in the following schema.

An <Ac tion> element MUST NOT be present in XML outside of the references specified in the
<QuotaTemplate> (section 2.2.3.2.4) and <DatascreenTemplate> (section 2.2.3.2.2) elements.

 <xs:element name="Action">

 <xs:complexType>

 <xs:attribute name="Type" use=" required">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="4"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="Id" type="guidType" use="required"/>

 <xs:attribute name="RunLimitInterval">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value=" - 1"/>

 </xs:restriction>

 </xs:simpleType >

 </xs:attribute>

 <xs:attribute name="EventType" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="3"/>

 </xs:restriction>

 </xs:sim pleType>

 </xs:attribute>

 <xs:attribute name="MessageText" type="xs:string"

 use="required"/>

 <xs:attribute name="MailTo" type="xs:string" use="required"/>

 <xs:attribute name="MailFrom" type="xs:string"/>

 <xs:attribute n ame="MailReplyTo" type="xs:string"/>

 <xs:attribute name="MailCc" type="xs:string"/>

 <xs:attribute name="MailBcc" type="xs:string"/>

 <xs:attribute name="MailSubject" type="xs:string"/>

 <xs:attribute name="ExecutablePath" type="xs:string"

 use="required"/>

 <xs:attribute name="Account" use="required"/>

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="3"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:attribute name="Arguments" type="xs:string"/>

 <xs:attribute name="WorkingDirectory" type="xs:string"/>

52 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:attribute name="MonitorCommand">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="KillTimeOut">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minI nclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="LogResult"/>

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:attribute name="CurrentSid" type="xs:string"/>

 <xs:attribute name="ReportTypes" type="xs:string"

 use="required"/>

 <xs:attribute name="Mailto" type="xs:string"/>

 </xs:complexType>

 </xs:element>

Type : This attribute MUST be present. It contains the FsrmActionType (section 2.2.1.2.9)
enumeration of the action, which is the same value as returned by the IFsrmActi on::ActionType

(get) (section 3.2.4.2.4.2) method.

Id : This attribute MUST be present. It contains the ID of the action, which is the same value as
returned by the IFsrmAction::Id (get) (section 3.2.4.2.4.1) method.

MailFrom : If Type equals 2, FsrmActionTy pe_Email, this attribute MAY be present. It contains the

MailFrom value of the action, which is the same value as returned by the
IFsrmActionEmail::MailFrom (get) (section 3.2.4.2.5.1) method.

MailReplyTo : If Type equals 2, FsrmActionType_Email, this attri bute MAY be present. It contains the

MailReplyTo value of the action, which is the same value as returned by the
IFsrmActionEmail::MailReplyTo (get) (section 3.2.4.2.5.3) method.

MailTo : If Type equals 2, FsrmActionType_Email, this attribute MUST be presen t. It contains the
MailTo value of the action, which is the same value as returned by the IFsrmActionEmail::MailTo
(get) (section 3.2.4.2.5.5) method. If Type equals 4, FsrmActionType_Report, this attribute MAY
be present. It contains the MailTo value of t he action, which is the same value as returned by the
IFsrmActionReport::MailTo (get) (section 3.2.4.2.7.3) method.

MailCc : If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the
MailCc value of the action, which is the same value returned by the IFsrmActionEmail::MailCc
(get) (section 3.2.4.2.5.7) method.

MailBcc : If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the
MailBcc value of the action, which is the same value as returned by the
IFsr mActionEmail::MailBcc (get) (section 3.2.4.2.5.9) method.

MailSubject : If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the
MailSubject value of the action, which is the same value as returned by the
IFsrmActionEmail::MailSubject (get) (section 3.2.4.2.5.11) method.

53 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MessageText : If Type equals 1 or 2, FsrmActionType_EventLog or FsrmActionType_Email, this
attribute MAY be present. It conta ins the MessageText value of the action, which is the same

value as returned by the IFsrmActionEventLog::MessageText (get) (section 3.2.4.2.8.3) or
IFsrmActionEmail::MessageText (get) (section 3.2.4.2.5.13) methods.

EventType : If Type equals 1, FsrmActionT ype_EventLog, this attribute MUST be present. It contains
the FsrmEventType (section 2.2.2.1.1.1) of the event, which is the same value as returned by the
IFsrmActionEventLog::EventType (get) (section 3.2.4.2.8.1) method.

ReportTypes : If Type equals 4, Fsr mActionType_Report, this attribute MUST be present. It contains
the list of report types for the action, which is the same list as returned by the
IFsrmActionReport::ReportTypes (get) (section 3.2.4.2.7.1) method. The format of the string is
the value of t he FsrmReportTypes (section 2.2.1.2.10) used, separated by a "|" character.

ExecutablePath : If Type equals 3, FsrmActionType_Command, this attribute MUST be present. It
contains the ExecutablePath of the command, which is the same value returned by the
IFs rmActionCommand::ExecutablePath (get) (section 3.2.4.2.9.1) method.

Arguments : If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It contains
the Arguments of the command, which is the same value as returned by the
IFsrmActionCommand: :Arguments (get) (section 3.2.4.2.9.3) method.

WorkingDirectory : If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It
contains the WorkingDirectory of the command, which is the same value as returned by the
IFsrmActionCommand::Workin gDirectory (get) (section 3.2.4.2.9.7) method.

Account : If Type equals 3, FsrmActionType_Command, this attribute MUST be present. It contains
the FsrmAccountType value of the command, which is the same value as returned by the
IFsrmActionCommand::Account (get) (section 3.2.4.2.9.5) method.

MonitorCommand : If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It

contains the MonitorCommand value of the command, which is the same value as returned by
the IFsrmActionCommand::MonitorCommand (get) (section 3.2.4.2.9.9) method. A value of zero
means MonitorCommand is false and a value of one means MonitorCommand is true.

KillTimeOut : If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It contains
the KillTimeOut value of the command, which is the same value as returned by the
IFsrmActionCommand::KillTimeout (get) (section 3.2.4.2.9.11) method.

LogResult : If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It contains

the LogResult value of th e command, which is the same value as returned by the
IFsrmActionCommand::LogResult (get) (section 3.2.4.2.9.13) method. A value of zero means
LogResult is false and a value of one means LogResult is true.

CurrentSid : If Type equals 3 (FsrmActionType_Comma nd) this attribute MUST be present. It
contains the CurrentSid of the command. This is the security descriptor of the user that created
the action. When the action is executed, the account of the current security identifier (SID) is

checked to make sure th e account is still an administrator on the machine. If the account is no
longer an administrator account, the File Server Resource Manager Protocol does not run the
command.

2.2.3.2.2 DatascreenTemplate Element

The <DatascreenTemplate> element defines the properties of a file screen template object, as
specified in the following schema.

 <xs:element name="DatascreenTemplate" minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

54 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 <xs:element name="AllowedGroups">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FileGroup" minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="FileGroupId" type="gu idType"

 use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="BlockedGroups">

 <xs:c omplexType>

 <xs:sequence>

 <xs:element name="FileGroup" minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="FileGroupId" type="guidType"

 use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="FileGroupActions">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Action" minOccurs="0" maxOccurs="4"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:at tribute name="Id" type="guidType" use="required"/>

 <xs:attribute name="Flags" type="xs:integer" use="required"/>

 <xs:attribute name="Description" type="xs:string"

 use="required"/>

 </xs:complexType>

 </xs:element>

AllowedGroups : T his element MUST be present, it MUST occur only once in the file screen template,
it MUST be empty, and it MUST NOT contain child elements.

BlockedGroups : This element MUST be present and MUST occur only once in the file screen
template. It is the containi ng element for individual file groups that are blocked.

FileGroup : If present, this element MUST contain the attribute FileGroupId .

FileGroupId : This attribute MUST be present. It contains the ID of the file group that is allowed,
which is one of the value s returned by the IFsrmFileScreenBase::BlockedFileGroups
(get) (section 3.2.4.2.26.1) method.

FileGroupActions : This element MUST be present and MUST occur only once in the file screen

template. It is the containing element for the individual actions of th e file screen template.

Action : If present, this element MUST contain all of the information listed under the <Action>
element (section 2.2.3.2.1). There MUST be no more than one action for each
FsrmActionType (section 2.2.1.2.9) enumeration value.

Name : T his attribute MUST be present. It contains the name of the template, which is the same value
as returned by the IFsrmFileScreenTemplate::Name (get) (section 3.2.4.2.30.2) method.

55 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Id : This attribute MUST be present. It contains the ID of the template, which is the same value
returned by the IFsrmObject::Id (get) (section 3.2.4.2.10.1) method.

Flags : This attribute MUST be present. It contains the file screen flags of the template, which is the
same value returned by the IFsrmFileScreenBase::FileScreenFlags (get) (section 3.2.4.2.26.3)

method.

Description : This attribute MUST be present. It contains the description of the file group, which is
one of the values returned by the IFsrmObject::Description (get) (section 3.2.4.2.10.2) method.

2.2.3.2.3 FileGroup Element

The < FileGroup> element defines the properties of a file group object, as specified in the following
schema.

 <xs:element name="FileGroup" minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Members">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Pattern" minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="PatternValue" type="xs:string"

 use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:el ement>

 <xs:element name="NonMembers">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Pattern" minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="PatternValue" type="xs:string"

 use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="Id" type="guidType" use="required"/>

 <xs:attribute name="Description" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

Members : This element MUST be present and MUST occur only once in the file group. It is the

containing element for the individual member patterns.

Pattern : If present, this element MUST contain the attribute PatternValue .

PatternValue : This attribute MUST be pres ent. It contains a pattern value for the members of the file
group, which is one of the values returned by the IFsrmFileGroup::Members
(get) (section 3.2.4.2.23.4) method.

NonMembers : This element MUST be present and MUST occur only once in the file group. It is the
containing element for the individual non -member patterns.

56 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Pattern : If present, this element MUST contain the attribute PatternValue .

PatternValue : This attribute MUST be present. It contains a pattern value for the non -members of

the file group , which is one of the values returned by the IFsrmFileGroup::NonMembers
(get) (section 3.2.4.2.23.6) method.

Name : This attribute MUST be present. It contains the name of the template, which is the same value
returned by the IFsrmFileGroup::Name (get) (sec tion 3.2.4.2.23.2) method.

Id : This attribute MUST be present. It contains the ID of the template, which is the same value
returned by the IFsrmObject::Id (get) (section 3.2.4.2.10.1) method.

Description : This attribute MUST be present. It contains the description of the file group, which is
one of the values returned by the IFsrmObject::Description (get) (section 3.2.4.2.10.2) method.

2.2.3.2.4 QuotaTemplate Element

The <QuotaTemplate> element defines the properties of a directory quota template object, as

specif ied in the following schema.

 <xs:element name="QuotaTemplate" minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Thresholds">

 <xs:complexType>

 <xs:sequence>

 <xs:eleme nt name="Threshold" minOccurs="0" maxOccurs="16">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ThresholdActions" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Action" minOccurs="0"

 maxOccurs="4"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs: sequence>

 <xs:attribute name="ThresholdValue" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"/>

 <xs:maxInclusive value="250"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </x s:sequence>

 <xs:attribute name="Name" type="xs:string" use="required"/>

 <xs:attribute name="Id" type="guidType" use="required"/>

 <xs:attribute name="Limit" type="xs:integer" use="required"/>

 <xs:attribute name="Flags" type="xs:integer" use= "required"/>

 <xs:attribute name="Description" type="xs:string"

 use="required"/>

 </xs:complexType>

 </xs:element>

Thresholds : This element MUST be present and MUST only occur once in the quota template. It is the

containing element for the individual thresholds of the quota template.

57 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Threshold : If present, this element MUST specify the properties of a directory quota threshold. There
MUST NOT be more than 16 <Threshold> elements per quota template.

ThresholdActions : If present, this element MUST contain between one and four actions.

Action : If present, this element MUST contain all of the information listed under the <Action>

element (section 2.2.3.2.1). There MUST be no more than one action for each
FsrmActionType (section 2.2.1.2.9) enumeration value.

ThresholdValue : This attribute MUST be present. It contains the value of the threshold, which is one
of the values returned by the IFsrmQuotaBase::Thresholds (get) (section 3.2.4.2.14.6) method.

Name : This attribute MUST be present. It contains the name of the template, which is the same value
returned by the IFsrmQuotaTemplate::Name (get) (section 3.2.4.2.20.3) method.

Id : This attribute MUST be present. It contains the ID of the template, which is the same value

returned by the IFsrmOb ject::Id (get) (section 3.2.4.2.10.1) method.

Limit : This attribute MUST be present. It contains the quota limit of the template, which is the same

value returned by the IFsrmQuotaBase::QuotaLimit (get) (section 3.2.4.2.14.2) method.

Flags : This attribute MUST be present. It contains the quota flags of the template, which is the same
value returned by the IFsrmQuotaBase::QuotaFlags (get) (section 3.2.4.2.14.4) method.

Description : This attribute MUST be present. It contains the description of the template, which is one

of the values returned by the IFsrmObject::Description (get) (section 3.2.4.2.10.2) method.

2.2.4 Error Codes

This section lists the error codes specific to the FSRM protoco l. Common error codes are specified in
[MS -ERREF].

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The requested object was not found.

0x80045303

FSRM_E_ALREADY_EXISTS

The specified object already exists.

0x80045311

FSRM_E_NOT_SUPPORTED

The operation is not supported by the object.

0x80045332

FSRM_E_REPORT_TYPE_ALREADY_EXISTS

The report job already contains a report of the specified type.

0x8004530E

FSRM_E_REQD_PARAM_MISSING

The specified required property is missing.

0x80045324

FSRM_E_INVALID_DATASCREEN_DEFINITION

The specified file screen is not valid.

0x80045321

FSRM_E_INVALID_FILEGROUP_DEFINITION

The specified file group definition is not valid.

0x80045308

FSRM_E_INVALID_NAME

The specified name is not valid.

0x8004533E The classification is not currently running.

58 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return value/code Description

FSRM_E_CLASSIFICATION_NOT_RUNNING

2.3 Directory Service Schema Elements

The protocol accesses directory service schema classes and attributes listed in the following
table. <20>

For syntactic specifications of the classes and attributes in the following table, refer to either of the
following:

Á Active Directory Domain Services (AD DS) ([MS -ADA1] , [MS -ADA2] , [MS -ADA3] , and [MS -
ADSC])

Á Active Directory Lightweight Directory Services (AD LDS) ([MS -ADLS])

The directory service schema elements for ADM elements published in the directory are defined in
[MS - ADSC] .

Class Attribute

Resource Property Lists msDS -MembersOfResourcePropertyList

Resource Properties Enabled

objectClass

objectGUID

cn

displayName

description

msDS -IsUsedAsResourceSecurityAttribute

msDS -ValueTypeReference

msDS -AppliesToResourceTypes

msDS -ClaimPossibleValues

msDS -ClaimSharesPossibleValuesWith

whenChanged

2.3.1 Interaction Summary

File Server Resource Manager interacts with Active Directory at specified intervals to reference the
Resource Properties and synchronize them locally. The property definitions contained in Resource

Property Lists are synchronized. The property definitions in Active Directory are referred to as AD
Property Definitions . Each AD Property Definition in the Resource Properties is searched using the
Relative Distinguished Name . If the AD Property Definition found has the Enabled attribute set to
TRUE, it is synch ronized locally.

The following is the Distinguished Name (DN) of the container where the members of resource
property are stored:

Á CN=Resource Property Lists,CN=Claims Configuration,CN=Services,CN=Configuration

59 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.2 Resource Property Lists

The object encapsulate s the Resource Properties (section 2.3.3) that are to be synchronized with the
local server.

The top - level Resource Property Lists object MUST be stored in the domain naming context at
the following Relative Distinguished Name (RDN), within each domain's A ctive Directory domain DNS
object.

Á CN=Resource Property Lists,CN=Claims Configuration,CN=Services,CN=Configuration

The attribute of this object that File Server Resource Manager uses is:

msDS - MembersOfResourcePropertyList: It contains the list of all Resou rce Properties specified
by their Distinguished Names (DNs) , which are to be synced locally. AD Property Definitions

are contained in the Resource Properties.

2.3.3 Resource Properties

Each Resource Property List object represents a set of Resource Properties. E ach of the Resource

Properties objects has a number of AD Property Definitions. Resource Properties objects are
stored in the domain naming context at the following Relative Distinguished Name:

Á "CN= Resource Properties,CN=Claims Configuration,CN=Services, CN=Configuration "

The attributes of an AD Property Definition object that File Server Resource Manager uses are as
follows:

Enabled: A Boolean value that specifies the state of the AD Property Definitions . If it is set to
TRUE, the AD Property Definition is available for synchronization.

objectClass: Specifies the class name to which the AD Property Definition belongs.

objectGUID: The unique identifier (UID) for the object. This value is a 16 -byte GUID that is set

when the AD Property Definition is create d in Active Directory. This field is used to find the
matching AD Property Definition in Active Directory .

Cn: A Unicode string that specifies the name of the AD Property Definition .

displayName: A Unicode string that uniquely identifies the AD Property Definition and specifies
the AD Property Definition name.

Description: A Unicode string that specifies a brief description of the AD Property Definition .

msDS - IsUsedAsResourceSecurityAttribute: A Boolean value that specifies whether the AD
Property Definit ion can be used for security - related purposes. If the value of the attribute is
TRUE, the AD Property Definition is suitable for security purposes.

msDS - ValueTypeReference: Specifies the value type of the AD Property Definition . See
section 2.3.4 for detai ls.

msDS - AppliesToResourceTypes: Indicates whether the AD Property Definition applies to one
or more files or folders.

msDS - ClaimPossibleValues: This attribute is set when there are any possible values for the AD
Property Definition . See section 2.3.5 for details.

msDS - ClaimSharesPossibleValuesWith: The Distinguished Name of another AD Property
Definition or Claim type with which the AD Property Definition shares its possible values.

60 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

whenChanged: This field contains a time and date value specifying the creation or modification
date of the AD Property Definition.

2.3.4 ValueType References of msDS -ValueTypeReference

MS - DS - OrderedList: Specifies the list of integer type possible values of the AD Property
Definition.

MS - DS - MultivaluedChoice: Specifies the list of string type possible values of the AD Property
Definition.

MS - DS - Text: Specifies an arbitrary string value provided for an AD Property Definition.

MS - DS - MultivaluedText: Specifies one or more arbitr ary string values provided for an AD
Property Definition.

MS - DS - Number: Specifies the integer value of the AD Property Definition.

MS - DS - YesNo: Indicates the Boolean value mentioned for the AD Property Definition.

MS - DS - DateTime: Specifies the date and tim e of the AD Property Definition.

2.3.5 XML Schema of msDS -ClaimPossibleValues

AD Property Definitions with msDs -ValueTypeReferences set to MS - DS - OrderedList or MS - DS -
MultivaluedChoice can have the msDS - ClaimPossibleValues attribute set. This attribute specifies
a list of values, names, display names, and descriptions that can be used for the associated AD
Property Definition. A collection consisting of name, display name, and description is referred to as an

AD Possible Value .

Following is the XML schema for representing the AD Possible Values of an AD Property Definition.

 <?xml version="1.0" encoding="utf - 8"?>

 <xs:schema

targetNamespace="http://schemas.microsoft.com/2010/08/ActiveDirectory/PossibleValues"

 elementFormDefault ="qualified"

 xmlns="http://schemas.microsoft.com/2010/08/ActiveDirectory/PossibleValues"

 xmlns:mstns="http://schemas.microsoft.com/2010/08/ActiveDirectory/PossibleValues"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 >

 <xs:complexType name="Cla imValueItemBaseType" abstract="true">

 <xs:sequence minOccurs ="1" maxOccurs="1">

 <xs:element name="ValueDisplayName" type="xs:string" minOccurs="0"

maxOccurs="unbounded" />

 <xs:element name="ValueDescription" type="xs:string" minOccurs="0"

maxOccurs="unbounded" />

 <xs:element name="ValueGUID" type="xs:string" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="IntegerItemType">

 <xs:complexContent>

 <xs:extension base="ClaimValueItemBaseType">

 <xs:sequence>

 <xs:element name="Value" type="xs:int" />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="IntegerListType">

 <xs:sequence mi nOccurs ="1" maxOccurs="1">

 <xs:element name="Item" type="IntegerItemType" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

61 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 </xs:complexType>

 <xs:complexType name="StringItemType">

 <xs:complexContent>

 <xs:extension base="ClaimV alueItemBaseType">

 <xs:sequence>

 <xs:element name="Value" type="xs:string" />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="StringListType">

 <xs:sequence minOccurs =" 1" maxOccurs="1">

 <xs:element name="Item" type="StringItemType" minOccurs="1" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="PossibleClaimValuesType">

 <xs:choice minOccurs="1" maxOccurs="1">

 <xs:element name="StringList" type="StringListType" />

 <xs:element name="IntegerList" type="IntegerListType" />

 </xs:choice>

 </xs:complexType>

 <xs:element name="PossibleClaimValues" type="mstns:PossibleClaimValuesType" />

 </xs:schema>

A sing le AD Possible Value consists of three elements:

ValueDisplayName: Specifies the possible display name value for the AD Property Definition.

ValueDescription: Specifies the possible value description for the AD Property Definition.

Value: If the msDs - Value TypeReferences attribute of the AD Property Definition is MS - DS -
OrderedList , this holds an integer value. If the msDs - ValueTypeReferences attribute of the
AD Property Definition is set to MS - DS - MultivaluedChoice , this holds a string specifying the
possible name of the AD Property Definition.

62 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Client Role Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as lo ng as their external behavior is consistent with that described in this
document.

ADSyncListName: Maintains the name of the list containing property definitions in Active
Directory that are to be synchronized. <21>

3.1.2 Timers

No timers are required.

3.1.3 Initialization

A client initializes by creating an RPC binding handle to the interface(s) relating to the set of features
it works with. The following list shows the i nterfaces to initialize. These interfaces are the primary
FSRM protocol interfaces. All other FSRM interfaces can be discovered through the use of the
interfaces in the following list. The following list also includes a description of how to get a client -side
RPC binding handle for each interface.

Á IFsrmSetting : Create an RPC binding handle to IFsrmSetting to manage service settings, such as
email settings and run limit intervals for actions.

Á IFsrmPathMapper : Create an RPC binding handle to IFsrmPathMapper t o get network shares for

local paths.

Á IFsrmQuotaManager : Create an RPC binding handle to IFsrmQuotaManager to manage quota
objects.

Á IFsrmQuotaTemplateManager : Create an RPC binding handle to IFsrmQuotaTemplateManager to
manage quota templates.

Á IFsrmFileGroupManager : Create an RPC binding handle to IFsrmFileGroupManager to manage file

groups.

Á IFsrmFileScreenManager : Create an RPC binding handle to IFsrmFileScreenManager to manage file
screens and file screen exceptions.

Á IFsrmFileScreenTemplateMan ager : Create an RPC binding handle to
IFsrmFileScreenTemplateManager to manage file screen templates.

Á IFsrmReportManager : Create an RPC binding handle to IFsrmReportManager to manage reports

and report jobs.

Á IFsrmReportScheduler : Create an RPC binding handle to IFsrmReportScheduler to manage
scheduled tasks for report jobs.

Á IFsrmClassificationManager : Create an RPC binding handle to IFsrmClassificationManager to
manage property definitions, module definitions, and rules and also to get and set propertie s on
an individual file.

63 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á IFsrmFileManagementJobManager : Create an RPC binding handle to
IFsrmFileManagementJobManager to manage file management jobs.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 Processing Server Replies to Method Calls

Upon receiving a reply from the server in response to a method call, the client MUST validate the
return code. Return codes from all method calls are HRESULTs. If the HRESULT indicates success, the
client can assume that any output parameters are present and valid.

The client MUST release any DCOM interfaces returned by the server when the client no longer has
any use for them.

Some FSRM method cal ls require no prerequisite calls against the server and simply query for
information or pass in parameters constructed by the client. The calls listed in the following

subsections, however, are made in sequence. In general, the prerequisite call is to an o bject

enumeration method which retrieves information about a specific set of FSRM objects such as
directory quotas, file screens, report jobs, property definitions, module definitions, classification rules,
or file management jobs. Information returned by the object enumeration method is then used to
supply input parameters for subsequent calls. Calls with such prerequisites are grouped by FSRM
object type in sections 3.1.4.1.1 , 3.1.4.1.2 , 3.1.4.1.3 , 3.1.4.1.4 , 3.1.4.1.5 , and 3.1.4.1.6 .

3.1.4.1.1 File Server Resource Manager Protocol Object Relationships

The following describes the hierarchy of interfaces and objects used by the File Server Resource
Manager Protocol and the relationships between those objects.

Service and Quotas: The first interface obtained by the cl ient is the IFsrmQuotaManager interface
(section 3.2.4.2.18). The client invokes the IFsrmQuotaManager::CreateQuota method (section
3.2.4.2.18.3) to create a quota on a directory on a volume. The server MUST respond with an
IFsrmQuota interface (section 3. 2.4.2.16) on which the client can call methods to configure the

quota. The client invokes the IFsrmQuotaManager::GetQuota method (section 3.2.4.2.18.5) to get

a quota for a directory on a volume. The server MUST respond with an IFsrmQuota interface
(sectio n 3.2.4.2.16) on which the client can call methods to configure the quota. The client
invokes the IFsrmQuotaManager::EnumQuotas (section 3.2.4.2.18.8) or
IFsrmQuotaManager::EnumXXXQuotas method, where XXX is a placeholder for "Effective" or
"AutoApply", to get an enumeration of quotas. The server MUST respond with an

IFsrmCommittableCollection interface (section 3.2.4.2.3) that enumerates a list of IFsrmQuota
interfaces, one for each quota that matches the parameters of the
IFsrmQuotaManager::EnumXXXQuotas call.

Service and Quota Templates: The first interface obtained by the client is the
IFsrmQuotaTemplateManager interface (section 3.2.4.2.22). The client invokes the
IFsrmQuotaTemplateManager::CreateTemplate method (section 3.2.4.2.22.1) to create a quota
template. The server MUST respond with an IFsrmQuotaTemplate interface (section 3.2.4.2.20) on

which the client can call methods to configure the quota template. The client invokes the
IFsrmQuotaTemplateManager::GetTemplate method (section 3.2.4.2.22.2) to get a quota

template with a specific name. The server MUST respond with an IFsrmQuotaTemplate interface
on which the client can call methods to configure the quota template. The client invokes the
IFsrmQuotaTemplateManager::EnumTemplates method (section 3 .2.4.2.22.3) to get an
enumeration of quota templates. The server MUST respond with an IFsrmCommittableCollection
interface that enumerates a list of IFsrmQuotaTemplate interfaces, one for each quota template on

the server.

Service and File Groups: The fir st interface obtained by the client is the IFsrmFileGroupManager
interface (section 3.2.4.2.25). The client invokes the IFsrmFileGroupManager::CreateFileGroup
method (section 3.2.4.2.25.1) to create a file group. The server MUST respond with an

64 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IFsrmFileGr oup interface (section 3.2.4.2.23) on which the client can call methods to configure the
file group. The client invokes the IFsrmFileGroupManager::GetFileGroup method (section

3.2.4.2.25.2) to get a file group with a specific name. The server MUST respond with an
IFsrmFileGroup interface on which the client can call methods to configure the file group. The

client invokes the IFsrmFileGroupManager::EnumFileGroups method (section 3.2.4.2.25.3) to get
an enumeration of file groups. The server MUST respond with an IFsrmCommittableCollection
interface that enumerates a list of IFsrmFileGroup interfaces, one for each file group on the
server.

Service and File Screens: The first interface obtained by the client is the IFsrmFileScreenManager
interface (section 3.2.4.2.29). The client invokes the IFsrmFileScreenManager::CreateFileScreen
method (section 3.2.4.2.29.3) to create a file screen. The server MUST respond with an

IFsrmFileScreen interface (section 3.2.4.2.27) on which the client can c all methods to configure
the file screen. The client invokes the IFsrmFileScreenManager::GetFileScreen method (section
3.2.4.2.11.1) to get a file screen with a specific name. The server MUST respond with an
IFsrmFileScreen interface on which the client ca n call methods to configure the file screen. The
client invokes the IFsrmFileScreenManager::EnumFileScreens method (section 3.2.4.2.29.5) to get
an enumeration of file screens. The server MUST respond with an IFsrmCommittableCollection

interface that enume rates a list of IFsrmFileScreen interfaces, one for each file screen that
matches the parameters of the EnumFileScreens call.

Service and File Screen Exceptions: The first interface obtained by the client is the
IFsrmFileScreenManager interface. The client invokes the
IFsrmFileScreenManager::CreateFileScreenException method (section 3.2.4.2.29.6) to create a file
screen exception. The server MUST respond with an IFsrmFileScreenException interface (section
3.2.4.2.28) on which the client can call methods to configure the file screen exception. The client

invokes the IFsrmFileScreenManager::GetFileScreenException method (section 3.2.4.2.29.7) to
get a file screen exception with a specific name. The server MUST respond with an
IFsrmFileScreenException interface on which the client can call methods to configure the file
screen exception. The client invokes the IFsrmFileScreenManager::EnumFileScreenExceptions
method (section 3.2.4.2.29.8) to get an enumeration of file screen exceptions. The server MUST
respond wit h an IFsrmCommittableCollection interface that enumerates a list of
IFsrmFileScreenException interfaces, one for each file screen exception that matches the

parameters of the EnumFileScreenExceptions call.

Service and File Screen Templates: The first inter face obtained by the client is the
IFsrmFileScreenTemplateManager interface (section 3.2.4.2.32). The client invokes the
IFsrmFileScreenTemplateManager::CreateTemplate method (section 3.2.4.2.32.1) to create a file
screen template. The server MUST respond with an IFsrmFileScreenTemplate interface (section
3.2.4.2.30) on which the client can call methods to configure the file screen template. The client

invokes the IFsrmFileScreenTemplateManager::GetTemplate method (section 3.2.4.2.32.2) to get
a file screen template with a specific name. The server MUST respond with an
IFsrmFileScreenTemplate interface on which the client can call methods to configure the file
screen template. The client invokes the IFsrmFileScreenTemplateManager::EnumTemplates
method (secti on 3.2.4.2.32.3) to get an enumeration of file screen templates. The server MUST
respond with an IFsrmCommittableCollection interface that enumerates a list of
IFsrmFileScreenTemplate interfaces, one for each file screen template on the server.

