
1 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS - EVEN]:

EventLog Remoting Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promi se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Commun ity Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under t hose rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, place s, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tool s or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjuncti on with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com .

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

10/22/2006 0.01 New Version 0.01 release

1/19/2007 1.0 Major Version 1.0 release

3/2/2007 1.1 Minor Version 1.1 release

4/3/2007 1.2 Minor Version 1.2 release

5/11/2007 1.3 Minor Version 1.3 release

6/1/2007 2.0 Major Updated and revised the technical content.

7/3/2007 3.0 Major Updates for missing content.

7/20/2007 3.0.1 Editorial Changed language and formatting in the technical content.

8/10/2007 3.1 Minor Clarified the meaning of the technical content.

9/28/2007 3.2 Minor Clarified the meaning of the technical content.

10/23/2007 4.0 Major Updated and revised the technical content.

11/30/2007 4.1 Minor Clarified the meaning of the technical content.

1/25/2008 5.0 Major Updated and revised the technical content.

3/14/2008 6.0 Major Updated and revised the technical content.

5/16/2008 6.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 7.0 Major Updated and revised the technical content.

7/25/2008 7.1 Minor Clarified the meaning of the technical content.

8/29/2008 7.1.1 Editorial Changed language and formatting in the technical content.

10/24/2008 7.1.2 Editorial Changed language and formatting in the technical content.

12/5/2008 8.0 Major Updated and revised the technical content.

1/16/2009 8.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 8.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 9.0 Major Updated and revised the technical content.

5/22/2009 9.1 Minor Clarified the meaning of the technical content.

7/2/2009 9.2 Minor Clarified the meaning of the technical content.

8/14/2009 9.3 Minor Clarified the meaning of the technical content.

9/25/2009 9.4 Minor Clarified the meaning of the technical content.

11/6/2009 9.5 Minor Clarified the meaning of the technical content.

12/18/2009 9.5.1 Editorial Changed language and formatting in the technical content.

1/29/2010 9.6 Minor Clarified the meaning of the technical content.

3 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

3/12/2010 9.6.1 Editorial Changed language and forma tting in the technical content.

4/23/2010 9.7 Minor Clarified the meaning of the technical content.

6/4/2010 9.8 Minor Clarified the meaning of the technical content.

7/16/2010 10.0 Major Updated and revised the technical content.

8/27/2010 11.0 Major Updated and revised the technical content.

10/8/2010 12.0 Major Updated and revised the technical content.

11/19/2010 13.0 Major Updated and revised the technical content.

1/7/2011 14.0 Major Updated and revised the technical content.

2/11/2011 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 15.0 Major Updated and revised the technical content.

5/6/2011 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 15.1 Minor Clarified the meaning of the technical content.

9/23/2011 15.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 16.0 Major Updated and revised the technical content.

3/30/2012 16.0 None
No changes t o the meaning, language, or formatting of the
technical content.

7/12/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 17.0 Major Updated and revised the technical content.

11/14/2013 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 18.0 Major Significantly changed the technical content.

10/16/2015 19.0 Major Significantly changed the technical content.

7/14/2016 20.0 Major Significantly changed the technical content.

6/1/2017 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Date
Revision
History

Revision
Class Comments

9/15/2017 21.0 Major Significantly changed the technical content.

12/1/2017 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 22.0 Major Significantly changed the technical content.

4/7/2021 23.0 Major Significantly changed the technical content.

6/25/2021 24.0 Major Significantly changed the technical content.

9/20/2023 25.0 Major Significantly changed the technical content.

4/23/2024 26.0 Major Significantly changed the technical content.

5 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Table of Contents

1 Introduction 7
1.1 Glossary 7
1.2 References 9

1.2.1 Normative References 9
1.2.2 Informative References 10

1.3 Overview 11
1.3.1 Background 11
1.3.2 EventLog Remoting Protocol 11
1.3.3 Localizable Human -Readable Event Descriptions and Other Strings 12

1.4 Relationship to Other Protocols 12
1.5 Prerequisites /Preconditions 12

1.5.1 Server Requirements to Enable Remote Description String Rendering 12
1.6 Applicability Statement 12
1.7 Versioning and Capability Negotiation 12
1.8 Vendor -Extensible Fields 13

1.8.1 Error Values 13
1.8.2 Event Log Names 13
1.8.3 Event Source Names 13
1.8.4 EventIDs 13
1.8.5 Event Categories 13

1.9 Standards Assignments 14

2 Messages 15
2.1 Transport 15

2.1.1 Server 15
2.1.2 Client 15

2.2 Common Data Types 15
2.2.1 RULONG 15
2.2.2 EventType 15
2.2.3 EVENTLOGRECORD 16
2.2.4 EVENTLOG_FULL_INFORMATION 19

2.2.4.1 NT Object Path 19
2.2.5 RPC_SID 20
2.2.6 IELF_HANDLE 20
2.2.7 EVENTLOG_HANDLE_A and EVENTLOG_HANDLE_W 20
2.2.8 RPC_CLIENT_ID 21
2.2.9 Constants Used in Method Definitions 21
2.2.10 Unicode Versus ANSI String Representations 21
2.2.11 RPC_UNICODE_STRING 21
2.2.12 RPC_STRING 22

3 Protocol Details 23
3.1 Server Details 23

3.1.1 Abstract Data Model 23
3.1.1.1 Event Log Records 23
3.1.1.2 Event Logs 23
3.1.1.3 Event Sources 25
3.1.1.4 EventID 26
3.1.1.5 Context Handles 26

3.1.2 Timers 27
3.1.3 Initialization 27
3.1.4 Message Processing Events and Sequencing Rules 27

3.1.4.1 ElfrOpenBELW (Opnum 9) 30
3.1.4.2 ElfrOpenBELA (Opnum 16) 31
3.1.4.3 ElfrOpenELW (Opnum 7) 32

6 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.4 ElfrOpenELA (Opnum 14) 33
3.1.4.5 ElfrRegisterEve ntSourceW (Opnum 8) 34
3.1.4.6 ElfrRegisterEventSourceA (Opnum 15) 35
3.1.4.7 ElfrReadELW (Opnum 10) 36
3.1.4.8 ElfrReadELA (Opnum 17) 38
3.1.4.9 ElfrClearELFW (Opnum 0) 39
3.1.4.10 ElfrClearELFA (Opnum 12) 40
3.1.4.11 ElfrBackup ELFW (Opnum 1) 40
3.1.4.12 ElfrBackupELFA (Opnum 13) 41
3.1.4.13 ElfrReportEventW (Opnum 11) 41
3.1.4.14 ElfrRepo rtEventA (Opnum 18) 43
3.1.4.15 ElfrReportEventAndSourceW (Opnum 24) 45
3.1.4.16 ElfrReportEventExW (Opnum 25) 46
3.1.4.17 ElfrReportEventExA (Opnum 26) 48
3.1.4.18 ElfrNumberOfRecords (Opnum 4) 49
3.1.4.19 ElfrOldestRecord (Opnum 5) 50
3.1.4.20 ElfrGetLog Information (Opnum 22) 50
3.1.4.21 ElfrCloseEL (Opnum 2) 51
3.1.4.22 ElfrDeregisterEventSource (Opnum 3) 51
3.1.4.23 ElfrChangeNotify (Opnum 6) 52

3.1.5 Timer Events 52
3.1.6 Other Local Events 52
3.1.7 Server Configurations for Localizable Event Descriptions 53

3.2 Client Details 53
3.2.1 Abstract Data Model 53
3.2.2 Timers 53
3.2.3 Initialization 53
3.2.4 Message Processing Events and Sequencing Rules 53

3.2.4.1 Client Processing of Event Descriptions and Other Localizable Strings 56
3.2.4.1.1 Loading Event Log Description Informati on 56
3.2.4.1.2 Retrieving Event Parameter Strings 56
3.2.4.1.3 Retrieving Event Category Strings 56
3.2.4.1.4 Retrieving Unexpanded Event Description Strings 57
3.2.4.1.5 Expanding Unexpanded Event Description Strings 57

3.2.4.1.5.1 Inserting EVENTLOGRECORD Strings 58
3.2.4.1.5.2 Inserting Parameter Strings 58
3.2.4.1.5.3 Inserting SIDs and GUIDs 58
3.2.4.1.5.4 Expan ding Environment Variables 58

3.2.5 Timer Events 59
3.2.6 Other Local Events 59

4 Protocol Examples 60
4.1 Obtain Records Stored in an Event Log 60
4.2 Write Events to an Event Log 61
4.3 Back Up the Event Log 64
4.4 Expanding Unexpanded Event Description Strings 64

5 Security 66
5.1 Security Considerations for Implementer s 66
5.2 Index of Security Parameters 66

6 Appendix A: Full IDL 67

7 Appendix B: Product Behavior 72

8 Change Tracking 78

9 Index 79

7 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1 Introduction

The EventLog Remoting Protocol is an RPC -based protocol that exposes remote procedure call (RPC)
methods for reading events in both live event logs and backup event logs on remote computers.
The protocol also specifies how to get general information on a log, such as the number of rec ords in
the log, the oldest records in the log, and if the log is full. The protocol can also be used for clearing
and backing up both types of event logs .

Note Early releases of the EventLog R emoting Protocol have never been assigned a version number.
However, newer releases of the EventLog Remoting Protocol have version numbers. For example, the
version released with Windows Vista operating system is version 6.0.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

access control list (ACL) : A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

backup event log : An event log that cannot be written to, only r ead from. Backup event logs

are typically used for archival purposes, or for copying to another computer for use by support
personnel.

category : A grouping of rows in a Table object that all hav e the same value for a specified
property.

category message file : A binary resource file defining category strings for event categories .

category string : A localizable human - readable string corresponding to the event category of a
record .

event : A discrete unit of historical data that an application exposes that may be relevant to other
applications. An example of an event would be a particular user logging on to the computer.

event category : An application -specific value used for grouping events . For example, an
application might use one category for all events that occ ur during startup, and use another
category for events that occur during shutdown. Other applications might use categories to
identify the part of the application that raised the event .

event description string : A localizable human - readable string corresponding to the record .

event log : A collection of records, each of which corresponds to an event.

event message file : A binary resource file defining unexpanded description strings for an
event source .

event source : An application or component that writes to an event log .

EventID : An integer indicating the type of event . For example, a user logging on to the computer
could be one type of event while a user logging off would be another type; and these events

could be indicated by using distinct EventIDs .

fully qualified domain name (FQDN) : An unambiguous domain name that gives an abs olute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11 .

https://go.microsoft.com/fwlink/?LinkId=90264
https://go.microsoft.com/fwlink/?LinkId=127732

8 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID . See also universally u nique
identifier (UUID) .

live event log : An event log that can be written to and read from.

localizable : A condition of a data value or element that allows it to be modified, translated, or
outp ut for different languages or regional formats.

named pipe : A named, one -way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

Network Data Representation (NDR) : A specification that defines a mapping from Interface
Defi nition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For

more information, see [MS -RPCE] and [C706] section 14.

opnum : An operation number or numeric identifier that is used to identify a sp ecific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]

section 12.5.2.12 or [MS -RPCE].

parameter message file : A binary resource file that defines parameter strings for an event
source .

parameter string : A localizable human - readable string inserted into an event description
string using the string rendering algorithm defined in section 3.2.4.1.5.2.

record : The data structu re that contains an event that is currently represented in an event log .

record ID : An unsigned int64 numeric value. The record ID i s the identifier of the records in the

event log file.

registry : A local system -defined database in which applications and system co mponents store and
retrieve configuration data. It is a hierarchical data store with lightly typed elements that are
logically stored in tree format. Applications use the registry API to retrieve, modify, or delete
registry data. The data stored in the reg istry varies according to the version of the operating
system.

registry key or registry subkey : A node in the logical tree of the Windows registry data store.

For more information, see [MSWINREG] . The term subkey specifies that a key has a parent in
the logical tree; for example, "A is a subkey of B".

remote procedure call (RPC) : A communication protocol used primarily between clien t and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request -and - response message exchanges between computers (the RPC e xchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

RPC protocol sequence : A character string that represents a valid combination of a rem ote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS -RPCE].

synchronization object : A data structure that is used to synchronize client requests to prevent
data corruption from the exec ution of multiple threads. In Windows -based servers, the
CRITICAL_SECTION object (as described in [MSDN -CSO]) is used as the synchronization object.

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90221
https://go.microsoft.com/fwlink/?LinkId=202484

9 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

unexpanded description string : A localizable string containing replaceable insertion patterns
that are expanded by using a string - rendering algorithm, defined in section 3.2.4.1.5, to

produce an event description string .

Unicode : A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

Universal Naming Convention (UNC) : A string format that specifies the location of a resource.
For more information, see [MS -DTYP] section 2.2.57.

univers ally unique identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross -process communication such as client and server interfa ces, manager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique ide ntifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does

not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]

must be used for generating the UUID.

well - known endpoint : A preassigned, network -specific, stable address for a particular
client/server instance. For more informati on, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not upd ated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@m icrosoft.com . We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[ISO/IEC -8859 -1] International Organization for Standardization, "Information Technology -- 8-Bit

Single -Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859 -1, 1998,

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

[LDAP] Microsoft Corporation, "About Lightweight Directo ry Access Protocol",
http://msdn.microsoft.com/en -us/library/aa366075.aspx

[MS -ADTS] Microsoft Corporation, " Act ive Directory Technical Specification ".

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

https://go.microsoft.com/fwlink/?LinkId=154659
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=89932
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

10 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MS -EERR] Microsoft Corporation, " ExtendedError Remote Data Structure ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -EVEN6] Microsoft Corporation, " EventLog Remoting Protocol Version 6.0 ".

[MS -LCID] Microsoft Corporation, " Windows Language Code Identifier (LCI D) Reference ".

[MS -LSAD] Microsoft Corporation, " Local Security Authority (Domain Policy) Remote Protocol ".

[MS -LSAT] Microsoft Corporation, " Local Security Authority (Translation Methods) Remote Protocol ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Ext ensions ".

[MS -RRP] Microsoft Corporation, " Windows Remote Registry Protocol ".