Service and Report Jobs: The first interface obtained by the client is the IFsrmReportManager

interface (section 3.2.4.2.33). The client invokes the IFsrmReportManager::CreateReportJob
method (section 3.2.4.2.33.2) to create a report job. The server MUST respond with an
IFsrmReportJob interface (section 3.2.4.2.34) on which the client can call methods to configure
the report job. The client invokes the IFsrmReportManager::GetReportJob method (section
3.2.4.2.33.3) to get a report job with a specific name. The server M UST respond with an
IFsrmReportJob interface on which the client can call methods to configure the report job. The

client invokes the IFsrmReportManager::EnumReportJobs method (section 3.2.4.2.33.1) to get an
enumeration of report jobs. The server MUST res pond with an IFsrmCommittableCollection

65 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

interface that enumerates a list of IFsrmReportJob interfaces, one for each report job on the
server.

Service and Property Definitions: The first interface obtained by the client is the
IFsrmClassificationManager int erface (section 3.2.4.2.45). The client invokes the

IFsrmClassificationManager::CreatePropertyDefinition method (section 3.2.4.2.45.13) to create a
property definition. The server MUST respond with an IFsrmPropertyDefinition (section 3.2.4.2.37)
interface (section 3.2.4.2.37) on which the client can call methods to configure the property
definition. The client invokes the IFsrmClassificationManager::GetPropertyDefinition method
(section 3.2.4.2.45.14) to get a property definition with a specific name. The s erver MUST respond
with an IFsrmPropertyDefinition interface on which the client can call methods to configure the
property definition. The client invokes the IFsrmClassificationManager:: EnumPropertyDefinitions

method (section 3.2.4.2.45.12) to get an enu meration of property definitions. The server MUST
respond with an IFsrmCollection interface (section 3.2.4.2.1) that enumerates a list of
IFsrmPropertyDefinition interfaces, one for each property definition on the server.

Service and Module Definitions: The first interface obtained by the client is the
IFsrmClassificationManager interface. The client invokes the

IFsrmClassificationManager::CreateModuleDefinition method (section 3.2.4.2.45.19) to create a

module definition. The server MUST respond with an IFsrmPipelineModuleDefinition interface
(section 3.2.4.2.43) on which the client can call methods to configure the module definition. The
client invokes the IFsrmClassificationManager::GetModuleDefinition method (section
3.2.4.2.45.20) to get a module defini tion with a specific name. The server MUST respond with an
IFsrmPipelineModuleDefinition interface on which the client can call methods to configure the
module definition. The client invokes the IFsrmClassificationManager::EnumModuleDefinitions
method (sec tion 3.2.4.2.45.18) to get an enumeration of module definitions. The server MUST

respond with an IFsrmCollection interface that enumerates a list of
IFsrmPipelineModuleDefinition interfaces, one for each module definition on the server.

Service and Rules: The first interface obtained by the client is the IFsrmClassificationManager
interface. The client invokes the IFsrmClassificationManager::CreateRule method (section
3.2.4.2.45.16) to create a rule. The server MUST respond with an IFsrmRule interface (sect ion
3.2.4.2.41) on which the client can call methods to configure the rule. The client invokes the
IFsrmClassificationManager::GetRule method (section 3.2.4.2.45.17) to get a rule with a specific

name. The server MUST respond with an IFsrmRule interface on which the client can call methods
to configure the rule. The client invokes the IFsrmClassificationManager::EnumRules method
(section 3.2.4.2.45.15) to get an enumeration of rules. The server MUST respond with an
IFsrmCollection interface that enumerates a list of IFsrmRule interfaces, one for each rule on the
server.

Service and File Management Jobs: The first interface obtained by the client is the

IFsrmFileManagementJobManager (section 3.2.4.2.50) interface (section 3.2.4.2.50). The client
invokes the IFsrmFileManagementJobManager::CreateFileManagementJob method (section
3.2.4.2.50.2) to create a file management job. The server MUST respond with an
IFsrmFileManagementJob interface (section 3.2.4.2.48) on which the client can call methods to
configure th e file management job. The client invokes the
IFsrmFileManagementJobManager::GetFileManagementJob method (section 3.2.4.2.50.3) to get a
file management job with a specific name. The server MUST respond with an

IFsrmFileManagementJob interface (section 3.2 .4.2.48) on which the client can call methods to

configure the file management job. The client invokes the
IFsrmFileManagementJobManager::EnumFileManagementJobs method (section 3.2.4.2.50.1) to
get an enumeration of file management jobs. The server MUST re spond with an IFsrmCollection
interface (section 3.2.4.2.1) that enumerates a list of IFsrmFileManagementJob interfaces (section
3.2.4.2.48), one for each file management job on the server.

3.1.4.1.2 Quota Objects

66 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IFsrmQuotaBase::DeleteThreshold : Prior to invoking the DeleteThreshold method (section
3.2.4.2.14.8), the client calls the IFsrmQuotaBase::Thresholds (get) method (section

3.2.4.2.14.6) or IFsrmQuotaBase::AddThreshold method (section 3.2.4.2.14.7). If the client
called Thresholds (get), t he server MUST respond with a SAFEARRAY of threshold values for the

object. If the client called AddThreshold, the server MUST add the specified threshold to the
object's list of thresholds. The client MUST pass one of the returned threshold values returne d
from Thresholds (get) or the threshold value sent to AddThreshold as the threshold input
parameter to DeleteThreshold.

IFsrmQuotaBase::ModifyThreshold : The ModifyThreshold (section 3.2.4.2.14.9) method has the
same call sequence description as IFsrmQuota Base::DeleteThreshold.

IFsrmQuotaBase::CreateThresholdAction : The CreateThresholdAction (section 3.2.4.2.14.10)

method has the same call sequence description as IFsrmQuotaBase::DeleteThreshold.

IFsrmQuotaBase::EnumThresholdActions : The EnumThresholdActions (section 3.2.4.2.14.11)
method has the same call sequence description as IFsrmQuotaBase::DeleteThreshold.

IFsrmQuotaObject::ApplyTemplate : Prior to invoking the ApplyTemplate (section 3.2.4.2.15.7)
method, the client calls the IFsrmQuotaTemplateManager::E numTemplates method (section
3.2.4.2.22.3). The server MUST respond with a collection of quota templates. The client calls the

IFsrmQuotaTemplate::Name (get) (section 3.2.4.2.20.3) method. The server MUST return the
name of the quota template. The client M UST pass the name of the template returned from
Name (get) as the quotaTemplateName input parameter to ApplyTemplate.

IFsrmQuota::Commit : The Commit (section 3.2.4.2.10) method is inherited from
IFsrmObject::Commit (section 3.2.4.2.10.5) . Before calling th is method on an
IFsrmQuota (section 3.2.4.2.16) interface returned from the IFsrmQuotaManager::CreateQuota
method (section 3.2.4.2.18.3), the client MUST call the IFsrmQuota::QuotaLimit

(put) (section 3.2.4.2.14.3) method (section 3.2.4.2.14.3) with a vali d quota limit.

IFsrmQuotaTemplate::CopyTemplate : The CopyTemplate (section 3.2.4.2.20.5) method has the
same call sequence description as IFsrmQuotaObject::ApplyTemplate.

IFsrmQuotaTemplate::Commit : The Commit (section 3.2.4.2.20.1) method is inherited fro m
IFsrmObject::Commit. Before calling this method on an IFsrmQuotaTemplate interface (section
3.2.4.2.20) returned from the IFsrmQuotaTemplateManager::CreateTemplate method (section
3.2.4.2.22.1), the client MUST call IFsrmQuotaTemplate::QuotaLimit

(put) (section 3.2.4.2.14.3) with a valid quota limit.

3.1.4.1.3 File Screen Objects

IFsrmFileGroup::Commit : The Commit method (section 3.2.4.2.23.1) is inherited from the
IFsrmObject::Commit method (section 3.2.4.2.10.5). Before calling this method on an
IFsrmFileGroup in terface (section 3.2.4.2.23) returned from the

IFsrmFileGroupManager::CreateFileGroup method (section 3.2.4.2.25.1), the client MUST call
the IFsrmFileGroup::Name (put) (section 3.2.4.2.23.3) and IFsrmFileGroup::Members
(put) (section 3.2.4.2.23.5) methods with valid values for each call.

IFsrmFileScreenBase::BlockedFileGroups (put) : Prior to invoking the BlockedFileGroups (put)

method (section 3.2.4.2.26.2), the client calls the IFsrmFileGroupManager::EnumFileGroups
method (section 3.2.4.2.25.3). The serve r MUST respond with a collection of file groups. The
client calls the IFsrmFileGroup::Name (get) method (server 3.2.4.2.23.2). The server MUST

return the name of the file group. The client builds a SAFEARRAY by using the names of the file
groups returned from Name (get) as the blockedFileGroups input parameter to
BlockedFileGroups (put) (section 3.2.4.2.26.2).

IFsrmFileScreen::ApplyTemplate : Prior to invoking the ApplyTemplate method (section
3.2.4.2.27.7), the client calls the IFsrmFileScreenTemplateManager::EnumTemplates method

67 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

(section 3.2.4.2.32.3). The server MUST respond with a collection of file screen templates. The
client calls the IFsrmFileScreenTemplate::Name (get) method (section 3.2.4.2.30.2). The

server MUST return the name of the file screen template. The client passes the name of the
template returned from Name (get) as the fileScreenTemplateName input parameter to

ApplyTemplate.

IFsrmFileScreenException::AllowedFileGroups (put) : The AllowedFileGroups (put) (secti on
3.2.4.2.28.4) method has the same call sequence description as
IFsrmFileScreenBase::BlockedFileGroups (put).

IFsrmFileScreen::Commit : The Commit method (section 3.2.4.2.27.1) is inherited from the
IFsrmObject::Commit method. Before calling this method o n an IFsrmFileScreen interface
(section 3.2.4.2.27) returned from the IFsrmFileScreenManager::CreateFileScreen method

(section 3.2.4.2.29.3), the client MUST call the IFsrmFileScreenBase::BlockedFileGroups (put)
method (section 3.2.4.2.26.2) with a valid c ollection of file groups.

IFsrmFileScreenException::Commit : The Commit method (section 3.2.4.2.28.1) is inherited from
IFsrmObject::Commit. Before calling this method on an IFsrmFileScreenException interface

(section 3.2.4.2.28) returned from the IFsrmFile ScreenManager::CreateFileScreenException
method (section 3.2.4.2.29.6), the client MUST call the

IFsrmFileScreenException::AllowedFileGroups (put) (section 3.2.4.2.28.4) method with a valid
collection of file groups.

IFsrmFileScreenTemplate::CopyTemplate : The CopyTemplate method (section 3.2.4.2.30.4) has
the same call sequence description as IFsrmFileScreen::ApplyTemplate.

IFsrmFileScreenTemplate::Commit : The Commit method (section 3.2.4.2.30.1) is inherited from
IFsrmObject::Commit. Before calling this me thod on an IFsrmFileScreenTemplate interface
(section 3.2.4.2.30) returned from

IFsrmFileScreenTemplateManager::CreateTemplate (section 3.2.4.2.32.1) the client MUST call
IFsrmFileScreenBase::BlockedFileGroups (put) with a valid collection of file groups.

3.1.4.1.4 Storage Report Objects

Report Jobs and Reports: The client MUST first get an IFsrmReportJob interface (section
3.2.4.2.34) by using the relationship specified in section 3.1.4.1.1 under "Service and Report
Jobs". The client invokes the IFsrmReportJob::Cre ateReport method (section 3.2.4.2.34.15) to

create a report. The server MUST respond with an IFsrmReport interface (section 3.2.4.2.35) on
which the client can call methods to configure the report. The client invokes the
IFsrmReportJob::EnumReports method (section 3.2.4.2.34.14) to get an enumeration of
reports. The server MUST respond with an IFsrmCollection interface (section 3.2.4.2.1) that
enumerates a list of IFsrmReport interfaces, one for each report configured for the report job.

IFsrmReportJob::Com mit : The Commit method (section 3.2.4.2.34.1) is inherited from the

IFsrmObject::Commit method (section 3.2.4.2.10.5). Before calling this method on an
IFsrmReportJob interface returned from
IFsrmReportManager::CreateReportJob (section 3.2.4.2.33.2) , the client MUST call the
IFsrmReportJob::NamespaceRoots (put) (section 3.2.4.2.34.5) , IFsrmReportJob::Task
(put) (section 3.2.4.2.34.3) , and IFsrmReportJob::CreateReport methods with valid values for

each method.

3.1.4.1.5 Classification Objects

IFsrmPropertyDefinition: :Commit : The Commit method (section 3.2.4.2.37.1) is inherited from the
IFsrmObject::Commit method (section 3.2.4.2.10.5). Before calling this method on an
IFsrmPropertyDefinition interface (section 3.2.4.2.37) returned from the
IFsrmClassificationManager: :CreatePropertyDefinition method (section 3.2.4.2.45.13), the client
MUST call the IFsrmPropertyDefinition::Name (put) (section 3.2.4.2.37.3) and
IFsrmPropertyDefinition::Type (put) (section 3.2.4.2.37.5) methods, and MAY call the

68 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IFsrmPropertyDefinition:: PossibleValues (put) method (section 3.2.4.2.37.7), with valid values
for each method.

IFsrmClassificationRule::Commit : The Commit (section 3.2.4.2.42.1) method is inherited from
IFsrmObject::Commit. Before calling this method on an IFsrmClassificationRule interface

(section 3.2.4.2.42) returned from the IFsrmClassificationManager::CreateRule method (section
3.2.4.2.45.16), the client MUST call the IFsrmRule::NamespaceRoots
(put) (section 3.2.4.2.41.7) , IFsrmRule::Name (put) (section 3.2.4.2.41.2) ,
IFsrmRule::ModuleDefinitionName (put) (section 3.2.4.2.41.5) , and
IFsrmClassificationRule::PropertyAffected (put) (section 3.2.4.2.42.5) methods. The client MAY
call the IFsrmClassificationRule::Value (put) method (section 3.2.4.2.42.7) wit h valid values for
each method.

IFsrmClassifierModuleDefinition::Commit : The Commit method (section 3.2.4.2.44.1) is inherited
from IFsrmObject::Commit. Before calling this method on an IFsrmClassifierModuleDefinition
interface 3.2.4.2.44 returned from the IFsrmClassificationManager::CreateModuleDefinition
method, the client MUST call the IFsrmPipelineModuleDefinition::Name
(put) (section 3.2.4.2.43.4) , and IFsrmPipelineModuleDefinition::ModuleClsid

(put) (section 3.2.4.2.43.2) methods with valid values for each method.

IFsrmStorageModuleDefinition::Commit : The Commit method (section 3.2.4.2.47.1) is inherited
from IFsrmObject::Commit. <22> Before calling this method on an
IFsrmStorageModuleDefinition interface (section 3.2.4.2.47) returned from the
IFsrmClas sificationManager::CreateModuleDefinition method, the client MUST call the
IFsrmPipelineModuleDefinition::Name (put), IFsrmPipelineModuleDefinition::ModuleClsid (put),
IFsrmStorageModuleDefinition::Capabilities (put) (section 3.2.4.2.47.3) , and
IFsrmStorag eModuleDefinition::StorageType (put) (section 3.2.4.2.47.5) methods with valid

values for each method.

3.1.4.1.6 File Management Job Objects

IFsrmFileManagementJob::DeleteNotification : Prior to invoking the DeleteNotification method
(section 3.2.4.2.48.45), the clie nt MUST call the IFsrmFileManagementJob::Notifications

(get) (section 3.2.4.2.48.13) or
IFsrmFileManagementJob::AddNotification (section 3.2.4.2.48.44) method. If the client called

Notifications (get), the server MUST respond with a SAFEARRAY of days value s for the object. If
the client called AddNotification, the server MUST add the specified days value to the object's list
of notifications. The client MUST pass one of the returned days values returned from
Notifications (get) or the days value sent to Add Notification as the days input parameter to
DeleteNotification.

IFsrmFileManagementJob::ModifyNotification : The ModifyNotification (section 3.2.4.2.48.46)

method has the same call sequence description as IFsrmFileManagementJob::DeleteNotification.

IFsrmFileManagementJob::CreateNotificationAction : The CreateNotificationAction method (section
3.2.4.2.48.47) has the same call sequence description as
IFsrmFileManagementJob::DeleteNotification.

IFsrmFileManagementJob::EnumNotificationActions : The EnumNot ificationActions method (section

3.2.4.2.48.48) has the same call sequence description as
IFsrmFileManagementJob::DeleteNotification.

IFsrmFileManagementJob::Commit : The Commit method (section 3.2.4.2.48.1) is inherited from
IFsrmObject::Commit (section 3. 2.4.2.10) . Before calling this method on an
IFsrmFileManagementJob interface returned from the
IFsrmFileManagementJobManager::CreateFileManagementJob method (section 3.2.4.2.50.2),
the client MUST call the IFsrmFileManagementJob::Name (put) (section 3.2.4. 2.48.3) ,
IFsrmFileManagementJob::NamespaceRoots (put) (section 3.2.4.2.48.5) and
IFsrmFileManagementJob::Formats (put) (section 3.2.4.2.48.19) methods, and MAY call the

69 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IFsrmFileManagementJob::ExpirationDirectory (put) (section 3.2.4.2.48.11) or
IFsrmFileManagementJob::CreateCustomAction (section 3.2.4.2.48.50) methods, with valid

values for each method.

3.1.4.2 Processing Notifications Sent from the Server to the Client

No notifications are sent from the server to the client.

3.1.5 Timer Events

No timer events are used by the File Server Resource Manager Protocol.

3.1.6 Other Local Events

No other local events require special processing on the client.

3.2 Server Ro le Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that a server implementation
maintains in order t o participate in the FSRM protocol. The described organization is provided to
facilitate the explanation of how the protocol behaves. This document does not mandate that
implementations adhere to this model as long as their external behavior is consistent with that

described in this document.

A server implementing the FSRM protocol maintains the persistent configuration of the following
objects:

Á Directory quotas (section 3.2.1.2.1)

Á Auto apply quotas (section 3.2.1.2.2)

Á File screens (section 3.2.1.3.1)

Á File screen exceptions (section 3.2.1.3.2)

Á Directory quota templates (section 3.2.1.2.3)

Á File screen templates (section 3.2.1.3.3)

Á File groups (section 3.2.1.3.4)

Á Report jobs (section 3.2.1.5.1)

Á Reports (section 3.2.1.5.2)

Á Property definitions (section 3.2.1.6 .1)

Á Module definitions (section 3.2.1.6.2)

Á Rules (section 3.2.1.6.3)

Á File management jobs (section 3.2.1.7.1)

A server implementation also maintains some volatile status data and tracks all relevant file system
I/O necessary to maintain accurate quota acco unting and file screen prohibitions. In addition to
maintaining configuration and state for the objects mentioned earlier, a server implementation also

70 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

provides a set of interfaces for enumerating collections of objects and an abstraction for manipulating
action objects, which are used in quotas, file screens, and file management jobs.

With four exceptions, the abstract data model can be manipulated only through the protocol. These
exceptions are:

1. Folder deletion, where the folder has a quota, file screen, or file screen exception configured;

2. Folder creation, where the folder's parent folder has auto apply quota configured;

3. Folder rename, where the folder has a quota, file screen, or file screen exception configured;

4. Volume discovery, where the volume contai ns folders that have quotas, file screens, or file screen
exceptions configured.

These exceptions are discussed in more detail in section 3.2.7 .

The abstract model that the server maintains is not made available directly through the protocol. The

protocol is an OLE Automation style DCOM protocol, as specified in [MS -OAUT] . With this type of

protocol, the server maintains an implementation of the abstract data model and provides access to
the model strictly through GET and SET operations on standard Automati on data types (BSTR, long ,
SAFEARRAY, IDispatch, and so on) and RPC methods where the method parameter types are
restricted to the same set of standard Automation data types. The result of the OLE Automation style
interface is that the wire protocol is res tricted to standard RPC method calls using only standard data

types; no custom -marshaled data structures are possible on the wire with OLE Automation DCOM
protocols. See [MS -OAUT] for details on OLE Automation and the standard OLE data types used by the
FSRM protocol.

This section lists objects used by multiple functional areas of the FSRM protocol feature set. Following
subsections are organized by the specific functional areas of the feature set:

Á Quotas (section 3.2.1.2)

Á File screens (section 3.2.1.3)

Á Storage reports (section 3.2.1.5)

Á Classification (section 3.2.1.6)

Á File management jobs (section 3.2.1.7)

Supporting abstractions such as file groups, templates, actions, rules, properties, modules, and
notifications are discussed as part of the functional areas that make use of them. Finally, abstractions
to support a set of common global settings are described.

The server maintains the following object used by multiple models:

Volume List: A volatile list of all the volumes on the server.

3.2.1.1 FSRM Base Object

The FRSM Base Object is an ADM element used for all objects used by the functional areas of the

FSRM protocol feature set defined in the Abstract Data Model (section 3.2.1) . Objects used by each
functional area of the FSRM protocol derive from this ADM el ement.

The following configuration data is maintained by the server for each FSRM Base Object on the
system.

FSRM Base Object.Id: This property is a GUID associated with the object.

FSRM Base Object.Description: This property is a Unicode text description of the object.

71 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

FSRM Base Object.Deleted: This Boolean property controls whether the FSRM object MUST be
deleted when it is committed. It is used only in non -persisted instances of objects derived from

the FSRM Base Object. Persisted objects derived from th e FSRM Base Object do not have this
property.

The following is the list of objects used by the functional areas which derive from the FSRM Base
Object:

Á Directory Quota (section 3.2.1.2.1)

Á File Screen (section 3.2.1.3.1)

Á File Screen Exception (section 3.2.1 .3.2)

Á File Group (section 3.2.1.3.4)

Á Report Job (section 3.2.1.5.1)

Á Property Definition (section 3.2.1.6.1)

Á Module Definition (section 3.2.1.6.2)

Á Rule (section 3.2.1.6.3)

Á File Management Job (section 3.2.1.7.1)

3.2.1.2 Quota Model

The server maintains the following lists of persisted objects for the quota model. Each list contains
objects of a specific type that are currently present and configured on the server.

List of Persisted Directory Quotas: This is a volatile list of all the Persisted Directory
Quot as (section 3.2.1.2.1.1) configured on the server. The server maintains only one List of
Persisted Directory Quotas .

List of Persisted Auto Apply Quotas: This is a volatile list of all the Persisted Auto Apply
Quotas (section 3.2.1.2.2.1) configured on the server. The server maintains only one List of
Persisted Auto Apply Quotas .

List of Persisted Directory Quota Templates: This is a volatile list of all the Persisted Directory
Quota Templates (section 3.2.1.2.3.1) configured on the server. The server maint ains only one
List of Persisted Directory Quota Templates .

The server maintains the following lists of non -persisted objects for the quota model. Lists of non -
persisted objects contain copies of the objects from the lists of persisted objects. The non -pers isted
objects are used by clients to make changes that are propagated to the lists of persisted objects when
the client commits the non -persisted objects.

List of Non - Persisted Directory Quota Instances: This is a volatile list of Non -Persisted
Directory Q uota Instances (section 3.2.1.2.1.2) configured on the server. The server maintains
zero or more List of Non - Persisted Directory Quota Instances .

List of Non - Persisted Auto Apply Quota Instances: This is a volatile list of Non -Persisted Auto
Apply Quota In stances (section 3.2.1.2.2.2) configured on the server. The server maintains zero
or more List of Non - Persisted Auto Apply Quota Instances .

List of Non - Persisted Directory Quota Template Instances: This is a volatile list of Non -
Persisted Directory Quota Template Instances (section 3.2.1.2.3.2) configured on the server.
The server maintains zero or more List of Non - Persisted Directory Quota Template
Instances .

72 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.2.1 Directory Quotas

For each directory quota, a minimal set of configuration and state properties is maintained by the
server. The configuration of a directory quota consists of all of the information required to define the

quota, and the state consists of the properties that are tracked in real time to maintain, enforce, and
report on quota usage. A dir ectory quota configuration is maintained only for objects with a path on a
volume in the Volume List (section 3.2.1).

A Directory Quota is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state
of a FSRM Base Object. The followi ng configuration data is maintained for each directory quota on the
system.

Directory Quota.Folder path: The quota configuration is associated with a particular folder on

the server. If the folder is renamed, the quota configuration continues to be associa ted with the
renamed folder with the same configuration and state as before the rename.

Quota limit: This property is the disk space usage limit, in number of bytes, above which the
server will consider the quota exceeded or spent.

Quota limit mode: This p roperty controls the behavior of the quota when the quota limit is
reached. There are two modes available:

Hard quota: A hard quota will block file IO that exceeds the quota's limit from occurring and
run any existing actions that are associated with a thr eshold for the quota's limit.

Soft quota: A soft quota will not block file IO that exceeds the quota's limit, but will run any
existing actions that are associated with a threshold for the quota's limit.

Quota enable/disable: This property controls whether the quota usage is actively tracked and
whether the quota limit is enforced.

Thresholds: A set consisting of between zero and sixteen (16) values, expressed as a percentage

of the quota limit . A protocol client can initiate a change to a threshold value a nd can delete a
threshold.

Notifications (Actions): Each threshold defined for a quota can have associated with it between
zero and four actions that apply if the quota usage rises above the threshold value. A
threshold can be associated with at most one n otification of each of the four distinct FSRM
notification types. See section 3.2.1.4 for more information. A protocol client can perform the
following management operations involving quota notifications:

Á Create a notification for a specific threshold . See section 3.2.4.2.14.10 for more details.

Á Enumerate a list of all the notifications for a specific threshold . See section 3.2.4.2.14.11
for more details.

Á Change the configuration data of a notification for a specific threshold. For details, see
section s 3.2.4.2.5 , 3.2.4.2.6 , 3.2.4.2.7 , 3.2.4.2.8 , and 3.2.4.2.9 .

Á Delete a notification for a specific threshold . See section 3.2.4.2.4.5 for more details.

Á Change the Notification status for a notification for a specific threshold whenever
required. See section 3.2.4.2.14.9 for more details.

Template id: If the quota configuration was copied from a quota template, this property is the ID
of the directory quota template that the quota configuration was copied from.

Auto apply quota id: If the quota configuration was created by an auto apply quota, this property
is the ID of the auto apply quota the quota configuration was created from.

The following state data is maintained for each directory quota on the system:

73 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Notification status: This property tracks each notification for a specific threshold , if an event
occurred when the Quota usage exceeded the specific threshold . This property is reset to

denote that no event occurred for this notification whenever the Quota usage again falls below
the specific threshold . This property is used to prevent repeated events for the same

threshold violation. This property is tracked and saved internally by the server for each
threshold in a notification.

Quota state: This property defines the states in which a quota can be found. There are three
possible quota states:

Incomplete: A quota in this state is configured in a persistent manner to the system, but
the procedure to calculate the current quota usage (the quota scan) has not yet started.

Rebuil ding: A quota in this state is configured in a persistent manner to the system, but the

procedure to calculate the current quota usage , though started, has not yet completed.

Complete: A quota in this state is configured in a persistent manner to the syste m, and the
procedure to calculate the current quota usage has completed.

Quota usage: This property tracks the total disk space usage in the file system tree below the
folder path including files, directories, streams, metadata, and other means of persiste ntly
storing data specific to file systems using implementation -specific mechanisms.

Peak quota usage: This property tracks the highest value that the quota usage property has
ever reached. A client can request, through this protocol, that this value be re set to the current
value of the quota usage .

Peak quota usage time stamp: This property maintains a time stamp that corresponds to the
chronological date/time that the Peak quota usage was assigned a new value. The time stamp
can reflect a change in value due to the quota usage reaching a new, higher peak level or due
to a protocol client - initiated reset operation.

3.2.1.2.1.1 Persisted Directory Quota

A Persisted Directory Quota is a type of Directory Quota (section 3.2.1.2.1) that has all the properties
and state of a directory quota, represents the persisted configuration of a directory quota on the
server and is stored in nonvolatile storage. There can be only one Persisted Directory Quota for a
specific folder path on the server.

A protocol client can perform the f ollowing management operations involving Persisted Directory

Quotas:

Á Enumerate the List of Persisted Directory Quotas abstract data object (section 3.2.1.2) or a
subset of the List of Persisted Directory Quotas on the server. See EnumQuotas (Opnum
14) (sec tion 3.2.4.2.18.8) for details.

Á Get the configuration and state of a particular Persisted Directory Quota. See GetQuota (Opnum
11) (section 3.2.4.2.18.5) for details.

3.2.1.2.1.2 Non -Persisted Directory Quota Instance

A Non - Persisted Directory Quota Instance is a type of Directory Quota (section 3.2.1.2.1) , which
has all the properties and state of a directory quota. A Non -Persisted Directory Quota Instance is a
copy, in memory, of an instance of a Persisted Directory Quota (section 3.2.1.2.1.1) , and it is us ed by
a client to make changes to that Persisted Directory Quota. Changes, including deletion, that are made
to a Non -Persisted Directory Quota Instance are either discarded after use or applied to the associated

Persisted Directory Quota. There can be zer o or more Non -Persisted Directory Quota Instances for
each Persisted Directory Quota.

74 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A protocol client can perform the following management operations involving Non -Persisted Directory
Quota Instances:

Á Create or change the configuration data for a Non -Persisted Directory Quota Instance. See
CreateQuota (Opnum 9) (section 3.2.4.2.18.3) and Commit (Opnum 11) (section 3.2.4.2.10.5) for

details.

Á Commit changes, including deletion, from a Non -Persisted Directory Quota Instance into the
associated Persist ed Directory Quota. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit
(Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.2.2 Auto Apply Quotas

For each auto apply quota, a minimal set of configuration properties is maintained by the server. An

auto apply quo ta is similar to a directory quota in terms of the abstract data model maintained by the
server implementation; however, the behavior is fundamentally different. A directory quota
configuration is applied to a particular folder; an auto apply quota configu ration results in the
application of directory quota configurations to the subfolders of the folder on which the auto apply

quota is configured. An auto apply quota configuration is maintained only for objects with paths on a
volume in the Volume List (sec tion 3.2.1).

There is no state data for an auto apply quota. With the exception of the Auto apply quota id , the
configuration data of an auto apply quota is the same as that is specified for a directory quota (section
3.2.1.2.1), with the following additio n:

Exclude folders: This property is a list of subfolders that are excluded from tracking and limiting
of disk space usage if they exist or are created immediately underneath the auto apply quota
folder path .

3.2.1.2.2.1 Persisted Auto Apply Quota

A Persisted Auto App ly Quota is a type of Auto Apply Quota (section 3.2.1.2.2) that has all the
properties of an auto apply quota, represents the persisted configuration of an auto apply quota on
the server and is stored in nonvolatile storage. There can be only one Persisted Auto Apply Quota for a

specific Folder path on the server.