[MS -SMB] Microsoft Corporation, " Server Message Block (SMB) Protocol ".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc -editor.org/info/rfc2119

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC 2251,
December 1997, https://www.rfc -editor.org/info/rfc2251

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

[XML] World Wide Web Consortium, "Extensible Markup Langu age (XML) 1.0 (Fourth Edition)", W3C
Recommendation 16 August 2006, edited in place 29 September 2006,
http://www.w3.org/TR/2006/REC -xml -20060816/

1.2.2 Informative References

[MSDN -ANSI] Microsoft Corporation, "Unicode and Character Sets", http://msdn.microsoft.com/en -

us/library/dd374083.aspx

[MSDN -CH] Microsoft Corporation , "Context Handles", http://msdn.microsoft.com/en -
us/library/aa373605(VS.85).aspx

[MSDN -CNVTSTRGSDTSD] Microsoft Corporation,

"ConvertStringSecurityDescriptorToSecurityDescriptor function", http://msdn.microsoft.com/en -
us/library/aa376401(VS.85).aspx

[MSDN -ConvertStringSidToSid] Microsoft Corporation, "ConvertStringSidToSid function",
http://msdn.microsoft.com/en -us/library/aa376402(v=VS.85).aspx

[MSDN -EVENTS] Microsoft Corporation, "Event Schema", http://msdn.microsoft.com/en -
us/library/aa385201.asp x

[MSDN - IsValidSid] Microsoft Corporation, "IsValidSid function", http://msdn.microsoft.com/en -

us/library/aa379151(VS.85).aspx

[MSDN -PreciseSysTme] Microsoft Corporation, "GetSystemTimePreci seAsFileTime function",
https://msdn.microsoft.com/en -us/library/windows/desktop/hh706895(v=vs.85).aspx

[MSDN -TRANS] Microsoft Corporation, "Translation Between String Types",
http://msdn.microsoft.com/en -us/library/ms776433.aspx

%5bMS-EERR%5d.pdf#Section_572bb78f911649668f9d4593456da307
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc
%5bMS-LSAT%5d.pdf#Section_1ba21e6fd8a9462c91534375f2020894
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90325
https://go.microsoft.com/fwlink/?LinkId=90550
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=195280
https://go.microsoft.com/fwlink/?LinkId=195280
https://go.microsoft.com/fwlink/?LinkId=202883
https://go.microsoft.com/fwlink/?LinkId=202883
https://go.microsoft.com/fwlink/?LinkId=204164
https://go.microsoft.com/fwlink/?LinkId=90000
https://go.microsoft.com/fwlink/?LinkId=90000
https://go.microsoft.com/fwlink/?LinkId=200696
https://go.microsoft.com/fwlink/?LinkId=200696
https://go.microsoft.com/fwlink/?LinkId=626588
https://go.microsoft.com/fwlink/?LinkId=90145

11 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

[MSFT -CVE-2021 -31958] Microsoft Corporation, "Windows NTLM Elevation of Privilege Vulnerability",
CVE-2021 -31958, June 8, 2021, https://msrc.microsoft.com/update -guide/en -US/vulnerability/CVE -

2021 -31958

[PE-COFF] Microsoft Corporation, "Microsoft Portable Executable and Common Object File Format
Specification", May2006,
https://github.com/tpn/pdfs/blob/master/Microsoft%20Portable%20Executable%20and%20Common
%20Object%20File%20Format%20Specification%20 -%201999%20(pecoff).pdf

1.3 Overview

1.3.1 Background

Event logs allow applications or the operating system to store historical information that might be of
interest to administrators. The information is organized as a sequential set of records , which are
referred to as events . An example of an event would be a specific user logging on to the computer.

Once a record i s written, it becomes an event and is treated as a read -only item, and is never updated
again.

The events represented in an event log are referred to as records. Records are composed of fields and

are numbered uniquely by one of the fields; that is, the fi rst event has its record number set to 1, the
second event has its record number set to 2, and so forth. Logs can be configured to be circular. A
circular log is one in which the oldest records are overwritten after the log reaches its maximum size.

A comp uter can have several event logs. One log might be devoted to security events while another
might be for general application use.

Applications or components that write to event logs are known as event sources . A single event log
might contain events from many event sources. However, a particular event source can write to only a

single log. That is, a component that writes to multiple event logs is considered for purposes of this
specification to be multiple event sources, with one event source per event log.

Event sources write several kinds of events. For example, a user logging on to the computer could be
one kind of event, and a user logging off would be another kind of event. When an event sou rce writes
an event, it specifies an EventID that indicates what specific kind of event is being written. This
EventID is reused whenever another event of this same type is written in the future . An event can
optionally contain an event category , which commonly expresses an application -specific value that is

used for grouping events.

An event log can be either a live event log or a backup event log . A live event log is one that is
currently in use and thus can be used for both reading and writing. It can be used to create a backup
event log, which is a read -only snapshot of a live event log. Backup event logs are often used for
archival purposes or for copying a backup event log from one computer to another for use by support
personnel.

1.3.2 EventLog Remoting Protocol

The EventLog Remoting Protocol provides a way to access event logs on remote computers.

For both live event logs and backup event logs , the protocol exposes RPC (as specified in [MS -
RPCE]) methods for reading events and for getting general information on the log (such as the

number of records in the log, the oldest records in the log, and whether the log is full), and therefore
can no longer accept additional events.

For live logs only, the protocol also exposes RPC methods for writing events, clearing logs, and
creating back up logs.

The protocol does not provide any methods for configuring either event logs or event sources .

https://go.microsoft.com/fwlink/?linkid=2165320
https://go.microsoft.com/fwlink/?linkid=2165320
https://go.microsoft.com/fwlink/?LinkId=93292
https://go.microsoft.com/fwlink/?LinkId=93292
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

12 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The protocol sequencing model is as follows: The client performs an Open operation, issues other
requests, and finally performs a Close operation.

For methods used by this protocol, see section 3.1.4 .

1.3.3 Localizable Human -Readable Event Descriptions and Other Strings

Implementations in applicable Windows Server releases are structured in such a way that event logs
are language -neutral, and the localizable description strings are built from strings loaded from
resource files. In this way, different users can view the same event log in their language of choice.

The Windows client implementation (Win dows Event Viewer) uses a series of algorithms and heuristics
to derive localizable event log names, event description strings , and event category strings from
the event record as expressed by the EVENTLOGRECORD structure.

See section 3.2.4.1 .

1.4 Relationship to Other Pr otocols

The EventLog Remoting Protocol depends on RPC (as specified in [MS -RPCE]) for message transport.
When RPC is used by the Eventlog Remoting Protocol, RPC uses named pipes as its transport
mechanism, which in turn rely on th e Server Message Block (SMB) Protocol, as specified in [MS -SMB] .

The EventLog Remoting Protocol is often used in conjunction with the Windows Remote Registry
Protocol, as specifi ed in [MS -RRP]. This is because several aspects of the event log are not configured
through the EventLog Remoting Pr otocol; rather, they are configured by modifying the registry .

The EventLog Remoting Protocol Version 6.0, specified in [MS -EVEN6] , is a replacement for this
protocol.

1.5 Prerequisites/Preconditions

The EventLog Remoting Protocol has the prerequisites, as specified in [MS -RPCE], as being common to

protocols depending on RPC .

A prerequisite for the successful use of the methods defined by this protocol is that the caller has
appropriate read/write permissions for the resources held on the server, as specified in section 3.1.4 .

1.5.1 Server Requirements to Enable Remote Description String Rendering

Requirements for enabling rendering of remote description strings follow:

Á The server MUST support the Windows Remote Registry Protocol, as specified in [MS -RRP]. The
remote client MUST have read access to the server's remot e registry .

Á The server MUST implement the 'Server' role of the Server Message Block (SMB) Protocol, as
specified in [MS -SMB] , and share the appropriate "$" shares (for example, " \ \ server \ C$") for
reading, so that the remote client can access the message files.

1.6 Applicability Statement

The EventLog Remoting Protocol <1> is used for accessing event logs , which can be used for many
different purposes; for example, recording local security events or recording application start/stop

events.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following area:

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

13 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Á Protocol Ver sion: The RPC interface for this protocol has its own version number. Each specific
version of the protocol requires one specific version of the RPC interface (for more information,

see section 2.1.1). This protocol can be extended by adding RPC messages to the interface with
opnums higher than those defined in this specificat ion. An RPC client determines whether such

methods are supported by attempting to invoke the method; if the method is not supported, the
RPC runtime returns an "opnum out of range" error, as specified in [C706] and [MS -RPCE]. RPC
versioning and capacity negotiation in this situation is as specified in [C706] and [MS -RPCE].

1.8 Vendor -Extensible Fields

There are five vendor -extensible fields relevant to the EventLog Remoting Protocol.

1.8.1 Error Values

Any nonzero return val ue can represent an error. Vendors SHOULD use the values from the NTSTATUS

number space, as specified in [MS -EERR].

The EventLog Remoting Protocol uses NTSTATUS values, as speci fied in [MS -ERREF] section
2.3.Vendors SHOULD use these values with their indicated meanings. <2> Vendors are free to choose
their own values for this field as long as the C bit (0x20000000) is set, indicating that it is a customer
code.

1.8.2 Event Log Names

Each eve nt log has a name that is a Unicode string. The EventLog Remoting Protocol supports both
Unicode, as specified in [MS-DTYP] , and ANSI strings. In this specification, ANSI strings refer to multi -
byte strings in which the encoding is controlled by the current system code page. One of the most
common code pages is ANSI Latin -1, as specified in [ISO/IEC -8859 -1] . More information about the

use of Unicode and ANSI strings in the EventLog Remoting Protocol is specified in section 2.2.10 . This
name MUST b e unique across all event logs on the same server. Event log names SHOULD <3> be
prefixed with the name of the entity that created the event log to avoid collisions.

1.8.3 Event Source Names

Each event source also has a name that is a Unicode string. This name MUST be u nique across all
event sources on the same server. An event source name typically identifies the software product to
which a given event applies. Event source names SHOULD <4> be prefixed with a unique value (such
as the name of the entity that created the event source) to avoid collisions.

1.8.4 EventIDs

EventIDs are integers that are unique on a per -event source basis. The combination of an event
source name and an EventID uniquely identifies a specific kind of event.

1.8.5 Event Categories

Event categories are integers that are unique on a per -event source basis. The combination of an
event source name and an event category suffices to uniquely identify a class of events. Unlike
EventIDs , the use of the category is optional (defaulting to 0). Categories are used to group events
into broader classes tha n can be done with EventIDs. For example, an application might use a
category for all events that occur during startup, and use another category for events that occur
during shutdown. Management applications might use categories to identify what part of th e

component raised the event.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-EERR%5d.pdf#Section_572bb78f911649668f9d4593456da307
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90689

14 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1.9 Standards Assignments

The EventLog Remoting Protocol has no standards assignments, only private assignments made by
Microsoft using allocation procedures specified in other protocols.

Microsoft has allocated to this protocol an RPC interface universally unique identifier (UUID)
(using the procedur e specified in [C706]) and a named pipe (as specified in [MS -SMB]). The
assignments are as follows.

Parameter Value

RPC interface UUID {82273FDC -E32A -18C3 -3F78 -827929DC23EA}

Named pipe \ PIPE\ eventlog

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

15 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2 Messages

2.1 Transport

The EventLog Remoting Protocol uses RPC as the primary transport protocol.

Client remote retrieval and expansion of event description, event category , and parameter strings
are done as specified in [MS -RRP] and [MS -SMB] .

2.1.1 Server

The server RPC interface is identified by UUID 82273FDC -E32A -18C3 -3F78 -827929DC23EA version
0.0, using the RPC well - known endpoint \ PIPE\ eventlog. The server MUST specify RPC over named
pipes (that is, ncacn_np) as the RPC protocol sequence to the RPC implementatio n, as specified in
[MS -RPCE]. The server MUST specify the Simple and Protected GSS -API Negotiation Mechanism
(SPNEGO) (0x9) or NT LAN Manager (NTLM) (0xA), or both, as the RPC A uthentication Service (AS)

(as specified in [MS -RPCE]). See [MS -RPCE] section 3.3.1.5.2.2 and [C706] section 13.

The server MAY require the client connection to specify an authentication level of at least packet - level

authentication (0x4), as specified in section 2.2.1.1.8 of [MS -RPCE]. The server SHOULD require the
connection to use the packet -privacy authentication level (0x6). <5>

2.1.2 Client

The client MUST use RPC over named pipes (that is, ncacn_np), as specified in [MS -RPCE], as the

RPC protocol sequence to communicate with the server. The client MUST specify either SPNEGO
(0x9) or NTLM (0xA) (as specified in [MS -RPCE]) as the Authentication Service (AS).

The client MUST specify packet - level integri ty authentication (0x5) or higher, as specified in [MS -
RPCE] section 2.2.1.1.8. <6>

2.2 Common Data Types

In addition to RPC base types, the sections that follow use the definitions of BOOL, FILETIME, GUID,
SID, and ULONG, as specified in [MS -DTYP] .

2.2.1 RULONG

The RULONG type is used by the ElfReadELW and ElfReadELA methods to specify the value for the
NumberOfBytesToRead parameter.

This type is declared as follows:

 typedef [range(0, MAX_BATCH_BUFF)]

 unsigned long RULONG;

2.2.2 EventType

The EventType <7> is a 16 -bit field that MUST be one of the following va lues.

Constant/value Description

EVENTLOG_SUCCESS

0x0000

An event that describes the successful operation of an application, driver, or
service. For example, when a network driver loads successfully, it can be

%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

16 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Constant/value Description

appropriate to log an Information event. It is generally inappropriate for a
desktop application to log each ti me it starts. This is the same meaning
conveyed by EVENTLOG_INFORMATION_TYPE.

EVENTLOG_ERROR_TYPE

0x0001

An event that indicates a problem such as loss of data or loss of functionality.
For example, if a service fails to load during startup, an Error even t is logged.

EVENTLOG_WARNING_TYPE

0x0002

An event that is not necessarily significant but could indicate a possible future
problem. For example, when disk space is low, a Warning event is logged. If
an application can recover from an event without loss o f functionality or data,
it can generally classify the event as a Warning event.

EVENTLOG_INFORMATION_TYPE

0x0004

An event that describes the successful operation of an application, driver, or
service. For example, when a network driver loads successfully , it can be
appropriate to log an Information event. It is generally inappropriate for a
desktop application to log each time it starts. This is the same meaning
conveyed by EVENTLOG_SUCCESS.

EVENTLOG_AUDIT_SUCCESS

0x0008

An event that records an audited security access attempt that is successful.
For example, a user's successful attempt to log on to the system is logged as
a Success Audit event.

EVENTLOG_AUDIT_FAILURE

0x0010

An event that records an audited security access attempt that fails. For
example , if a user tries to access a network drive and is denied access, the
attempt is logged as a Failure Audit event.

2.2.3 EVENTLOGRECORD

The EVENTLOGRECORD structure contains information on a single event. This structure is transferred
as a set of bytes in the buffer passed in the ElfrReadELW (section 3.1.4.7) and
ElfrReadELA (section 3.1.4.8) methods.

All integer fields in the EVENTLOGRECORD structure MUST be in little -endian byte order (that is, least
significant byte first).

The string fields in this structure MUST be ANSI strings when this structure is used with

ElfrReadELA (section 3.1.4.8) methods, and Unicode strings when this structure is used with
ElfrReadELW (section 3.1.4.7) methods.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Reserved

RecordNumber

TimeGenerated

TimeWritten

EventID

17 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

EventType NumStrings

EventCategory ReservedFlags

ClosingRecordNumber

StringOffset

UserSidLength

UserSidOffset

DataLength

DataOffset

SourceName (variable)

...

Computername (variable)

...

UserSidPadding (variable)

...

UserSid (variable)

...

Strings (variable)

...

Data (variable)

...

Padding (variable)

...

Length2

Length (4 bytes): Size in bytes of the structure. The size varies depending on the variable - length
fields at the end of the structure.

18 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reserved (4 bytes): MUST be set to 0x654c664C (which is ASCII for eLfL). This serves as a
signature for the structure.

RecordNumber (4 bytes): The record number, as defined in section 1.3.1 . The RecordNumber is
mapped directly from the record ID . The record ID is an unsigned int64 (an 8 byte number) that

the server read s from the file and converts to an unsigned integer (a 4 byte number) when
assigning the value to the RecordNumber field in the EVENTLOGRECORD structure. The
conversion simply discards the higher 32 bits of Record ID and assigns the lower 32 bits of record
ID to the RecordNumber .

TimeGenerated (4 bytes): Time when the event was generated. The time MUST be expressed as
the number of seconds since 00:00:00 on January 1, 1970 (UTC). This value is supplied by the
event source .

TimeWritten (4 bytes): Time when the event was written. The time MUST be expressed as the
number of seconds since 00:00:00 on January 1, 1970 (UTC). This value is the time the event was
written to the event log .

EventID (4 bytes): EventID generated by the event source, as specified in section 1.8.4 .

EventType (2 bytes): Type of the event, as specified in section 1.3.1.

NumStrings (2 bytes): Number of strings in the Strings field. This MUST be between 0 and 256,

inclusive. A value of zero indicates that no strings are present.

EventCategory (2 bytes): Event category , as specified in section 1.8.5 .

ReservedFlags (2 bytes): Specifies whether or not the last string in the Strings field contains well -
formed XML, as specified in [XML] . This MUST be one of the following two values.

Value Meaning

0x0000 The event does not contain XML.

0x8000 The event contains XML.

ClosingRecordNumber (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

StringOffset (4 bytes): This MUST be the offset in bytes from the beginning of the structure to the
Strings field. If the Strings field is not present (NumStrings is zero), this can be set to any
arbitrary value when sent and MUST be ignored on receipt by the client.

UserSidLength (4 bytes): Size in bytes of the user's security identifier, which is located within the
UserSid field. If there is no UserSid field for t his event, this field MUST be set to zero.

UserSidOffset (4 bytes): This MUST be the offset in bytes from the beginning of the structure to the
UserSid field. If the UserSid field is not present (that is, if UserSidLength is zero), this can be

set to any arbitrary value when sent and MUST be ignored by on receipt the client.

DataLength (4 bytes): This MUST be the size in bytes of the Data field. If the Data field is not

used, this field MUST be set to zero.

DataOffset (4 bytes): This MUST be the offset in bytes from the beginning of the structure to the
Data field. If the Data field is not present (that is, if DataLength is zero), this can be set to any
arbitrary value when sent and MUST be ignored on receipt by the client.

SourceName (variable): Variable - length null - terminated string that specifies the name of the source

that generated the event, as defined in section 1.8.2 . The length of this field is calculated by
seeking the NULL that terminate s the string.

https://go.microsoft.com/fwlink/?LinkId=90598

19 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Computername (variable): Variable - length null - terminated string that assists in identifying the
machine that generated the event. This string MUST NOT <8> be interpreted by the pr otocol, and

can be in an arbitrary format.

In practice, the name of the computer. There are no character restrictions on this field's content

(for example, a fully qualified domain name (FQDN) can be used).

The length of this field is calculated by seeking the NULL that terminates the string.

UserSidPadding (variable): MUST be zero or more bytes of padding, where the choice of length is
implementation dependent. The padding can have any value, and MUST be ignored on
receipt. <9>

UserSid (variable): Current user's security identifier, as defined by the RPC_SID structure. This
parameter can be NULL if the security identifier is not required.

Strings (variable): Zero or more null - terminated strings containing information on the event. The
NumStrings field contains the number of items in this field.

Data (variable): Event -specif ic binary data. This is supplied by the event source, and MUST NOT be
interpreted by the protocol. This data is not always present. The DataLength field contains the
length of this field. The DataOffset field contains the start of this field.

Padding (vari able): The SourceName , ComputerName , UserSid , Strings , and Data fields can all

vary in length. The UserSid , Strings , and Data fields MAY be zero bytes in length. The length of
the entire structure up to this point, including these fields, MUST be divisible by 4. Therefore, up
to 3 bytes of padding MUST be added to bring the length to a multiple of 4. The padding can have
any value, and MUST be ignored on receipt.

Length2 (4 bytes): Same value as the Length field specified as the first member. By having two
copies, a buffer containing many events can easily be navigated in both directions.

2.2.4 EVENTLOG_FULL_INFORMATION

The EVENTLOG_FULL_INFORMATION structure is used by the ElfrGetLogInformation (section 3.1.4.20)
method to indicate whether an event log is full or not.

 typedef struct _EVENTLOG_FULL_INFORMATION {

 unsigned long dwFull;

 } EVENTLOG_FULL_INFORMATION;

dwFull: If the event log is not full, dwFull MUST be set to zero. If the event log is full, dwFull MUST be
set to 1.

2.2.4.1 NT Object Path

A string referred to as an NT Object Path is used by several methods to allow the specification of
either a file path that is local t o the server or a remote file path.

An NT Object Path string MUST begin with \ ??\ . If the string begins with \ ??\ UNC\ , it MUST be
interpreted by the server as a Universal Naming Convention (UNC) path after replacing the
\ ??\ UNC\ with \ \ . Otherwise, the remainder of the string MUST be interpreted by the server as a local

file path in whichever file naming syntax is used by the server's local file system; all characters MUST
be considered legal by the EventLog Remoting Protocol, as the string is simply to be passed to the
underlying file system.

20 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

For example, if the NT Object Path is \ ??\ UNC\ wmiscratch \ scratch \ x.x, the server interprets it as
indicating the UNC path \ \ wmiscratch \ scratch \ x.x. If the N T Object Path is instead \ ??\ C: \ scratch \ x.x,

the server interprets it as indicating the local file system path C: \ scratch \ x.x.

2.2.5 RPC_SID

The RPC_SID structure is used by methods that write events .

 typedef struct _RPC_SID {

 unsigned char Revision;

 unsigned char SubAuthorityCount;

 RPC_SID_IDENTIFIER_AUTHORITY IdentifierAuthority;

 [size_is(SubAuthorityCount)] unsigned long SubAuthority[*];

 } RPC_SID,

 *PRPC_SID;

Revision: This member is specified in [MS -DTYP] section 2.4.2.

SubAuthorityCount: This member is specified in [MS -DTYP] section 2.4.2.

Iden tifierAuthority: This member is specified in [MS -DTYP] section 2.4.2.

SubAuthority: This member is specified in [MS -DTYP] section 2.4.2.

The fields in this structure exactly correspond to the fields in the SID structure, which defines a

security identifier (SID) ða variable - length byte array that uniquely identifies a security principal ðas
specified in [MS -DTYP] section 2.4.2.

2.2.6 IELF_HANDLE

The IELF_HANDLE type defines a context handle (as specified in [C706]) to the target server.

 typedef [context_handle] void* IELF_HANDLE;

 typedef [context_handle] void** PIELF_HANDLE;

The detailed data type definitions are defined in section 3.1.1.5 .

2.2.7 EVENTLOG_HANDLE_A and EVENTLOG_HANDLE_W

The event log remote i nterface on a particular server is referred to by a handle, which can be

EVENTLOG_HANDLE_A or EVENTLOG_HANDLE_W. In the specific case of the event log remote
interface, the handle is nothing more than the name of the server providing the interface. The nam e
can be specified using either Unicode or ANSI, and the formats are:

 typedef [handle, unique] wchar_t* EVENTLOG_HANDLE_W;

 typedef [handle, unique] char* EVENTLOG_HANDLE_A;

Some of the EventLog Remoting Protocol methods (for more information, see section 3.1.4) have an
EVENTLOG_HANDLE_W or EVENTLOG_HANDLE_A as their first argument. In these methods, the client
maps this string to an RPC binding handle. The server ignores this argument. See [C706] sections

4.3.5 and 5.1.5.2.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=89824

21 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

2.2.8 RPC_CLIENT_ID

The RPC_CLIENT_ID structure is used in the ElfrChangeNotify (section 3.1.4.23) method for local
method invocations only.

 typedef struct _RPC_CLIENT_ID {

 unsigned long UniqueProcess;

 unsigned long UniqueThread;

 } RPC_CLIENT_ID,

 *PRPC_CLIENT_ID;

UniqueProcess: A 32 -bit unsigned integer. Ignored when ElfrChangeNotify (section 3.1.4.23) is
invoked remotely.

UniqueThread: A 32 -bit unsigned integer. Ignored when E lfrChangeNotify (section 3.1.4.23) is

invoked remotely.

2.2.9 Constants Used in Method Definitions

The following constants are used in various methods.

Constant/value Description

MAX_STRINGS

0x00000100

The maximum number of strings that a method accepts (typically in a NumStrings
parameter).

MAX_SINGLE_EVENT

0x0003FFFF

The maximum data size that a method accepts for a single event (typically in a DataSize
parameter).

MAX_BATCH_BUFF

0x0007FF FF

The maximum amount of data, in bytes, that can be read by a method (typically in a
NumberOfBytesToRead parameter).

2.2.10 Unicode Versus ANSI String Representations

The EventLog Remoting Protocol supports both Unicode and ANSI strings. In this specification, ANSI
strings refer to multi -byte strings in which the encoding is controlled by the current system code page.

The server MUST support conversions between character se ts. For example, one client might write
events using ANSI (multi -byte) strings, and another client might read those same records as

Unicode. <10> For how clients choose a character set, see section 3.1.4 . The way in which a Unicode
string is converted to or from an ANSI string is implementation specific. In the occasional case in
which the server cannot convert from Unicode to ANSI, the operation MUST fail.

2.2.11 RPC_UNICODE_STRING

EventLog Remoting Protocol APIs use the RPC_UNICODE_STRING structure to specify a Unicode
string parameter.

 typedef struct {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength/2), length_is(Length / 2)]

 WCHAR* Buffer;

 } RPC_UNICODE_STRING,

22 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 *PRPC_UNICODE_STRING;

Length: The length, in bytes, of the string pointed to by the Buffer member, not including the
terminating null character, if any. The len gth MUST be a multiple of 2. The length SHOULD equal
the entire size of the Buffer , in which case there is no terminating null character. Any method
that accesses this structure MUST use the Length that is specified, instead of relying on the
presence or a bsence of a null character.

MaximumLength: The maximum size, in bytes, of the string pointed to by Buffer . The size MUST be
a multiple of 2. If not, the size MUST be decremented by 1 prior to use. This value MUST not be

less than Length .

Buffer: A pointe r to a string buffer. If MaximumLength is greater than zero, the buffer MUST
contain a non -null value.

2.2.12 RPC_STRING

EventLog Remoting Protocol APIs use the RPC_STRING to specify an ANSI string parameter.

 typedef struct _RPC_STRING {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength)] char* Buffer;

 } RPC_STRING,

 *PRPC_STRING;

Length: The number of bytes (not the number of characters) in the string. This does not include the
null t erminator.

MaximumLength: If the string is the empty string, this MUST be set to zero. Otherwise, it MUST be
the number of bytes in the string, including the null terminator (that is, it MUST be equal to the

Length member plus 1).

Buffer: Either a pointe r to a buffer containing a null - terminated non -empty ANSI string or NULL to
indicate an empty string.

23 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3 Protocol Details

The EventLog Remoting Protocol asks the RPC runtimes at both the client and server to perform a
strict Network Data Representation (NDR) consistency check. <11>

3.1 Server Details

The event log server handles client requests for any of the methods, as specified in section 3.1 .4 ,
and operates on the logs and the configuration on the server. Any potential conflicts from the client
will be handled correctly by the server's synchronization object . For example, if the cl ient issues a
clear request while the server is handling some backup operation for the same log at the same time,
the clear request has to wait on the server's synchronization object before the backup operation

finishes. After the backup is done, the synch ronization object is released and the clear request is able
to pass through it, so that the server will handle the clear operation.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The describ ed organization is provided to explain how the
protocol behaves. This specification does not mandate that implementations adhere to this model as
long as their external behavior is consistent with what is described in this specification.

3.1.1.1 Event Log Records

An event log record is the structure that represents an occurrence of an event in the system.

The event log record includes time, type, and category information, and corresponds to the
EVENTLOGRECORD (section 2.2.3) structure.

3.1.1.2 Event Logs

The log is a persistent store of event log records . Event logs are of two types: live event logs ,
which can be written to and read from, and backup event logs , which can only be read from. The
backup logs are created using the methods that back up (or copy) a live log to a backup log.

The logs are registered by creating registry entr ies. For how to create these entries, see [MS -RRP].
These registry entries will have to be added manually by the server administrator or by running
registry scripts. This is beca use the methods described in section 3.1.4 never write information to the

registry.

The client MUST NOT modify event log registry entries. The server MUST configure those event log
registry entrie s. The server configures the log entries by adding a subkey under
HKEY_LOCAL_MACHINE \ system \ currentcontrolset \ services \ eventlog that results in an event log. The
name of the log is the same as the subkey. The log subkey also specifies log attributes such a s its
maximum size and its retention settings. The retention settings determine how the server handles

events after the log reaches its maximum size. The retention can be set either to fail all new writes,

or to start overwriting the oldest records. In the latter case, the log is treated as a circular log. The
Eventlog Remoting Protocol does not support any RPC methods for getting or s etting the maximum
event log size or its retention policy. For more information, see [MSDN -EVENTS] .

Each log can contain the following registry values.

Registry value Description

CustomSD Restricts access to the event log. This value is of type REG_SZ. The format used is Security
Descriptor Definition Language (SDDL) as specified in [MS -DTYP] section 2.5.1. Constru ct

%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
https://go.microsoft.com/fwlink/?LinkId=90000
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

24 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Registry value Description

an ACL , as specified in [MS -DTYP] section 2.4.5, that grants one or more of the following
rights:

Á Clear (0x0004)

Á Read (0x0001)

Á Write (0x0002)

If CustomSD is set to a wrong value, an event is fired in the System event log when the
event log service starts, and the event log gets a default security descriptor which is
identical to the original CustomSD value for the application log. <12>

DisplayNameFile The name of the file that stores the localized name of the event log. If this entry does not
appear in the registry for an event log, the name of the registry subkey is the log name.
This value is of type REG_EXPAND_SZ.

DisplayNameID The message identification number of the log name string. This number indicates the
message in which the localized display name appears. The message is stored in the file
specified by th e DisplayNameFile value. This value is of type REG_DWORD.

File This value defaults to "%SystemRoot% \ system32 \ config \ " followed by a file name that is
based on the event log registry key name. If the File setting is set to an invalid value, the
log will either not be initialized properly, or all requests will silently go to the default
application log.

MaxSize The maximum size, in bytes, of the log file. This value is of type REG_DWORD. The value is
limited to 0xFFFFFFFF, and the default value is 512K.

PrimaryModule This value is the name of the subkey that contains the default values for the entries in the
subkey for the event source. This value is of type REG_SZ.