A protocol client can perform the following management operations involving Persisted Auto Apply
Quota:

Á Enumerate the List of Persisted Auto Apply Quotas abstract data object (section 3.2.1.2) or a
subset of the List of Persisted Auto Apply Quotas on the server. See EnumAutoApplyQuotas
(Opnum 15) (section 3.2.4.2.18.9) for details.

Á Get the configuration of a particular Persisted Auto Apply Quota. See GetAutoApplyQuota (Opnum
12) (section 3.2.4.2.18 .6) for details.

3.2.1.2.2.2 Non -Persisted Auto Apply Quota Instance

A Non - Persisted Auto Apply Quota Instance is a type of Auto Apply Quota (section 3.2.1.2.2) ,

which has all the properties of an auto apply quota. A Non -Persisted Auto Apply Quota Instance is a
copy, in memory, of an instance of a Persisted Auto Apply Quota (section 3.2.1.2.2.1) , and it is used
by a client to make changes to that Persisted Auto Apply Quota. Changes, including deletion, that are
made to a Non -Persisted Auto Apply Quota Instance are eith er discarded after use or applied to the
associated Persisted Auto Apply Quota. There can be zero or more Non -Persisted Auto Apply Quota

Instances for each Persisted Auto Apply Quota.

A protocol client can perform the following management operations involv ing Non -Persisted Auto
Apply Quota Instances:

75 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Create or change the configuration data for a Non -Persisted Auto Apply Quota Instance. See
CreateAutoApplyQuota (Opnum 10) (section 3.2.4.2.18.4) and Commit (Opnum

11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted Auto Apply Quota Instance into the

associated Persisted Auto Apply Quota. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit
(Opnum 11) (section 3.2.4.2.10.5) for details.

The following configuration data is maintained for each Non - Persisted Auto Apply Quota Template
on the system:

DerivedQuotaObjects: A collection of derived objects that were updated as a result of the
directory quota template's call to CommitAndUpdateDerived .

DerivedQuotaResults: A collection of HRESULTs for the committing of derived objects that were

updated as a result of the directory quota template's call to CommitAndUpdateDerived.

3.2.1.2.3 Directory Quota Templates

For each directory quota template, a minimal set of configuration propert ies is maintained by the
server. A directory quota template is similar to a directory quota in terms of the abstract data model
maintained by a server implementation. A directory quota template does not have the state

information. A directory quota templat e has the same set of configuration properties as a directory
quota, but the configuration is not applied to a particular file system folder; it is used to create
directory quotas and auto apply quotas on one or more file system folder paths. A directory q uota
template can also be used to create another directory quota template.

With the exception of the Auto apply quota id , Template id , and Directory Quota.Folder path
properties, the configuration data of a directory quota template is the same as that spec ified for a
directory quota (section 3.2.1.2.1), with the following additions:

Directory Quota Template.Name: This property is a unique, user -assigned, case - insensitive
Unicode string for the directory quota template.

Directory Quota Template.Overwrite on commit: This setting is a Boolean value that specifies
whether the existing Directory Quota Template is overwritten with the imported Directory
Quota Template .

3.2.1.2.3.1 Persisted Directory Quota Template

A Persisted Directory Quota Template is a type of Directory Quota Template (section 3.2.1.2.1) that
has all the properties of a directory quota template, represents the persisted configuration of a
directory quota template on the server and is stored in nonvolatile storage.

A protocol client can perform the following management operations involving Persisted Directory
Quota Templates:

Á Enumerate the List of Persisted Directory Quota Templates abstract data object (section

3.2.1.2) or a subset of the List of Persisted Directory Quota Templates on the server. Se e
EnumTemplates (Opnum 9) (section 3.2.4.2.22.3) for details.

Á Get the configuration and state of a particular directory quota template. See GetTemplate (Opnum
8) (section 3.2.4.2.22.2) for details.

Á Apply a directory quota template to a directory quota obje ct. See ApplyTemplate (Opnum
27) (section 3.2.4.2.15.7) for details.

3.2.1.2.3.2 Non -Persisted Directory Quota Template Instance

76 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A Non - Persisted Directory Quota Template Instance is a type of Directory Quota
Template (section 3.2.1.2.3) , which has all the properties a nd state of a directory quota template. A

Non -Persisted Directory Quota Template Instance is a copy, in memory, of an instance of a Persisted
Directory Quota Template (section 3.2.1.2.3.1) , and it is used by a client to make changes to that

Persisted Direc tory Quota Template. Changes, including deletion, that are made to a Non -Persisted
Directory Quota Template Instance are either discarded after use or applied to the associated
Persisted Directory Quota Template. There can be zero or more Non -Persisted Dir ectory Quota
Template Instances for each Persisted Directory Quota Template.

A protocol client can perform the following management operations involving Non -Persisted Directory
Quota Template Instances:

Á Create or change the configuration data for a Non -Persisted Directory Quota Template Instance.

See CreateTemplate (Opnum 7) (section 3.2.4.2.22.1) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted Directory Quota Template Instance into
the asso ciated Persisted Directory Quota Template. See Delete (Opnum 10) (section 3.2.4.2.10.4)

and Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

The following configuration data is maintained for each non - persisted directory quota template on

the system:

DerivedQuotaObjects: A collection of derived objects that were updated as a result of the
directory quota template's call to CommitAndUpdateDerived .

DerivedQuotaResults: A collection of HRESULTs for committing derived objects that were
updated due to the directory quota template's call to CommitAndUpdateDerived.

3.2.1.3 File Screen Model

The server maintains the following lists of persisted objects for the file screen model. Each list
contains objects of a specific type that are currently present and configured on the server.

List of Persisted File Screens: This is a volatile list of all the Persisted File
Screens (section 3.2.1.3.1.1) configured on the server. The server maintains only one List of

Persisted File Screens .

List of Persisted File Screen Exceptions: This is a volatile list of all the Persisted File Screen
Exceptions (section 3.2.1.3.2.1) configured on the server. The server maintains only one List of
Persisted File Screen Exceptions .

List of Persisted File Screen Templates: This is a volatile list of a ll the Persisted File Screen
Templates (section 3.2.1.3.3.1) configured on the server. The server maintains only one List of
Persisted File Screen Templates .

List of Persisted File Groups: This is a volatile list of all the Persisted File
Groups (section 3.2.1.3.4.1) configured on the server. The server maintains only one List of
Persisted File Groups .

The server maintains the following lists of non -persisted objects for the file screen model. Lists of non -
persisted objects contain copies of the objects fro m the lists of persisted objects. The non -persisted
objects are used by clients to make changes that are propagated to the lists of persisted objects when
the client commits the non -persisted objects.

List of Non - persisted File Screen Instances: This is a volatile list of all the Non -Persisted File
Screen Instances (section 3.2.1.3.1.2) configured on the server. The server maintains zero or
more List of Non - Persisted File Screen Instances .

77 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

List of Non - persisted File Screen Exception Instances: This is a vol atile list of all the Non -
Persisted File Screen Exception Instances (section 3.2.1.3.2.2) configured on the server. The

server maintains zero or more List of Non - Persisted File Screen Exception Instances .

List of Non - persisted File Screen Template Instance : This is a volatile list of all the Non -

Persisted File Screen Template Instances (section 3.2.1.3.3.2) configured on the server. The
server maintains zero or more List of Non - Persisted File Screen Template Instances .

List of Non - Persisted File Group Insta nce: This is a volatile list of all the Non -Persisted File
Group Instances (section 3.2.1.3.4.2) configured on the server. The server maintains zero or
more List of Non - Persisted File Group Instances .

3.2.1.3.1 File Screens

For each file screen, a minimal set of con figuration properties is maintained by the server. The
configuration of a file screen consists of all of the information required to define the file screen. A file
screen configuration is maintained only for objects with a path on a volume in the Volume Li st
(section 3.2.1).

A File Screen is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a
FSRM Base Object. The following configuration data is maintained for each file screen on the system.

File Screen.Folder path: The file screen configuration is associated with a particular folder on the
server. If the folder is renamed, the file screen configuration continues to be associated with the
renamed folder with the same configuration and state as before the rename.

Blocked f ile groups: The file screen configuration contains at least one file group that represents
the files that the server will prevent from being saved under the folder path . See section
3.2.1.3.4 for details. A protocol client can perform the following managem ent operations
involving blocked file groups:

Á Get a list of all the blocked file groups. See section 3.2.4.2.26.1 for details.

Á Add a reference to a file group to the list of blocked file groups. See section 3.2.4.2.2.1 for

details.

Á Remove a reference to a file group from the list of blocked file groups. See section
3.2.4.2.2.2 for details.

Á Set the list of blocked file groups. See section 3.2.4.2.26.2 for details.

Notifications (Actions): The file screen can be associated with between zero and four actions

that apply if the file screen is violated. A file screen can be associated with at most one
notification of each of the four distinct FSRM notification types. See section 3.2.1.4 for more
information. A protocol client can perform th e following management operations involving file
screen notifications:

Á Create a notification. See section 3.2.4.2.26.5 for details.

Á Change the configuration data of notification for a file screen. See sections 3.2.4.2.5 ,

3.2.4.2.6 , 3.2.4.2.7 , 3.2.4.2.8 , an d 3.2.4.2.9 for details.

Á Enumerate a list of all the notifications. See section 3.2.4.2.26.6 for details.

Á Delete a notification. See section 3.2.4.2.4.5 for details.

File screen mode: This property controls the behavior of the file screen when a prohibited file is
detected. There are two modes available:

Hard screen: A hard screen will block file IO that violates the file screen, and cause the
server to run any existing actions that are associated with the file screen.

78 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Soft screen: A soft quota will not blo ck file IO that violates the file screen, but it will cause
the server to run any existing actions that are associated with the file screen.

Template id: If the file screen configuration was copied from a file screen template, this property
is the ID of th e file screen template the file screen configuration was copied from.

File Screen.Overwrite on commit: A Boolean value that specifies whether the existing file
screen is overwritten with the imported file screen .

The FSRM protocol reports feature includes a report that enumerates a file screening audit history.
This feature is available to protocol clients by configuring a report job appropriately to generate this
File Screen Audit report. The presence of this feature adds an additional requirement to the p rotocol
server. To generate this report, the file screen auditing feature MUST be enabled using the FSRM
General Settings model. Each file screen violation, including soft file screen violations that did not

prevent the prohibited file from being created, contains the following data:

Á Folder path

Á ID

Á Blocked file group name

Á File screen mode

Á Time stamp when the prohibited file violation occurred

Á The name of the process image that generated the prohibited I/O, if available

Á The SID of the user principal that iss ued the prohibited I/O, if available

Á The full path name of the prohibited file

Á The server name

3.2.1.3.1.1 Persisted File Screen

A Persisted File Screen is a type of File Screen (section 3.2.1.3.1) that has all the properties of a file

screen, represents the persisted configuration of a file screen on the server and is stored in nonvolatile
storage. There can be only one Persisted File Screen for a specific folder path on the server.

A protocol clie nt can perform the following management operations involving Persisted File Screens:

Á Enumerate the List of Persisted File Screens abstract data object (section 3.2.1.3) or a subset
of the List of Persisted File Screens on the server. See EnumFileScreens (Opnum
11) (section 3.2.4.2.29.5) for details.

Á Get the configuration and state of a particular file screen. See GetFileScreen (Opnum

10) (section 3.2.4.2.29.4) for details.

3.2.1.3.1.2 Non -Persisted File Screen Instance

A Non - Persis ted File Screen Instance is a type of File Screen (section 3.2.1.3.1) , which has all the
properties of a file screen. A Non -Persisted File Screen Instance is a copy, in memory, of an instance
of a Persisted File Screen (section 3.2.1.3.1.1) , and it is used by a client to make changes to that

Persisted File Screen. Changes, including deletion, that are made to a Non -Persisted File Screen
Instance are either discarded after use or applied to the associated Persisted File Screen. There can be
zero or more Non -Persisted File Screen Instances for each Persisted File Screen.

A protocol client can perform the following management operations involving Non -Persisted File
Screen Instances:

79 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Create or change the configuration data for a Non -Persisted File Screen Instanc e. See
CreateFileScreen (Opnum 9) (section 3.2.4.2.29.3) and Commit (Opnum

11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted File Screen Instance into the associated

Persisted File Screen. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

3.2.1.3.2 File Screen Exceptions

For each file screen exception, a minimal set of configuration properties is maintained by the server.
The configuration of a file screen exception co nsists of all the information required to define the file
screen exception.

A File Screen Exception is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and
state of a FSRM Base Object. The following configuration data is maintained for each file screen
exception on the system.

File Screen Exception.Folder path: The file screen exception configuration is associated with a
particular folder on the server. If the folder is renamed, the file screen exception configuration
continues to be associated with the renamed folder with the same configuration and state as

before the rename.

Allowed file groups: The file screen exception configuration contains at least one file group that
represents the files that are allowed to be saved under the f older path , thereby overriding any
file screen configuration defined at a higher level in the file system directory tree. See section
3.2.1.3.4 for details. A protocol client can perform the following management operations
involving allowed file group:

Á Get a list of all the allowed file groups. See section 3.2.4.2.28.3 for details.

Á Add a reference to a file group to the list of allowed file groups. See section 3.2.4.2.2.1 for
details.

Á Remove a reference to a file group from the list of allowed file groups. See section
3.2.4.2.2.2 for details.

Á Set the list of allowed file groups. See section 3.2.4.2.28.4 for details.

3.2.1.3.2.1 Persisted File Screen Exception

A Persisted File Screen Exception is a type of File Screen Exception (section 3.2.1.3.2) that has all the
proper ties of a file screen exception, represents the persisted configuration of a file screen exception
on the server and is stored in nonvolatile storage. There can be only one Persisted File Screen
Exception for a specific folder path on the server.

A protoco l client can perform the following management operations involving Persisted File Screen
Exceptions:

Á Enumerate the List of Persisted File Screen Exceptions abstract data object (section 3.2.1.3)

or a subset of the List of Persisted File Screen Exceptions on the server. See
EnumFileScreenExceptions (Opnum 14) (section 3.2.4.2.29.8) for details.

Á Get the configuration and state of a particular file screen exception. See GetFileScreenException
(Opnum 13) (section 3.2.4.2.29.7) for details.

3.2.1.3.2.2 Non -Persisted File Screen Exception Instance

A Non - Persisted File Screen Exception Instance is a type of File Screen
Exception (section 3.2.1.3.2) , which has all the properties of a file screen exception. A Non -Persisted

80 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

File Screen Exception Instance is a copy, in memory, of an instance of a Persisted File Screen
Exception (section 3.2.1.3.2.1) , and it is used by a client to make changes to that Pe rsisted File

Screen Exception. Changes, including deletion, that are made to a Non -Persisted File Screen Exception
Instance are either discarded after use or applied to the associated persisted file screen. There can be

zero or more Non -Persisted File Scre en Exception Instances for each Persisted File Screen Exception.

A protocol client can perform the following management operations involving Non -Persisted File
Screen Exception Instances:

Á Create or change the configuration data for a Non -Persisted File Scr een Exception Instance. See
CreateFileScreenException (Opnum 12) (section 3.2.4.2.29.6) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted File Screen Exception Instance into the

associated Pe rsisted File Screen Exception. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.3.3 File Screen Templates

For each File Screen Template, a minimal set of configuration properties is maintained by the server . A
File Screen Template is similar to a file screen in terms of the abstract data model maintained by a

server implementation. A File Screen Template has almost the same set of configuration properties as
a file screen, but the configuration is not applie d to a particular file system folder. A File Screen
Template is a subset of file screen settings used to easily create active file screen configurations on
one or more file system Folder paths .

A protocol client can perform the following management operati ons involving File Screen Templates:

Á Create or change the configuration data for a File Screen Template. See sections 3.2.4.2.32.1 and
3.2.4.2.10.5 for details.

Á Enumerate the List of File Screen Templates on the server. See section 3.2.4.2.32.3 for details .

Á Get the configuration and state of a particular File Screen Template. See section 3.2.4.2.32.2 for

details.

Á Delete a File Screen Template. See sections 3.2.4.2.10.4 and 3.2.4.2.10.5 for details.

Á Apply a File Screen Template to a file screen object. See s ection 3.2.4.2.27.7 for more details.

With the exception of the File Screen.Folder path and Template id properties, the configuration
data of a File Screen Template is the same as that specified for a file screen (section 3.2.1.3.1), with

the following add ition:

File Screen Template.Name: This property is a unique, user -assigned, case - insensitive Unicode
string for the File Screen Template.

3.2.1.3.3.1 Persisted File Screen Template

A Persisted File Screen Template is a type of File Screen Template (section 3.2.1.3.3) that has all the

properties of a file screen template, represents the persisted configuration of a file screen template on
the server and is stored in nonvolatile storage. There can be only one Persisted File Screen Template
for a specific folder path on t he server.

A protocol client can perform the following management operations involving Persisted File Screen
Templates:

Á Enumerate the List of Persisted File Screen Templates abstract data object (section 3.2.1.3)
on the server. See EnumTemplates (Opnum 9) (section 3.2.4.2.32.3) for details.

81 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Get the configuration and state of a particular Persisted File Screen Template. See GetTemplate
(Opnum 8) (section 3.2.4.2.32.2) for details.

Á Apply a Persisted File Screen Template to a file screen object. See ApplyTempl ate (Opnum
23) (section 3.2.4.2.27.7) for details.

3.2.1.3.3.2 Non -Persisted File Screen Template Instance

A Non - Persisted File Screen Template Instance is a type of File Screen
Template (section 3.2.1.3.3) , which has all the properties of a file screen template. A No n-Persisted
File Screen Template Instance is a copy, in memory, of an instance of a Persisted File Screen
Template (section 3.2.1.3.3.1) , and it is used by a client to make changes to that Persisted File Screen
Template. Changes, including deletion, that are made to a Non -Persisted File Screen Template

Instance are either discarded after use or applied to the associated persisted file screen. There can be
zero or more Non -Persisted File Screen Template Instances for each Persisted File Screen Template.

A protocol client can perform the following management operations involving Non -Persisted File
Screen Template Instances:

Á Create or change the configuration data for a Non -Persisted File Screen Template Instance. See
CreateTemplate (Opnum 7) (section 3.2.4.2 .32.1) and Commit (Opnum 11) (section 3.2.4.2.10.5)

for details.

Á Commit changes, including deletion, from a Non -Persisted File Screen Template Instance into the
associated Persisted File Screen Template. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Com mit (Opnum 11) (section 3.2.4.2.10.5) for details.

The following configuration data is maintained for each Non - Persisted File Screen Template on the
system:

DerivedFileScreenObjects: A collection of derived objects that were updated as a result of the

File Screen Template's call to CommitAndUpdateDerived .

DerivedFileScreenResults: A collection of HRESULTs for committing derived objects that were

updated as a result of the File Screen Template's call to CommitAndUpdateDerived.

3.2.1.3.4 File Groups

For each file group a minimal set of configuration properties is maintained by the server. The
configuration of a file group consists of all the information required to define the file group. There is no

state information to track for a file group.

A File Group is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a
FSRM Base Object. The following configuration data is maintained for each file group on the system:

File Group.Name: This property is a unique, user -assigned, case - insensitive Un icode string for the
file group.

Members: This property is a file name pattern that is used to compare file names to determine

membership in the file group. If a file name matches the pattern, it is considered to be a

member of the file group, unless it al so matches the non -members pattern.

Non - members: This property is a file name pattern that is used to compare file names to
determine non -membership in the file group. If a file name matches the pattern, it is considered
to be a non -member of the file grou p.

File Group.Overwrite on commit: This setting is a Boolean value that specifies whether the
existing File Group is overwritten with the imported File Group .

3.2.1.3.4.1 Persisted File Group

82 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A Persisted File Group is a type of File Group (section 3.2.1.3.4) that has all the properties of a file
group, represents the persisted configuration of a file group on the server and is stored in nonvolatile

storage. There can be only one Persisted File Group for a specific folder path on the server.

A protocol client can perfor m the following management operations involving Persisted File Groups:

Á Enumerate the List of Persisted File Groups abstract data object (section 3.2.1.3) on the
server. See EnumFileGroups (Opnum 9) (section 3.2.4.2.25.3) for details.

Á Get the configuration of a particular Persisted File Group. See GetFileGroup (Opnum
8) (section 3.2.4.2.25.2) for details.

Á Add or remove a Persisted File Group to or from a file screen's blocked file groups list. See File
Screens (section 3.2.1.3.1) for details.

Á Add or remove a Persisted File Group to or from a file screen exception's allowed file groups list.

See File Screen Exceptions (section 3.2.1.3.2) for details.

Á Add or remove a Persisted File Group to or from a files -by -group storage report. See SetFilter

(Opnum 14) (sect ion 3.2.4.2.35.8) for details.

3.2.1.3.4.2 Non -Persisted File Group Instance

A Non - Persisted File Group Instance is a type of File Group (section 3.2.1.3.4) , which has all the

properties of a file group. A Non -Persisted File Group Instance is a copy, in memory, of an instance of
a Persisted File Group (section 3.2.1.3.4.1) , and it is used by a client to make changes to that
Persisted File Group. Changes, including deletion, that are made to a Non -Persisted File Group
Instance are either discarded after use or applied t o the associated persisted file screen. There can be
zero or more Non -Persisted File Group Instances for each Persisted File Group.

A protocol client can perform the following management operations involving Non -Persisted File Group
Instances:

Á Create or change the configuration data for a Non -Persisted File Group Instance. See

CreateFileGroup (Opnum 7) (section 3.2.4.2.25.1) and Commit (Opnum 11) (section 3.2.4.2.10.5)
for details.

Á Commit changes, including deletion, from a Non -Persisted File Group Instan ce into the associated
Persisted File Group. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

3.2.1.4 Notification Model

File Server Resource Manager Protocol notifications are a common set of abstractions used in directory
quotas, file screens, and file management jobs. The actual data backing these abstractions is owned
and encapsulated by the respective quota, file screen, or file management job abstraction model. The

configuration and state of a notification are saved concurrent with the configuration data of the quota,
file screen, or file management job that encapsulates the notification. The notification abstraction
model is presented here.

The management operations that a protocol client can perform invol ving notifications are specified in
sections 3.2.1.2.1 , 3.2.1.3.1 , and 3.2.1.7.1 .

The following configuration data is maintained for each notification on the system:

Notification.Id: This property is a GUID associated with the notification.

Run limit inter val: This property is a positive integer value of minutes that restricts how soon the
server can rerun the same notification for multiple occurrences of the same event.

83 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Action type: This property identifies the notification as one of four action types: Eve nt Log, Email,
Command Line, and Report. The configuration data is different depending on which action type

the notification belongs to:

Event log action type: This action logs an event in the server's event log .

Event type: This property indicates the typ e of the event log that will result when the
action is eventually triggered. There are three legal event log types: Information,
Warning, or Error.

Message text: This property is a Unicode string that contains the event log message
text inside the event lo g that will result when the action is eventually triggered.

Email action type: This action sends an email. In addition to the following properties, the
server uses the SMTP server name and Mail - from email address from the General

Settings Model (section 3. 2.1.9) .

Mail from: This property is a Unicode string that will be used for the email FROM
address when the action is eventually triggered.

Mail to: This property is a Unicode string that will be used for the list of email TO
addresses when the action is ev entually triggered.

Mail subject: This property is a Unicode string that will be used for the email SUBJECT

line when the action is eventually triggered.

Mail reply to: This property is a Unicode string that will be used for the email REPLY
TO address when the action is eventually triggered.

Mail cc: This property is a Unicode string that will be used for the list of email CC
addresses when the action is eventually triggered.

Mail bcc: This property is a Unicode string that will be used for the list of emai l BCC
addresses when the action is eventually triggered.

Message text: This property is a Unicode string that will be used for the email
message BODY when the action is eventually triggered.

Attachment file list size: This property indicates the number of lines to include in the
attachment for email actions associated with file management jobs.

Command line action type: This action runs a program on the server.

Executable path: This property is a Unicode string that specifies the program that will
be starte d when the action is eventually triggered.

Notification.Model.Arguments: This property is a Unicode string that specifies the
command line arguments to the program that will be started when the action is
eventually triggered.

Notification.Model.Account: This property specifies which account the program will

run when the action is eventually triggered. There are three built - in accounts:
LocalService, NetworkService, and LocalSystem.

Working directory: This property is a Unicode string that specifies the dire ctory in
which the program will be started when the action is eventually triggered.

Monitor command: This property is a Boolean flag that indicates whether the server
monitors the program while it runs.

84 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Kill time - out: This property is a numeric integer value that specifies the number of
minutes that the program will be allowed to run before the server forcefully

terminates the program execution.

Log result: This property is a Boolean value that specifies whether the server logs an

event containing the re turn code result from the program after it terminates.

Report action type: This action generates a report and emails it to each email
address specified in the Mail To property. In addition to the Mail To property listed
later in this section, the server us es the SMTP server name and Mail - from email
address from the General Settings Model (section 3.2.1.9). Other fields required to
send the email, for example Subject , can be any appropriate value.

Report types: This property is an array of storage report typ es

(FsrmReportType (section 2.2.1.2.10)) that are executed when the action is
eventually triggered.

Mail to: This property is a Unicode string that will be used for the list of email TO

addresses to which the storage reports of the specified types will be emailed when
the action is eventually triggered.

The following state data is maintained for each notification on the system:

Last Run Time: This property maintains a time stamp that corresponds to the chronological
date/time the notification was last run.

3.2.1.5 Storage Reports Model

The server maintains the following list of persisted objects for the storage reports model. Each list

contains objects of a specific type that are currently present and configured on the server.

List of Persisted Report Jobs: This is a volatile list of all the Persisted Report
Jobs (section 3.2.1.5.1.1) configured on the server. The server maintains only one List of
Persisted Report Jobs .

The server maintains the following list of non -persisted objects for the storage report model. Lis ts of
non -persisted objects contain copies of the objects from the lists of persisted objects. The non -

persisted objects are used by clients to make changes that are propagated to the lists of persisted
objects when the client commits the non -persisted obj ects.

List of Non - Persisted Report Job Instances: This is a volatile list of all the Non -Persisted
Report Job Instances (section 3.2.1.5.1.2) configured on the server. The server maintains zero
or more List of Non - Persisted Report Job Instances .

The server also maintains the following queue of running report jobs for the storage reports model.

Running Report Job Queue: This is a volatile queue of Running Report Job (section 3.2.1.5.1.3) ,

each of which corresponds to a Report Job (section 3.2.1.5.1) that has been requested to run.
The order in which Running Report Jobs execute is non -deterministic. The times the job runs -
immediately or at a later time - is managed by the server. The server maintains only one

Running Report Job Queue and MUST NOT allow two o r more Running Report Jobs in the
Running Report Job Queue whose parent Non -persisted Report Job Instance's Task name
has the same value.

3.2.1.5.1 Report Jobs

For each report job, a minimal set of configuration properties and state data is maintained by the
server. The configuration of a report job consists of all of the information required to define the report

85 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

job, and the state consists of the properties that are tracked while the report job is running and the
results of the successful or failed report job completion.

A Report Job is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a
FSRM Base Object. The following configuration data is maintained for each report job on the system:

Namespace roots: This property is a lis t of either full directory paths (referred to as static path
in this definition) or values from the FolderUsage list (referred to as dynamic path in this
definition). The set of file system namespaces (file system directory trees) that is scanned as
part o f the report job data gathering phase consists of either the full directory path (for a static
path) or the FolderUsage Instance.Path values of each FolderUsage Instance in the
FolderUsage Mapping whose FolderUsage Instance.Value list contains the <value> portion of
a dynamic path .<23>

Report Job.Formats: This property describes the set of output formats to which the reports will
be transformed as a result of a successful execution of the report job. Supported formats are
DHTML, HTML, TXT, CSV, and XML.

Rep ort Job.Mail to: This property is a Unicode string that will be used for the email TO addresses
to which the storage reports will be sent as a result of a successful execution of the report job.
In addition to the Report Job.Mail to property, the server us es the SMTP server name and

Mail - from email address from the General Settings Model (section 3.2.1.9) . Other fields
required to send the email, for example Subject, can be any appropriate value.

Task name: This property is a Unicode string containing the n ame of an associated scheduled
task. Among all the Persisted Report Jobs (section 3.2.1.5.1.1) in the List of Persisted Report
Jobs , the Task name is unique, in a case - insensitive way.

Report Job.Reports: The report job configuration is associated with zer o or more reports. See
section 3.2.1.5.2 for details. A protocol client can perform the following management operations

involving reports:

Á Create a report to be generated with the report job. See section 3.2.4.2.34.15 for details.

Á Enumerate a list of all the reports configured to be generated with the report job. See
section 3.2.4.2.34.14 for details.

Á Delete a report from the report job. See section 3.2.4.2.35.9 for details.

The following state data is maintained for each report job on the system:

Running status: This property is a numeric value indicating the current running status of the

report job. Possible status values are defined in the
FsrmReportRunningStatus (section 2.2.1.2.13) enumeration.

Last run time: This property maint ains a time stamp that corresponds to the chronological
date/time that the report job was last run.

Last error: This property maintains a Unicode string that corresponds to an error message
generated when the report job was last run. If the last run of the report job was successful, the

last error Unicode string is an empty string.

Last generated in directory: This property maintains the location where the individual reports
were stored when the report job was last run.

3.2.1.5.1.1 Persisted Report Job

A Persisted Rep ort Job is a type of Report Job (section 3.2.1.5.1) that has all the properties and state
of a report job, represents the persisted configuration of a report job on the server and is stored in

nonvolatile storage.

86 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A protocol client can perform the followin g management operations involving Persisted Report Jobs:

Á Enumerate the List of Persisted Report Jobs abstract data object (section 3.2.1.5) on the

server. See EnumReportJobs (Opnum 7) (section 3.2.4.2.33.1) for details.

Á Get the configuration and state of a particular Persisted Report Job. See GetReportJob (Opnum

9) (section 3.2.4.2.33.3) for details.

3.2.1.5.1.2 Non -Persisted Report Job Instance

A Non - Persisted Report Job Instance is a type of Report Job (section 3.2.1.5.1) , which has all the
properties and state of a report job. A Non -Persisted Report Job Instance is a copy, in memory, of an
instance of a Persisted Report Job (section 3.2.1.5.1.1) , and it is used by a client to make changes to
that Persisted Report Job. Changes, including deletion, that are made to a N on-Persisted Report Job

Instance are either discarded after use or applied to the associated Persisted Report Job. There can be
zero or more Non -Persisted Report Job Instances for each Persisted Report Job.