Retention This value is of type REG_DWORD. This value is the time interval, in seconds, in which
records of events are protected from being overwritten. When the age of an event reaches
or exceeds this value, it can be overwritten. This value is used to configure the circular log.
If the value is a nonzero value, the event log server cannot overwrite any record until the
record's age passes that value. By default, this value is 0.

Sources The names of the applications, services, or groups of applications that write events to t his
log. This value is only read and not altered. The event log service maintains the list based
on each program listed in a subkey under the log. This value is of type REG_MULTI_SZ.

AutoBackupLogFiles This value is of type REG_DWORD, Retention needs to b e 0xFFFFFFFF for
AutoBackupLogFiles to work, and it is ignored otherwise.

When set to 0xFFFFFFFF, the event log file is closed as soon as it reaches the maximum
size specified by the MaxSize property, and a new file is opened to accept new events. If
the new file reaches maximum size, another new file will be generated and the previous
new file will be backed up. The events in backup files cannot be queried directly in the
server unless the client specifies the backup log file names in a separate query. Wh en not
set to 0xFFFFFFFF, there will be no backup.

RestrictGuestAccess This value is of type REG_DWORD, and the default value is 1. When the value is set to 1, it
restricts the Guest and Anonymous account access to the event log, and when this value is

0, it allows Guest account access to the event log.

25 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.1.3 Event Sources

The event source is intended to identify the software that reports the event . It can be interpreted as
the event provider. In the EventLog Remoting Protocol, the event source is specified as a string. The

server maintains an association between event sources and logs. If a client attempts to register an
event source that does not exist in the registry under any of the event logs , the event log service
still allows the client to s ucceed and writes these events to the application event log, creating this log
if it did not already exist.

When a client calls a method such as ElfrRegisterEventSourceW to get a handle for writin g, the server
uses that association to determine what log will receive any events subsequently published using that
handle. The server stores the sources as the subkeys of the logs in the registries. The association is

described in detail in the following sections.

By definition, an event source is only associated with one log in the system.

The event sources are created by servers before the client starts to use them. Event sources are
created by creating subkeys in the registry. These subkeys are located under the keys used to define

event logs (see section 3.1.1.2). The name of the subkey is the name of the event source. For
example, a log named Log1 would be defined by this key:

 HKEY_LOCAL_MACHINE\

 system \ currentcontrolset \ services \ eventlog \ Log1

If there were two sources for that log named source1 and source2, there would be the following two
keys:

 HKEY_LOCAL_MACHINE\

 system \ currentcontrolset \ services \ eventlog \ Log1 \ source1

 HKEY_LOCAL_MACHINE\

 system \ currentcontrolset \ services \ eventlog \ Log1 \ source2

In addition, the name of the event source needs to be added to the REG_MULTI_SZ "Sources" value
defined for the event log.

Each event source can contain the following registry values:

Reg istry Value Description

CategoryCount Number of event categories supported. This value is of type REG_DWORD.

CategoryMessageFile Path to the category message file. A category message file contains language -dependent
strings that describe the categories. This value can be of type REG_SZ or
REG_EXPAND_SZ.

EventMessageFile Path to one or more event message files; use a semicolon to delimit multiple files. An
event message file contains language -dependent strings that describe the events. This
value can be o f type REG_SZ or REG_EXPAND_SZ.

ParameterMessageFile Path to the parameter message file. A parameter message file contains language -
independent strings that are to be inserted into the event description strings. This value
can be of type REG_SZ or REG_EXP AND_SZ.

TypesSupported Bitmask of supported types. This value is of type REG_DWORD. It can be one or more of
the following values:

Á EVENTLOG_AUDIT_FAILURE (0x0010)

26 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Reg istry Value Description

Á EVENTLOG_AUDIT_SUCCESS (0x0008)

Á EVENTLOG_ERROR_TYPE (0x0001)

Á EVENTLOG_INFORMATION_TYPE (0x0002)

Á EVENTLOG_WARNING_TYPE (0x0004)

3.1.1.4 EventID

The EventID identifies the specific kind of event; this classification is relative to the event source
that logs it. <13>

3.1.1.5 Context Handles

Clients obtain context handles for both reading and writing purposes. The methods for doing so are
specified in section 3.1.4 . The server MUST maintain a relationship between each particular handle
and a particular log. For handles used for writing, the server MUST also mainta in the name of the
event source so that it can be injected into any events written using the handle. For handles used for
reading, the server MUST maintain the position of the last read so that subsequent sequential mode
reads can succeed. Server implementations define the following context_handle structure to

maintain this information:

 typedef [context_handle] struct _ELF_HANDLE {

 ULONG Signature;

 ULONG Flags;

 unsigned __int64 LastRecordRead;

 ULONG MajorVersion;

 ULONG MinorVersion;

 void* LogPublisher;

 ULONG NameLength;

 [size_is(NameLength)] WCHAR Name[];

 } *IELF_HANDLE;

 typdef IELF__HANDLE *PIELF_HANDLE;

Signature: A ULONG value that is always 0x654c6648 to indicate a valid handle.

Flags: This is used to distinguish the log handle type. A backup log handle or a normal log handle.
The allowed flag values and their meanings are specified as follows.

Á 0x00000001: This flag is used to specify that the handle is out of sync and that the reader needs

to sync the latest content because some writing has occurred.

Á 0x00000002: This flag is used to specify that the log file is opened for backup.

Á 0x00000004: This flag is used to specify that the log handle is a remote handle.

Á 0x00000008: The flag is used to specify that the event log read direction is forward.

LastRecordRead: The last record ID read by the event log server. The record ID is the identifier of
event log records in the event log file. The server uses this value as the hint to get the next
record when fetching the event records to the user.

27 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

MajorVersion: The major version number of this structure definition.

MinorVersion: The minor version number of this structure definition.

LogPublisher: The event provider object. This object is the i nternal representation of the event
source.

NameLength: The length of the event log file name.

Name: The event log file name string.

Unless otherwise specified, all handles in section 3.1.4 and its subsections are context handles.

3.1.2 Timers

None.

3.1.3 Initialization

At initialization time, the EventLog Remoting Pro tocol server MUST register the RPC interface and

begin listening on the RPC well - known endpoint that is specified in section 2.1 . The server then
MUST wait for client requests.

By default, events produced by unregistered event sources are sent to the application eve nt log .
Therefore, the server creates a live event log with the name Application, if one does not already
exist. If creation of the event log (with the name Application) fails, the EventLog Remo ting Protocol
server does not start.

3.1.4 Message Processing Events and Sequencing Rules

This section is an overview of the 21 RPC methods used by the EventLog Remoting Protocol. With one

exception, there are two versions of each method that have one or more strings in the argument list:

One version takes Unicode strings as arguments (such methods are denoted by a 'W' at the end of
the method, which is short for Wide), and one version takes ANSI strings as arguments (such methods
are denoted by an 'A' at the end of the method, which is short for ANSI). ANSI strings are converted
to Unicode strings at the server (as specified in section 2.2.10) before being further interpreted at the
server.

The names and opnums of each method are given below as well as a si mple description of the
method.

Methods in RPC Opnum Order

Method Description

ElfrClearELFW Clears event logs .

Opnum: 0

ElfrBackupELFW Creates a backup of a live event log .

Opnum: 1

ElfrCloseEL Used to close context handles obtained by the ElfrOpenELW method, ElfrOpenELA
method, ElfrOpenBELW method, or ElfrOpenBELA method.

Opnum: 2

ElfrDeregisterEventSource Used to close context handles obtained by the ElfrRegisterEventSourceW method

28 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

or the ElfrRegisterEventSourceA method.

Opnum: 3

ElfrNumberOfRecords Obtains the number of records in an event log.

Opnum: 4

ElfrOldestRecord Obtains the record number of the oldest record in an event log.

Opnum: 5

ElfrChangeNotify Reserved for local use. Notifies local processes about changes to the event log.

Opnum: 6

ElfrOpenELW Opens a handle to a live event log that can be used for reading or clearing.

Opnum: 7

ElfrRegisterEventSourceW Opens a handle to a live event log that can be used for writing.

Opnum: 8

ElfrOpenBELW Opens a handle to a previously backed up event log. The h andle is used for
reading.

Opnum: 9

ElfrReadELW Reads one or more events from an event log.

Opnum: 10

ElfrReportEventW Writes an event to an event log.

Opnum: 11

ElfrClearELFA Clears an event log.

Opnum: 12

ElfrBackupELFA Creates a backup of a live event log.

Opnum: 13

ElfrOpenELA Opens a handle to a live event log that can be used for reading or clearing.

Opnum: 14

ElfrRegisterEventSourceA Opens a handle to a live event log that can be used for writing.

Opnum: 15

ElfrOpenBELA Opens a handle to a previously backed up event log that can be used for reading.

Opnum: 16

ElfrReadELA Reads one or more events from an event log.

Opnum: 17

ElfrReportEventA Writes an event to an event log.

Opnum: 18

Opnum19NotUsedOnWire Reserved for local use.

Opnum: 19

Opnum20NotUsedOnWire Reserved for local use.

Opnum: 20

Opnum21NotUsedOnWire Reserved for local use.

Opnum: 21

29 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

ElfrGetLogInformation Gets information on an event log.

Opnum: 22

Opnum23NotUsedOnWire Reserved for local use.

Opnum: 23

ElfrReportEventAndSourceW Writes a single event to an event log.

Opnum: 24

ElfrReportEventExW Writes an event to an event log.

Opnum: 25

ElfrReportEventExA Writes an event to an event log.

Opnum: 26

In the preceding table, the phrase "Reserved for local use" means that the client MUST NOT send the

opnum, and the server behavior i s undefined because it does not affect interoperability.

The first group of conceptual operations relates to initiating interaction with an event log, which is
either a backup event log or a liv e event log (for the distinction between live and backup, see
section 1.3). Interaction can be initiated with a live event log for either writing to the event log or for
reading or clearing the ev ent log. Because each of the three conceptual operations can use either
Unicode or ANSI strings, this accounts for six of the 20 methods.

The second group of conceptual operations relates to interacting with a log by reading from the log,

clearing the log, creating a backup of the log, writing to the log, or writing to the log and specifying
the name of the source at the time of the write. Four of these five conceptual operations can use
either Unicode or ANSI strings as arguments, accounting for another (2 x 4 + 1) = 9 of the 20
methods.

The third group of conceptual operations relates to getting metadata on the log: the number of the

oldest record in the log, the total number of records in the log, or other information on the log. These

account for another three of the 20 methods.

The fourth group of conceptual operations relates to freeing resources maintained on the server to
support its interaction with this client. These account for the remaining two of the 20 methods.

The methods are presented in the table above in the same order as this conceptual grouping.

All methods MUST NOT throw exceptions. All return values use the NTSTATUS numbering space; and,
in particular, a value of 0x00000000 indicates success, and any other return value indicates an error .
All possible error values are specified in [MS -ERREF] section 2.3 and they MUST be treated the same,

unless specified otherwise. <14>

Because the server makes access control decisions as part of the response to Eventlog Remoting
Protocol requests, the client MUST authenticate to the server, as specified in section 2.1.1 . This is the
responsibility of a lower - layer protocol, RPC with named pipes (as specified in [C706]); and the

access control decisions affecting the Eventlog Remoting Protocol are made based on the identity
conveyed by this lower - layer protocol.

The RPC interface for the Eventlog Remoting Protocol only uses handles of t ype IELF_HANDLE. There

are two groups of functions that can be used to obtain one of these handles. This protocol asks the
RPC runtime via the strict_context_handle attribute to reject use of context handles created by a
method of a RPC interface different from this one, as specified in [MS -RPCE] section 3.1.1.5.3.2.2.2.

There are specific methods used for opening handles for reading. These methods are log -oriented. The
caller sp ecifies the particular log (such as Application) or the name of a previously backed up log.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

30 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

These methods MUST succeed if the caller has read access, independent of if the caller has write or
clear access (security permissions that allow the user to write to or clear the event log). The server

has an access control list (ACL) that is used to control access to the log. The protocol has no methods
for reading or setting that ACL. A caller with read access can read events, get log information (such as

the numb er of records or oldest record), and determine if the log is full. These methods are:

Á ElfrOpenELW (section 3.1.4.3)

Á ElfrOpenELA (section 3.1.4.4)

Á ElfrOpenBELW (section 3.1.4.1)

Á ElfrOpenBELA (section 3.1.4.2)

The ElfrOpenELA (section 3.1.4.4) and ElfrOpenEL W (section 3.1.4.3) methods are used to obtain
handles for backing up and clearing event logs.

For writing purposes, a second group is used. In addition to requiring that the caller have Write

permission, the methods use the name of the event source to determine the event log to write to.
These methods are:

Á ElfrRegisterEventSourceW (section 3.1.4.5)

Á ElfrRegisterEventSourceA (section 3.1.4.6)

The 'A' or 'W' suffix in the method name signifies whether the string arguments to the method contain

ANSI or Unicode characters. This MUST NOT affect calls to subsequent methods. For example, a
handle obtained by using the ElfrOpenELW (section 3.1.4.3) me thod MUST be usable with either
ElfrReadELW (section 3.1.4.7) or ElfrReadELA (section 3.1.4.8).

When opening the handles, the server MUST check for additional rights. For example, the
ElfrRegisterEventSourceW (section 3.1.4.5) method MUST succeed if and o nly if the caller has write
access, independent of if the caller has read or clear access. However, the handle returned by the
server MUST also be associated with the read and clear accesses if they are possessed by the client.

Therefore, a handle returned by the ElfrRegisterEventSourceW (section 3.1.4.5) method MUST be
usable for purposes other than writing if the caller has the appropriate permissions. Similarly, a handle
returned via ElfrOpenELW (section 3.1.4.3) or ElfrOpenELA (section 3.1.4.4) MUST be usable for
writing if the caller has write access.

Later in this section, the requirements on the internal state at the server for these methods to succeed
are specified as well as the updates to server state caused by each method if the method succeeds.

The return values of these methods are of the type NTSTATUS. Some of the return values are

specified in the server processing rule section for each method. Protocol implementers can choose to
return other, implementation -based return values, such as those r eturned from operating system
components that are used to implement the protocol. Protocol implementers SHOULD only use return
values listed in [MS -ERREF].

3.1.4.1 ElfrOpenBELW (Opnum 9)

The ElfrOpenBELW (Opnum 9) method instructs the server to return a handle to a backup event log .
The caller MUST have perm ission to read the file containing the backup event log for this to succeed.

Note The server has an Access Control List (ACL) that is used to control access to the log. The
protocol has no meth ods for reading or setting that ACL.

 NTSTATUS ElfrOpenBELW(

 [in] EVENTLOG_HANDLE_W UNCServerName,

 [in] PRPC_UNICODE_STRING BackupFileName,

31 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE* LogHandle

);

UNCServer Name: A server interface handle. A pointer to a Unicode string specifying the server, as
specified in section 2.2.7 . The client MUST m ap this string to an RPC binding handle, and the server
MUST ignore this argument. See [C706] sections 4.3.5 and 5.1.5.2.