A protocol client can perform the following manag ement operations involving Non -Persisted Report Job

Instances:

Á Create or change the configuration data for a Non -Persisted Report Job Instance. See
CreateReportJob (Opnum 8) (section 3.2.4.2.33.2) and Commit (Opnum

11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted Report Job Instance into the associated
Persisted Report Job. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

3.2.1.5.1.3 Running Job

A Running Job is a vola tile object that represents a Report Job , a File Management Job , or a

Classification Job that has been requested to run by a call to
IFsrmReportJob::Run (section 3.2.4.2.34.16) , IFsrmFileManagementJob::Run (section 3.2.4.2.48.41) ,
or IFsrmClassificationMan ager::RunClassification (section 3.2.4.2.45.21) . See also Running Report

Task (section 3.2.1.12.1) , Running File Management Job Task (section 3.2.1.12.3) , and Running
Classification Task (section 3.2.1.12.2) . The following configuration data is maintained for each object:

Running Job.Parent: This property is a reference to the Non -persisted Report Job Instance , Non -
persisted File Management Job Instance , or Classification Job that created this object. The

Running Job accesses and modifies some of the proper ties of the referenced object.

Reports directory: This property is a Unicode string that specifies where generated reports are to
be stored.

Running Job.Cancel: This property is a Boolean value indicating whether the job should needs to
be canceled.

See IF srmReportJob::Run (section 3.2.4.2.34.16) for more information.

3.2.1.5.2 Reports

The server maintains reports (section 3.2.1.5.1) associated with each report job and for each report
maintains a minimal set of configuration properties. The configuration of a report consists of all the
information to define the report. There is no state to track for a report. The actual data backing these
abstractions is owned and encapsulated by the report job abstraction model. The configuration of a
report is saved concurrent with the configuration data of the report job that encapsulates the report.

The management operations that a protocol client can perform involving reports are specified in
section 3.2.1.5.1.

87 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following configuration data is maintained for each report on the system:

Report.Type: This property is a numeric value that identifies the report. The File Server Resource

Manager Protocol defines a set of available report types. See section 2.2.1.2.10 for details.

Report.Name: This property is a unique, case - insensitiv e, Unicode string for the report.

Report.Description: This property is a Unicode text description of the report.

Last generated file name prefix: This property maintains a Unicode string that corresponds to
the file name prefix used for naming the files wh ich constitute the generated report instance
when the report job was last run. The client can use this prefix as a means to identify the
collection of files that make up the generated report instance by examining the names of the
files found in the report job last generated in directory property . The prefix string uniquely
identifies a particular set of files that constitute a single instance of the generated report. The

exact format of the string is implementation -specific but could embed information such as the
report Name, Type, and a time stamp corresponding to when the report was generated.

Filters: A filter is a mechanism by which entries, files, or groups of files are included or excluded

from the generated report. The File Server Resource Manager Pro tocol defines a set of available
filters, and each report type supports a specific set of filters. A filter is identified by the numeric
ID defined in section 2.2.1.2.16 and the value of the filter is defined by a value or an array of

values.

The following state data is maintained for each report on the system:

Report.Deprecated: This Boolean property indicates whether the report job is valid. <24>

The filters a report configuration supports depend on the report type as follows:

Minimum size: This filter is defined by a single 64 -bit integer value that specifies the minimum file
size for a file to be included in the report. This filter applies only to the Large Files report type.
When a report that supports this filter is generated, all files that are smaller than the value

specified in the filter are excluded from the report.

Minimum age: This filter is defined by a single 32 -bit integer value that specifies the minimum file
age, in days, for a file to be included in the report. This filter applies to the Lea st Recently
Accessed and File Screen Audit report types. When a report that supports this filter is generated,
all files that are younger than the value specified in the filter are excluded from the report.

Maximum age: This filter is defined by a single 3 2-bit integer value that specifies the maximum
file age, in days, for a file to be included in the report. This filter applies only to the Most

Recently Accessed report type. When a report that supports this filter is generated, all files that
are older th an the value specified in the filter are excluded from the report.

Minimum quota usage: This filter is defined by a single 32 -bit integer value that specifies the
minimum quota usage , expressed as a percentage of the quota limit , for a quota record to be
included in the report. This filter applies only to the Quota Usage report type. When a report
that supports this filter is generated, all quotas whose percentage quota used is smaller than the

value specified in the filter are excluded from the report.

Fil e groups: This filter is defined by an array of Unicode strings. These strings specify the set of
file groups to be included in the report. This filter applies only to the Files By Type report type.
When a report that supports this filter is generated, all files that are not members of any of the
file groups specified in the filter are excluded from the report.

Owners: This filter is defined by an array of Unicode strings that specifies the set of owners whose
files are to be included in the report. The for mat of the Unicode string can be either the user

principal name (UPN) or a SID in string format. This filter applies only to the Files By Owner

88 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

report type. When a report that supports this filter is generated, all files that are not owned by
any of the us er principals specified in the filter are excluded from the report.

Name pattern: This filter is defined by a Unicode string value that specifies the pattern for files to
be included in the report. This filter applies to all report types except for Quota U sage and

Export types. When a report that supports this filter is generated, all files that do not match the
pattern specified in the filter are excluded from the report.

Property: This filter is defined by a Unicode string value that specifies the name of the property
definition (section 3.2.1.6.1) that will be inspected for each file in the report. This filter applies
only to File by Property and Folder by Property report types. This filter does not cause files to be
excluded from the report but limits wh at property value is displayed in the report for each file.

3.2.1.5.3 Report Settings

The server maintains a minimal set of general report settings properties. The report settings define
global default values that apply generally to all report jobs and reports unles s they are overridden by
configuration that is local to a specific report job or report.

The following general configuration settings data is maintained:

Scheduled output directory: This setting maintains the full file system path location where

generated reports will be stored on the system for the report -generation context of
FsrmReportGenerationContext_ScheduledReport enumeration. See 2.2.1.2.15 for more details
about report -generation contexts. <25>

Interactive output directory: This setting maintains th e full file system path location where
generated reports will be stored on the system for report -generation context of
FsrmReportGenerationContext_InteractiveReport enumeration. See 2.2.1.2.15 for more details
about report -generation contexts. <26>

Incident output directory: This setting maintains the full file system path location where
generated reports will be stored on the system for report -generation context of
FsrmReportGenerationContext_IncidentReport enumeration. See 2.2.1.2.15 for more details

about report -generation contexts. <27>

Default filters: These settings maintain the default filters to be applied to all reports when a
report does not include local filter overrides. The model for the default filters is identical to the
report specific filters. See section 3.2.1.5.2 for more details.

Report si ze limits: These settings maintain limits to the number of entries and groups that will be
included in each individual report. The FSRM protocol defines a set of report size limits and each
limit applies to a specific set of report types.

The report size l imits limit the size of generated reports as follows:

Á Maximum files - This setting limits the number of files that will be included in any generated
report.

Á Maximum file groups - This setting limits the number of file groups that will be included in a

Files By Type report.

Á Maximum owners - This setting limits the number of owners that will be included in a Files
By Owner report.

Á Maximum files per file group - This setting limits the number of files that will be included for
each file group in a Files By Type report.

Á Maximum files per owner - This setting limits the number of files for each owner that will be

included in a Files By Owner report.

89 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Maximum files per duplicate group - This setting limits the number of files for each duplicate
group in a Dupli cate Files report.

Á Maximum duplicate groups - This setting limits the number of duplicate groups that will be
included in a Duplicate Files report.

Á Maximum quotas - This setting limits the number of quota records that will be included in a
Quota Usage repo rt.

Á Maximum file screen audits - This setting limits the number of file screen audit records that
will be included in a File Screen Audit report.

Á Maximum property values - This setting limits the number of property values that will be
included in a report.

Á Maximum files per property value - This setting limits the number of files for each property

value that will be included in a report.

3.2.1.6 Classification Model

The server maintains the following lists of persisted objects for the classification model. Each lis t

contains objects of a specific type that are currently present and configured on the server.

List of Persisted Property Definitions: This is a volatile list of all the Persisted Property
Definitions (section 3.2.1.6.1.1) configured on the server. The ser ver maintains only one List of
Persisted Property Definitions .

List of Persisted Module Definitions: This is a volatile list of all the Persisted Module
Definitions (section 3.2.1.6.2.1) configured on the server. The server maintains only one List of
Persi sted Module Definitions .

List of Persisted Rules: This is a volatile list of all the Persisted Rules (section 3.2.1.6.3.1)
configured on the server. The server maintains only one List of Persisted Rules .

The server maintains the following lists of non -pers isted objects for the classification model. Lists of
non -persisted objects contain copies of the objects from the lists of persisted objects. The non -
persisted objects are used by clients to make changes that are propagated to the lists of persisted
object s when the client commits the non -persisted objects.

List of Non - Persisted Property Definition Instances: This is a volatile list of all the Non -
Persisted Property Definition Instances (section 3.2.1.6.1.2) configured on the server. The
server maintains ze ro or more List of Non - Persisted Property Definition Instances .

List of Non - Persisted Module Definition Instances: This is a volatile list of all the Non -
Persisted Module Definition Instances (section 3.2.1.6.2.2) configured on the server. The server
maint ains zero or more List of Non - Persisted Module Definition Instances .

List of Non - Persisted Rule Instances: This is a volatile list of all the Non -Persisted Rule

Instances (section 3.2.1.6.3.2) configured on the server. The server maintains zero or more Lis t
of Non - Persisted Rule Instances .

The server also maintains the following list of property definition instances.

List of Property Definition Instances: This is a volatile list of Property Definition
Instances (section 3.2.1.6.5) created from name/value pa irs for an individual file returned from
storage modules and classification modules. The server maintains zero or more List of
Property Definition Instances .

The server also maintains the following queue of Running Jobs for the classification model.

90 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Classi fication Job Queue: This is a volatile queue containing zero or one Running Jobs (section
3.2.1.5.1.3) that correspond to the Classification Job (section 3.2.1.5.1) that has been

requested to run. The times the job runs - immediately or at a later time - are managed by the
server. The server maintains only one Classification Job Queue and MUST NOT allow more

than one Running Job in the Classification Job Queue .

3.2.1.6.1 Pr operty Definitions

For each property definition, a minimal set of configuration properties is maintained by the server. The
configuration of a property definition consists of all the information to define the property definition.

A Property Definition is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and
state of an FSRM Base Object. The following configuration data is maintained for each property

definition on the system:

Property Definition.Type: This pr operty is a numeric value that identifies the type of the
property definition. The File Server Resource Manager Protocol defines a set of available
property definition types in the FsrmPropertyDefinitionType enumeration. See section

2.2.2.3.1.1 for details .

Property Definition.Name: This property is a unique, case - insensitive Unicode string for the

property definition.

Property Definition.Display Name: This property is a unique, case - insensitive Unicode string for
the property definition. <28>

Possible value s: This property is an ordered list of Property Value Definitions that can be used
when setting this property on a file. Possible values are valid only for property definitions of type
FsrmPropertyDefinitionType_OrderedList, FsrmPropertyDefinitionType_Sing leChoiceList, and
FsrmPropertyDefinitionType_MultiChoiceList.

Property Definition.Parameters: This property is a list of Unicode text strings that are
descriptive metadata for the property definition that can be used by consumers of the protocol
and that a re not covered by the classification property definition. Clients can use these strings to

store additional descriptive information about the property definition. Examples of information
that a client can store here include "Author=jdoe" and "Created=12 -5-10". See the definition for
parameter strings in section 3.2.4.2 for details regarding the individual text strings.

AppliesTo: This property identifies whether an instance of the property definition can be

associated with the file or a folder. <29>

Propert y Definition.Secure: This Boolean property indicates whether a property definition can be
used to make any security decisions. <30>

Property Definition.Global: This Boolean property indicates that the property definition cannot
be modified on the server via APIs. <31>

Property Definition.Deprecated: This Boolean property indicates whether the property definition

is valid. <32>

Property Definition.WhenChanged: This property indicates when the property was last updated
if it was defined by an AD Property Definit ion. <33>

3.2.1.6.1.1 Persisted Property Definition

A Persisted Property Definition is a type of Property Definition (section 3.2.1.6.1) that has all the
properties of a property definition, represents the persisted configuration of a property definition on

the server, and is stored in nonvolatile storage.

91 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A protocol client can perform the following management operations involving Persisted Property
Definition:

Á Enumerate the List of Persisted Property Definitions abstract data object (section 3.2.1.6) on
the server. See EnumPropertyDefinitions (Opnum 18) (section 3.2.4.2.45.12) for details.

Á Get the configuration of a particular Persisted Property Definition. See GetPropertyDefinition
(Opnum 20) (section 3.2.4.2.45.14) for details.

3.2.1.6.1.2 Non -Persisted Property Definition Instan ce

A Non - Persisted Property Definition Instance is a type of Property Definition (section 3.2.1.6.1) ,
which has all the properties of a property definition. A Non -Persisted Property Definition Instance is a
copy, in memory, of an instance of a Persisted Pr operty Definition (section 3.2.1.6.1.1) , and it is used

by a client to make changes to that Persisted Property Definition. Changes, including deletion, that are
made to a Non -Persisted Property Definition Instance are either discarded after use or applied to the
associated Persisted Property Definition. There can be zero or more Non -Persisted Property Definition
Instances for each Persisted Property Definition.

A protocol client can perform the following management operations involving Non -Persisted Propert y
Definition Instances:

Á Create or change the configuration data for a Non -Persisted Property Definition Instance. See
CreatePropertyDefinition (Opnum 19) (section 3.2.4.2.45.13) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted Property Definition Instance into the
associated Persisted Property Definition. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.6.1.3 Property Value Definition

For ea ch Property Value Definition, a minimal set of configuration properties is maintained by the
server. The configuration of a Property Value Definition consists of all the information to define the

Property Value Definition.

A Property Value Definition is a type of FSRM Base Object (section 3.2.1.1) that has all the properties
and state of an FSRM Base Object. The following configuration data is maintained for each property
definition on the system <34> :

Property Value Definition.Name: This property is a uniqu e, case - insensitive Unicode string that
is the name of the Property Value Definition.

Property Value Definition.Display Name: This property is a unique, case - insensitive Unicode
string that is a name for the Property Value Definition that is suitable to be displayed to users.

Property Value Definition.Description: This property is a Unicode text string that is the
description of the Property Value Definition.

Property Value Definition.UniqueId: This property is a unique, case - insensitive Unicode string

that is a unique identifier for the Property Value Definition.

3.2.1.6.2 Module Definitions

For each module definition, a minimal set of configuration properties is maintained by the server. The
configuration of a module definition consists of all the information requir ed to define the module
definition.

92 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A Module Definition is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and
state of a FSRM Base Object. The following configuration data is maintained for each module definition

on the system:

Mo duleClsid: This property is the class identifier for a locally registered COM class on the server

that implements the COM object for the associated module implementation. <35>

Module Definition.Name: This property is a unique, case - insensitive, Unicode stri ng for the
module definition.

Company: This property is a Unicode text string for the name of the company that implemented
the module.

Version: This property is a Unicode string for the version of the module.

Enabled/disabled: This property controls whethe r the module definition can be called during

classification.

Needs file content: This property controls whether the module requires the content of the file to

perform classification.

Module Definition.Account: This property identifies the built - in account in which the module is
executed during classification or property storage. This property can be any value of
FsrmAccountType (section 2.2.1.2.8) .

Supported extensions: This property is a list of Unicode text strings that are the file extensions
supported b y this module.

Module Definition.Parameters: This property is a list of Unicode text strings that are additional
parameters or descriptive metadata for the module definition that can be used by consumers of
the protocol. Clients can use these strings to st ore additional descriptive information about the
module definition. Examples of information that a client can store here include "Author=jdoe"
and "Created=12 -5-10". See sections 3.2.1.12.1 , 3.2.1.12.2 , 3.2.1.12.3 , 3.2.4.2.45.24 , and

3.2.4.2.45.25 for deta ils of how these strings affect server behavior. See the definition for
parameter strings in section 3.2.4.2 for details regarding the individual text strings.

Module type: This property identifies the type of the module as one of two module types:
Clas sifier and Storage .

Classifier module type: The following configuration data is maintained for a classifier
module type:

Properties affected: This property is descriptive metadata for the module definition.

Properties used: This property is descriptive metadata for the module definition.

Needs explicit value: This property controls whether the module needs an explicit
value provided by a rule that uses this module definition for classification.

Storage module type: The following configuration data is mai ntained for a storage module
type:

Capabilities: This property defines the capabilities of the storage module definition.

Possible values are defined in FsrmStorageModuleCaps (section 2.2.2.8.1.1) .

Storage type: This property defines how the module definit ion stores the properties
for a file. Possible values are defined in
FsrmStorageModuleType (section 2.2.2.8.1.2) .

Updates file content: This property is a Boolean value indicating whether the module
changes the contents of the file.

93 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.6.2.1 Persisted Module Defini tion

A Persisted Module Definition is a type of Module Definition (section 3.2.1.6.2) that has all the
properties of a module definition, represents the persisted configuration of a module definition on the

server and is stored in nonvolatile storage.

A protocol client can perform the following management operations involving Persisted Module
Definitions:

Á Enumerate the List of Persisted Module Definitions abstract data object (section 3.2.1.6) on
the server. See EnumModuleDefinitions (Opnum 24) (section 3.2.4.2.45.18) for details.

3.2.1.6.2.2 Non -Persisted Module Definition Instance

A Non - Persisted Module Definition Instance is a type of Module Definition (section 3.2.1.6.2) ,
which has all the properties of a module definition. A Non -Persisted Module Definition Instan ce is a
copy, in memory, of an instance of a Persisted Module Definition (section 3.2.1.6.2.1) , and it is used
by a client to make changes to that Persisted Module Definition. Changes, including deletion, that are

made to a Non -Persisted Module Definition Instance are either discarded after use or applied to the
associated Persisted Module Definition. There can be zero or more Non -Persisted Module Definition

Instances for each Persisted Module Definition.

A protocol client can perform the following manageme nt operations involving Non -Persisted Module
Definition Instances:

Á Create or change the configuration data for a Non -Persisted Module Definition Instance. See
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted Module Definition Instance into the
associated Persisted Module Definition. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit

(Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.6.3 Rules

For each classification rule, a minimal set of configurat ion properties is maintained by the server. The
configuration of a rule consists of all the information required to define the rule.

A Rule is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a FSRM
Base Object. The fol lowing configuration data is maintained for each rule on the system:

Rule.Name: This property is a unique, case - insensitive, Unicode string for the rule.

Module definition name: This property is a Unicode text string that is the name of the module
definiti on for the rule to use during classification.

Namespace roots: This property is a list of either full directory paths (referred to as static path
in this definition) or values from the FolderUsage list (referred to as dynamic path in this
definition). The set of file system namespaces (file system directory trees) that are scanned as
part of the classification job consists of either the full directory path (for a static path) or the

FolderUsage Instance.Path values of each FolderUsage Instance in the Folder Usage Mapping

whose FolderUsage Instance.Value list contains the <value> portion of a dynamic path .<36>

Enabled/disabled: This property controls whether the rule will be used during classification.

Valid/invalid: This property reflects whether the module definition used by this rule is enabled
and registered on the server. If the module definition used by the rule is either disabled or not
registered, this property is set to invalid.

Rule.Parameters: This property is a list of Unicode text strings that are additional parameters or
descriptive metadata regarding the classification rule that can be used by consumers of the

94 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

protocol. Clients can use these strings to store additional descriptive information about the
classification rule. Examples of information that a client can store here include "Author=jdoe"

and "Created=12 -5-10". See sections 3.2.1.12.1 , 3.2.1.12.2 , 3.2.1.12.3 , 3.2.4.2.45.24 , and
3.2.4.2.45.25 for details of how these strings affect server behavior. See the definition for

parameter strings in section 3.2.4.2 for details regarding the individual text strings.

Last modified time: This property maintains a time stamp that corresponds to the chronological
date/time that the rule was last modified.

Rule type: This property identifies the rule as o ne of two rule types: Classification and Generic.
The set of properties for the rule is different depending on which rule type the rule belongs to:

Classification:

Execution option: This property identifies how the rule might be applied when

executing cla ssification. The value can be one of three options:

Evaluate unset: This value indicates that the rule is applied only to files where a
property values is not already set for the file for the property affected.

Reevaluate and consider existing: This value indicates that the rule is applied
and any existing property values for the property affected is immediately
compared with the value supplied by the rule.

Reevaluate and ignore existing: This value indicates that the rule is always
applied and any existing property values for the property affected are ignored.

Property Affected: This property is a Unicode text string that contains the name of
the property definition the rule affects.

Rule.Value: This property is a Unicode text string that contains the value to be used
when applying the rule to a file.

ClearProperty: This flag, when set, indicates that the property is recommended to be

cleared. <37>

Generic: There are no properties specific to rules of this type.

The following state data is maintained for each rule in the system:

Rule.Deprecated: This Boolean property indicates whether the rule is valid. <38>

Rule.ClearAutoProperty: This Boolean flag, when set, indicates that a property specified on this
rule by an automatic classification can be cleared. <39>

Ru le.ClearManualProperty: This Boolean flag, when set, indicates that a property specified on

this rule by a manual classification can be cleared. <40>

3.2.1.6.3.1 Persisted Rule

A Persisted Rule is a type of Rule (section 3.2.1.6.3) that has all the properties of a clas sification rule,

represents the persisted configuration of a rule on the server and is stored in nonvolatile storage.

A protocol client can perform the following management operations involving Persisted Rules:

Á Enumerate the List of Persisted Rules abstrac t data object (section 3.2.1.6) on the server. See
EnumRules (Opnum 21) (section 3.2.4.2.45.15) for details.

Á Get the configuration of a particular Persisted Rule. See GetRule (Opnum
23) (section 3.2.4.2.45.17) for details.

95 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.6.3.2 Non -Persisted Rule Instance

A Non - Persisted Rule Instance is a type of Rule (section 3.2.1.6.3) , which has all the properties of
a classification rule. A Non -Persisted Rule Instance is a copy, in memory, of an instance of a Persisted

Rule (section 3.2.1.6.3.1) , and it is used by a clie nt to make changes to that Persisted Rule. Changes,
including deletion, that are made to a Non -Persisted Rule Instance are either discarded after use or
applied to the associated Persisted Rule. There can be zero or more Non -Persisted Rule Instances for
each Persisted Rule.

A protocol client can perform the following management operations involving Non -Persisted Rule
Instances:

Á Create or change the configuration data for a Non -Persisted Rule Instance. See CreateRule

(Opnum 22) (section 3.2.4.2.45.16) and Co mmit (Opnum 11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted Rule Instance into the associated
Persisted Rule. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for det ails.

3.2.1.6.4 Classification Job

The server maintains a minimal set of configuration properties and state data for a set of classification
jobs. The configuration of a classification job consists of all of the information required to define a
classification job, a nd the state consists of the properties that are tracked while the classification job is
running and the results of the successful or failed classification job completion. <41>

The following configuration data is maintained for the classification job:

Class ification Job.Formats: This property describes the set of output formats to which the
classification report will be transformed as a result of a successful execution of the classification

job. Supported formats are DHTML, HTML, TXT, CSV, and XML.

Generate classification report: This Boolean property determines whether a report will be
generated as a result of a successful execution of the classification job.

Classification Job.Mail to: This property is a Unicode string that will be used for the email TO
addresses to which the classification report will be sent as a result of a successful execution of
the classification job. In addition to the Mail To property, the server uses the SMTP server
name and Mail - from email address from the General Settings Model (section 3.2.1.9). Other

fields required to send the email, for example, Subject, can be any appropriate value.

Classification Job.Logging: This property determines how logging will be handled for the
classification job. It is a bitwise combination (using the OR operator) of values of the
FsrmClassificationLoggingFlags (section 2.2.2.5.1.1) enumeration.

A protocol client can perform the follo wing management operations involving the classification job:

Á Query the state data for the classification job. See section 3.2.4.2.45.11 for details.

The following state data is maintained for the classification job:

Running status: This property is a numer ic value indicating the current running status of the
classification job. Possible status values are defined in the
FsrmReportRunningStatus (section 2.2.1.2.13) enumeration.

Classification Job.Last error: This property maintains a Unicode string that corre sponds to an
error message generated when the classification job was last run. If the last run of the
classification job was successful, the last error Unicode string is an empty string.

96 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Last generated path: This property maintains the location and file name where the classification
report was stored when the classification job was last run.

Classification Job.Namespace roots: This property is a list of the full directory paths defining
the set of file system namespaces (file system directory trees) that will be scanned as a part of

the report job data gathering phase. <42>

3.2.1.6.5 Property Definition Instance

The server maintains a single property definition instance for each name/value pair with a unique
name retrieved from storage modules and classification modu les for a file. A property definition
instance has no configuration data persisted by the server and has only state data.

The following state data is maintained for the property definition instance:

Property definition instance.Name: This property is a uni que Unicode string for the name of the
property definition instance.

Property definition instance.Value: This property is a Unicode string indicating the value of the
property definition instance.

Sources: This property is an array of case - insensitive Unic ode strings that are module
definition.Names of the module definitions that provided the property definition

instance.Value .

Property definition instance.Flags: This property is a numeric value indicating the flags of the
property definition instance. It is a bitwise combination (using the bitwise -OR operator) of
values of the FsrmPropertyFlags enumeration (see section 2.2.2.6.1.1).

3.2.1.7 File Management Model

The serve r maintains the following list of persisted objects for the file management model. Each list
contains objects of a specific type that are currently present and configured on the server.

List of Persisted File Management Jobs: This is a volatile list of all the Persisted File
Management Jobs (section 3.2.1.7.1.1) configured on the server. The server maintains only one
List of Persisted File Management Jobs .

The server maintains the following lists of non -persisted objects for the file management model. Lists

of non -persisted objects contain copies of the objects from the lists of persisted objects. The non -
persisted objects are used by clients to make changes that are propagated to the lists of persisted
objects when the client commits the non -persisted objec ts.

List of Non - Persisted File Management Job Instances: This is a volatile list of all the Non -
Persisted File Management Job Instances (section 3.2.1.7.1.2) configured on the server. The
server maintains zero or more List of Non - Persisted File Management Job Instances .

3.2.1.7.1 File Management Job

For each file management job, a minimal set of configuration properties and state data is maintained
by the server. The configuration of a file management job consists of all the information required to
define the file ma nagement job. The state consists of the properties that are tracked while the file
management job is running and the results of both successfully completed and failed file management
jobs.

A File Management Job is a type of FSRM Base Object (section 3.2.1. 1) that has all the properties and
state of a FSRM Base Object. The following configuration data is maintained for each file management
job on the system:

97 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

File Management Job.Name: This property is a unique, case - insensitive, user -assigned Unicode
string f or the file management job. <43>

Namespace roots: This property is a list of either full directory paths (referred to as static path
in this definition) or values from the FolderUsage list (referred to as dynamic path in this

definition). The set of file sy stem namespaces (file system directory trees) that will be scanned
as a part of the file management job consists of either the full directory path (for a static path)
or the FolderUsage Instance.Path values of each FolderUsage Instance in the FolderUsage
Mapping whose FolderUsage Instance.Value list contains the <value> portion of a dynamic
path .<44>

Enabled/disabled: This property controls whether the file management job will be run.

Operation type: This property identifies the file management job as one o f two file management

types: expiration and custom, as defined in the FsrmFileManagementType (section 2.2.2.9.1.1)
enumeration. The set of properties for the file management job is different depending on which
file management type the file management job b elongs to:

Expiration:

Expiration directory: This property is the folder on the server that files matching the
file management job's conditions will be moved to.

Custom:

Custom action: This property is a handle to an IFsrmActionCommand interface pointer
(section 3.2.4.2.9) that points to a command line action type notification object
that is called when all the file management job conditions are met by a file. A
protocol client can initiate a change to a custom action and can delete the custom
action. See section 3.2.1.4 for more information about data required for the action.

Notification periods: This property is a list of zero or more notification period objects. A

protocol client can initiate a change to a notification period value and can delete the
notification period .

Logging: This property determines how logging will be handled for the file management job. It is a
bitwise combination (using the OR operator) of values of the
FsrmFileManagementLoggingFlags (section 2.2.2.9. 1.2) enumeration.

Report enabled: This property determines if the file management job will output a report of the
files that matched the file management job's conditions .

File Management Job.Formats: This property describes the set of output formats to whi ch the
file management job's report will be transformed as a result of a successful execution of the file
management job. Supported formats are DHTML, HTML, TXT, CSV, and XML.

File Management Job.Mail to: This property is a Unicode string that will be used for the email TO
addresses to which the file management job's report will be sent as a result of a successful
execution of the file management job.

Conditions: The following properties are used when a file management job is run to determine if a

file is t o be acted on by the file management job. The first three items describe specific
attributes of the file that will be compared when determining if a file is to be acted on. The
condition is met if the file's attribute is greater than the file management jo b's value for the
specific attribute. The fourth item is a list of property conditions specified by the client that are
used to determine if a file is to be acted on by the file management job. All the conditions need
to be met if the file is to be acted o n.

Days since file created: This property is the number of days since the file was created.

98 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Days since file last accessed: This property is the number of days since the file was last
accessed.

Days since file last modified: This property is the number of d ays since the file was last
modified.

Property conditions: The file management job configuration can be associated with zero or
more property conditions. See section 3.2.1.7.2 for details. A protocol client can perform
the following management operations i nvolving property conditions:

Á Create a property condition to be used when determining what files might be affected
by the file management job. See section 3.2.4.2.45.13 for details.

Á Enumerate a list of all the property conditions configured to be used when determining
what files might be affected by the file management job. See section 3.2.4.2.45.12 for

details.

Á Delete a property condition from the file management job. See sections 3.2.4.2.10.4
and 3.2.4.2.10.5 for details.

From date: This property controls the date on which the file management job can be applied to
files.

Task name: This property is a Unicode string containing the name of an associated scheduled

task.

File Management Job.Parameters: This property is a list of Unicode text strings that are
additional parameters or descriptive metadata regarding the file management job that can be
used by consumers of the protocol. Clients can use these strings to store additional descriptive
information about the file management job. Examples of information t hat a client can store here
include "Author=jdoe" and "Created=12 -5-10". See section 3.2.1.12.3 for details of how these
strings affect server behavior. See the definition for parameter strings in section 3.2.4.2 for

details regarding the individual text s trings.

File name pattern: This property is a Unicode file name pattern that is used to compare file

names to be scanned as a part of the file management job. If no pattern is specified, all files
that are scanned will be included. If a pattern is specifie d, a file that is scanned will only be
included if it matches the pattern.

The following state data is maintained for each file management job in the system:

Running status: This property is a numeric value indicating the current running status of the file

management job. Possible status values are defined in the
FsrmReportRunningStatus (section 2.2.1.2.13) enumeration.

Last run time: This property maintains a time stamp that corresponds to the chronological
date/time that the file management job was last r un.

Last error: This property maintains a Unicode string that corresponds to an error message
generated when the file management job was last run. If the last run of the file management

job was successful, the Last error Unicode string is an empty string.

Last report path without extension: This property maintains a Unicode string that corresponds
to the file path of the report last generated by the file management job. This property does not
include the file extension of the last report. <45>

Error log: This property is a list of all files where the file management job encountered an error
either when determining if the file met the conditions of the file management job or when the
file management job tried to act on the file. This list is maintained whil e the file management

99 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

job has a running status of Running and is persisted when the running status changes from
Running to Not Running.

Information log: This property is a list of all files that met the conditions of the file management
job and were acted on by the file management job. This list is maintained while the file

management job has a running status of Running. This list is persisted when the running status
changes from Running to Not Running.

File Management Job.Deprecated: This Boolean property indicates whether the file management
job is valid. <46>

3.2.1.7.1.1 Persisted File Management Job

A Persisted File Management Job is a type of File Management Job (section 3.2.1.7.1) that has all the

properties and state of a file management job, represents the persis ted configuration of a file
management job on the server and is stored in nonvolatile storage.

A protocol client can perform the following management operations involving Persisted File

Management Jobs:

Á Enumerate the List of Persisted File Management Jobs abstract data object (section 3.2.1.7)
on the server. See EnumFileManagementJobs (Opnum 7) (section 3.2.4.2.50.1) for details.

Á Get the configuration of a particular Persisted File Management Job. See GetFileManagementJob
(Opnum 9) (section 3.2.4.2.50.3) fo r details.

3.2.1.7.1.2 Non -Persisted File Management Job Instance

A Non - Persisted File Management Job Instance is a type of File Management
Job (section 3.2.1.7.1) , which has all the properties and state of a file management job. A Non -
Persisted File Management Job In stance is a copy, in memory, of an instance of a Persisted File

Management Job (section 3.2.1.7.1.1) , and it is used by a client to make changes to that Persisted File
Management Job. Changes, including deletion, that are made to a Non -Persisted File Manag ement Job
Instance are either discarded after use or applied to the associated Persisted File Management Job.

There can be zero or more Non -Persisted File Management Job Instances for each Persisted File
Management Job.

A protocol client can perform the fo llowing management operations involving Non -Persisted File
Management Job Instances:

Á Create or change the configuration data for a Non -Persisted File Management Job Instance. See
CreateFileManagementJob (Opnum 8) (section 3.2.4.2.50.2) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

Á Commit changes, including deletion, from a Non -Persisted File Management Job Instance into the
associated Persisted File Management Job. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Commit (Opnum 11) (section 3.2.4 .2.10.5) for details.

3.2.1.7.2 Property Condition

The server maintains a list of property conditions (section 3.2.1.7.1) associated with each file
management job, and for each property condition maintains a minimal set of configuration properties.
The actual data b acking these abstractions is owned and encapsulated by the file management job
abstraction model. The configuration of a property condition is saved concurrent with the configuration
data of the file management job that encapsulates the property condition. A property condition

references a property definition (section 3.2.1.6.1) and is used to compare a file's property value with
a specific value using the specific type of comparison stored in the property condition.

100 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The management operations that a protoco l client can perform involving property conditions are
specified in section 3.2.1.7.1. The following configuration data is maintained for each property

condition on the system:

Property Condition.Name: This property is a Unicode string that is the name of the property

definition the property condition uses for comparison.

Property Condition.Type: This property identifies the property condition as one of 12 types of
property condition, as defined in the FsrmPropertyConditionType enumeration:

Á Equal

Á Not equal

Á Greater than

Á Less than

Á Contains

Á Exists

Á Not exists

Á Start with

Á End with

Á Contained in

Á Prefix of

Á Suffix of

Property Condition.Value: This property is a Unicode string that identifies the value to use when
comparing the property condition to a property on a file.

Property Condition.Parent: This property is a reference to the Non -persisted File Management
Job Instance that created this object. The Property condition maintains the reference to allow
removal of the object from the parent object.

3.2.1.7.3 Notification per iod

A Notification period is a volatile object that represents a set of Notifications that should need to
be run by a File Management Job at a set interval before it processes a file. See also section
3.2.1.12.3 , Running File Management Task. The following configuration data is maintained for each
object:

Notification interval: An integer value representing the number of days before a file will meet the

conditions of a file management job for which a set of Notifications should need to be run. For
example, if a file management job has the operation type of expiration , a days since file

created value of 365, and a notification period whose Notification interval is 10 days with
one or more Notification period.Notifications , then files that were created 355 days ago will
have the associated Notification period.Notifications run.

Notification period.Notifications: Each notification period can have associated with it between

zero and four notifications that apply if any files in the file management job's namespace r oots
meet all the file management job's conditions . See section 3.2.1.4 for more details.

A protocol client can perform the following management operations involving a Notification period :

101 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Create a notification for a specific notification period . See sect ion 3.2.4.2.48.47 for more
details.

Á Change the configuration data of a notification for a specific notification period . For details, see
sections 3.2.4.2.5 , 3.2.4.2.6 , 3.2.4.2.7 , 3.2.4.2.8 , and 3.2.4.2.9 .

Á Enumerate a list of all the notifications for a spe cific notification period . See section
3.2.4.2.48.48 for more details.

Á Delete a notification for a specific notification period . See section 3.2.4.2.5 for details.

A notification period can be referenced with at most one notification of each of the four distinct File
Server Resource Manager Protocol notification action types.

3.2.1.8 FolderUsage Model

The server maintains the following lists of persisted objects for the FolderUsage model :

Folder Usage List: This property is an ordered list of Unicode text strings that can be used to
describe folders. The format should needs to be of the form [Folderusage_MS=<value>] .<47>

FolderUsage mapping: A list of FolderUsage Instances that describes the mappin g of a file
system folder path to an array of strings. <48>

3.2.1.8.1 FolderUsage Instance

For each FolderUsage instance , a minimal set of configuration properties is maintained by the
server. The configuration of a FolderUsage instance consists of all the informatio n required to define
the FolderUsage instance . The following configuration data is maintained for each FolderUsage
instance on the system:

FolderUsage Instance.Folder Path: The FolderUsage instance configuration is associated with

a particular folder on th e server. If the folder is renamed, the FolderUsage instance
configuration continues to be associated with the original folder path with the same

configuration and state as before the rename.

FolderUsage Instance.Value: This property is a list of Unicode text strings that indicate values
from FolderUsage List that were associated with the FolderUsage Instance.Folder Path.

3.2.1.9 General Settings Model

The server maintains a minimal set of general settings properties. The general settings define global
settings and default values that apply generally across the File Server Resource Manager Protocol
server implementation.

The following general configuration settings data is maintained:

SMTP server name: This setting is a Unicode st ring that maintains the network identity or IP

address of the SMTP server to use when sending email.

Mail from email address: This setting is a Unicode string that maintains the default value for the
email FROM address when the FSRM email action notificati ons and storage reports are sent
via email. This value is used when sending email if the notification or report Mail from
property is not set.

Administrator email address: This setting is a Unicode string that maintains the value to use

when expanding the [ADMIN EMAIL] variable when FSRM email action notifications and
report jobs are sent via email.

102 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Disable command line applications: This setting is a Boolean value that determines whether or
not notifications with an action type of command line action are run. This allows clients to

prevent command line actions from running without having to delete the actions.

Enable file screen audit: This setting is a Boolean value that maintains control over whether an

audit record will be persisted for each prohib ited file violation that occurs for each configured file
screen on the system. When this setting is set to TRUE, audit records are stored for each file
screen prohibited file that is detected in such a way that the records can be scanned later and
presente d in a File Screen Audit report. See section 3.2.1.3.1 for details on the audit log record
requirements.

Run limit intervals: These settings maintain the default values for the notification run limit
intervals as specified in section 3.2.1.4 . There is one setting for each FSRM notification type.

3.2.1.10 Management of FSRM Objects

All objects listed in section 3.2.1 are created and returned through manager interfaces. Manager
interfaces have methods that can create or return individual objects or return a collection of objects,

which can be enumerated (see section 3.2.1.11 for details on enumerations of FSRM objects). The
following interfaces allow management of FSRM objects:

Á IFsrmQuotaManager ðManages quota and auto apply quota objects.

Á IFsrmQuotaTemplateManager ðMana ges quota template objects.

Á IFsrmFileGroupManager ðManages file group objects.

Á IFsrmFileScreenManager ðManages file screen and file screen exception objects.

Á IFsrmFileScreenTemplateManager ðManages file screen template objects.

Á IFsrmReportManager ðManages repo rt job objects.

Á IFsrmClassificationManager ðManages property definition, module definition, and rule objects.

Á IFsrmFileManagementJobManager ðManages file management job objects.

Á IFsrmSetting ðManages general FSRM settings.

3.2.1.11 Enumeration of FSRM Objects

All FSRM objects listed in section 3.2.1 can be returned via collection objects. Section 4.1 also contains
an example of how a collection object is created and used. When the client calls a method to request a
collection, the server creates a collection object imp lementing the IFsrmCollection interface (section
3.2.4.2.1) and returns the interface pointer to the client to allow it to enumerate through the
requested objects. The collection remains valid until the client releases all of its references to the

interfac e. For each collection object, the server maintains the following information:

Objects Being Enumerated: A list of pointers to the FSRM objects being enumerated with the
following requirements:

Á At the creation of the collection object, the list is populate d with the objects to return,
dictated by the particular specification of the method that the client calls.

Á The same object is not listed more than once.

Á After the list has been populated, the order of entries in the list is static.

Á New FSRM objects added to the server after initial populating are not added to the list of
objects being enumerated.

103 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á If an FSRM object in the list is removed from the server it is not removed from the list of
objects being enumerated. If the removed object is later accessed by t he client, the server

will use the client's copy of the object whenever the client attempts to access the object's
interface methods.

state: The state of the collection of Objects Being Enumerated , which contains
FsrmCollectionState (section 2.2.1.2.4) val ues.

3.2.1.12 Asynchronous Tasks

The following are the asynchronous tasks in the File Server Resource Manager Protocol.

3.2.1.12.1 Running Report Task

The Running Report Task is a task that runs continuously, in a loop, and monitors the Running
Report Job Queue . As the server maintains only one Running Report Job Queue , there is only one
Running Report Task in the server.

Whenever the Running Report Job Queue is not empty, the task searches for one or more Running

Jobs in the queue for which the parent Non -pers isted Report Job Instance ï identified by the Running
Job.Parent reference ï has a Running status of FsrmReportRunningStatus_Queued . The task processes
each such object by performing the following actions in sequence:

Á Set the parent instance's Running stat us to FsrmReportRunningStatus_Running.

Á Set the parent instance's Last run time to the current time.

Á For each Report in the parent instance's Report Job.Reports , do the following in sequence:

Á If the Running Job's Running Job.Cancel property is true, skip t he remaining report

formats.

Á If the Running Job's Running Job.Deprecated property is true, the server SHOULD skip the
remaining report formats. <49>

Á Generate a unique file name prefix string, and store it in Report.Last generated file name
prefix . See Repor ts (section 3.2.1.5.2) for information about how to generate this prefix.

Á If Report.Type is FsrmReportType_Unknown, FsrmReportType_AutomaticClassification, or
FsrmReportType_Expiration, the server MUST skip this Report.

Á Create an empty volatile list of fi le references that will be referred to as Report item list for
the remaining steps.

Á If Report.Type is FsrmReportType_LargeFiles, for each file whose path resides in at least one
of the parent instance's Namespace Roots , include the file in the Report item list :

Á If the Minimum size filter in the report's Filters has its value set to less than or equal to
0 or the size of the file is equal to or larger than the value of the Minimum size filter in

the report's Filters , in bytes.

Á If the Name pattern filter in t he report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN -WLD]) in the value of the Name pattern filter.

Á If Report.Type is FsrmReportType_FilesByType, for each file whose path resides in at least
one of the parent instance's Namespace Roots :

Á If the File group filter in the report's Filters has its value set to Null, include the file in

the Report item list .

104 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á For each value in the File group filter, find the file group in the List of Persisted File
groups with the same File Group.Name . If the file name matches at least one of the file -

name patterns in the Members of the file group but does not match any of the file -name
patterns in the Non - me mbers of the file group, include the file in the Report item list .

Á If the Report.Type is FsrmReportType_LeastRecentlyAccessed, for each file whose path
resides in at least one of the parent instance's Namespace Roots :

Á If the Minimum age filter in the repor t's Filters has its value set to less than or equal to
0 or the last accessed time of the file plus the value of the Minimum age filter in the
report's Filters is larger than the server's current date, include the file in the Report item
list .

Á If the Name pattern filter in the report's Filters has its value set to Null or the file name

matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN -WLD]) in the value of the Name pattern filter, include the file in the Report
item list .

Á If Report.Type is FsrmReportType_MostRecentlyAccessed, for each file whose path resides in
at least one of the parent instance's Namespace Roots , include the file in the Report item
list :

Á If the Maximum age filter in the report's Filters has it s value set to less than or equal to
0 or the last accessed time of the file plus the value of the Maximum age filter in the
report's Filters is smaller than or equal to the server's current date.

Á If the Name pattern filter in the report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN -WLD]) in the value of the Name pattern filter.

Á If Report.Type is FsrmReportType_QuotaUsage, for each directory quota in the List of

Persisted Directory whose Directory Quota.Folder path resides within at least one of the
parent instance's Namespace Roots , include the directory quota and its Quota usage in the
Report item list .

Á If Report.Type is FsrmReportType_FilesByOwner, for each file whose path resides in at least
one of the parent instance's Namespace Roots , include the file in the Report item list :

Á If the Owners filter in the report's Filters has its value set to NULL or the file owner is
one of the values of the Owners fil ter in the report's Filters .

Á If the Name pattern filter in the report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN -WLD]) in the value of the Name pattern filter.

Á If Report.Type is FsrmReportType_ExportReport, for each file whose path resides in at least
one of the parent instance's Namespace Roots , include the file in the Report item list .

Á If Report.Type is FsrmReportType_DuplicateFiles, for each fi le whose path resides in at least

one of the parent instance's Namespace Roots and for which a duplicate file is present <50>

within the same Namespace Roots , include the file in the Report item list .

Á If Report.Type is FsrmReportType_FileScreenAudit, for e ach file for which a file screen event
was recorded (see section 3.2.7.4) whose path resides in at least one of the parent instance's
Namespace Roots , include the file in the Report item list if the Owners filter in the
report's Filters has its value set t o NULL or the file owner is one of the values of the Owners
filter in the report's Filters .

105 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á If Report.Type is FsrmReportType_FilesByProperty, the server performs the following steps in
sequence for each file whose path resides in at least one of the parent instance's Namespace

Roots :

1. If the Name pattern filter in the report's Filters has its value set to Null or the file name

matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN -WLD]) in the value of the Name patte rn filter, include the file in the Report
item list .

2. Perform the Retrieve Stored Classification Properties for the file.

3. Perform the Generate New Classification Properties action for the file given the list of
Property Definition Instances from the previou s action.

4. Perform the Store classification properties action for the file given the list of Property

Definition Instances from the previous action.

5. If the list of Property Definition Instances for the file includes a Property Definition
Instances whose Pro perty definition instance.name is equal to the value of the Property

filter in the report's Filters , include the file in the Report item list .

Á If Report.Type is FsrmReportType_FoldersByProperty , the server performs the following
steps in sequence for each folder whose path resides in at least one of the parent instance's

Namespace Roots :

1. If the Name pattern filter in the report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN -WLD]) in the value of the Name pattern filter.

2. Perform the Retrieve Stored Classification Properties for the folder .

3. Perform the Generate New Classification Properties action for the folder given the list of
Property Definition Instances from the previous action.

4. If the list of Property Definition Instances for the folder includes a Property Definition

Instances whose Property definition instance.name is equal to the value of the Property
filter in the report's Filters , Property definition instance.Global and Property definition
instance.Secure are set, and Property definition instance.AppliesTo is set to Folders,
inclu de the file in the Report item list .

Á For each report format in the parent instance's Report Job.Formats , generate a storage
report of that format and of the type specified by Report.Type for the items in the Report

item list . If Report.Type is FsrmReportTy pe_ExportReport (0x00000007), Report
Job.Formats MUST include FsrmReportFormat_Csv (0x0000004) or FsrmReportFormat_Xml
(0x00000005); otherwise, the reports will not be generated and the server will not return an
error code.

Á Store all generated reports as f iles in Reports directory . All file names MUST begin with
Report.Last generated file name prefix .

Á When all reports have been generated:

Á Set the parent instance's Last error to an empty string ï if no errors occurred ï or to a string
describing the error en countered.

Á Set the parent instance's Last generated in directory to Reports directory . If there is an
associated Persisted report job , also set that object's Last generated in directory to the
same value.

Á Send emails with the generated reports to the email address recipient list in the parent

instance's Non - Persisted Report Job's Mail to , as follows:

106 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á If the parent instance's Non - Persisted Report job's Report Job.Mail to is an empty
string, the server MUST N OT email the report when the action is run.

Á If the parent instance's Non - Persisted Report job's Report Job.Mail to contains the
string "[ADMIN EMAIL]", the server MUST send the report to the Administrator email

address (section 3.2.1.9) returned from IFsrm Setting::AdminEmail
(get) (section 3.2.4.2.11.5) , in addition to other email addresses in Report Job.Mail to ,
when emailing the report.

Á Remove the Running Job from the Running Report Job Queue .

The order in which the task processes Running Job objects as d escribed above is not deterministic.
Also, the task can choose to process multiple Running Jobs in parallel or just one at a time.

3.2.1.12.2 Running Classification Task

The Running Classification Task is a task that runs continuously, in a loop, and monitors the
Run ning Classification Job Queue . Because the server maintains only one Running Classification

Job Queue , there is only one Running Classification Task in the server.

Whenever the Running Classification Job Queue is not empty, the task searches for one Running
Job in the queue for which the parent Classification Job ï identified by the Running Job.Parent

reference ï has a Running status of FsrmReportRunningStatus_Queued . The task processes such an
object by perfor ming the following actions in sequence:

1. Set the parent instance's Running status to FsrmReportRunningStatus_Running.

2. Create an empty volatile list of file references that will be referred to as Report item list for the
remaining steps.

3. The server performs the following steps listed here, in sequence, for each file whose path resides
in at least one of the parent instance's Classification Job.Namespace Roots .

1. If the Running Job's Running Job.Cancel property is true, skip to the Report step below.

2. Perform the Retrieve stored classification properties for the file.

3. Perform the Generate new classification properties action for the file given the list of Property
Definition Instances from the preceding action. If the property definition instance.flags of
any of t he resulting Property Definition Instances contains FsrmPropertyFlags_SetByClassifier,
add the file to the Report item list .

4. Perform the Store classification properties action for the file given the list of Property

Definition Instances from the preceding action.

4. Report Step (in sequence):

1. If the parent instance's Generate classification report is false, skip the Report step.

2. For each report format in the parent instance's Classification Job.Formats , generate a
classification report of that format for the i tems in the Report item list .

3. Store all generated reports as files in Reports directory . All file names MUST begin with

Report.Last generated file name prefix .

5. After the Report Step (in sequence):

1. Set the parent instance's Classification Job.Last error to an empty string ï if no errors
occurred ï or to a string describing the error encountered.

2. Set the parent instance's Last generated path to Reports directory .

107 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3. If reports were generated, send emails with the generated reports to the email address
recipient list in the parent instance's Classification Job.Mail to , as follows:

1. If the parent instance's Classification Job.Mail to is an empty string, the server MUST
NOT email the report when the action is run.

2. If the parent instance's Classification Job.Mail to contains the string "[ADMIN EMAIL]",
the server MUST send the report to the Administrator email address returned from
IFsrmSetting::AdminEmail (get) , in addition to other email addresses in Mail to , when
emailing the report.

6. Set the parent instance's Running status to FsrmReportRunningStatus_NotRunning.

7. Remove the Running Report Job from the Running Classification Job Queue .

3.2.1.12.3 Running File Management Task

A Running File Management Task is a task performed by the server during the execution of the

associa ted file management job . For a given file management job , the execution of a running file
management task can be triggered in response to a client
IFsrmFileManagementJob::Run (section 3.2.4.2.48.41) request. At any given moment in time, there
can be at mos t one running file management task for every file management job configured on the

server.

The Running File Management Task is a task that runs continuously, in a loop, and monitors the
Running File Management Job Queue . Because the server maintains only o ne Running File
Management Job Queue , there is only one Running File Management Task on the server.

Whenever the Running File Management Job Queue is not empty, the task searches for one or
more Running Jobs in the queue for which the parent Non -persisted File Management Job Instance ï
identified by the Running Job.Parent reference ï has a Running status of

FsrmReportRunningStatus_Queued.

The task processes each such object by performing the following actions in sequence:

Á For the parent instance (as identif ied by the Running Job.Parent reference)

Á Set the Running status to FsrmReportRunningStatus_Running .

Á Set the Last run time to the current time.

Á Generate a unique file name prefix string, and store it in File Management Job.Last report
path without extension . See Reports (section 3.2.1.5.2) for information about how to

generate this prefix.

Á Scan the namespaces specified in the parent instance's Namespace Roots to obtain the list of files
within these namespaces. On each of these files, perform the File Condi tion, Property Condition,
Future Notification, Date Condition, Action, and Action Notification steps listed below in sequence
for each file:

Á File Condition step:

Á If the Running Job's Running Job.Cancel property is true, skip the File Condition,
Property C ondition, Future Notification, Date Condition, Action, and Action Notification
steps for all remaining files.

Á If the parent instance has File name pattern set to something other than Null and the
file name does not match the wildcard pattern (for more info rmation about matching
wildcard characters, see [MSDN -WLD]) in File name pattern , the server MUST skip the

108 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

rest of the File Condition, Property Condition, Future Notification, Date Condition, Action,
and Action Notification steps for this file.

Á Property Co ndition step (in sequence):

Á If the parent instance has one or more Property conditions as part of its Conditions ,

the following steps will be performed in sequence.

1. Perform the Retrieve stored classification properties for the file.

2. Perform the Generate ne w classification properties action for the file given the list of
Property Definition Instances from the previous action. If the property definition
instance.flags of any of the resulting Property Definition Instances contains
FsrmPropertyFlags_SetByClassi fier, add the file to the Report item list.

3. Perform the Store classification properties action for the file given the list of Property

Definition Instances from the previous action.

Á For each Property condition in the parent instance's Conditions , the serve r MUST

perform the following steps in sequence:

Á For the rest of this sequence, associated property definition instance will refer to
the Property Definition Instance in property definition instances where Property
condition.Name is equal to property definition instance.Name .

Á For the rest of this sequence, associated property definition will refer to the
property definition in the server's property definitions with the same Property
Definition.Name as the associated property definition.Name .

Á If Propert y condition.Type is FsrmPropertyConditionType_Unknown , an error
SHOULD be generated and the Future Notification, Date Condition, Action, and Action
Notification steps are skipped for this file.

Á If Property condition.Type is FsrmPropertyConditionType_Exist and there is an

associated property definition instance , the Future Notification, Date Condition,

Action, and Action Notification steps are skipped for this file.

Á If Property condition.Type is FsrmPropertyConditionType_Not exist and there is
an associated property definition instance , the Future Notification, Date
Condition, Action, and Action Notification steps are skipped for this file.

Á If Property condition.Type is FsrmPropertyConditionType_Equal , there is an
associated property definition instance , and the Property condition.Value is

equal to the associated property definition instance.Value , the Future
Notification, Date Condition, Action, and Action Notification steps are skipped for this
file.

Á If Property condition.Type is FsrmPropertyConditionType_N otEqual , there is an
associated property definition instance , and the Property condition.Value is not
equal to the associated property definition instance.Value , the Future

Notification, Date Condition, Action, and Action Notification steps are skipped for this

file.

Á If Property condition.Type is FsrmPropertyConditionType_LessThan and one or
more of the following are true, the Future Notification, Date Condition, Action, and
Action Notification steps are skipped for this file.

Á The associated property defini tion.Type is
FsrmPropertyDefinitionType_String , FsrmPropertyDefinitionType_Int ,

FsrmPropertyDefinitionType_Bool , or FsrmPropertyDefinitionType_Date

109 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

and associated property definition instance.Value is not less than Property
condition.Value .

Á The associated property definition.Type is
FsrmPropertyDefinitionType_OrderedList and associated property

definition instance.Value does not appear as a Property Value
Definition.Name before Property condition.Value in the associated property
definition.Possible values list.

Á The associated property definition.Type is
FsrmPropertyDefinitionType_Unknown ,
FsrmPropertyDefinitionType_SingleChoiceList , or
FsrmPropertyDefinitionType_MultiChoiceList .

Á If Property condition.Type is FsrmPropertyConditionType_GreaterThan and
one or more of the following are true, the Future Notification, Date Condition, Action,
and Action Notification steps are skipped for this file.

Á The associated property definition.Type is
FsrmPropertyDefinitionType_String , FsrmPropertyDefinitionType_Int ,
FsrmPropertyDefinitionType_Bool , or FsrmPropertyDefinitionType_Date

and associated property definition instance.Value is not greater than
Property condition.Value .

Á The associated property definition.Type is
FsrmPropertyDefinitionType_OrderedList and associ ated property
definition instance.Value does not appear as a Property Value
Definition.Name after Property condition.Value in the associated property
definition.Possible values list.

Á The associated property definition.Type is
FsrmPropertyDefinitionType_Unk nown ,
FsrmPropertyDefinitionType_SingleChoiceList, or
FsrmPropertyDefinitionType_MultiChoiceList .

Á If Property condition.Type is FsrmPropertyConditionType_Contain and one or
more of the following are true, the Future Notification, Date Condition, Action, an d
Action Notification steps are skipped for this file.

Á The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiChoiceList .

Á The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiString .

Á The associated propert y definition.Type is not
FsrmPropertyDefinitionType_MultiChoiceList or

FsrmPropertyDefinitionType_MultiString and associated property
definition instance.Value does not contain Property condition.Value .

Á If Property condition.Type is FsrmPropertyConditionType_ContainedIn and one
or more of the following are true, the Future Notification, Date Condition, Action, and
Action Notification steps are skipped for this file.

Á The associated property definition.Type is not
FsrmPropertyDefinition Type_MultiChoiceList .

Á The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiString .

110 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiChoiceList or

FsrmPropertyDefinitionType_MultiString and associated property
definition instance.Value is not contained in Property condition.Value .

Á If Property condition.Type is FsrmPropertyConditionType_StartWith and the
following is true, the Future Notification, Date Condition, Action, and Action
Notification steps ar e skipped for this file.

Á The associated property definition.Type is not
FsrmPropertyDefinitionType_String or associated property definition
instance.Value does not begin with Property condition.Value .

Á If Property condition.Type is FsrmPropertyConditionTyp e_EndWith and the

following is true, the Future Notification, Date Condition, Action, and Action
Notification steps are skipped for this file.

Á The associated property definition.Type is not

FsrmPropertyDefinitionType_String or associated property definitio n
instance.Value does not end with Property condition.Value .

Á If Property condition.Type is FsrmPropertyConditionType_PrefixOf and the

following is true, the Future Notification, Date Condition, Action, and Action
Notification steps are skipped for this fi le.

Á The associated property definition.Type is not
FsrmPropertyDefinitionType_String or associated property definition
instance.Value is not the prefix of Property condition.Value .

Á If Property condition.Type is FsrmPropertyConditionType_SuffixOf and the
following is true, the Future Notification, Date Condition, Action, and Action

Notification steps are skipped for this file.

Á The associated property definition.Type is not

FsrmPropertyDefinitionType_String or associated property definition
instance.Value is not the suffix of Property condition.Value .

Á Future Notification step:

Á For each of the parent instance's Notification periods , the server performs the following
steps in sequence:

Á If the notification period's Notification interval is 0, skip to the next Notification
period.

Á If the parent instance has Days since file created set to greater than
FsrmDateNotSpecified in its Conditions , and the sum of the file's creation date plus
the value of Days since file created minus the notifica tion period's Notification
interval is greater than the server's current date or less than the parent instance's

File Management Job.Last Run Time , skip to the next Notification period.

Á If the parent instance has Days since file last modified set to greate r than
FsrmDateNotSpecified in its Conditions , and the sum of the file's modification date
plus the value of Days since file last modified minus the notification period's
Notification interval is greater than the server's current date or less than the pare nt
instance's File Management Job.Last Run Time , skip to the next Notification
period.

Á If the parent instance has Days since file last accessed set to greater than
FsrmDateNotSpecified in its Conditions , and the sum of the file's last accessed date

111 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

plus th e value of Days since file last accessed minus the notification period's
Notification interval is greater than the server's current date or less than the parent

instance's File Management Job.Last Run Time , skip to the next Notification
period.

Á Run the not ifications in the notification period's Notification period.Notifications of
the parent instance.

Á Date Condition step:

Á If the parent instance has Days since file created set to greater than
FsrmDateNotSpecified in its Conditions , and the sum of the file's creation date plus the
value of Days since file created is greater than or equal to the server's current date,
skip the Action and Action Notification steps.

Á If the parent instance has Days since file last modified set to greater than
FsrmDateNotSpecifie d in its Conditions , and the sum of the file's modification date plus
the value of Days since file last modified is greater than or equal to the server's current

date, skip the Action and Action Notification steps.

Á If the parent instance has Days since fil e last accessed set to greater than
FsrmDateNotSpecified in its Conditions , and the sum of the file's last accessed date plus

the value of Days since file last accessed is greater than or equal to the server's
current date, skip the Action and Action Notif ication steps.

Á If the parent instance has From date set to greater than FsrmDateNotSpecified in its
Conditions , and From date is less than or equal to the current date/time, skip the Action
and Action Notification steps.

Á Action step:

Á If there were any erro rs in processing the file and the File Management

Job.Parameters of the parent instance do not include a value that starts with
"ActOnPartialClassification", the Action and Action Notification steps MUST be skipped

for this file.

Á If the Operation type of t he parent instance is set to
FsrmFileManagementType_Expiration , the server will move the file to the location
indicated by the Expiration directory of the parent instance.

Á If the Operation type of the parent instance is set to

FsrmFileManagementType_Custom , the server will run the Custom Action of the
parent instance (see section 3.2.4.4 , Running Notifications).