BackupF ileName: Provides a Unicode string (as specified in section 2.2.11) that points to an NT
Object Path of the file where the backup event log is located, as specified in section 2.2.4.1.

MajorVersion: Major version of the client. This value MUST be set to 1.

MinorVersion: Minor version of the client. This value MUST be set to 1.

LogHandle: Pointer to an event log handle. This parameter is a server context handle, as specified

in section 2.2.6 . This handle MUST be closed using the ElfrClo seEL (Opnum 2) (section 3.1.4.21)
method once the handle is no longer needed. In the case when the client cannot call the ElfrCloseEL

function, such as the abnormal termination of the client, this context handle will be revoked by the
server so that there will not be any resource leaks. The processing rule to revoke a context handle
that has been terminated abnormally is defined in [MS -RPCE] section 3.3.3.2.1.

Return Values: The method MUST return STATUS_SUCCESS on success; otherwise, it MUST return
an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

Note The value of STATUS_SUCCESS is 0x00000000.

In response to this request from the client, the server MUST fail the method if the BackupFileName

parameter is NULL or empty, or is not a legal NT Object Path. In these cases, t he server SHOULD
return STATUS_INVALID_PARAMETER (0xC000000D).

The server MUST verify that the caller has read access to the file, and MUST fail the method if the

caller does not have read access. The server SHOULD return STATUS_ACCESS_DENIED (0xC0000022)
to indicate this failure.

The server MUST attempt to open the file, and MUST fail the method if the open does not succeed.

The server SHOULD return STATUS_OBJECT_PATH_NOT_FOUND (0xC000003A) for this case. The
server MUST fail the method if the file exists but does not contain a backed up event log. In this case,
the server SHOULD return STATUS_OBJECT_PATH_INVALID (0xC0000039). <15>

If the backup file happens to point to a live event log file, the server will still treat this as valid and will
attempt to open it.

If all of the above checks succeed, the server MUST attempt to create a server context handle as
specified in section 2.2.6, and if successful, assign it to the LogHandle parameter. Cre ating the handle

only fails when there is not enough memory. In such a case, the server SHOULD return
STATUS_NO_MEMORY (0xC0000017).

The server MUST return a value indicating success or failure for this operation. <16>

3.1.4.2 ElfrOpenBELA (Opnum 16)

The ElfrOpenBELA (Opnum 16) method instructs the ser ver to return a handle to a backup event
log . The caller MUST have permission to read the file containing the backup event log for this to
succeed.

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

32 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Note The server has an Access Control List (ACL) that is used to control access to the log. The
protocol has no methods for reading or setting that ACL.

 NTSTATUS ElfrOpenBELA(

 [in] EVENTLOG_HANDLE_A UNCServerName,

 [in] PRPC_STRING Back upFileName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE* LogHandle

);

UNCServerName: A server interface handle. A pointer to an ANSI string (see [MSDN -ANSI])
specifying the server, as specified in section 2.2.7 . The client MUST map this string to an RPC binding
handle, and the s erver MUST ignore this argument, as specified in [C706] sections 4.3.5 and 5.1.5.2.

BackupFileName: Provides an ANSI string (as specified in section 2.2.12) that points to an NT Object

Path of the file where the backup event log is located, as specified in section 2.2.4.1.

MajorVersion: Major version of the client. This val ue MUST be set to 1.

MinorVersion: Minor version of the client. This value MUST be set to 1.

LogHandle: Pointer to an event log handle. This parameter is a server context handle, as specified
in section 2.2.6 . This handle MUST be closed by using the ElfrCloseEL (section 3.1.4.21) method once
the handle is no longer needed. In the case when the client cannot call the ElfrCloseEL function, such
as the abnormal termination of the client, this context handle will be revoked by the server so that

there will not be any resou rce leaks.

Return Values: The method returns STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

The server MUST return a value indicating success or failure for this operation <17> .

This is identical to the ElfrOpenBEL W (section 3.1.4.1) method except that the BackupFileName and

UNCServerName are ANSI strings in this case.

3.1.4.3 ElfrOpenELW (Opnum 7)

The ElfrOpenELW method instructs the server to return a server context handle to a live event log .
The caller MUST <18> have permission to read the file that contains the event log for this to succeed.

 NTSTATUS ElfrOpenELW(

 [in] EVENTLOG_HANDLE_W UNCServerName,

 [in] PRPC_UNICODE_STRING Modul eName,

 [in] PRPC_UNICODE_STRING RegModuleName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE* LogHandle

);

UNCServerName: A server interface handle. A pointer to a Unicode string specifying the server, as
specified in section 2.2.7 . The client MUST map this string to an RPC binding handle, and the server
MUST ignore this argument, as specified in [C706] sections 4.3.5 and 5.1.5.2.

ModuleName: Specifies the event log name, as defined in section 1.8.2 and specified in section
2.2.11 , for which a handle is needed.

RegModuleName: This parameter MUST be ignored by the server. Clients MUST specify an empty
string.

https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

33 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

MajorVersion: Major version of the client. This value MUST be set to 1.

MinorVersion: Minor version of the client. This value MUST be set to 1.

LogHandle: Pointer to an event log handle. This parameter is a server context handle, as specified in
section 2.2.6 . This handle MUST be closed by using the ElfrCloseEL (section 3.1.4.21) method once

the handle is no longer needed. In the case when the client cannot call the ElfrCloseEL function such
as the abnormal termination of the client, this context handle will be revoked by the server so that
there will not be any resource leaks.

Re turn Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

I n response to this request from the client, the server MUST determine what event log the client is
requesting the handle for. The server MUST treat the ModuleName parameter as the event log name

itself, as specified in section 1.8.2. If the ModuleName para meter does not specify a known event log,
the server MUST default to requesting access to the application log that MUST always exist. The server
checks the known event logs by looking up the reg istry entries as specified in section 3.1.1.2 . The

application, security, and system are three predefined always existing logs, they are configured by the
server once the machine is set up, the se rver configures them in the registry as follows.

 HKEY_LOCAL_MACHINE\

 system \ currentcontrolset \ services \ eventlog \ Application

 HKEY_LOCAL_MACHINE\

 system \ currentcontrolset \ services \ eventlog \ Security

 HKEY_LOCAL_MACHINE\

 system \ currentcontrolse t \ services \ eventlog \ System

The server MUST verify that the caller has read access to the event log, and the server MUST fail the
operation if the caller does not have read access to the log. The server SHOULD return

STATUS_ACCESS_DENIED (0xC0000022) to in dicate this failure.

If the checks above are successful, the server MUST attempt to create a server context handle as
specified in section 2.2.6 to the wanted log and if successful, the server MUST return the handle via
the LogHandle parameter. Creating th e handle only fails in the case where the server runs out of
memory resources. If that happens, the server MUST return STATUS_NO_MEMORY (0xC0000017).

The server MUST return a value indicating success or failure for this operation.

3.1.4.4 ElfrOpenELA (Opnum 14)

The ElfrOpenELA (Opnum 14) method instructs the server to return a server context handle to a live
event log . For this to succeed, the caller MUST have permission to read the file that contains the
event log .

 NTSTATUS ElfrOpenELA(

 [in] E VENTLOG_HANDLE_A UNCServerName,

 [in] PRPC_STRING ModuleName,

 [in] PRPC_STRING RegModuleName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE* LogHandle

);

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

34 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

UNCServerName: A server interface handle. A pointer to an ANSI string (see [MSDN -ANSI])
specifying the server, as specified in section 2.2.7 . The client MUST map this string to an RPC binding

handle, and the server MUST ignore this argument, as specified in [C706] sections 4.3.5 and 5.1.5.2.

ModuleName: Speci fies the event log name, as defined in section 1.8.2 and specified in section

2.2.12 , for which a handle is needed.

RegModuleName: This parameter MUST be ignored by the server. Clients MUST specify an empty
string.

MajorVersion: Major version of the client. This value MUST be set to 1.

MinorVersion: Minor version of the client. This value MUST be set to 1.

LogHandle: Pointer to an event log handle. This parameter is a server context handle, as specified in
section 2.2.6 . This handle MUST be closed by using the ElfrClose EL (section 3.1.4.21) method once

the handle is no longer needed. In the case when the client cannot call the ElfrCloseEL function, such
as the abnormal termination of the client, this context han dle will be revoked by the server so that

there will not be any resource leaks.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

This is identical to the ElfrOpenELW (section 3.1.4.3) method except that the ModuleName ,

RegModuleName , and the U NCServerName are ANSI strings in this case.

3.1.4.5 ElfrRegisterEventSourceW (Opnum 8)

The ElfrRegisterEventSourceW (Opnum 8) method instructs the server to return a server context
handle to an event log for writing. The caller MUST have permission to write to the file containing the

event log for this to succeed. The module name argument specifies the event source that is used to
determine the relevant event log as specified below.

 NTSTATUS ElfrRegisterEventSourceW(

 [in] EVENTLOG_HANDLE_W UNCServerName,

 [in] PRPC_UNICODE_STRING ModuleName,

 [in] PRPC_UNICODE_STRING RegModuleName,

 [in] unsigned long MajorVersion,

 [in] unsigned long Mino rVersion,

 [out] IELF_HANDLE* LogHandle

);

UNCServerName: A server interface handle. A pointer to a Unicode (as specified in [MS -DTYP])
string specifying the server, as specified in section 2.2.7 . The client MUST map this string to an RPC
binding handle, and the server MUST ignore this argument, as specified in [C706] sections 4.3.5 and

5.1.5.2.

ModuleName: Specifies the event source, as defined in section 1.8.3 and specified in section 2.2.11 ,
for which a handle is needed.

RegModuleName: This parameter MUST be ignored by the server. Clients MUST specify an empty
string.

MajorVersion: Major version of the client. This value MUST be set to 1.

MinorVersion: Minor version of the client. This value MUST be set to 1.

LogHandle: Pointer to an event log handle . This parameter is a server context handle, as specified in
section 2.2.6 .

https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=89824

35 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementatio n-based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST determine what event log the client is
requesting the hand le for. The server MUST treat the ModuleName parameter as the event source

name, as specified in section 1.8.3. If the ModuleName parameter does not specify a known event
source , the server MUST default to requesting access to the application log that MUST always exist. As
to the known application logs, refer to section 3.1.4.3 . Note that the server checks the known even t
source by going over the registry sub keys under the event log registry key. As to how the event
sources are registered under an event log key, refer to section 3.1.1.3 .

The client SHOULD know t he configured event log source names in the server before issuing this call.
The client SHOULD NOT call this function unless the given event source name exists in the server.

Then the server MUST verify that the caller has write access to the event log, an d the server MUST fail
the operation if the caller does not have write access to the log. The server SHOULD return
STATUS_ACCESS_DENIED (0xC0000022) to indicate this failure.

If the checks above are successful, the server MUST attempt to create a handle to the wanted log and
if successful, the server MUST return the handle via the LogHandle parameter. Creating the handle
only fails in the case where the server runs out of memory resources, if that happens, the server

returns STATUS_NO_MEMORY (0xC0000017).

The server MUST return a value indicating success or failure for this operation.

3.1.4.6 ElfrRegisterEventSourceA (Opnum 15)

The ElfrRegisterEventSourceA (Opnum 15) method instructs the server to return a server context

handle to an event log for writing. The caller MUST have permission to write to the file containing the
event log for this to succeed. The module name argument specifies the event source , which is used
to determine the relevant event log, as specified in the following sections.

 NTSTATUS ElfrRegisterEventSourceA(

 [in] EVENTLOG_HANDLE_A UNCServerName,

 [in] PRPC_STRING ModuleName,

 [in] PRPC_STRING RegModuleName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE* LogHandle

);

UNCServerName: A server interface handle. A pointer to an ANSI string (see [MSDN -ANSI])
specifying the server, as specified in section 2.2.7 . The client MUST map this string to an RPC binding

handle, and the server MUST ignore this argument, as specified in [C706] sections 4.3.5 and 5.1.5.2.

ModuleName: Specifies the event source, as defined in section 1.8.3 and specified in section 2.2.12 ,
for which a handle is needed.

RegModuleName: This parameter MUST be ignored by the server. Clients MUST specify an empty

string.

MajorVersion: Major version of the client. This value MUST be set to 1.

MinorVersion: Minor version of the client. This value MUST be set to 1.

LogHandle: Pointer to an event log handle. This parameter is a server context handle, as specified in
section 2.2.6 .

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=89824

36 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Return Values: The m ethod MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

This is identical to the ElfrRegisterEventSourceW (section 3.1.4.5) method except that the
ModuleName , RegModuleName , and the UNCServerName parameters are ANSI strings in this case.

3.1.4.7 ElfrReadELW (Opnum 10)

The ElfrReadELW (Opnum 10) method reads events from the event log ; the server transmits these
events to the client and advances the reader's position within the event log associated with the server

context handle that is passed in the LogHandle parameter. The strings in the returned event MU ST be
in [UNICODE] .

 NTSTATUS ElfrReadELW(

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long ReadFlags,

 [in] unsigned long RecordOffset,

 [in] RULONG NumberOfBytesToRead,

 [out, size_is(N umberOfBytesToRead)]

 unsigned char* Buffer,

 [out] unsigned long* NumberOfBytesRead,

 [out] unsigned long* MinNumberOfBytesNeeded

);

LogHandle: Handle to an event log to read. This parameter is a server context handle, as specified in
section 2.2.6 .

ReadFlags: The caller MUST specify whether the read is to start at a specific record or is to proceed
from the last record read. The value MUST include one and only one of the following flags.

Value Meaning

EVENTLOG_SEQUENTIAL_READ

0x00000001

Read operation proceeds sequentially from the last call to the
ElfrReadELW (section 3.1.4.7) method or the ElfrReadELA (section 3.1.4.8)
method, using this handle. This flag MUST NOT be used with
EVENTLOG_SEEK_READ.

EVENTLOG_SEEK_READ

0x00000002

Read operation proceeds from the record specified by the RecordOffset
parameter. This flag MUST NOT be used with EVENTLOG_SEQUENTIAL_READ.

Because the method reads as many records as can fit in the buffer, the caller MUST also set one and
only one of the following flags to indicate the direction for successive read operations.

Value Meaning

EVENTLOG_FORWARDS_READ

0x00000004

Log is read in chronological order. This flag MUST NOT be used with
EVENTLOG_BACKWARDS_READ.

EVENTLOG_BACKWARDS_READ

0x00000008

Log is read in reverse chronological order. This flag MUST NOT be used with
EVENTLOG_FORWARDS_READ.

RecordOffset: Log entry record number from which the read operation starts (this is not a byte offset
but a number). This parameter MUST be ignored unless the EVENTLOG_SEEK_READ bit is set in the
ReadFlags parameter.

NumberOfBytesToRead: Size of the Buffer in bytes. Thi s is the maximum amount of data that can
be read.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90550

37 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Buffer: The buffer in which to place data read from the event log.

NumberOfBytesRead: Pointer to a variable that receives the number of bytes actually read by the
method.