Á If File Management Job.Logging contains
FsrmFileManagementLoggingFlags_Error , the server logs any error that may have
occurred during the processing of the file in the file management job error log file.

Á If File Management Job.Logging contains

FsrmFileManagementLoggingFlags_Information , the server logs the file to the file

management job information log file.

Á If File Mana gement Job.Logging contains
FsrmFileManagementLoggingFlags_Audit , the server logs the file to the server's
event log.

Á Action Notification step:

112 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á If the parent instance has a notification period whose Notification interval is 0 as part of its
Notification pe riods , the server runs the notifications in the Notification

period.Notifications (see section 3.2.4.4) of that notification period.

Á If report enabled is true, generate the file management report in each format specified in

File Management Job.Formats , and store it in Reports directory .

Á Store all generated reports as files in Reports directory . All file names MUST begin with
the parent instance's File Management Job.Last report path without extension.

Á Send emails with the generated reports to the email add ress recipient list in the parent
instance's Non -Persisted File Management Job Instance's File Management Job.Mail to ,
as follows:

Á If the parent instance's Non -Persisted File Management Job Instance's File Management

Job.Mail to is an empty string, the ser ver MUST NOT email the report when the action is
run.

Á If the parent instance's Non -Persisted File Management Job Instance's File Management

Job.Mail to contains the string "[ADMIN EMAIL]", the server MUST send the report to the
Administrator email address (section 3.2.1.9) returned from IFsrmSetting::AdminEmail
(get) (section 3.2.4.2.11.5) , in addition to other email addresses in Mail to , when

emailing the report.

Á Set the parent instance's Last error to an empty string if no errors occurred or to a string
describing the error encountered.

Á Set the parent instance's Last generated in directory to Reports directory . If there is an
associated Persisted File Management job , also set that object's Last generated in directory to
the same value.

Á Set the parent instance's Running status to FsrmReportRunningStatus_NotRunning .

Á If File Management Job.Logging contains
FsrmFileManagementLoggingFlags_Information , the server persists the file management

job log file.

Á If File Management Job.Logging contain s FsrmFileManagementLoggingFlags_Error ,
the server persists the file management job error log file.

Á Remove the Running Job from the Running File Management Job Queue .

The order in which the task processes Running Job objects as previously described is not

deterministic. Also, the task can choose to process multiple Running Jobs in parallel or just one at a
time.

If the task is interrupted (for example, by IFsrmFileManagementJob::Cancel) while processing a
Running Job, the following steps will be performed i n sequence:

Á Complete the processing of the current file.

Á Set the parent instance's Running status to FsrmReportRunningStatus_NotRunning .

Á If File Management Job.Logging contains
FsrmFileManagementLoggingFlags_Information , the server persists the file manage ment job
log file.

Á If File Management Job.Logging contains FsrmFileManagementLoggingFlags_Error , the
server persists the file management job error log file.

Á Remove the Running Job from the Running File Management Job Queue .

113 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.12.4 Quota Scanning

When the server p erforms a quota scan on a Persisted Directory Quota (section 3.2.1.2.1.1), it
updates the Quota Usage of the directory quota by calculating the total amount of storage used by

all files and subfolders under the Folder Path of the directory quota. When runn ing a quota scan, the
server MUST perform the following steps:

1. Set the State of the directory quota to Rebuilding .

2. Calculate, recursively, the total disk space used by all files under the Folder Path of the directory
quota and in all subfolders of the Fold er Path .

3. Set the Quota Usage of the directory quota to the total from step 2.

4. Set the State of the directory quota to Complete .

3.2.1.12.5 Active Directory Synchronization

Synchronization of the property definition from Active Directory to the local machine happens a t
implementation -defined intervals. <51>

The following sequence of actions occurs during synchronization.

The Resource Property List name contained in ADSyncListName is used to synchronize the property

definitions from Active Directory.

1. The server MUST iterate through each of the Active Directory property definitions in the retrieved
resource property list. For each Active Directory property definition found in the resource
properties object whose Enabled attribute is set to true, the ser ver MUST perform the following
steps in sequence:

1. If there is a persisted property definition with the same property definition.GlobalGUID as
the objectGUID of the Active Directory property definition, refer to this as the Relevant

Property Definition . Oth erwise, the server MUST create a new persisted property definition

and add it to the List of Persisted Property Definitions . The new persisted property definition
should needs to be referred to as the Relevant Property Definition and be initialized as
follo ws:

1. Set FSRM Base Object.Id to the objectGUID of the Active Directory property definition.

2. Set Property Definition.Type to FsrmPropertyDefinitionType_Unknown .

3. Set Property Definition.Name to an empty string.

4. Set Property Definition.Deprecated to false.

5. Set Property Definition.Global to true.

6. Set Property Definition.AppliesTo to Files .

7. Set Property Definition.Secure to false.

8. Set Possible values to an empty list.

9. Set Property Definition.WhenChanged to never.

2. If whenChanged on the Active Directory property de finition is newer than Property
Definition.WhenChanged, perform the following steps:

1. The Property Definition.Type of the Relevant Property Definition is updated with the
msDS -ValueTypeReference of the Active Directory property definition:

114 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. If msDS -ValueType Reference is MS-DS-OrderedList , set Property Definition.Type to
FsrmPropertyDefinitionType_OrderedList.

2. If msDS -ValueTypeReference is MS -DS-MultivaluedChoice, set Property Definition.Type
to FsrmPropertyDefinitionType_MultiChoiceList.

3. If msDS -ValueTypeRefe rence is MS -DS-Text, set Property Definition.Type to
FsrmPropertyDefinitionType_String.

4. If msDS -ValueTypeReference is MS -DS-MultivaluedText, set Property Definition.Type
to FsrmPropertyDefinitionType_MultiString.

5. If msDS -ValueTypeReference is MS -DS-Number, set Property Definition.Type to
FsrmPropertyDefinitionType_Int.

6. If msDS -ValueTypeReference is MS -DS-YesNo, set Property Definition.Type to

FsrmPropertyDefinitionType_Bool.

7. If msDS -ValueTypeReference is MS -DS-DateTime, set Property Definition.Type to

FsrmP ropertyDefinitionType_Date.

2. If another persisted property definition exists on the server with a Property
Definition.Name matching the CN of the Active Directory property definition, the server
MUST perform the following steps:

1. Append the string "(deprecat ed)" to the name of that persisted property definition.

2. Set the Property Definition.Deprecated to true for that persisted property definition.

3. For any Report Jobs part of a Persisted Report Job that includes a filter of type
FsrmReportFilter_Property in its Filters whose value is the same as the Property
Definition.Name of that persisted property definition, set Report Job.Deprecated to
true.

4. For any Persisted Rule that has a Property Affected whose value is the same as the

Property Definition.Name of that persisted property definition, set Rule.Deprecated to
true.

5. For any Persisted File Management Jobs that has a Property Condition as part of its
Conditions whose Property Condition.Name is the same as the Property
Definition.Name of that persisted pro perty definition, set Rule.Deprecated to true.

3. The Property Definition.Name of the Relevant Property Definition is updated with the
CN of the Active Directory property definition.

4. The Property Definition.Display Name of the Relevant Property Definition is updated
with the displayName of the Active Directory property definition.

5. The FSRM Base Object.Description of the Relevant Property Definition is updated with
the description of the Active Directory property definition.

6. If the CN for the matching Property Definition.Name is FolderUsage_MS , FolderUsage list
is also updated so that each value in the msDS -ClaimPossibleValues of the matching

Active Directory Property Definition appears as part of a [FolderUsage_MS=<value>]

st ring in the FolderUsage List. Every item in the FolderUsage List whose <value> does not

appear in the msDS -ClaimPossibleValues of the matching Active Directory Property

Definition is removed from the FolderUsage List.

7. If the msDS -ValueTypeReferences of the Active Directory property definition is MS -DS-
OrderedList or MS -DS-MultivaluedChoice, the server MUST perform the following steps:

115 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. If the msDS -ClaimSharesPossibleValuesWith of the persisted property definition has a
value, refer to the msDS -ClaimPossibleV alues of the Active Directory property

definition whose CN matches the value in msDS -ClaimSharesPossibleValuesWith as the
Active Directory possible values for the following steps. Otherwise, msDS -

ClaimPossibleValues of the original Active Directory propert y definition will be referred
to as the Active Directory possible values for the following steps.

2. The persisted property definition is updated with the Active Directory possible values
by performing the following steps for each of its Active Directory poss ible value items
as follows (see section 2.3.5 for details on the format of Active Directory possible
values):

1. Create a new Property Value Definition object and set its properties as follows:

Á Property Value Definition.Name = Value from the Active Directory possible
value.

Á Property Value Definition.DisplayName = ValueDisplayName from the

Active Directory possible value.

Á Property Value Definition.Description = ValueDescription from the
Active Directory possible value.

Á Property Value Definition.UniqueId = Valu eGUID from the Active
Directory possible value.

2. Extend the Possible values array by one entry, and set it to the newly created
Property Value Definition object.

8. The AppliesTo of the Relevant Property Definition is updated with the msDS -
AppliesToResourceTyp es of the Active Directory property definition.

Á If the msDS -AppliesToResourceTypes of the Active Directory property definition

contains "Files", the Property Definition.AppliesTo of the Relevant Property
Definition MUST be set to Files ; if it contains "Folders", the Property

Definition.AppliesTo of the Relevant Property Definition MUST be set to Folders . If
it contains both, the Property Definition.AppliesTo of the Relevant Property
Definition MUST be set to Files and Folders .

9. The Prope rty Definition.Secure of the Relevant Property Definition is updated with the
msDS - IsUsedAsResourceSecurityAttribute of the Active Directory property definition.

2. If there is no objectGUID of the Active Directory property definition matching the GlobalGUID of
any persisted property definition in the local machine, the server MUST remove that persisted
property definition from the List of Persisted Property Definitions and perform the following steps:

1. For any Report Jobs part of a Persisted Report Job that in cludes a filter of type
FsrmReportFilter_Property in its Filters whose value is the same as the Property
Definition.Name of that persisted property definition, set Report Job.Deprecated to true.

2. For any Persisted Rule that has a Property Affected whose val ue is the same as the Property

Definition.Name of that persisted property definition, set Rule.Deprecated to true.

3. For any Persisted File Management Jobs that has a Property Condition as part of its
Conditions whose Property Condition.Name is the same as t he Property Definition.Name of
that persisted property definition, set Rule.Deprecated to true.

3. If the property definition.GlobalGUID of a persisted property definition is the same as the
objectGUID of the Active Directory property definition in Active Dir ectory whose Enabled attribute

116 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

is set to false, the server MUST remove that persisted property definition from the List of Persisted
Property Definitions and perform the following steps:

1. For any Report Jobs part of a Persisted Report Job that includes a fi lter of type
FsrmReportFilter_Property in its Filters whose value is the same as the Property

Definition.Name of that persisted property definition, set Report Job.Deprecated to true.

2. For any Persisted Rule that has a Property Affected whose value is the s ame as the Property
Definition.Name of that persisted property definition, set Rule.Deprecated to true.

3. For any Persisted File Management Jobs that has a Property Condition as part of its
Conditions whose Property Condition.Name is the same as the Property Definition.Name of
that persisted property definition, set Rule.Deprecated to true.

3.2.2 Timers

No timers are required.

3.2.3 Initialization

The server MUST register all FSRM protocol interfaces, as specified in [MS -RPCE] section 3.2.2.

For objects that are stored on volumes (see Message Processing Details (section 3.2.4.2)), the server
MUST create the following lists of persisted FSRM abstract data model objects, if the lists do not
already exist. When a new list is created, it is initialized to an empty list with no objects.

Quota Model (section 3.2.1.2) :

Á List of Persisted Directory Quotas

Á List of Persisted Auto Apply Quotas

File Screen Model (section 3.2.1.3) :

Á List of Persisted File Screens

Á List of Persisted File Screen Exceptions

The server MUST create a Volume List (section 3.2.1) that contains all volumes on the server. For

each volume that contains persisted FSRM information for objects st ored on volumes, see Message
Processing Details (section 3.2.4.2), the server MUST concatenate the following persisted object lists
with the corresponding persisted objects on the volume.

Quota Model (section 3.2.1.2):

Á List of Persisted Directory Quotas

Á List of Persisted Auto Apply Quotas

File Screen Model (section 3.2.1.3):

Á List of Persisted File Screens

Á List of Persisted File Screen Exceptions

Any persisted objects in the lists with the same folder path as a persisted object on the volume are
overwritte n by the persisted objects on the volume. For any persisted object in the lists of persisted
objects with a folder path that is not associated with a volume in the volume list, the server MUST
remove the persisted object from the persisted object list.

117 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For objects that are not stored on volumes (Message Processing Details (section 3.2.4.2)), the server
MUST create the following lists of persisted FSRM abstract data model objects, if the lists do not

already exist. When a new list is created, it is initializ ed to an empty list with no objects.

Quota Model (section 3.2.1.2):

Á List of Persisted Directory Quota Templates

File Screen Model (section 3.2.1.3):

Á List of Persisted File Screen Templates

Á List of Persisted File Groups

Storage Reports Model (section 3.2.1. 5) :

Á List of Persisted Report Jobs

For any Report Job in the List of Persisted Report Jobs that has a Report as part of its Report

Job.Reports where the Filters contain the FsrmReportFilter_Property filter and the filter value does
not have the same value a s the Name of a Property Definition in List of Persisted Property Definitions
or where the matching Property Definition has its Property Definition.Deprecated set to true, the
server MUST set the corresponding Report.Deprecated to true.

Classification Mode l (section 3.2.1.6):

Á List of Persisted Property Definitions

Á List of Persisted Module Definitions

Á List of Persisted Rules

For any Rule in the List of Persisted Rules where the Property affected does not have the same value
as the Name of a Property Definition in List of Persisted Property Definitions or where the matching
Property Definition has its Property Definition.Deprecated property set to true, the server MUST set

the Rule.Deprecated parameter to true.

For each rule in the List of Persisted Rules, the server SHOULD <52> do the following:

Á If Rule Type is Classification, ClearProperty is set to false.

Á Rule.ClearAutoProperty is set based on local configuration policy.

Á Rule.ClearManualProperty is set based on local configuration polic y.

File Management Model (section 3.2.1.7) :

Á List of Persisted File Management Jobs

For any File Management Job in the List of Persisted File Management Jobs where Property
Conditions has a Property condition whose Name does not have the same value as the Name of a

Property Definition in List of Persisted Property Definitions or where the matching Property Definition

has its Property Definition.Deprecated set to true, the server MUST set the File Management
Job.Deprecated parameter to true.

The server MUST create the following singular FSRM abstract data model objects if the objects do not
already exist. When a new object is created, it is initialized with the specified data.

Classification Model (section 3.2.1.6):

Á A Classification Job, referred to as the De fault Classification Job

118 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Classification Job.Formats is set to an empty array.

Á Generate classification report is set to false.

Á Classification Job.Mail to is set to an empty string.

Á Classification Job.Logging is set to 0.

Á Classification Job.Last error is set to an empty string.

Á Last generated path is set to an empty string.

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 Sequencing Rules

Responding to Quota Events : If a Quota Event (section 3.2.7.1) occurs, the server MUST run
(section 3.2.4.4) each Notifications (Actions) (section 3.2.1.2.1) associated with the threshold of

the quota that caused the Quota Event. The server MUST NOT ru n any actions that cannot be

associated with the threshold of the quota that caused the event. If the quota's ratio of Quota usage
to Quota limit is greater than or equal to one, and if the quota's Quota limit mode is set to Hard
quota , the server MUST fai l the I/O operation.

Responding to Quota Usage Update Events : If a Quota Usage Update Event (section 3.2.7.2)
occurs, the server MUST update the Quota usage of the quota with the size of the I/O operation. The
server MUST process Quota Usage Update Events before processing Peak Quota Usage Events .

Responding to Peak Quota Usage Events : If a Peak Quota Usage Event (section 3.2.7.3) occurs,

the server MUST set the Peak quota usage of the Persisted Directory Quota (section 3.2.1.2.1.1)
representing the quota t hat caused the Peak Quota Usage Event to the current Quota usage of the
quota. The server MUST also set the Peak quota usage time stamp of the Persisted Directory Quota
to the current time.

Responding to File Screen Events : If a File Screen Event (section 3.2.7.4) occurs, the server MUST
run (section 3.2.4.4) each Notification (Actions) (section 3.2.1.3.1) associated with the File

Screen (section 3.2.1.3.1) that caused the File Screen Event. If the File screen mode is set to Hard
screen , then the File Scree n will block file I/O that violates the File Screen. If the File screen mode
is set to Soft screen , then the File Screen will not block file I/O that violates the File Screen. If
Enable file screen audit (section 3.2.1.9) is set to true, the server MUST store an audit record for
each File Screen prohibited file so that the record can be scanned later and presented in a File Screen
Audit report. For details about the audit log record requirements, see section 3.2.1.3.1.

Responding to Directory Creation Eve nts : If a Directory Creation Event (section 3.2.7.5) occurs,

the server MUST create a Persisted Directory Quota for the new subdirectory and add it to the List of
Persisted Directory Quotas (section 3.2.1.2). The new Persisted Directory Quota MUST have the
same properties as the Auto Apply Quota (section 3.2.1.2.2) that caused the Directory Creation Event,
with the following exceptions:

Á The server MUST set the Folder path to the directory that caused the Directory Creation Event.

Á The server MUST set the Aut o apply quota id to the ID of the Auto Apply
Quota (section 3.2.1.2.2) that caused the Directory Creation Event.

Á Peak quota usage is set to zero.

Á Peak quota usage time stamp is set to the current time.

Á Quota usage is set to zero.

119 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Quota state is set to incomplete.

After creating the new Persisted Directory Quota, the server MUST start a quota scan (section

3.2.1.12.4) for the new Persisted Directory Quota and add it to the List of Persisted Directory
Quotas .

Responding to Directory Deletion Ev ents : If a Directory Deletion Event (section 3.2.7.6) occurs,
the server MUST remove from the associated list any of the following objects configured with the
deleted directory as their Folder path :

Á Any Persisted Directory Quota for the deleted directory M UST be removed from the List of
Persisted Directory Quotas .

Á Any Persisted Auto Apply Quota (section 3.2.1.2.2.1) for the deleted directory MUST be removed
from the List of Persisted Auto Apply Quota (section 3.2.1.2.2).

Á Any Persisted File Screen (section 3.2.1.3.1.1) for the deleted directory MUST be removed from
the List of Persisted File Screen (section 3.2.1.3.1).

Á Any Persisted File Screen Exception (section 3.2.1.3.2.1) for the deleted directory MUST be
removed from the List of Persisted File Screen Exc eptions (section 3.2.1.3.2).

Any non -persisted objects with the deleted directory configured as their Folder path MUST NOT be
changed. Any persisted or non -persisted object where the deleted directory is a value in the

namespace roots of the object MUST NO T be changed. Any Persisted Auto Apply Quota where the
deleted directory is a value of the Exclude folders MUST NOT be changed.

Responding to Directory Rename Events : If a Directory Rename Event (section 3.2.7.7) occurs,
the server MUST update the Folder p ath of any Persisted Directory Quotas, Persisted Auto Apply
Quota, Persisted File Screens, or Persisted File Screen Exceptions where the Folder path equals the
old directory path, to the new directory path, without any manual configuration changes from the
client. Any non -persisted objects with the renamed directory configured as their Folder path MUST

NOT be changed. Any persisted or non -persisted object where the renamed directory is a value in the
namespace roots of the object MUST NOT be changed. Any Pe rsisted Auto Apply Quota where the

renamed directory is a value of the Exclude folders MUST NOT be changed.

Responding to Volume Discovery Events : If a Volume Discovery Event (section 3.2.7.8) occurs,
the server MUST add the volume to the Volume List (section 3.2.1). If the server has previously
stored Persisted Directory Quotas on that volume, the server MUST concatenate the List of Persisted
Directory Quotas with the Persisted Directory Quotas on the volume. If the server has previously

stored Persi sted Auto Apply Quota on that volume, the server MUST concatenate the List of
Persisted Auto Apply Quotas with the Persisted Auto Apply Quota on the volume. If the server has
previously stored Persisted File Screens on that volume, the server MUST concaten ate the List of
Persisted File Screens with the Persisted File Screens on the volume. If the server has previously
stored Persisted File Screen Exceptions on that volume, the server MUST concatenate the List of
Persisted File Screen Exceptions with the Per sisted File Screen Exceptions on the volume.

Responding to Volume Removal Events : If a Volume Removal Event (section 3.2.7.9) occurs, the
server MUST remove the volume from the Volume List . If there are any Persisted Directory Quotas
with a Folder path on the volume, the server MUST remove the Persisted Directory Quota from the

List of Persisted Directory Quotas . If there are any Persisted Auto Apply Quotas with a path on the
volume, the server MUST remove the Persisted Auto Apply Quota from the List of Pe rsisted Auto
Apply Quotas . If there are any Persisted File Screens with a path on the volume, the server MUST
remove the Persisted File Screen from the List of Persisted File Screens . If there are any Persisted

File Screen Exceptions with a path on the vol ume, the server MUST remove the Persisted File Screen
Exceptions from List of Persisted File Screen Exceptions . Any Non - Persisted Directory Quotas ,
Non - Persisted Auto Apply Quotas , Non - Persisted File Screens , or Non - Persisted File Screen
Exceptions that ha ve a Folder path on the removed volume MUST NOT be removed from any lists of
non -persisted objects they are a member of.

120 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.4.2 Message Processing Details

Before processing any of the following methods, the server SHOULD obtain identity and authorization
informat ion for the client from the underlying DCOM or RPC runtime to verify that the client has

sufficient permissions to create, modify, or delete the object as appropriate. These methods SHOULD
impose an authorization policy decision before performing the funct ion. The suggested minimum
requirement is that the caller has permission to create, modify, or delete the object as appropriate.

All FSRM protocol interfaces inherit the IDispatch interface. Method opnum field values for all FSRM
protocol interfaces start with 7; opnum values 0 through 6 represent the following methods:

Á IUnknown:: QueryInterface (Opnum 0)

Á IUnknown:: AddRef (Opnum 1)

Á IUnknown:: Release (Opnum 2)

Á IDispatch::GetTypeInfoCount (Opnum 3)

Á IDispatch::GetTypeInfo (Opnum 4)

Á IDispatch::GetIDsOfNames (Opn um 5)

Á IDispatch::Invoke (Opnum 6)

To retrieve an interface of a particular object, call the QueryInterface method on the object's DCOM

IUnknown interface. Details are specified in [MS -DCOM] and [MS -OAUT] .

Unless otherwise specified, all methods MUST return zero on success, or a nonzero error code on
failure. Unless otherwise specified as follows, client implementations of the protocol MUST NOT take
any action on an error code but rather simply return the error to the invoking application.

All methods of all interfaces MUST be implemented, except the following list, which SHOULD be
implemented:

Á IFsrmCollection::GetById (section 3.2.4.2.1.7)

Á IFsrmMutableCollection::RemoveById (section 3.2.4.2.2.3)

And the following list, which MAY be implemented:

Á IFsrmCollection::WaitForCompletion (section 3.2.4.2.1.6)

Á IFsrmCollection::Cancel (section 3.2.4.2.1.5)

Á IFsrmMutableCollection::Clone (section 3.2.4.2.2.4)

Á IFsrmQuotaObject::UserSid (get) (section 3.2.4.2.15.3)

Á IFsrmQuotaObject::UserAccount (get) (section 3.2.4.2.15.4)

Á IFsrmFileScreen:: UserSid (get) (section 3.2.4.2.27.5)

Á IFsrmFileScreen:: UserAccount (get) (section 3.2.4.2.27.6)

parameter strings : The format of the client -supplied parameter strings is driven by the purpose of
the parameter strings in providing additional descriptions or parameters specific to the object to which
the parameter strings apply. Each string is of the format "name=value", where "name" and "value"
are placeholders for text supplied by the client but each string is not further broken down into

individual "name" and "value" pieces.

121 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

mailTo string : The form of the mailTo string (sections 3.2.4.2.5.5 to 3.2.4.2.5.10 , 3.2.4.2.7.3 ,
3.2.4.2.7.4 , 3.2.4.2.34.8 , 3.2.4.2.34.9 , 3.2.4.2.45.5 , 3.2.4.2.45.6 , 3.2.4.2.48.20 , and 3.2. 4.2.48.21)

is "email_address1;email_address2", where two or more email addresses are separated by
semicolons. If only one email address is specified, no semicolon is needed.

illegal name characters : The set of illegal name characters includes the following : comma ",", single
quotation mark "'", double quotation mark """, and the vertical bar "|". Method parameters will state if
illegal name characters are not allowed.

illegal pattern characters : The set of illegal pattern characters includes the following: double
quotation mark """, backward slash " \ ", forward slash "/", colon ":", less than "<", greater than ">",
and the vertical bar "|". Method parameters will state if illegal pattern characters are not allowed.

objects stored on volumes : The only FSRM obj ects that are stored on volumes include the

following:

Á Directory Quotas (section 3.2.1.2.1)

Á Auto Apply Quotas (section 3.2.1.2.2)

Á File Screens (section 3.2.1.3.1)

Á File Screen Exceptions (section 3.2.1.3.2)

The storage location is not dictated for all othe r FSRM objects, which include the following:

Á Directory Quota Templates (section 3.2.1.2.3)

Á File Screen Templates (section 3.2.1.3.3)

Á File Groups (section 3.2.1.3.4)

Á Report Jobs (section 3.2.1.5.1)

Á Report Settings (section 3.2.1.5.3)

Á Property Definitions (s ection 3.2.1.6.1)

Á Module Definitions (section 3.2.1.6.2)

Á Rules (section 3.2.1.6.3)

Á Classification Job (section 3.2.1.6.4)

Á File Management Job (section 3.2.1.7.1)

Á General Settings (section 3.2.1.9)

3.2.4.2.1 IFsrmCollection Methods

The IFsrmCollection interface inherits the IDispatch interface. Method opnum field values start with

7. Opnum values 0 through 2 represent the IUnknown:: QueryInterface , IUnknown:: AddRef , and

IUnknown:: Release methods as specified in [MS -DCOM] , while opnum values 3 through 6 represent
the IDispatch::GetTypeInfoCount, IDispatch::GetTypeInfo, IDispatch::GetIDsOfNames, and
IDispatch::Invoke methods as specified in [MS -OAUT] .

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {f76fbf3b -8ddd -4b42 -b05a -cb1c3ff1fee8}.

Methods in RPC Opnum Order

122 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Method Description

_NewEnum Opnum: 7

Item Opnum: 8

Count Opnum: 9

State Opnum: 10

Cancel Opnum: 11

WaitForCompletion Opnum: 12

GetById Opnum: 13

3.2.4.2.1.1 _NewEnum (Opnum 7)

The _NewEnum method creates a new collection of Objects Being Enumerated .

 [propget, id(DISPID_NEWENUM), restricted] HRESULT _NewEnum(

 [out, retval] IUnknown** unknown

);

unknown: Pointer to an IUnknown interface pointer. Upon succ essful completion, receives the
IUnknown pointer of a new IEnumVARIANT enumeration for the items in the collection of Objects
Being Enumerated . The returned object MUST implement the IEnumVARIANT interface and

support enumeration methods on the same data a s the IFsrmCollection object. See [MS -OAUT] for
IEnumVARIANT protocol documentation.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80004003

E_POINTER

The unknown parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that IUnknown is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set IUnknown to the IUnk nown interface of a new IEnumVARIANT enumeration

that contains pointers to all the Objects Being Enumerated in the collection.

3.2.4.2.1.2 Item (get) (Opnum 8)

The Item method returns a pointer to the object at the requested position in the collection of Objects
Being Enumerated .

 [propget, id(DISPID_VALUE)] HRESULT Item(

 [in] long index,

 [out, retval] VARIANT* item

);

123 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

index: The position of the item in the collection of Objects Being Enumerated to return.

item: Pointer to a VARIANT structure. Upon successful completion, receives the pointer to the

IDispatch interface for the object.

Return Values: The method MUST return zero o n success, or a nonzero error code on failure.

Return value/code Description

0x80004003

E_POINTER

The item parameter is NULL.

0x80131502

COR_E_ARGUMENTOUTOFRANGE

The value of the index parameter is greater than the number of
Objects Being Enumerated in t he collection.

Upon receiving this message, the server MUST validate parameters:

Á Verify that index is not greater than the number of Objects Being Enumerated in the collection.

Á Verify that item is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set item to the IDispatch interface of the corresponding object at the index location

in the collection of Objects Being Enumerated .

3.2.4.2.1.3 Count (get) (Opnum 9)

The Count m ethod returns the number of objects in the collection of Objects Being Enumerated .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_COLLECTION | 0x01))] HRESULT Count(

 [out, retval] long* count

);

count: Pointer to a variable that upon successful completion receiv es the number of objects in the
collection of Objects Being Enumerated .

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The count parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that count is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set count to the number of objects in the collection of Objects Being Enumerated .

3.2.4.2.1.4 State (get) (Opnum 10)

The State method returns the state FsrmCollectionState_Complete.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_COLLECTION | 0x02))] HRESULT State(

124 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [out, retval] FsrmCollectionState* state

) ;

state: Pointer to a variable that upon completion contains the state FsrmCollectionState_Complete.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The state parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that state is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set state to FsrmCollection State_Complete.

3.2.4.2.1.5 Cancel (Opnum 11)

The Cancel method returns S_OK.

 [id(FSRM_DISPID_COLLECTION | 0x01)] HRESULT Cancel();

This method has no parameters.

Return Values: The method MUST return S_OK. <53>

3.2.4.2.1.6 WaitForCompletion (Opnum 12)

The WaitForCompletion method limits the time that an asynchronous collection can take to collect the
objects. <54>

 [id(FSRM_DISPID_COLLECTION | 0x02)] HRESULT WaitForCompletion(

 [in] long waitSeconds,

 [out, retval] VARIANT_BOOL* completed

);

waitSeconds: This parameter is ignored.

completed: Pointer to VARIANT_BOOL that upon successful completion contains VARIANT_TRUE.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The completed parameter is NULL

Upon receiving this message, the server MUST validate parameters:

Á Verify that completed is not NULL.

125 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If any validation fails, the server MUST terminate processing and return a no nzero error code.

The server MUST set completed to VARIANT_TRUE.

3.2.4.2.1.7 GetById (Opnum 13)

The GetById method returns the object from the collection of Objects Being Enumerated (section
3.2.1.11) whose ID matches the specified id .