MinNumberOfBytesNeeded: If the me thod fails because the buffer is too small to fit even a single

record, this MUST be set to the minimum number of bytes needed to fit the next record. Otherwise,
this MUST NOT be set, and MUST be ignored by the caller.

Return Values: The method MUST retur n STATUS_SUCCESS (0x00000000) on success. If the
method is successful, the read position MUST be adjusted by NumberOfBytesRead. The method MUST
return STATUS_BUFFER_TOO_SMALL (0xC0000023) if the buffer is too small to fit even one record.
Otherwise, it MUS T return any other implementation -based, nonzero NTSTATUS value specified in
[MS -ERREF].

In response to this request from the client, the server MUST first check that the handl e is valid. <19>
The server MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the
handle is invalid.

Then the server MUST determine what record to read next. The co ntext handle LogHandle maps to a
server side object (as specified in section 3.1.1.5) which contains the last reading record information.
This mapping procedure is done through the RPC layer. For detailed information on how to use context

handles and how RPC maintains the context handle mapping, refer to [MSDN -CH] .

Note In the following procedure, "handle" refers to the server objec t which is mapped by the context
handle LogHandle.

There are three cases:

1. If the ReadFlags field includes the EVENTLOG_SEQUENTIAL_READ flag, and the log has never
been read as suggested by the handle, the next record MUST be the oldest record in the file when
the EVENTLOG_FORWARDS_READ flag is set; or it MUST be the newest record in the file if

EVENTLOG_BACKWARDS_READ is set.

2. If the ReadFlags field includes the EVENTLOG_SEQUENTIAL_READ flag, and the handle is
indicating the last record which is previously used for reading, the next record MUST be
determined by taking the last record read value f rom the handle state and either adding one to it
(EVENTLOG_FORWARDS_READ is set) or subtracting one from it.

3. If the ReadFlags field includes the EVENTLOG_SEEK_READ flag, the next record to read MUST be
specified by the RecordOffset parameter.

If the next r ecord to be read is out of range, the server MUST fail the operation. Examples include the
caller trying to seek to a record that does not exist, or the caller requesting a sequential read when all
the records have been read. The server can return STATUS_I NVALID_PARAMETER (0xC000000D) for
the first case, and STATUS_END_OF_FILE (0xC0000011) for the second one.

Once the next record is determined, the server MUST determine how large that record is. If the next
record is too large to fit into the buffer, the se rver MUST fail the method, set the

MinNumberOfBytesNeeded parameter to the number of bytes needed, and specifically return

STATUS_BUFFER_TOO_SMALL (0xC0000023).

The server SHOULD check if the passing flag is valid or not and it SHOULD fail the method if th e flags
are in ambiguous or mutually exclusive combinations. For instance, if EVENTLOG_FORWARDS_READ
and EVENTLOG_BACKWARDS_READ are both set. In such cases, the server can use the following
behavior:

In the case where EVENTLOG_FORWARDS_READ and EVENTLOG_B ACKWARDS_READ are both set,

the flag EVENTLOG_BACKWARDS_READ is ignored. In other words, the server treats it as if only the
EVENTLOG_FORWARDS_READ is set. If neither of the two flags are set, the server will treat it as if the

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=195280

38 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

EVENTLOG_BACKWARDS_READ flag is set. In the case where EVENTLOG_SEQUENTIAL_READ and
EVENTLOG_SEEK_READ are both set, the flag EVENTLOG_SEEK_READ is ignored, and the server will

treat it as if only EVENTLOG_SEQUENTIAL_READ is set. If neither of the two flags are set, the server
will t reat it as if EVENTLOG_SEQUENTIAL_READ is set. In all of the cases, the server does not return

the error code for the wrong flags.

If the above checks all succeed, the server MUST attempt to copy as many records as it can into the
buffer. The server MUST o nly copy full event records, and it MUST stop if there are no more events to
be read. The server MUST update the handle state to save the record number of the last event copied
into the buffer.

The server MUST return a value indicating success or failure f or this operation.

3.1.4.8 ElfrReadELA (Opnum 17)

The ElfrReadELA (Opnum 17) method reads events from the event log ; the server transmits these
events to the client and advances the reader's position within the event log associated with the server

context handle that is passed in the LogHandle paramet er. The strings in the returned events MUST be

ANSI.

 NTSTATUS ElfrReadELA(

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long ReadFlags,

 [in] unsigned long RecordOffset,

 [in] RULONG NumberOfBytesToRead,

 [out, size_is(NumberOfBytesToRead)]

 unsign ed char* Buffer,

 [out] unsigned long* NumberOfBytesRead,

 [out] unsigned long* MinNumberOfBytesNeeded

);

LogHandle: Handle to an event log to read. This parameter is a server context handle, as specified in
section 2.2.6 .

ReadFlags: The caller MUST specify if the read is to start at a specific record, or is to proceed from
the last record read. The value MUST be one and only one of the following flags.

Value Meaning

EVENTLOG_SEQUENTIAL_READ

0x0 0000001

Read operation proceeds sequentially from the last call to the
ElfrReadELA (section 3.1.4.8) method or the ElfrReadELW (section 3.1.4.7)
method, using this handle. This flag cannot be used with
EVENTLOG_SEEK_READ.

EVENTLOG_SEEK_READ

0x00000002

Read operation proceeds from the record specified by the RecordOffset
parameter. This flag cannot be used with EVENTLOG_SEQUENTIAL_READ.

Because the method reads as many records as can fit in the buffer, the caller MUST also set one and
only one of the following flags to indicate the direction for successive read operations.

Value Meaning

EVENTLOG_FORWARDS_READ

0x00000004

Log is read in chronological order. This flag cannot be used with
EVENTLOG_BACKWARDS_READ.

EVENTLOG_BACKWARDS_READ

0x00000008

Log is read in reverse chronological order. This flag cannot be used with
EVENTLOG_FORWARDS_READ.

39 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

RecordOffset: Log entry record number at which the read operation is to start. Each event in a log
has a record number. This parameter MUST be ignored unless the EVENTLOG_SEEK_READ bit is set in

the ReadFlags parameter.

NumberOfBytesToRead: Size of the buffer in bytes. This is the maximum amount of data that can

be read.

Buffer: Data read from the event log.

NumberOfBytesRead: Number of bytes read by the method.

MinNumberOfBytesNeeded: If the method fails because the buffer is too small to fit even a single
record, this MUST be set to the minimum number of bytes needed to fit the next record. Otherwise,
this MUST NOT be set, and MUST be ignored by the caller.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success. The method

MUST return STATUS_BUFFER _TOO_SMALL (0xC0000023) if the buffer is too small to fit even one
record. Otherwise, it MUST return any other implementation -based, nonzero NTSTATUS value

specified in [MS -ERREF] .

This is identical to the ElfrReadELW (section 3.1.4.7) method except that the events placed in the
buffer MUST be ANSI strings rather than [UNICODE] strings.

3.1.4.9 ElfrClearELFW (Opnum 0)

The ElfrClearELFW (Opnum 0) method instructs the server to clear an event log , and, optionally, to
back up the event log before the clear operation takes place.

 NTSTATUS ElfrClearELFW(

 [in] IELF_HANDLE LogHandle,

 [in, unique] PRPC_UNICODE_STRING BackupFileName

);

LogHandle: Handle to the event l og to be cleared. This parameter is a server context handle, as

specified in section 2.2.6 . This handle MUST NOT be one obtained via the
ElfrOpenBELA (section 3.1.4.2) method or the ElfrOpenBELW (section 3.1.4.1) method.

BackupFileName: Provides a Unicode string (as specified in section 2.2.11) that points to an NT
Object Path of a file in which a current copy of the event log is to be pl aced. If this is NULL or empty,
no backup is to be created. The path is relative to the server rather than the client.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The
server MUST fail the operation wi th the error STATUS_INVALID_HANDLE (0xC0000008) if the handle
is invalid or if the handle is for a backup event log . Handles to backup event logs are obtained via
the ElfrOpenBELW (section 3.1.4 .1) method or the ElfrOpenBELA (section 3.1.4.2) method and have

the backup flag set. <20>

Note The server determines if a handle is a backup event log handle by looking at the flag for that
handle. The handle that is passed in through the LogHandle parameter is a server context handle,

which means that the server keeps a data structure for the handle when it is created. If the handle is
created for backup purposes, the server puts a backup t ag into the data structure. When the handle is
passed back to the server, the server locates the handle, and checks the corresponding data structure
for that handle to determine if it is a backup handle. <21>

If the BackupFileName is non -NULL and non -empty, the server MUST validate the BackupFileName
and fail the call if it is not a valid name. An invalid name is defined as an illegal NT Object Path or a

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=90550
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

40 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

path that specifies a file that alread y exists. If the BackupFileName is valid, the server MUST attempt
to back up the log to the path specified in BackupFileName before the log is cleared. The method

MUST fail the operation and not clear the log if the user does not have write access to the l ocation
specified by the BackupFileName parameter or if the backup does not succeed for any other

reason. <22>

If the BackupFileName is NULL or empty, meaning if the pointer inside the RPC_UN ICODE_STRING
structure being checked has a size of zero or the buffer inside of BackupFileName is NULL, the method
MUST NOT attempt to back up the event log <23> and MUST return a nonzero NT STATUS value to
indicate the failure of the method. The server SHOULD return STATUS_INVALID_PARAMETER
(0xC000000D).

If the preceding checks are successful, and if no problems occur during creation of a backup log, the

server MUST attempt to clear the associated event log. All events MUST be removed during clearing.
Additionally, the state of the log MUST be modified so that the next record written has a record
number 1. <24> The server MUST return a value indicating success or failure for this operation. The
server MUST return a value indicating success or failure for this operation.

3.1.4.10 ElfrClearELFA (Opnum 12)

The ElfrClearELFA (Opnum 12) method instructs the server to clear an event log , and, optionally, to
back up the event log before the clear operation takes place.

 NTSTATUS ElfrClearELFA(

 [in] IELF_HANDLE LogHandle,

 [in, unique] PRPC_STRING BackupFileName

);

LogHandle: Handle to the event log to be cleared. This parameter is a server context handle, as
specified in section 2.2.6 . This handle MUST NOT be one obtained via t he

ElfrOpenBELA (section 3.1.4.2) method or the ElfrOpenBELW (section 3.1.4.1) method.

BackupFileName: Provides an ANSI string (as speci fied in section 2.2.12) that points to an NT Object
Path of a file (as specified in section 2.2.4.1), in which a current copy of the eve nt log is to be placed.
If this is NULL or empty, the server MUST NOT create a backup as part of this method.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

The ElfrClearELFA and ElfrClearELFW (section 3.1.4.9) methods are identical in functi onality. The

difference between the two methods is that the ElfrClearELFA method specifies BackupFileName as an
ANSI string. The ElfrClearELFW method specifies BackupFileName as a UNICODE string.

3.1.4.11 ElfrBackupELFW (Opnum 1)

The ElfrBackupELFW (Opnum 1) method instructs the server to back up the event log to a specified
file name.

 NTSTATUS ElfrBackupELFW(

 [in] IELF_HANDLE LogHandle,

 [in] PRPC_UNICODE_STRING BackupFileName

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 . This handle MUST NOT be obtained via the ElfrOpenBELA (section 3.1.4.2) method or the
ElfrOpenBELW (section 3.1.4.1) method.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

41 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

BackupFileName: Provides a Unicode string (as specified in section 2.2.11) that points to an NT
Object Path of a file, (as specified in section 2.2.4.1), in which a current copy of the event log is to be

placed. This MUST NOT be NULL or empty. The path is evalutated relative to the server.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].<25>

In response to this request from the client, the server MUST first check that the handle is valid. The
server MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) i f the handle
is invalid or if the handle is for a backup event log . Handles to backup event logs are obtained via
the ElfrOpenBELW (section 3.1.4.1) method or the ElfrOpenBELA (section 3.1.4.2) method.

For a description of how the server determines if the handle is a backup handle, see section 3.1.4.9 .

If the handle is valid, the server MUST validate the BackupFileName and fail the call if it is not a legal

NT Object Path, or if it specifies a file that already exists, or if the user does not have write access to
the specified file path. The server MAY return STATUS_INVALID_PARAMETER (0xC000000D) if the
BackupFileName is not a legal NT Ob ject Path or the file already exists, and the server MUST return

STATUS_ACCESS_DENIED (0xC0000022) if the user does not have write access to the file.

If the checks above are successful, the server MUST attempt to create a backup of the log associated
with the LogHandle parameter. This operation can fail for implementation errors other than the ones

mentioned in the preceding paragraphs. The return value of this method is of the type NTSTATUS.
Protocol implementers can choose to return other, implementation -based return values, such as those
returned from operating system components that are used to implement the protocol. Protocol
implementers SHOULD only use return values listed in [MS -ERREF].

3.1.4.12 ElfrBackupELFA (Opnum 13)

The ElfrBackupELFA (Opnum 13) method instructs the server to back up the event log to a specified
file name. <26>

 NTSTATUS ElfrBackupELFA(

 [in] IELF_HANDLE LogHandle,

 [in] PRPC_STRING BackupFileName

);

LogHandle: Handle to an event log . This parameter is a server context handle, as specified in section
2.2.6 . This handle MUST NOT be obtained via the ElfrOpenBELA (section 3.1.4.2) method or the
ElfrOpenBELW (section 3.1.4.1) method.

BackupFileName: Provides an ANSI string (as specified in section 2.2.12) that points to an NT Object
Path of a file (as specified in section 2.2.4.1), in which a current copy of the event log is to be placed.
This MUST NOT be NULL or empty.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

ElfrBa ckupELFA is identical to the ElfrBackupELFW (section 3.1.4.11) method except in the following
case:

Á When BackUpFileName is an ANSI string.

3.1.4.13 ElfrReportEventW (Opnum 11)

The ElfrReportEventW (Opnum 11) method writes events to the event log ; the server receives these

events from the client.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

42 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NTSTATUS ElfrReportEventW(

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long Time,

 [in] unsigned short EventType,

 [in] un signed short EventCategory,

 [in] unsigned long EventID,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_UNICODE_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique]

 PRPC_UNICODE_STRING Strings[*],

 [in, size_is(DataSize), unique]

 unsigned char* Data,

 [in] unsigned short Flags,

 [in, out, unique] unsigned long* RecordNumber,

 [in, out, unique] unsigned long* TimeWritten

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section

2.2.6 . This handle MUST NOT be obtained via the ElfrOpenBELA (section 3.1.4.2) method or the
ElfrOpenBELW (section 3.1.4.1) method. A handle received from either of those two methods will have
the backup flag set, so the server checks this f lag before calling this method.

Time: Time at which the event was generated by the event source (not the time at which the event
was logged). The time MUST be expressed as the number of seconds since 00:00:00 on January 1,
1970 (UTC).

EventType: Type of the event, as specified in section 2.2.2 .

EventCategory: Event category , as specified in section 1.8.5 .

EventID: EventID , as specified in section 3.1.1.4 .

NumStrings: Number of strings in the array pointed to by the Strings parameter. A value of zero

indicates that no strings are present.

DataSize: Number of bytes of event -specific raw binary data to write to the log. This binary data is
passed i n the Data parameter. If the DataSize parameter is zero, event -specific data MUST NOT be
present.

ComputerName: A string to assist in identifying the machine that generated the event. In practice,
the name of the computer. There are no character restrictio ns on this field's content (for example, a
FQDN can be used). The API is not intended to support dynamically changing computer names. The
ComputerName parameter SHOULD <27> be cached the first time a client calls the API, and SHOULD
use that name on subsequent calls until the machine is rebooted.

UserSID: Either NULL or a user SID. If this is NULL, the event is to have a zero length UserSid field.

Strings: Specifies strings containing information specific to the event. This parameter MUST be a valid
pointer. If the NumStrings parameter is zero, this paramet er MUST be NULL. For example, an event

relating to file deletion could use a string to specify the path of the file being deleted.

Data: Pointer to the buffer that contains the event -specific binary data. This parameter MUST be a
valid pointer (or NULL), e ven if the DataSize parameter is zero.

Flags: Unused. MUST be set to zero when sent and MUST be ignored on receipt.

RecordNumber: Unused. Can be set to any arbitrary value when sent, and any value sent by the

client MUST be ignored on receipt by the server .

43 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

TimeWritten: Unused. Can be set to any arbitrary value when sent, and any value sent by the client
MUST be ignored on receipt by the server.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an imple mentation -based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The
server M UST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the handle
is invalid.

If the handle comes from the ElfrOpenBELA (section 3.1.4.2) method or the
ElfrOpenBELW (section 3.1.4.1) method, a backup flag is attached in the handle. The server MUST
check that flag, and if the backup flag is set, the server MUST return STATUS_INVALID_HANDLE
(0xC0000008).

The server SHOULD check that the EventType and the Time value are valid as specified. <28>

The server MUST check that the SID is valid if it is not NULL, and MUST fail the method if the UserSid

is invalid with the error code STATUS_INVALID_PARAMETER (0xC000000D). <29>

If the handle is valid, the method MUST attempt to create an event with the supplied parameters and
by setting the TimeWritten and the RecordNumber fields in the event. The TimeWritten MUST be
obtained from the system clock. The server MUST get the RecordNumber from the state maintained

for the event log. The server can get the last record in the event log file, read the record number from
that record, and use that record number plus 1 as the new record number. The new record number
SHOULD be set to the value in the event log file header so that the total number of records in the file
is stored. The server SHOULD set the TimeWritten and RecordNumber parameters to the same
values written to the event prior to returning from this method. <30>

The server MUST ignore the TimeWritten and RecordNumber parameters received from the client.

Note that write access to the event log is verified when the

ElfrRegisterEventSourceW (section 3.1.4.5) method is called, and the event log handle is opened
successfully. There is no write access check in the ElfrReportEventW (Opnum 11) method.

Then the server MUST attempt to store the event source name in the event. This event source was
originally specified when the ElfrRegisterEventSourceW (section 3.1.4.5) method or the
ElfrRegisterEventSourceA (section 3.1.4.6) method was called. The event source name is attached to
the LogHandle when the ElfrRegisterEventSourceW (section 3.1.4.5) method or the
ElfrRegisterEventSourceA (section 3.1.4.6) method returns. The server gets the event source name

from the LogPublisher object (specified in section 3.1.1.5) that is contained in the LogHandle that
was passed in, and logs it in the event.

If the above checks all succeed, the server MUST attempt to copy the event into the event log and
attempt t o update the log state so that the record number is incremented for the next write. The
server returns STATUS_LOG_FILE_FULL (0xC0000188) when the live event log file is full (the log
reaches its maximum allowed size and can't be overwritten) and returns ST ATUS_DISK_FULL

(0xC000007F) when there is no physical disk space for the new event record.

The server MUST return a value indicating success or failure for this operation.

3.1.4.14 ElfrReportEventA (Opnum 18)

The ElfrReportEventA (Opnum 18) method writes events to the event log ; the server receives these

events from the client.

 NTSTATUS ElfrReportEventA(

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long Time,

 [in] unsigned short EventType,

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

44 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] unsigned short EventCategory,

 [in] unsigned long EventID,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique]

 PRPC_STRING Strings[*],

 [in, size_is(DataSize), unique]

 unsigned char* Data,

 [in] unsigned short Flags,

 [in, out, unique] unsigned long* RecordNumber,

 [in, out, unique] unsigned long* TimeWritten

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 . This handle MUST NOT be obtained via the ElfrOpenBELA (section 3.1.4.2) method or the

ElfrOpen BELW (section 3.1.4.1) method.

Time: Time at which the event was generated by the event source (not the time at which the event
was). The time MUST be expressed as the number of seconds since 00 :00:00 on January 1, 1970
(UTC).

EventType: Type of the event, as specified in section 2.2.2 .

EventCategory: Event category , as specified in section 1.8.5 .

EventID: EventID , as specified in section 3.1.1.4 .

NumStrings: Number of strings in the array pointed to by the Strings parameter. A value of zero
indicates that no strings are present.

DataSize: Number of bytes of event -specific raw binary data to write to the log. This binary data is
passed i n the Data parameter. If no event -specific data is present, this parameter MUST be set to
zero.

ComputerName: A string to assist in identifying the machine that generated the event. In practice,

the name of the computer. There are no character restrictions on this field's content (for example, a
FQDN can be used). <31>

UserSID: Either NULL or a user SID. If this is NULL, the event i s to have a zero length UserSid field.

Strings: Specifies strings containing information specific to the event. This parameter MUST be a valid
pointer. If the NumStrings parameter is zero, this parameter MUST be NULL. For example, an event
relating to file deletion could use a string to specify the path of the file being deleted.

Data: Pointer to the buffer that contains the event -specific binary data. This parameter MUST be a

valid pointer (or NULL), even if the DataSize parameter is 0.

Flags: Unused. MUST be set to zero when sent and MUST be ignored on receipt.

RecordNumber: Unused. Can be set to any arbitrary value when sent, and any value sent by the
client MUST be ignored on receipt by the server.

TimeWritten: Unused. Can be set to any arbitrary value w hen sent, and any value sent by the client
MUST be ignored on receipt by the server.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

45 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

This method is identical to the ElfrReportEventW (section 3.1.4.13) method except that the string
arguments are ANSI strings in this case. Thus, the remarks in ElfrReportEventW (section 3.1.4.13)

apply to this method as well.

3.1.4.15 ElfrReportEventAndSourceW (Opnum 24)

This method <32> instructs the server to writ e an event to an event log . It differs from the other
methods for writing an event by specifying the event source at the time of the write. The other
methods for writing an event required the event source to be specified when the handle was opened

for write.

 NTSTATUS ElfrReportEventAndSourceW(

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long Time,

 [in] unsigned short EventType,

 [in] unsigned short EventCategory,

 [in] unsigned long EventID,

 [in] PRPC_UNICODE_STRING SourceName,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_UNICODE_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique]

 PRPC_UNICODE_STRING Strings[*],

 [in, size_is(DataSize), unique]

 unsigned char* Data,

 [in] unsigned short Flags,

 [in, out, unique] unsigned long* RecordNumber,

 [in, out, unique] unsigned long* TimeWritten

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 . This handle MUST NOT be obtained via the ElfrOpenBELA (section 3.1.4.2) method or the
ElfrOpenBELW (section 3.1.4.1) method.

Time: Time at which the event was generated by the event source (not the tim e at which the event
was logged). The time MUST be expressed as the number of seconds since 00:00:00 on January 1,
1970 (UTC).

EventType: Type of the event, as specified in section 2.2.2 .

EventCategory: Event category , as specified in section 1.8.5 .

EventID: EventID , as specified in section 3.1.1.4 .

SourceName: Specifies the name of the event source.

NumStrings: Number of strings in the array pointed to by the Strings parameter. If no strings are
prese nt, this value MUST be set to zero.

DataSize: Number of bytes of event -specific raw binary data to write to the log. This binary data is

passed in the Data parameter. If no event -specific data is present, this parameter MUST be set to
zero.

ComputerName: A string to assist in identifying the machine that generated the event. In practice,
the name of the computer. There are no character restrictions on this field's content (for example, a
FQDN can be used).

UserSID: Either NULL or a user SID. If this is NULL , the event is to have a zero length UserSid field.

46 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Strings: Strings containing text information specific to the event. This parameter MUST be a valid
pointer. If the NumStrings parameter is zero, this parameter MUST be NULL. For example, an event

relating to file deletion could use a string to specify the path of the file being deleted.

Data: Pointer to a buffer that contains binary information specific to the event. This parameter MUST

be a valid pointer (or NULL), even if the DataSize parameter is zero.

Flags: Unused. MUST be set to zero when sent and MUST be ignored on receipt.

RecordNumber: Unused. Can be set to any arbitrary value when sent, and any value sent by the
client MUST be ignored on receipt by the server.

TimeWritten: Unused. Can be set to an y arbitrary value when sent, and any value sent by the client
MUST be ignored on receipt by the server.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

Note If the method is not supported, the RPC transport itself (as opposed to this protocol) returns
RPC_S_PROCNUM_OUT_OF_RANGE (0x6D1).

This method i s almost identical to the ElfrReportEventW (section 3.1.4.13) method except that it has a
SourceName parameter. The server uses this SourceName parameter to log the source into the event
instead o f retrieving the source name from the LogHandle parameter.

3.1.4.16 ElfrReportEventExW (Opnum 25)

The ElfrReportEventExW (Opnum 25) method <33> writes events to the event log ; the server
receives these events from the client.

 NTSTATUS ElfrReportEventExW(

 [in] IELF_HANDLE LogHandle,

 [in] PFILETIME TimeGenerated,

 [in] unsigned short EventType,

 [in] unsigned short EventCategory,

 [in] unsigned long EventID,

 [in, range(0, 256)] unsig ned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_UNICODE_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique]

 PRPC_UNICODE_STRING Strings[*],

 [in, size_is(DataSize), unique]

 unsigned char* Data,

 [in] unsigned short Flags,

 [in, out, unique] unsigned long* RecordNumber

);

LogHandle: A handle to an event log. This parameter is a server context handle, as specified in
section 2.2.6 . This handle MUST NOT be obtained via the ElfrOpenBELA (section 3.1.4.2) method

or the ElfrOpenBELW (section 3.1.4.1) method. A handle received from either of those two
methods will have the backup flag set, so the server checks this flag before calling this method.

TimeGenerated: The time at which the event was generated by t he event source . This time is
represented as a pointer to FILETIME as defined in [MS -DTYP] section 2.3.3. <34>

EventType: The type of event, as specified in section 2.2.2 .

EventCategory: The event category, as specified in section 1.8.5 .

EventID: The EventID, as specified in section 3.1.1.4 .

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

47 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

NumStrings: The number of strings in the array pointed to by the Strings parameter. A value of zero
indicates that no strings are present.

DataSize: The number of bytes of event -specific raw binary data to write to the log. This binary data
is passed in the Data parameter. If the DataSize parameter is zero, event -specific data M UST NOT

be present.

ComputerName: A string to assist in identifying the machine that generated the event; for example,
the name of the computer. There are no character restrictions on this field's content (for example,
a FQDN can be used). The API is not intended to support dynamically changing computer names.
The ComputerName parameter is cached the first time a client calls the API, and that name used
on subsequent calls until the machine is re booted.

UserSID: Either NULL or a user SID. If this is NULL, the event is to have a zero length UserSid field.

Strings: Specifies the strings containing information specific to the event. This parameter MUST be a
valid pointer. If the NumStrings parameter is zero, this parameter MUST be NULL. For example, an
event relating to file deletion could use a string to specify the path of the file being deleted.

Data: A pointer to the buffer that contains the event -specific binary data. This parameter MUST be a
val id pointer (or NULL), even if the DataSize parameter is zero.

Flags: Unused. MUST be set to zero when sent and MUST be ignored on receipt.

RecordNumber: Unused. Can be set to any arbitrary value when sent, and any value sent by the
client MUST be ignored o n receipt by the server.

Return Values: The method returns STATUS_SUCCESS (0x00000000) on success; otherwise, it
returns an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server first checks that the handle is valid. The server
MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the handle is
invalid.

If the handle comes from the El frOpenBELA (section 3.1.4.2) method or the
ElfrOpenBELW (section 3.1.4.1) method, a backup flag is attached in the handle. The server MUST
check that flag, and if the backup flag is set, the server MUST return STATUS_INVALID_HANDLE
(0xC0000008).

The server SHOULD<35> check that the EventType and the TimeGenerated value are valid as
specified.

The server MUST check that the SID is valid if it is not NULL, and MUST fail the method if the UserSid

is invalid with the error code STATUS_INVALID_PARAMETER (0xC000000D).

If the handle is valid, the method attempts to create an event with the supplied parameters and by
setting the TimeGenerated and the RecordNumber fields in the event. The TimeGe nerated is
obtained from the system clock. The server MUST get the RecordNumber from the state maintained
for the event log. The server can get the last record in the event log file, read the record number from
that record, and use that record number plus 1 as the new record number. The new record number

SHOULD be set to the value in the event log file header so that the total number of records in the file
is stored. The server sets the RecordNumber parameter to the same value written to the event prior
to returning from this method.

The server MUST ignore the RecordNumber parameter received from the client.

Note that write access to the event log is verified when the
ElfrRegisterEventSourceW (secti on 3.1.4.5) method is called, and the event log handle is opened
successfully. There is no write access check in the ElfrReportEventExW (Opnum 25) method.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

48 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The server MUST attempt to store the event source name in the event. This event source was
originally specified when the ElfrRegisterEventSourceW (section 3.1.4.5) method or the

ElfrRegisterEventSourceA (section 3.1.4.6) method was called. The event source name is attached to
the LogHandle when t he ElfrRegisterEventSourceW (section 3.1.4.5) method or the

ElfrRegisterEventSourceA (section 3.1.4.6) method returns. The server gets the event source name
from the LogPublisher object (specified in section 3.1.1.5) that is contained in the LogHandle that
was passed in, and logs it in the event.

If the above checks all succeed, the server attempts to copy the event into the event log and attempt
to update the log state so that the record number is incremented for the next write. The server
returns STATUS_LOG_FILE_FULL (0xC0000188) when the live event log file is full (the log reaches its
maximum allowed size and can't be overwritten) and returns STATUS_DISK_FULL (0xC000007F) when

there is no physic al disk space for the new event record.

The server MUST return a value indicating success or failure for this operation.

Note: This method is almost identical to the ElfrReportEventW (section 3.1. 4.13) method except that:
the Time (second parameter) is replaced by TimeGenerated , enabling a more precise time to be

logged; and there is no TimeWritten parameter.

3.1.4.17 ElfrReportEventExA (Opnum 26)

The ElfrReportEventExA (Opnum 26) method <36> writes events to the event log ; the server receives
these events from the client.