 [id(FSRM_D ISPID_COLLECTION | 0x03)] HRESULT GetById(

 [in] FSRM_OBJECT_ID id,

 [out, retval] VARIANT* entry

);

id: The ID to use for identifying the object to be returned.

entry: Pointer to a VARIANT structure. Upon successful completion, it SHOULD contain the IDispatch

interface of the object from the collection of Objects Being Enumerated whose ID matches the
specified id .

Return Values: The method MUST return zero on success, or a nonzero error cod e on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified ID was not found in the collection.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

Á The entry parameter is NULL.

Á The objects in the collection of Objects Being Enumerated are not one of the
following interfaces: IFsrmFileScreen , IFsrmFileScreenException ,
IFsrmFileScreenTemplate , IFsrmFileGroup , IFsrmQuota ,
IFsrmQuotaTemplate , IFsrmAction , IFsrmReportJob , IFsrmReport ,
IFsrmClassifcationRule , IFsrmPropertyDefinition ,
IFsrmPipelineModuleDefinition or IFsrmFileManagementJob .

Upon receiving this message, the server MUST validate parameters:

Á Verify that entry is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following:

Á Set entry to the IDispatch interface of the object whose ID matches the value of the id parameter.

Á If no object in the collection of Objects Being Enumerated has an ID tha t matches the specified
id , the server SHOULD return FSRM_E_NOT_FOUND.

Á The server SHOULD return E_INVALIDARG if the objects in the collection of Objects Being
Enumerated are not one of the following interface types: IFsrmFileScreen ,
IFsrmFileScreenExceptio n , IFsrmFileScreenTemplate , IFsrmFileGroup , IFsrmQuota ,

IFsrmQuotaTemplate , IFsrmAction , IFsrmReportJob , IFsrmReport ,
IFsrmClassifcationRule , IFsrmPropertyDefinition , IFsrmPipelineModuleDefinition or
IFsrmFileManagementJob .

3.2.4.2.2 IFsrmMutableCollection Methods

126 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The IFsrmMutableCollection interface inherits the IFsrmCollection interface (section 3.2.4.2.1).
Method opnum field values start with 14.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {1bb617b8 -3886 -49dc -af82 -a6c90fa35dda}.

Methods in RPC Opnum Order

Method Description

Add Opnum: 14

Remove Opnum: 15

RemoveById Opnum: 16

Clone Opnum: 17

3.2.4.2.2.1 Add (Opnum 14)

The Add method adds the specified object to the collection of Objects Being Enumerated .

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x01)] HRESULT Add(

 [in] VARIANT item

);

item: A VARIANT structure that contains the IDispatch interface of the object to add to the collection
of Objects Being Enumerated .

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045303

FSRM_E_ALREADY_EXISTS

The object pointed to by the IDispatch pointer that is contained in the
VARIANT structure already exists in the collect ion of Objects Being
Enumerated .

0x80070057

E_INVALIDARG

The item parameter is not a value type.

Upon receiving this message, the server SHOULD validate parameters:

Á Verify that the object pointed to by the IDispatch pointer contained in the VARIANT structure is
the same type of object as other Objects Being Enumerated in the collection.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST add item to the collection of Objects Being Enumerated .

3.2.4.2.2.2 Remove (Opnum 15)

The Remove method removes an object from the collection of Objects Being Enumerated .

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x02)] HRESULT Remove(

 [in] long index

);

127 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

index: Contains the position of the object to remove from the collection of Objects Being
Enumerated .

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Descript ion

0x80070057

E_INVALIDARG

The index is out of range; the index is less than one or greater than the size of the
collection.

Upon receiving this message, the server MUST validate parameters:

Á Verify that index is between one and the number of Objects Being Enumerated in the collection,
inclusively.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST remove the object at position index .

3.2.4.2.2.3 RemoveById (Opnum 16)

The RemoveBy Id method removes from the collection of Objects Being Enumerated the object

whose ID matches the specified id .

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x03)] HRESULT RemoveById(

 [in] FSRM_OBJECT_ID id

);

id: The ID to match for identifying the object to be removed.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified ID was not found in the collection.

The server MUST remove the matching item from the collection of Objects Being Enumerated or

return a nonzero error code.

If no object in the collection of Objects Being Enumerated has an ID that matches the specified id ,
return FSRM_E_NOT_FOUND.

If the Obj ects Being Enumerated contained in the collection of Objects Being Enumerated are
not VT_UNKNOWN or VT_DISPATCH types, return E_INVALIDARG.

3.2.4.2.2.4 Clone (Opnum 17)

The Clone method returns a copy of the collection of Objects Being Enumerated .

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x04)] HRESULT Clone(

 [out, retval] IFsrmMutableCollection** collection

);

128 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

collection: Pointer to an IFsrmMutableCollection interface pointer (section 3.2.4.2.2) that upon
successful completion contains the IFsrmMutab leCollection pointer of a copy of this collection of

Objects Being Enumerated .

Return Values: The method MUST return a nonzero error code. Upon receiving this message, the

server MUST return E_NOTIMPL.

3.2.4.2.3 IFsrmCommittableCollection Methods

The IFsrmCommittabl eCollection interface inherits the IFsrmMutableCollection interface (section
3.2.4.2.2). Method opnum field values start with 18.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {96deb3b5 -8b91 -4a2 a-9d93 -80a35d8aa847}.

Methods in RPC Opnum Order

Method Description

Commit Opnum: 18

3.2.4.2.3.1 Commit (Opnum 18)

The Commit method commits all the Objects Being Enumerated of the collection and returns an
array of HRESULTs corresponding to the result returned when committing each individual object.

 [id(FSRM_DISPID_COLLECTION_COMMITTABLE | 0x01)] HRESULT Commit(

 [in] FsrmCommitOptions options,

 [out, retval] IFsrmCollecti on** results

);

options: A combination of FsrmCommitOptions (section 2.2.1.2.6) to use when committing the

collection of Objects Being Enumerated .

results: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon successful
completion contains the array of HRESULTs that correspond to the HRESULT received when
committing each individual object in the collection of Objects Being Enumerated .

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return v alue/code Description

0x80045304

FSRM_S_PARTIAL_BATCH

Not all objects in the collection could be committed.

0x80045311

FSRM_E_NOT_SUPPORTED

Options can only be FsrmCommitOptions_None.

0x80070057

E_INVALIDARG

The results parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that options contains a valid set of FsrmCommitOptions (section 2.2.1.2.6) values. If
options is not FsrmCommitOptions_None , the parameter MUST be considered an invalid value.

129 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Verify that results is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST commit each of the objects in the collection, saving the HRESULTs for each object in
the results collection.

3.2.4.2.4 IFsrmAction Methods

The IFsrmAction interface provides methods that are the base interface for all action objects.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {6cd6408a -ae60 -463b -9ef1 -e117534d69dc}.

This DCOM interface inherits the IDispatch interface. Method opnum field values start with 7. Opnum
values 0 through 2 represent the IUnknown:: QueryInterface , IUnknown:: AddRef , and

IUnknown:: Release methods as specified in [MS -DCOM] , while opnum values 3 throug h 6 represent
the IDispatch::GetTypeInfoCount, IDispatch::GetTypeInfo, IDispatch::GetIDsOfNames, and

IDispatch::Invoke methods as specified in [MS -OAUT] .

Methods in RPC Opnum Order

Method Description

Id (get) Opnum: 7

ActionType (get) Opnum: 8

RunLimitI nterval (get) Opnum: 9

RunLimitInterval (get) Opnum: 10

Delete Opnum: 11

3.2.4.2.4.1 Id (get) (Opnum 7)

The Id (get) method returns the read -only ID of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x01))] HRESULT Id(

 [out, retval] FSRM_OBJECT_ID* id

);

id: Pointer to a variable that upon completion contains the ID of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The id parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that id is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

130 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server MUST set id to the Notification.Id of the action.

3.2.4.2.4.2 ActionType (get) (Opnum 8)

The ActionType (get) method returns the read -only action type property of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x02))] HRESULT ActionType(

 [out, retval] FsrmActionT ype* actionType

);

actionType: Pointer to a variable that upon completion contains the action type of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The actionType parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that actionType is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set actionType to the action type of the action.

3.2.4.2.4.3 RunLimitInterval (get) (Opnum 9)

The RunLimitInterval (get) method returns the run limit interval property of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x03))] HRESULT RunLimitInterval(

 [out, retval] long* minutes

);

minutes: Pointer to a variable that upon completion contains the run limit interval of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

The minutes parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that minutes is not NULL.

If any validation fails, the server MUST terminate processing and ret urn a nonzero error code.

The server MUST do one of the following:

Á If the run limit interval is set to -1, set minutes to the general setting's run limit interval for
this type of action (SetActionRunLimitInterval (section 3.2.4.2.11.12)).

131 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á If the run limit interval is greater than -1, set minutes to the run limit interval .

3.2.4.2.4.4 RunLimitInterval (put) (Opnum 10)

The RunLimitInterval (put) method sets the run limit interval for the object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x03))] HRESULT RunLimitInterval(

 [in] long minutes

);

minutes: Contains the run limit interval to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x800700 57

E_INVALIDARG

The minutes parameter is not a valid value; it must be greater than -2.

Upon receiving this message, the server MUST validate parameters:

Á Verify that minutes is greater than -2.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use minutes as the run limit interval for this action.

When determining if an action MUST be run, the server MUST do the following:

Á If minutes is -1, the server MUST use the general setting's run limit inte rval for this type of
action (SetActionRunLimitInterval (section 3.2.4.2.11.12)).

Á If minutes is 0, the server MUST run the action for each quota or file screen event.

Á If minutes is greater than 0, the server MUST wait for the specified number of minutes be fore
running the same action for a quota or file screen event on the same disk directory path.

3.2.4.2.4.5 Delete (Opnum 11)

The Delete method removes the action object from the parent object's list of actions and returns S_OK
upon successful comp letion.

 [id(FSRM_DISPID_ACTION | 0x01)] HRESULT Delete();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST remove the action from the parent object's list of actions o r return a nonzero
error code.

3.2.4.2.5 IFsrmActionEmail Methods

The IFsrmActionEmail interface implements all the methods of the IFsrmAction interface (section
3.2.4.2.4), as well as those listed in the following table.

132 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Methods in RPC Opnum Order

Method Descriptio n

MailFrom (get) Opnum: 12

MailFrom (put) Opnum: 13

MailReplyTo (get) Opnum: 14

MailReplyTo (put) Opnum: 15

MailTo (get) Opnum: 16

MailTo (put) Opnum: 17

MailCc (get) Opnum: 18

MailCc (put) Opnum: 19

MailBcc (get) Opnum: 20

MailBcc (put) Opnum: 21

MailSubject (get) Opnum: 22

MailSubject (put) Opnum: 23

MessageText (get) Opnum: 24

MessageText (put) Opnum: 25

3.2.4.2.5.1 MailFrom (get) (Opnum 12)

The MailFrom (get) method returns the mail from property of the action. The MailFrom string
parameter contains the address used as the sender of email generated by this action. The format of
the email address should has to be as specified in [RFC5322] .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x01))] HRESULT MailFrom(

 [out, re tval] BSTR* mailFrom

);

mailFrom: Pointer to a variable that upon completion contains the mail from value of the object. The
maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailFrom parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailFrom is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

133 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server MUST set mailFrom to the mail from email address of the action.

If the email address contains the special string "[ADMIN_EMAIL]", the server MUST return the email

address without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.2 MailFrom (put) (Opnum 13)

The MailFrom (put) method sets the mail from property of the action. The mailFrom string parameter
value will be used as the sender of email generated by this action. The format of the email address
should has to be as specified in [RFC5322] .

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x01))] HRESULT MailFrom(

 [in] BSTR mailFrom

);

mailFrom: Contains the mail from email address to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the ma ilfFrom parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailFrom parameter is NULL.

The server MUST use mailFrom as the mail from address for email generated by this action or return
a nonzero error code.

If mailFrom contains the string "[ADMIN EMAIL]", the server MUST store that string instead of
replacing it with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.3 MailReplyTo (get) (Opnum 14)

The MailReplyTo (get) method returns the mail reply to property of the action. The MailReplyTo
string parameter value will show up as the reply to address of email generated by this action. The
format of the email address should has to be as specified in [RFC5322] .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x02))] HRESULT MailReplyTo(

 [out, retval] BSTR* mailReplyTo

);

mailReplyTo: A pointer to a variable that, upon completion, contains the mail reply to email
address of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailReplyTo parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailReplyTo is not NULL.

134 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailReplyTo to the mail reply to email address of the object.

If the list of email recipients contains the special string "[ADM IN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.4 MailReplyTo (put) (Opnum 15)

The MailReplyTo (put) method sets the mail reply to property of the action. The mailReplyTo string
parameter value will show up as the address to use when replying to the email generated by this
action. The format of the email address should has to be as specified in [RFC5322] .

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x02))] HRESULT MailReplyTo(

 [in] BSTR mailReplyTo

);

mailReplyTo: Contains the mail reply to email address to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailRelyTo parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailReplyTo parameter is NULL.

The server MUST use mailReplyTo as the mail reply to address for email generated by thi s action or

return a nonzero error code.

If mailReplyTo contains the string "[ADMIN EMAIL]", the server MUST store that string instead of

replacing it with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.5 MailTo (get) (Opnum 16)

The MailTo (get) method returns the mail to property of the action. The mailTo parameter value is the
list of email addresses to which the email generated by this action will be sent. The format of the

email address should has to be as specified in [RFC5322] .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x03))] HRESULT MailTo(

 [out, retval] BSTR* mailTo

);

mailTo: Pointer to a variable that upon completion contains the email recipient list to which the email

generated by this action will be se nt. The string returned in mailTo MUST be in the form of a

mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailTo parameter is NULL.

135 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailTo to the mail to list of email addresses of the action.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN _EMAIL]" macro.

3.2.4.2.5.6 MailTo (put) (Opnum 17)

The MailTo (put) method sets the mail to property of the action. The mailTo string parameter value
will be used as the list of addresses to send the email generated by this action. The format of the
email address should has to be as specified in [RFC532 2] .

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x03))] HRESULT MailTo(

 [in] BSTR mailTo

);

mailTo: Contains the list of email addresses to use for this action. The string in mailTo MUST be in the
form of a mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailTo parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVAL IDARG

The mailTo parameter is NULL.

The server MUST use mailTo as the mail to addresses of email generated by this action or return a
nonzero error code.

If mailTo contains the string "[ADMIN EMAIL]", the server MUST store that string instead of replacing
it with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.7 MailCc (get) (Opnum 18)

The MailCc (get) method returns the list of carbon copy (CC) email addresses property of the action.
The mailCc parameter value is the list of CC email addresses to which the email generated by this
action will be sent. The format of the email address should has to be as specified in [RFC5322] .

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x04))] HRESULT MailCc(

 [out, retval] BSTR* mailCc

);

mailCc: A pointer to a variable that, upon completion, contains the mail cc list of email addresses of
the action. The string returned in mailCc MUST be in the form of a mailTo string (section
3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

136 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return
value/code Description

0x80070057

E_INVALIDARG

The mailCc parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailCc is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailCc to the mail cc list of email addresses of the action.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.8 MailCc (put) (Opnum 19)

The MailCc (put) method sets the mail c c property of the action. The mailCc string parameter value is
used as the list of CC addresses to send the email generated by this action. The format of the email
address should has to be as specified in [RFC5322] .

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x04))] HRESULT MailCc(

 [in] BSTR mailCc

);

mailCc: Contains the mail cc list of email addresses to use for this action. The string in mailCc MUST
be in the form of a mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the MailCc parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailCc parameter is NULL.

The server MUST use mailCc as the mail cc addresses of email generated by this action or return a
nonzero error code.

If mailCc contains the string "[ADMIN EMAIL]", the server MUST send the email to the Administrator
email address setting (section 3.2.1.9) .

3.2.4.2.5.9 MailBcc (get) (Opnum 20)

The MailBcc (get) method returns the list of blind carbon copy (BCC) email addresses property of the
action. The mailBcc parameter value is the list of BCC email addresses to which the email generated
by thi s action will be sent. The format of the email address should has to be as specified in [RFC5322] .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x05))] HRESULT MailBcc(

 [out, retval] BSTR* mailBcc

);

137 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

mailBcc: Pointer to a variable that upon compl etion contains the mail bcc list of email addresses of
the action. The string returned in mailBcc MUST be in the form of a mailTo string (section

3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
va lue/code Description

0x80070057

E_INVALIDARG

The mailBcc parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailBcc is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailBcc to the mail bcc list of email addresses of the action.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.10 MailBcc (put) (Opnum 21)

The MailBcc (put) method sets the mail bcc property of the action. The mailBcc string parameter
value will be used as the list of BCC addresses to send the email generated by this action. The format
of the email address should has to be as specified in [RFC5322] .

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x05))] HRESULT MailBcc(

 [in] BSTR mailBcc

);

mailBcc: Contains the list of BCC email addresses to use for this action. The s tring in mailBcc MUST
be in the form of a mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the MailBcc parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailBcc parameter is NULL.

The server MUST use mailBcc as the list of BCC addresses of email generated by this action or return

a nonzero error code.

If mailBcc contains the string "[ADMIN EMAIL]", the server MUST send the email to the
Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.11 MailSubject (get) (Opnum 22)

The MailSubject (get) method returns the mail subject property of the action. The mailSubject
parameter contains a string value that is the subject line of the email generated by this action.

138 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x06))] HRESULT MailSubject(

 [out, retval] BSTR* mailSubject

);

mailSubject: A pointer to a variable that, upon completion, contains the string value of the subject of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mail Subject parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailSubject is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailSubject to the string value of the subject of the action.

The mail subject property of the action that is returned can contain macros, as specified in section
3.2.4.3 . If this is the case, the server MUST return the subject of the action without having resolved
any of the macros.

3.2.4.2.5.12 MailSubject (put) (Opnum 23)

The MailSubject (put) method sets the mail subject property of the action. The mailSubject string
parameter value will be used as the subject line of email generated by thi s action.

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x06))] HRESULT MailSubject(

 [in] BSTR mailSubject

);

mailSubject: Contains the subject to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error cod e on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailSubject parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailSubject parameter is NULL.

The server MUST use mailSubject as the subject of email generated by this action or return a nonzero
error code.

The mailSubject can contain macros (section 3.2.4.3). If the mailSubject contains macros (section
3.2.4.3), the server MUST store mailSubject as provided, keeping the macros instead of resolving the
macros with the values they resolve to. The server MUST allow all macros from section 3.2.4.3. The
macros are resolved when the email for this notification is generated.

139 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server MUST NOT alter the stored mail subject of the action when the macros are resolved. The
mail subject with the resolved macro values is only used for the subject of the email being

generated.

3.2.4.2.5.13 MessageText (get) (Opnum 24)

The MessageText (get) method returns the message t ext property of the action. The messageText
parameter contains a string value that is the message body of the email generated by this action.

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x07))] HRESULT MessageText(

 [out, retval] BSTR* messageText

);

messageText: A pointer to a variable that, upon completion, contains the string value of the
message text of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The messageText parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that messageText is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code .

The server MUST set messageText to the string value of the message text of the action.

The message text property of the action that is returned can contain macros, as specified in section

3.2.4.3 . If this is the case, the server MUST return the message t ext of the action without having
resolved any of the macros.

3.2.4.2.5.14 MessageText (put) (Opnum 25)

The MessageText (put) method sets the message text property of the action. The messageText
string parameter value will be used as the message body of email generated by this action.

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x07))] HRESULT MessageText(

 [in] BSTR messageText

);

messageText: Contains the message text to use for thi s action. The maximum length of this string
MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the messageText parameter exceeds the maximum length of
4,000 characters.

0x80070057

E_INVALIDARG

The messageText parameter is NULL.

140 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server MUST use messageText as the message text of email generated by this action or return a
nonzero error code.

The messageText can contain macros (section 3.2.4.3). If the messageText contains macros (section
3.2.4.3), the server MUST store messageText as provided, keeping the macros instead of resolving

the macros with the values they resolve to. The server MUST allow all macros fr om section 3.2.4.3.
The macros are resolved when the email for this notification is generated.

The server MUST NOT alter the stored message text of the action when the macros are resolved. The
message text with the resolved macro values is only used for th e message body of the email being
generated.

3.2.4.2.6 IFsrmActionEmail2 Methods

The IFsrmActionEmail2 interface implements all the methods of the IFsrmActionEmail interface
(section 3.2.4.2.5), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

AttachmentFileListSize (get) Opnum: 26

AttachmentFileListSize (put) Opnum: 27

3.2.4.2.6.1 AttachmentFileListSize (get) (Opnum 26)

The AttachmentFileListSize (get) method returns the attachment file list size property of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL2 | 0x01))]

HRESULT AttachmentFileListSize(

 [out, retval] long* attachmentFileListSize

);

attachmentFileListSize: Pointer to a variable that upon completion contains the attachment file
list size property of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The attachmentFileListSize parameter is NULL.

Upon receivin g this message, the server MUST validate parameters:

Á Verify that attachmentFileListSize is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set attachmentFileListSize to the attachment file size property of the action.

3.2.4.2.6.2 AttachmentFileListSize (put) (Opnum 27)

The AttachmentFileListSize (put) method sets the attachment file list size property of the action.

141 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL2 | 0x01))]

HRESULT AttachmentFileListSize(

 [in] long attachmentFileListSize

);

attachmentFileListSize: Contains the number of lines of the attachment for the action.

Return Values: The method MUST retur n zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The attachmentFileListSize parameter is not a valid value. The number of lines must be in
the range of 0 through 1000; the default is 100.

The se rver MUST use attachmentFileListSize as the attachment file list size property of the action.
The server MUST use the attachment file list size property as the maximum number of lines to

include in the attachment sent by this action.

3.2.4.2.7 IFsrmActionReport Meth ods

The IFsrmActionReport interface implements all the methods of the IFsrmAction interface (section
3.2.4.2.4), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

ReportTypes (get) Opnum: 12

ReportTypes (put) Opnum: 13

MailTo (get) Opnum: 14

MailTo (put) Opnum: 15

3.2.4.2.7.1 ReportTypes (get) (Opnum 12)

The ReportTypes (get) method returns the report types property of the action. The reportTypes
property is an array of FsrmReportType (section 2.2.1.2.10) values that determine which reports the
action will generate if it is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x01))] HRESULT ReportTypes(

 [out, retval] SAFEARRAY (VARIANT)* reportTypes

);

reportTyp es: Pointer to a SAFEARRAY variable that upon completion contains the report types for
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 The reportT ypes parameter is NULL.

142 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return
value/code Description

E_INVALIDARG

Upon receiving this message, the server MUST validate parameters:

Á Verify that reportTypes is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate reportTypes with its list of report types for the action.

3.2.4.2.7.2 ReportTypes (put) (Opnum 13)

The ReportTypes (put) method sets the report types property of the action. The reportTypes
property is an array of FsrmReportType (section 2.2. 1.2.10) values that determine which report types
the action will generate if it is run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x01))] HRESULT ReportTypes(

 [in] SAFEARRAY (VARIANT) reportTypes

);

reportTypes: Pointer to a SAFEARRAY that contains a list of FsrmReportType values.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reportTypes parameter is not a valid value. If any one of the reportTypes is
FsrmReportType_Unknown , the parameter MUST be considered an invalid value.

Upon receiving this message, the server MUST validate parameters:

Á Verify that reportTypes contains valid FsrmReportType values. If any one of the reportTypes are
FsrmReportType_Unknown , the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MU ST use reportTypes as the set of reports to generate for the action if it is run.

3.2.4.2.7.3 MailTo (get) (Opnum 14)

The MailTo (get) method returns the mail to list of email addresses property of the action. The value
of the mailTo parameter is the list of email addresses that the reports generated by this action will be
sent to. The format of the email address should has to be as specified in [RFC5322] .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x02))] HRESULT MailTo(

 [out, retval] BSTR* mailTo

);

mailTo: A pointer to a variable that upon completion contains the mail to list of email addresses of
the action. The string returned in mailto MUST be in the form of a mailTo string (section
3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

143 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return
value/code Description

0x80070057

E_INVALIDARG

The mailTo parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailTo to the mail to list of email addresses for the reports generated by this

action.

If the list of email recipients contains the special string "[ADMIN_EMA IL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.7.4 MailTo (put) (Opnum 15)

The MailTo (put) method sets the mailTo property of the action. The mailTo string will be used as the
list o f email addresses to send the reports generated by this action. The format of the email address

should has to be as specified in [RFC5322] .

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x02))] HRESULT MailTo(

 [in] BSTR mailTo

);

mailTo: Contains the mail to list of email addresses to use for this action. The maximum length of
this string MUST be 4,000 characters. The string in mailTo MUST be in the form of a mailTo

string (section 3.2.4.2).

Return Values: The method MUST return zero on success, o r a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

Á The mailTo parameter is not a valid value.

Á The content of the mailTo parameter exceeds the maximum length of 4,000
characters.

The server MUST use the mailTo parameter as the list of email addresses to send the reports
generated by this action or return a nonzero error code. If mailTo is an empty string, the server MUST
NOT email the report when the action is run.

If mailTo contains the string "[ADMIN EMAIL]", the server MUST send the email to the Administrator
email address setting (section 3.2.1.9).

3.2.4.2.8 IFsrmActionEventLog Methods

The IFsrmActionEventLog interface implements all the methods of the IFsrmAction interface
(section 3.2.4.2.4), as well as those listed in the following table.

Methods in RPC Opnum Order

144 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Method Description

EventType (get) Opnum: 12

EventType (put) Opnum: 13

MessageText (get) Opnum: 14

MessageText (put) Opnum: 15

3.2.4.2.8.1 EventType (get) (Opnum 12)

The EventType (get) method returns the event type property of the action. The event type

determines what type of event the action will generate if it is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x01))] HRESULT EventType(

 [out, retval] FsrmEventType* eventType

);

eventType: Pointer to a variable that upon completion contains the event type for the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The eventType parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that eventType is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set eventType to the event type of the action.

3.2.4.2.8.2 EventType (put) (Opnum 13)

The EventType (put) method sets the event type property of the object. The event type property
determines what type of event the action will generate if it is run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x01))] HRESULT EventType(

 [in] FsrmEventType eventType

);

eventType: Pointer to a variable that contains an FsrmE ventType (section 2.2.2.1.1.1) value.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The eventType parameter is not a valid value. If eventType is FsrmEventT ype_Unknown,
the parameter MUST be considered an invalid value.

145 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Upon receiving this message, the server MUST validate parameters:

Á Verify that eventType contains a valid FsrmEventType value. If eventType is

FsrmEventType_Unknown , the parameter MUST be cons idered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use eventType as the type of event to log if the action is run.

3.2.4.2.8.3 MessageText (get) (Opnum 14)

The MessageText (get) method returns the message text property of the action. The messageText
parameter contains a string value that will be used for the message of the event log generated by this
action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x02))] HRESULT MessageText(

 [out, retval] BSTR* messageText

);

messageText: A pointer to a variable that, upon completion, contains the string value of the
message text of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The messageText parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that messageText is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set messageText to the string value of the message text of the action.

The message text property of the action that is returned can contain macros, as specified in section
3. 2.4.3 . If this is the case, the server MUST return the message text of the action without having
resolved any of the macros.

3.2.4.2.8.4 MessageText (put) (Opnum 15)

The MessageText (put) method sets the message text property of the action. T he messageText
string will be used for the message of the event log generated by this action.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x02))] HRESULT MessageText(

 [in] BSTR messageText

);

messageText: Contains the message text to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

146 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the messageText parameter exceeds the maximum length of
4,000 characters.

0x80070057

E_INVALIDARG

The messageText parameter is NULL or empty.

The server MUST use messageText as the message text for the event log generated by this action if it
is run or return a nonzero error code.

The messageText can contain macros (section 3.2.4.3). If the messageText contains macros (section
3.2.4.3), the server MUST store messageText as provided, keeping the macros instead of resolving
the macros with the values they resolve to. The server MUST allow all macros from section 3.2.4.3.
The macros are resolved when the event log for this notification is generated.

The server MUST NOT alte r the stored message text of the action when the macros are resolved. The
message text with the resolved macro values is only used for the message of the event log being

generated.

3.2.4.2.9 IFsrmActionCommand Methods

The IFsrmActionCommand interface implements all the methods of the IFsrmAction interface
(section 3.2.4.2.4), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

ExecutablePath (get) Opnum: 12

ExecutablePath (put) Opnum: 13

Arguments (get) Opnum: 14

Arguments (put) Opnum: 15

Account (get) Opnum: 16

Account (put) Opnum: 17

WorkingDirectory (get) Opnum: 18

WorkingDirectory (put) Opnum: 19

MonitorCommand (get) Opnum: 20

MonitorCommand (put) Opnum: 21

KillTimeout (get) Opnum: 22

KillTimeout (put) Opnum: 23

LogResult (get) Opnum: 24

LogResult (put) Opnum: 25

3.2.4.2.9.1 ExecutablePath (get) (Opnum 12)

147 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The ExecutablePath (get) method returns the executable path property of the action. The
executable path is the directory path and file name of the application or script to run if this action is

run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x01))] HRESULT ExecutablePath(

 [out, retval] BSTR* executablePath

);

executablePath: Pointer to a variable that upon completion contains the path of the executable of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The executablePath parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that executablePath is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set executablePath to the executable path of the action.

3.2.4.2.9.2 ExecutablePath (put) (Opnum 13)

The ExecutablePath (put) method sets the Executable path property (section 3.2.1.4) of the action.
The Executable path is the directory path and file name of the executable to run if this action is

performed.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x01))] HRESULT ExecutablePath(

 [in] BSTR executablePath

);

executablePath: Contains the Executable path to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045306

FSRM_E_INVALID_PATH

The supplied path of the executable for the action is not valid. The supplied pa th
MUST be a full path to the executable program or script to be used, and may can
contain environment variables. The supplied path is not valid if the path is
relative or if the path does not point to a file.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the executablePath parameter exceeds the maximum length of
4,000 characters.

0x80045317

FSRM_E_INSECURE_PATH

This error code MUST be returned if the service determines that the supplied
executable path is not limited only to administrative access; that is, is accessible
for write access to users other than local administrators.

0x80045320

FSRM_E_LONG_CMDLINE

 After expanding the environment variables in the executable path of the action,
the command exceeds the maximum length of 260 charact ers.

148 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return value/code Description

0x80070057

E_INVALIDARG

The executablePath parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that executablePath is not NULL.

Á Verify that executablePath is an absolute path. If executablePath is not an absol ute path, the
server MUST return FSRM_E_INVALID_PATH.

Á Verify that executablePath is the path of a valid executable.

Á Verify that executablePath is only writable by administrators, local system, backup operators, or
server operators.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use executablePath as the Executable path for this action.

3.2.4.2.9.3 Arguments (get) (Opnum 14)

The Arguments (get) method returns the arguments property o f the action. The arguments
parameter contains a string value that will be used by the executable pointed to by the executable
path property if this action is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x02))] HRESULT Arguments(

 [out, retval] BSTR* arguments

);

arguments: Pointer to a variable that upon completion contains the string value of the arguments of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The arguments parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that arguments is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set arguments to the string value of the arguments of the action.

The Notification.Model.Arguments property of the action that is returned can contain macros, as
specified in section 3.2.4.3 . If this is the case, the server MUST return the arguments of the action
without having resolved any of the macros.

3.2.4.2.9.4 Arguments (put) (Opnum 15)

The Arguments (put) method sets the arguments property of the action. The arguments will be
used by the executable pointed to by the executable path property if this action is run.

149 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x02))] HRESULT Arguments(

 [in] BSTR arguments

);

arguments: Contains the arguments to use for this action.

Return Values: The method MUST ret urn zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the arguments parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The arguments parameter is NULL.

The server MUST use arguments as the arguments for the executable pointed to by the executable

path for this action or return a nonzero error code.

The arguments can contain macros (section 3.2.4.3). If the arguments contains macros (s ection

3.2.4.3), the server MUST store arguments as provided, keeping the macros instead of resolving the
macros with the values they resolve to. The server MUST allow all macros from section 3.2.4.3. The
macros are resolved when the action is run.

The ser ver MUST NOT alter the stored Notification.Model.Arguments of the action when the
macros are resolved. The arguments with the resolved macro values is only used to execute the
executable specified in action when it is run.

3.2.4.2.9.5 Account (get) (Opnum 16)

The Account (get) method returns the Nofitication.Account property of the action. The executable
for this action command will be run under this account type if the action runs.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x03))] H RESULT Account(

 [out, retval] FsrmAccountType* account

);

account: Pointer to a variable that upon completion contains the Notification.Account property of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The account parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that account is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set account to the Notification.Account property of the action.

3.2.4.2.9.6 Account (put) (Opnum 17)

150 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The Account (put) method sets the Notification.Account property of the action. The executable f or
this action will be run under this account type (if the action runs).

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x03))] HRESULT Account(

 [in] FsrmAccountType account

);

account: Contains the account type to use for this action.

Return Va lues: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The account parameter is not a valid value. If account is FsrmAccountType_Unknown ,
FsrmAccountType_Inproc or FsrmAccountType_External , the parameter MUST be
considered an invalid value.

Upon receiving this message, the server MUST validate parameters:

Á Verify that account is a valid FsrmAccountType (section 2.2.1.2.8) value. If account is
FsrmAccountType_Unknown , FsrmAccountType_InProc or FsrmAccountType_External ,

the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do the following:

Á set account to the Notification.Account property of the action.

Á run the executable pointed to by the executable path property under this account, if it is run.

3.2.4.2.9.7 WorkingDirectory (get) (Opnum 18)

The WorkingDirectory (get) method returns the work ing directory property of the action. The
executable for this action will be run with this working directory if the action runs.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x04))] HRESULT WorkingDirectory(

 [out, retval] BSTR* workingDirectory

);

workingDirectory: Pointer to a variable that upon completion contains the working directory of the

action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The workingDirectory parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that workingDirectory is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero e rror code.

151 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server MUST set workingDirectory to the working directory property of the action.

3.2.4.2.9.8 WorkingDirectory (put) (Opnum 19)

The WorkingDirectory (put) method sets the working directory property of the action. The

executable for this action will be run with this working directory if the action runs.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x04))] HRESULT WorkingDirectory(

 [in] BSTR workingDirectory

);

workingDirectory: Contains the working directory to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the workingDirectory parameter exceeds the maximum length of
4,000 characters.

0x80070057

E_INVALIDARG

The workingDirectory parameter is NULL.

The server MUST use workingDirectory as the working directory for this action's executable or
return a nonzero error code.

3.2.4.2.9.9 MonitorCommand (get) (Opnum 20)

The MonitorCommand (get) method returns the monitor command property of the action. The

monitor command property determines if the File Server Resource Manager Protocol will monitor the
executabl e it starts if the action runs.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x05))] HRESULT MonitorCommand(

 [out, retval] VARIANT_BOOL* monitorCommand

);

monitorCommand: Pointer to a variable that upon completion contains the monitor command

value of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The monitorCommand parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that monitorCommand is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set monitorCommand to the monitor command property of the action.

3.2.4.2.9.10 MonitorCommand (pu t) (Opnum 21)

152 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The MonitorCommand (put) method sets the monitor command property of the action. The monitor
command property determines if the File Server Resource Manager Protocol will monitor the

executable it starts if the ac tion runs.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x05))] HRESULT MonitorCommand(

 [in] VARIANT_BOOL monitorCommand

);

monitorCommand: Contains a Boolean value for the monitor command property for this action.

Return Values: The method MU ST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The monitorCommand parameter is not a valid variant type. If monitorCommand is not
VT_BOOL, the parameter is an invalid type.

The server MUST use monitorCommand to determine if it will monitor the action's executable if it is
run or return a nonzero error code.

If monitorCommand equals VARIANT_TRUE, the server MUST wait for the number of minutes specified
in the KillTimeout prope rty. If the command is still running after that time, the server will terminate
the process that is running the executable.

If monitorCommand equals VARIANT_FALSE, the server MUST NOT monitor the process running the
executable.

3.2.4.2.9.11 KillTimeout (get) (Opnum 22)

The KillTimeout (get) method returns the kill time - out property of the action. The kill time - out is
the number of minutes the server waits before terminating the process that is running the executable.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x06))] HRESULT KillTimeOut(

 [out, retval] long* minutes

);

minutes: Pointer to a variable that upon completion contains the kill time - out of the action.

Return Values: The method MUST return zero on success, or a nonzero err or code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The minutes parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that minutes is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set a number of minutes to the kill time - out property of the action.

3.2.4.2.9.12 KillTimeout (put) (Opnum 23)

153 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The KillTimeout (put) method sets the kill time - out property of the act ion. The kill time - out is the
number of minutes the server waits before terminating the process running the executable it started.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x06))] HRESULT KillTimeOut(

 [in] long minutes

);

minutes: Contains the kill time - out to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the minutes parameter is less than ze ro.

0x80070057

E_INVALIDARG

The minutes parameter is NULL.

The server MUST use minutes as the kill time - out for this action's executable or return a nonzero

error code.

The server MUST terminate the process after waiting the specified time if the Monitor Command
property is set to true.

3.2.4.2.9.13 LogResult (get) (Opnum 24)

The LogResult (get) method returns the log result property of the action. The log result property
determines if the server will log an application event when the executable started for this action

terminates.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x07))] HRESULT LogResult(

 [out, retval] VARIANT_BOOL* logResults

);

logResul ts: Pointer to a variable that upon completion contains the log result property of the
action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The logResults parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that logResults is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set logResults to the log result property of the action.

3.2.4.2.9.14 LogResult (put) (Opnum 25)

154 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The LogResult (put) method sets the log result property of the action. The log result property
determines if the server will log an application event when the executable started for this action

terminates.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x07))] HRESULT LogResult(

 [in] VARIANT_BOOL logResults

);

logResults: Contai ns the log result value to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The logResults parameter is not a valid variant type. If logRe sults is not VT_BOOL, the
parameter is an invalid type.

The server MUST use logResults as the log result value for this action's executable or return a
nonzero error code.

The server MUST log an event when this action's executable terminates if logResults is true and the
MonitorCommand property is set to true.

The server MUST NOT log an event when this action's executable terminates if logResults is true and
the MonitorCommand property is set to false.

3.2.4.2.10 IFsrmObject Methods

The IFsrmObject interface is the b ase interface for all File Server Resource Manager Protocol objects,

with the exception of Action and Report. This is the interface that implements the FSRM Base
Object (section 3.2.1.1).

Methods in RPC Opnum Order

Method Description

Id (get) Opnum: 7

Description (get) Opnum: 8

Description (put) Opnum: 9

Delete Opnum: 10

Commit Opnum: 11

3.2.4.2.10.1 Id (get) (Opnum 7)

The Id (get) method returns the read -only FSRM Base Object.Id of the object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x01))] HRESULT Id(

 [out, retval] FSRM_OBJECT_ID* id

);

155 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

id: Pointer to a variable that upon completion contains the FSRM Base Object.Id of the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The id parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that id is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero erro r code.

The server MUST set id to the FSRM Base Object.Id of the object.

3.2.4.2.10.2 Description (get) (Opnum 8)

The Description (get) method returns the FSRM Base Object.Description of the object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x02))] HRESULT Description(

 [out, retval] BSTR* description

);

description: Pointer to a variable that upon completion contains the FSRM Base
Object.Description of the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The description parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that description is not NULL.

If any validation fails, the server MUST ter minate processing and return a nonzero error code.

The server MUST set description to the FSRM Base Object.Description of the object.

3.2.4.2.10.3 Description (put) (Opnum 9)

The Description (put) method sets the FSRM Base Object.Description of the object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x02))] HRESULT Description(

 [in] BSTR description

);

description: Contains the FSRM Base Object.Description to use for this object. This string MUST
NOT contain illegal name characters (sec tion 3.2.4.2). The maximum length of this string MUST be
4,000 characters.

156 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the descripti on parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The description parameter contains non -valid characters or is NULL. The following are
considered invalid characters: comma (,), single quote ('), double quote ("), vertic al
bar (|).

The server MUST use description as the FSRM Base Object.Description for this object or return a

nonzero error code.

3.2.4.2.10.4 Delete (Opnum 10)

The Delete method removes the object from the server's object list.

 [id(FSRM_DISPID_OBJECT | 0x01)] HRESULT Delete();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

There are no parameters for this method.

The server MUST set the object's FSRM Base Object.Deleted property to true, so that the server
removes the object from the server's list of objects when Commit (Opnum 11) (section 3.2.4.2.10.5)
is called or returns a nonzero error code.

3.2.4.2.10.5 Commit (Opnum 11)

The Commit method commi ts the non -persisted version of the object's current state to the server's list
of objects.

 [id(FSRM_DISPID_OBJECT | 0x02)] HRESULT Commit();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on f ailure.

Return value/code Description

0x80045310

FSRM_E_ALREADY_EXISTS

The object being created already exists.

0x80045310

FSRM_E_DUPLICATE_NAME

An object with the same name already exists.

0x8004530E

FSRM_E_REQD_PARAM_MISSING

A required parameter for the object was not set before calling commit.

There are no parameters for this method.

The server MUST do one of the following or return a nonzero error code:

157 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á If the FSRM Base Object.Deleted property is set to true, the server MUST delete the persisted
ve rsion of the object associated with this non -persisted version.

Á If the FSRM Base Object.Deleted property is set to false, the server MUST apply the state of the
non -persisted version of the object to the persisted version of the object.

The specifics for d eleting the persisted object or applying the non -persisted state vary according to the
type of object being committed:

Á Directory Quota: IFsrmQuota::Commit (section 3.2.4.2.16.1)

Á Auto Apply Quota: IFsrmAutoApplyQuota::Commit (section 3.2.4.2.17.1)

Á Directo ry Quota Template: IFsrmQuotaTemplate::Commit (section 3.2.4.2.20.1)

Á File Group: IFsrmFileGroup::Commit (section 3.2.4.2.23.1)

Á File Screen: IFsrmFileScreen::Commit (section 3.2.4.2.27.1)

Á File Screen Exception: IFsrmFileScreenException::Commit (section 3.2.4.2.28.1)

Á File Screen Template: IFsrmFileScreenTemplate::Commit (section 3.2.4.2.30.1)

Á Report Job: IFsrmReportJob::Commit (section 3.2.4.2.34.1)

Á Property Definition: IFsrmPropertyDefinition::Commit (section 3.2 .4.2.37.1)

Á Classification Type Rule: IFsrmClassificationRule::Commit (section 3.2.4.2.42.1)

Á Classifier Type Module Definition: IFsrmClassifierModuleDefinition::Commit (section 3.2.4.2.44.1)

Á Storage Type Module Definition: IFsrmStorageModuleDefinition::Comm it (section 3.2.4.2.47.1)

Á File Management Job: IFsrmFileManagementJob::Commit (section 3.2.4.2.48.1)

3.2.4.2.11 IFsrmSetting Methods

The IFsrmSetting interface exposes methods that allow the caller to configure the File Server
Resource Manager Protocol.

Methods in R PC Opnum Order

Method Description

SmtpServer (get) Opnum: 7

SmtpServer (put) Opnum: 8

MailFrom (get) Opnum: 9

MailFrom (put) Opnum: 10

AdminEmail (get) Opnum: 11

AdminEmail (put) Opnum: 12

DisableCommandLine (get) Opnum: 13

DisableCommandLine (put) Opnum: 14

EnableScreeningAudit (get) Opnum: 15

158 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Method Description

EnableScreeningAudit (put) Opnum: 16

EmailTest Opnum: 17

SetActionRunLimitInterval Opnum: 18

GetActionRunLimitInterval Opnum: 19

3.2.4.2.11.1 SmtpServer (get) (Opnum 7)

The SmtpServer (get) method retrieves the SMTP server name that the File Server Resource Manager

Protocol is configured to use when sending email messages and returns S_OK upon successful
completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x01))] HRESULT SmtpServer(

 [out, retval] BSTR* smtpServer

);

smtpServer: A pointer to a variable that upon completion contains the SMTP server name that the

File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The smtpServer parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that smtpServer is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set smtpServer to the SMTP server name that the File Server Resource Manager
Protocol is configured to use.

3.2.4.2.11.2 SmtpServer (put) (Opnum 8)

The SmtpServer (put) method sets the SMTP server name for the File Server Resource Manager
Protocol to use when sending email messages and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x01))] HRESULT SmtpServer(

 [in] BSTR smtpServer

);

smtpServer: Contains the SMTP server name for the File Server Resource Manager Protocol to use.
The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

159 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server MUST use smtpServer as the SMTP server name for sending email messages or return a
nonzero error code.

3.2.4.2.11.3 MailFrom (get) (Opnum 9)

The MailFrom (get) method retrieves the default mail from email address that the File Server
Resource Manager Protocol is configured to use, and returns S_OK upon successful completion. The
format of the email address should has to be as specified in [RFC5322] .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x0 2))] HRESULT MailFrom(

 [out, retval] BSTR* mailFrom

);

mailFrom: Pointer to a variable that upon completion contains the default mail from email address
that the File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST r eturn zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailFrom parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that mailFrom is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailFrom to the default mail from email address that the File Server Resource

Manager Protocol is configured to use.

3.2.4.2.11.4 MailFrom (put) (Opnum 10)

The MailFrom (put) method sets the default mail from email address that the File Server Resource
Manager Protocol will use and returns S_OK upon successful completion. The MailFrom string is the
default sender of emails generated by the F ile Server Resource Manager Protocol. The format of the
email address should has to be as specified in [RFC5322] .

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x02))] HRESULT MailFrom(

 [in] BSTR mailFrom

);

mailFrom: Contains the default mail from email address for the File Server Resource Manager
Protocol to use. The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST use mailFrom as the m ail from email address on email messages generated by
the File Server Resource Manager Protocol or return a nonzero error code.

3.2.4.2.11.5 AdminEmail (get) (Opnum 11)

The AdminEmail (get) retrieves the administrator email address , which is us ed for the Admin Email
macro that the File Server Resource Manager Protocol is configured to use, and returns S_OK upon
successful completion. The format of the email address should has to be as specified in [RFC5322] .

160 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x03))] HRESULT AdminEmail(

 [out, retval] BSTR* adminEmail

);

adminEmail: Pointer to a variable that upon completion contains the administrator email address
that the File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The adminEmail parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that adminEmail is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set adminEmail to the administrator email address that the File Server Resource

Manager Protocol is configured to use.

3.2.4.2.11.6 AdminEmail (put) (Opnum 12)

The AdminEmail (put) method sets the administrator email address that the File Server Resource
Manager Protocol will use and returns S_OK upon successful completion. The administrator email
address will be used if a configured email address contains the string "[ADMIN EMAIL]". The format
of the email address should has to be as specified in [RFC5322] .

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x03))] HRESULT AdminEmail(

 [in] BSTR adminEmail

);

adminEmail: Contains the administrator email address for the File Server Resource Manager
Protocol to use. The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST use adminEmai l as the replacement text for email addresses that contain the string
"[ADMIN EMAIL]" or return a nonzero error code.

3.2.4.2.11.7 DisableCommandLine (get) (Opnum 13)

The DisableCommandLine (get) me thod retrieves the Disable command line applications value that the
File Server Resource Manager Protocol is configured to use and returns S_OK upon successful

completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x04))] HRESULT DisableCommandLine(

 [out, retval] VARIANT_BOOL* disableCommandLine

);

disableCommandLine: Pointer to a variable that upon completion contains the Disable command line
applications value that the File Server Resource Manager Protocol is configured to use.

161 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The disableCommandLine parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that disableCommandLine is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set disableCommandLine to the Disable command line applications value that the File
Server Resource Manager Proto col is configured to use.

3.2.4.2.11.8 DisableCommandLine (put) (Opnum 14)

The DisableCommandLine (put) method sets the Disable command line applications value for the File
Server Resource Manager Protocol to use and returns S_OK upon s uccessful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x04))] HRESULT DisableCommandLine(

 [in] VARIANT_BOOL disableCommandLine

);

disableCommandLine: Contains the Disable command line applications value for the File Server
Resource Manager Protocol to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Disable command line applications value to the value of the

disableCommandLine parameter or return a nonzero error c ode.

3.2.4.2.11.9 EnableScreeningAudit (get) (Opnum 15)

The EnableScreeningAudit (get) method retrieves the Enable file screen audit value that the File
Server Resource Manager Protocol is configured to use and returns S_OK upon succe ssful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x05))] HRESULT EnableScreeningAudit(

 [out, retval] VARIANT_BOOL* enableScreeningAudit

);

enableScreeningAudit: Pointer to a variable that upon completion contains the Enable file screen
audit value that the File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The enableScreeningAudit parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that the enableScreeningAudit parameter is not NULL.

162 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUS T set the enableScreeningAudit parameter to the Enable file screen audit value that

the File Server Resource Manager Protocol is configured to use.

3.2.4.2.11.10 EnableScreeningAudit (put) (Opnum 16)

The EnableScreeningAudit (put) meth od sets the Enable file screen audit value for the File Server
Resource Manager Protocol to use, and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x05))] HRESULT EnableScreeningAudit(

 [in] VARIANT_BOOL enableS creeningAudit

);

enableScreeningAudit: Contains the Enable file screen audit value for the File Server Resource
Manager Protocol to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Enable file screen audit value to the enableScreeningAudit parameter or
return a nonzero error code.

3.2.4.2.11.11 EmailTest (Opnum 17)

The EmailTest method sends an email message to the specified email address using the settings that
the File Se rver Resource Manager Protocol is configured to use. The settings include SMTP server
name and Mail from email address. The format of the email address should has to be as specified in
[RFC5322] .

 [id(FSRM_DISPID_SETTING | 0x01)] HRESULT EmailTest(

 [in] BSTR mailTo

);

mailTo: Contains the email address for the File Server Resource Manager Protocol to send the test
email message to.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8 004530D

FSRM_E_OUT_OF_RANGE

The content of the mailTo parameter exceeds the maximum length of
4,000 characters.

0x80045318

FSRM_E_INVALID_SMTP_SERVER

The SmtpServer property is not set.

0x8004531C

FSRM_E_EMAIL_NOT_SENT

An email message could not be sent.

Upon receiving this message, the server MUST perform the following operations:

Á If the email address mentioned in mailTo exceeds the maximum length of 4,000 characters, the
server MUST return FSRM_E_OUT_OF_RANGE.

Á If Mail from email address set by MailFrom (put) (section 3.2.4.2.11.4) contains an invalid
email address, the server MUST return FSRM_E_INVALID_SMTP_SERVER.

163 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The server MUST send an email message to the email address specified by using the settings that the
File Server Resource Manager Protocol is configured to use or return FSRM_E_EMAIL_NOT_SENT.

3.2.4.2.11.12 SetActionRunLimitInterval (Opnum 18)

The SetActionRunLimitInterval method sets run limit intervals for actions that are configured to use
the general setting's run limit interval .

 [id(FSRM_DISPID_SETTING | 0x02)] HRESULT SetActionRunLimitInterval(

 [in] FsrmActionType actionType,

 [in] long delayTimeMinutes

);

actionType: Contains the action type that this run limit interval applies to.

delayTimeMinutes: Contains the run limit interval for this action type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The actionType parameter is not a valid type. If actionType is FsrmActionType_Unknown,
the parameter MUST be considered an invalid value.

Upon receiving this message, the server MUST validate parameters:

Á Verify that actionType is a valid FsrmActionType (section 2.2.1.2.9) value. If actionType is

FsrmAct ionType_Unknown , the parameter MUST be considered an invalid value. If actionType
contains FsrmActionType_Email or FsrmActionType_Report, the server will return
FSRM_E_NOT_SUPPORTED.

Á Verify that delayTimeMinutes is greater than -1.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use delayTimeMinutes as the Run limit intervals .

3.2.4.2.11.13 GetActionRunLimitInterval (Opnum 19)

The GetActionRunLimitInterval method return s the Run limit interval for actions that are configured to
use the general setting's Run limit interval.

 [id(FSRM_DISPID_SETTING | 0x03)] HRESULT GetActionRunLimitInterval(

 [in] FsrmActionType actionType,

 [out, retval] long* delayTimeMinutes

);

actionType: Contains the action type to return the Run limit interval for.

delayTimeMinutes: Pointer to a variable that upon completion contains the Run limit interval for the
specified action type .

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

164 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

Á The actionType parameter is not a valid type. If actionType is
FsrmActionType_Unknown, the parameter MUST be considered an invalid value.

Á The delayTimeMinutes parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that actionType is a valid FsrmActionType (section 2.2.1.2.9) value. If the actionType is
FsrmActionType_Unknown , the parameter MUST be considered an invalid value.

Á Verify that delayTimeMinutes is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

Á Verify that Run limit interval is present for actionType .<55>

The server MUST set delayTimeMinutes to the general setting's Run limit interval for the specified
action type or return a nonzero error code.

3.2.4.2.12 IFsrmPathMapper Methods

The IFsrmPathMapper interface exposes methods for mapping local directories to network shares.

Methods in RPC Opnum Order

Method Description

GetSharePathsForLocalPath Opnum: 7

3.2.4.2.12.1 GetSharePathsForLocalPath (Opnum 7)

The GetSharePathsForLocalPath method returns all the network share paths that point to the specified
local path.

 [id(FSRM_DISPID_PATHMAPPER | 0x01)] HRESULT GetSharePathsForLocalP ath(

 [in] BSTR localPath,

 [out, retval] SAFEARRAY (VARIANT)* sharePaths

);

localPath: Contains the local path for which to return network shares for.

sharePaths: Pointer to a SAFEARRAY that upon completion contains all the network share paths that
poi nt to the specified path.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

165 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return value/code Description

0x80045306

FSRM_E_INVALID_PATH

The local path to return network shares does not exist or exceeds the maximum
length of 260 characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

Á The localPath parameter is empty or NULL.

Á The sharePaths parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that localPath directory is not NULL or empty.

Á Verify that sharePaths is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate sharePaths with all the network share paths that have the localPath as a
parent directory.

3.2.4.2.13 IFsrmDerivedObjectsResult Methods

The IFsrmDerivedObjectsResult interface is returned from the CommitAndUpdateDerived

methods of the IFsrmAutoApplyQuota (section 3.2.4.2.17), IFsrmQuotaTemplate (section
3.2.4.2.20), and IF srmFileScreenTemplate (section 3.2.4.2.30) interfaces.

Methods in RPC Opnum Order

Method Description

DerivedObjects (get) Opnum: 7

Results (get) Opnum: 8

3.2.4.2.13.1 DerivedObjects (get) (Opnum 7)

The DerivedObjects (get) method returns the collection of derived objects for the calling template.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_DERIVEDOBJECTSRESULT | 0x01))] HRESULT DerivedObjects(

 [out, retval] IFsrmCollection** derivedObjects

);

derivedObjects: Pointer to an IFsrmCollect ion interface pointer (section 3.2.4.2.1) that upon

completion contains interface pointers for the derived objects that were updated as a result of the

source template's call to CommitAndUpdateDerived . A caller MUST release the collection
interface receive d when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 The derivedObjects parameter is NULL.

166 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Return
value/code Description

E_INVALIDARG

Upon receiving this message, the server MUST validate parameters:

Á Verify that derivedObjects is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following:

Á Set derivedObjects to DerivedAutoApplyQuotaObjects if the calling template is an auto apply

quota .

Á Set derivedObjects to DerivedQuotaObjects if the calling template is a directory quota template.

Á Set derivedObjects to DerivedFileScreenObjects if the calling template is a file screen template.

3.2.4.2.13.2 Results (get) (Opnum 8)

The Results (get) method returns the collection HRESULTS received when committing derived objects

that were updated as a result of the source template's call to CommitAndUpdateDerived .

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_DERIVEDOBJECTSRESULT | 0x02))] HRESULT Results(

 [out, retval] IFsrmCollection** results

);

results: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon completion
contains HRESULTS for the committing of derived objects that were updated as a result of the

source template's call to CommitAndUpdateDerived . A caller MUST release the collection
interface received when it is done with it.

Return Va lues: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The results parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

Á Verify that results is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set results to DerivedQuotaResults .

The server MUST do one of the following or return a nonzero error code:

Á Set results to DerivedAutoApplyQuotaResults if the calling template is auto apply quota.

Á Set results to DerivedQuotaResults if the calling template is a directory quota template.

Á Set results to DerivedFileScreenResults if the calling template is a file screen template.

3.2.4.2.14 I FsrmQuotaBase Methods

167 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IFsrmQuotaBase is the base interface for all the File Server Resource Manager Protocol quota
objects. IFsrmQuotaBase implements the methods of the IFsrmObject interface (section

3.2.4.2.10), as well as those listed in the following ta ble.

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

QuotaLimit (get) Opnum: 12

QuotaLimit (put) Opnum: 13

QuotaFlags (get) Opnum: 14

QuotaFlags (put) Opnum: 15

Thresholds (get) Opnum: 16

AddThreshold Opnum: 17

DeleteThreshold Opnum: 18

ModifyThreshold Opnum: 19

CreateThresholdAction Opnum: 20

EnumThresholdActions Opnum: 21

3.2.4.2.14.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section

3.2.4.2.10). This method has the same behavior as described in section 3.2.4.2.10.5 with the
following additional behavior:

Á If quota limit is zero, the server MUST return E_INVALIDARG.

3.2.4.2.14.2 QuotaLimit (get) (Opnum 12)

The QuotaLimit (get) method returns the quota limit for the object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x01))] HRESULT QuotaLimit(

 [out, retval] VARIANT* quotaLimit

);

quotaLimit: A pointer to a variable that, upon completion, contains the quota limit of the object .

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaLimit parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

168 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Á Verify that quotaLimit is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set quotaLimit to the quota limit of the object.

3.2.4.2.14.3 QuotaLimit (put) (Opnum 13)

The Quo taLimit (put) method sets the quota limit for the object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x01))] HRESULT QuotaLimit(

 [in] VARIANT quotaLimit

);

quotaLimit: Contains the quota limit for the object to use.

Return Values: The method MUS T return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the quotaLimit parameter is less than 1,500 bytes.

0x80070057

E_INVALIDARG

The quotaLimit parameter is not a valid value; it must be greater than 1,500
bytes.

Upon receiving this message, the server MUST validate parameters:

Á Verify that quotaLimit is greater than 1,500 bytes.

If any validation fails, the server MUST terminate processing and r eturn a nonzero error code.

The server MUST use quotaLimit as the quota limit for this object.

3.2.4.2.14.4 QuotaFlags (get) (Opnum 14)

The QuotaFlags (get) returns the quota state , quota limit mode , and quota enable/disable
values for the obje ct.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x02))] HRESULT QuotaFlags(

 [out, retval] long* quotaFlags

);

quotaFlags: Pointer to a variable that upon completion contains the quota state , quota limit
mode , and quota enable/disable values of the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaFlags parameter is NULL.

Upon receiving this message, the server MUST validat e parameters:

Á Verify that quotaFlags is not NULL.

169 / 473

[MS -FSRM-Diff] - v20160714
File Server Resource Manager Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set quotaFlags to the quota state , quota limit mode , and quota enable/disable

values of the obj ect.

3.2.4.2.14.5 QuotaFlags (put) (Opnum 15)

The QuotaFlags (put) method sets the quota limit mode and quota enable/disable values of the
object. Quota state , which is returned by QuotaFlags (get) (section 3.2.4.2.14.4), is not affected by
QuotaFlags (put).

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x02))] HRESULT QuotaFlags(

 [in] long quotaFlags

);

quotaFlags: Contains the quota limit mode and quota enable/disable values for the object to
use.

Return Values: The method MUST retu rn zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaFlags parameter is NULL or not a valid type. If quotaFlags is not a
FsrmQuotaFlags (section 2.2.1.2.1) , the parameter is considered an i nvalid value.

Upon receiving this message, the server MUST validate parameters:

Á Verify that quotaFlags contains valid FsrmQuotaFlags (section 2.2.1.2.1) values.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following.

Á If quotaFlags contains FsrmQuotaFlags_Enforce, the server MUST set the quota limit mode to
hard quota and fail any I/O operation that causes the path's disk space usage to exceed the
quota limit of the quota.

Á If quotaFlags does not contain FsrmQuotaFlags_Enforce, the server MUST set the quota limit
mode to soft quota and allow any I/O operation that causes the path's disk space usage to
exceed the quota limit of the quota.

Á If quotaFlags contains FsrmQuotaFlags_Disab le, the server MUST set the quota limit mode to
soft quota and not track the disk space usage of the quota's path and not run actions associated
with thresholds of the quota.

Á If quotaFlags does not contain FsrmQuotaFlags_Disable, the server MUST set the qu ota
enable/disable to enabled and track the disk space usage of the quota's path and run actions
associated with thresholds of the quota.

3.2.4.2.14.6 Thresholds (get) (Opnum 16)

The Thresholds (get) method returns the thresholds for the quota object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x03))] HRESULT Thresholds(

 [out, retval] SAFEARRAY (VARIANT)* thresholds

);