 NTSTATUS ElfrReportEventExA(

 [in] IELF_HANDLE LogHandle,

 [in] PFILETIME TimeGenerated,

 [in] unsigned short EventType,

 [in] unsigned short EventCategory,

 [in] unsigned long EventID,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, si ze_is(NumStrings), unique]

 PRPC_STRING Strings[*],

 [in, size_is(DataSize), unique]

 unsigned char* Data,

 [in] unsigned short Flags,

 [in, out, unique] unsigned long* RecordNumber

);

LogHandle: A handle to an event log. This parameter is a ser ver context handle, as specified in
section 2.2.6 . This handle MUST NOT be obtained via the ElfrOpenBELA (section 3.1.4.2) method
or the ElfrOpenBELW (section 3.1.4.1) method. A handle received from either of those two

methods will have the backup flag set, so the server checks this flag before calling this method.

TimeGenerated: The time at which the event was generated by the event source . This time is
represented as a pointer to FILETIME as defined in [MS -DTYP] section 2.3.3.

EventType: The type of the event, as specified in section 2.2.2 .

EventCategory: The event category, as specified in section 1.8.5 .

EventID: The EventID, as specified in section 3.1.1.4 .

NumStrings: The number of strings in the array pointed to by the Strings parameter. A value of zero
indica tes that no strings are present.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

49 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

DataSize: The number of bytes of event -specific raw binary data to write to the log. This binary data
is passed in the Data parameter. If the DataSize parameter is zero, event -specific data MUST NOT

be present.

ComputerName: A string to assist in identifying the machine that generated the event. In practice,

the name of the computer. There are no character restrictions on this field's content (for example,
a FQDN can be used). The API is not intended to support dynamically changing computer names.
The ComputerName parameter is cached the first time a client calls the API, and SHOULD use that
name on subsequent calls until the machine is rebooted.

UserSI D: Either NULL or a user SID. If this is NULL, the event is to have a zero length UserSid field.

Strings: Specifies strings containing information specific to the event. This parameter MUST be a valid
pointer. If the NumStrings parameter is zero, this para meter MUST be NULL. For example, an

event relating to file deletion could use a string to specify the path of the file being deleted.

Data: A pointer to the buffer that contains the event -specific binary data. This parameter MUST be a
valid pointer (or NUL L), even if the DataSize parameter is zero.

Flags: Unused. MUST be set to zero when sent and MUST be ignored on receipt.

RecordNumber: Unused. This can be set to any arbitrary value when sent. Any value sent by the
client MUST be ignored on receipt by the server.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -base d, nonzero NTSTATUS value specified in [MS -ERREF].

This method is identical to the ElfrReportEventExW (section 3.1.4 .16) method except that the string
arguments are ANSI strings in this case. Thus, the remarks in ElfrReportEventExW (section 3.1.4.16)
apply to this method as well.

3.1.4.18 ElfrNumberOfRecords (Opnum 4)

The ElfrNumberOfRecords (Opnum 4) method instructs the server to report the number of records

currently in the event log .

 NTSTATUS ElfrNumberOfRecords(

 [in] IELF_HANDLE LogHandle,

 [out] unsigned long* NumberOfRecords

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 .

NumberOfRecords: Total number of records in the specified event log.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -base d, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The
server MUST fail the o peration with the error STATUS_INVALID_HANDLE (0xC0000008) if the handle
is invalid.

If the handle is valid, the method MUST retrieve the number of records in the associated log and

return the number via the NumberOfRecords parameter, and return success. <37> This call MUST NOT
update the internal state of the server.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

50 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.4.19 ElfrOldestRecord (Opnum 5)

The ElfrOldestRecord (Opnum 5) method instructs the server to report the record number of the oldest
record in the event log .

 NTSTATUS ElfrOldestRecord(

 [in] IELF_HANDLE LogHandle,

 [out] unsigned long* OldestRecordNumber

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 .

OldestRecordNumber: The number of the oldest record in the specified event log. The chronology is
based on the time that records are written (not the record generation time specified by the event
source).

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it

MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The
server MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the handle
is invalid.

If the handle is val id, the method MUST retrieve the record number of the oldest record in the
associated log and return the number via the OldestRecordNumber parameter, and return success. If
the log is empty, the server MUST set the OldestRecordNumber parameter to 0. <38> This call MUST

NOT update the internal state of the server.

3.1.4.20 ElfrGetLogInformation (Opnum 22)

The ElfrGetLogInformation (Opnum 22) method instructs the server to return information on an event

log .

 NTSTATUS ElfrGetLogInformation(

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long InfoLevel,

 [out, size_is(cbBufSize)] unsigned char* lpBuffer,

 [in, range(0, 1024)] unsigned long cbBufSize,

 [out] unsigned long* pcbBytesNeeded

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 .

InfoLevel: The level of event log information to return. This MUST be set to zero.

lpBuffer: The e vent log information. This MUST point to either an

EVENTLOG_FULL_INFORMATION (section 2.2.4) structure or be NULL.

cbBufSize: The size in bytes of the buffer pointed to by the lpBuffer parameter.

pcbBytesNeeded: Number of bytes required for the requested information, regardless of if the
function succeeds. This parameter MUST NOT be NULL.

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success. The method
MUST return STATUS_BUF FER_TOO_SMALL (0xC0000023) if the buffer is too small to fit even one

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

51 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

record. Otherwise, it MUST return an implementation -based, nonzero NTSTATUS value specified in
[MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The
server MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the handle

is invalid.

If lpBuffer is not large enough to contain an EVENTLOG_FULL_INFORMATION (section 2.2.4) structure
(cbBufSize is less than the number of bytes needed for an
EVENTLOG_FULL_INFORMATION (section 2.2.4) structure), the server MUST set the pcbBytesNeeded
parameter to the number of bytes needed to hold an E VENTLOG_FULL_INFORMATION (section 2.2.4)
structure, MUST fail the method, and MUST return STATUS_BUFFER_TOO_SMALL (0xC0000023).

If the above checks all succeed, the server MUST fill in an

EVENTLOG_FULL_INFORMATION (section 2.2.4) structure into the lpBuffe r with the dwFull member of
the structure being set to 1 if the event log is full, and set to zero if the event log is not full. In
addition, the pcbBytesNeeded parameter MUST be set to the size of an
EVENTLOG_FULL_INFORMATION (section 2.2.4) structure. Th e server MUST then return success. Note

that the event log is treated as full when a new record cannot be appended to it. A new record cannot
be appended when the maximum size limitation of the log has been reached and the existing records

of the log canno t be overwritten. When this happens, a flag indicating that the event log is full is set in
the log file. This method checks whether that flag is set or not.

3.1.4.21 ElfrCloseEL (Opnum 2)

The ElfrCloseEL (Opnum 2) method instructs the server to close a handle to the event log , freeing

resources on the server tha t maintained an association between the handle and the corresponding
event log. This handle MUST have been obtained via the ElfrOpenELW (section 3.1.4.3) method, the
ElfrOpenELA (section 3.1.4.4) method, the ElfrOpenBELW (section 3.1.4.1) method, or the
ElfrOpenBELA (sect ion 3.1.4.2) method.

 NTSTATUS ElfrCloseEL(

 [in, out] IELF_HANDLE* LogHandle

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 .

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The

server MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the handle
is invalid. The server SHOULD make sure that the handle h as come from the
ElfrOpenELW (section 3.1.4.3) method, the ElfrOpenELA (section 3.1.4.4) method, the
ElfrOpenBELW (section 3.1.4.1) method, or the ElfrOpenBELA (section 3.1.4.2) method. <39>

If the handle is valid, the server MUST free the resources taken by this handle in the server. <40>

3.1.4.22 ElfrDeregisterEventSource (Opnum 3)

The ElfrDeregisterEventSource (Opnum 3) method instructs the server to close a handle to the event
log , freeing resources on the server that maintained an association between the handle and the
corresponding event log. This handle MUST have been obtained via the
ElfrRegisterEventSourceW (section 3.1.4.5) method or the ElfrRegisterEventSourceA (section 3.1.4.6)
method.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

52 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 NTSTATUS ElfrDeregisterEventSource(

 [in, out] IELF_HANDLE* LogHand le

);

LogHandle: Handle to an event log. This parameter is a server context handle, as specified in section
2.2.6 .

Return Values: The method MUST return STATUS_SUCCESS (0x00000000) on success; otherwise, it
MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The
server MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the handle
is invalid. The server MUST treat a handle opened by the ElfrRegisterEve ntSourceW (section 3.1.4.5)

method or the ElfrRegisterEventSourceA (section 3.1.4.6) method as valid. The server MAY add a flag
to the handle returned by ElfrRegisterEventSourceW (section 3.1.4.5) or
ElfrRegisterEventSourceA (section 3.1.4.6) and then use it to check if the handle that is passed in the
ElfrDeregisterEventSource method has come from one of those two methods. <41>

If the handle is valid, the server MUST free the resources taken by this handle in the server.

3.1.4.23 ElfrChangeNotify (Opnum 6)

The ElfrChangeNotify (Opnum 6) method is intended for local use.

 NTSTATUS ElfrChangeNotify(

 [in] IELF_HANDLE LogHandle,

 [in] RPC_CLIENT_ID ClientId,

 [in] ULONG Event

);

LogHandle: Handle to an event log . This parameter is a server context handle, as specified in

section 2.2.6 .

ClientId: Ignored when the method is called remotely.

Event: Ignored when the method is called remotely.

Return Values: The method MUST r eturn STATUS_SUCCESS (0x00000000) on success; the method
always returns STATUS_INVALID_HANDLE (0xC0000008) when called remotely. For all other errors it

MUST return an implementation -based, nonzero NTSTATUS value specified in [MS -ERREF].

In response to this request from the client, the server MUST first check that the handle is valid. The
server MUST fail the operation with the error STATUS_INVALID_HANDLE (0xC0000008) if the han dle
is invalid.

The server MUST return an error code if the handle is remote. <42>

3.1.5 Timer Events

None.

3.1.6 Other Local Events

None.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

53 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3.1.7 Server Configurations for Localizable Event Descriptions

The server MAY store various localiza ble description strings in resource binary files formatted
according to the Microsoft Portable Executable and Common Object File Format Specification, as

described in [PE-COFF]. These resourc e files MAY be specified per event log or per event source .
When the resource files are created for event logs the server MUST add paths to their locations into
the registry using the Windows Remote Registry Protocol, as specified in [MS -RRP], as registry values
under each log's registry location described in 3.1.1.2 . When the resource files are created for event
sources, the server MUST add paths to their locations in to the registry using the Windows Remote
Registry Protocol, as specified in [MS -RRP], as registry values under each source's registry location
described in section 3.1.1.3 .

If the log contains a l ocalizable display name, the server MUST specify it via "DisplayNameFile" and
"DisplayNameID" registry values under the log registry key described in section 3.1.1.2.

"DisplayNameFile" data MAY contain environment variables enclosed by percent (%).

If the event source contains parameter strings, the server MUST specify a "ParameterMessageFile"

registry value under the source registry key that is specified in section 3.1.1.3.

The server MAY specify a Category Message File for an event source ða binary resource file defining

description strings for event categories, where the resource ID corresponds to the category number.
Thus, string 2 is the category string for all EventID s for this source of category 2.

If the event source contains localizable event description strings, the server MUST specify an
"EventMessageFile" registry val ue under the source registry key described in 3.1.1.3. The server MAY
specify a "PrimaryModule" REG_EXPAND_SZ registry value under the
HKEY_LOCAL_MACHINE \ SYSTEM\ CurrentControlSet \ Services \ EventLog \ <LogName> registry key as
described in 3.1.1.2 in case the client cannot find the description string.

3.2 Client Details

The client side of this RPC protocol is simply a pass - through.

The client implementation also relies on a combination of the remote registry (as specified in [MS -
RRP]), remote SMB (as specified in [MS -SMB]), Local Security Authority (as specified in [MS -LSAT]),

and LDAP (as spe cified in [LDAP]) protocols to retrieve and assemble the event description string .
For these operations, see section 3.2.4.1 .

3.2.1 Abstract Data Model

The client does not maintain state as part of the EventLog Remoting Protocol.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

Calls made by the higher - layer protocol or application are passed directly to the transport. All return
values from method invocations MUST be returned uninterpreted to the higher - layer protocol or
application.

https://go.microsoft.com/fwlink/?LinkId=93292
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-LSAT%5d.pdf#Section_1ba21e6fd8a9462c91534375f2020894
https://go.microsoft.com/fwlink/?LinkId=89932

54 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Methods in RPC Opnum Order

Method Description

ElfrClearELFW This method instructs the server t o clear an event log and optionally, to back up
the event log before the clear takes place.

Opnum: 0

ElfrBackupELFW This method instructs the server to back up the event log to a specified file name.

Opnum: 1

ElfrCloseEL This method instructs the server to close a handle to the event log, freeing
resources on the server that maintained an association between the handle and
the corresponding event log. This handle MUST have been obtained via the
ElfrOpenELW (section 3.1.4.3) method, ElfrOpenELA (section 3.1.4.4) method,
ElfrOpenBELW (section 3.1.4.1) method, or ElfrOpenBELA (section 3.1.4.2)
method.

Opnum: 2

ElfrDeregisterEventSource This method instructs the server to close a handle to the event log, freeing
resources on the server that maintained a n association between the handle and
the corresponding event log. This handle MUST have been obtained via the
ElfrRegisterEventSourceW (section 3.1.4.5) method or the
ElfrRegisterEventSourceA (section 3.1.4.6) method.

Opnum: 3

ElfrNumberOfRecords This method instructs the server to report the number of records currently in the

event log.

Opnum:4

ElfrOldestRecord This method instructs the server to report the record number of the oldest record
in the event log.

Opnum: 5

ElfrChangeNotify Reserved for local use. Notifies local processes about changes to the event log.

Opnum: 6

ElfrOpenELW This method instructs the server to return a handle to a live event log . For this to
succeed, the caller has to have permission to read the file that contains the event
log. The server has an access control list (ACL) that is used to control access to
the log. The protocol does not have any methods for reading o r setting that ACL.

Opnum: 7

ElfrRegisterEventSourceW This method instructs the server to return a handle to an event log for writing. For
this to succeed, the caller MUST have permission to write to the file that contains
the event log. The module name a rgument specifies the event source , which is
used to determine the relevant event log, as specified below.

Opnum: 8

ElfrOpenBELW This method instructs the server to return a handle to a backup event log . For
this to succeed, the caller MUST have permission to read the file that contains the
backup event log.

Opnum: 9

ElfrReadELW This method reads events from the event log; the server transmits these events to
the client and advances the reader's position in the event log associated with this
handle. The strings in the returned event MUST be in [UNICODE] .

Opnum: 10

ElfrReportEventW This method writes events to the event log; the server receives these events from
the client.

https://go.microsoft.com/fwlink/?LinkId=90550

55 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

Opnum: 11

ElfrClearELFA This method instructs the server to clear an event log and optionally, to back up
the event log before the clear takes place.

Opnum: 12

ElfrBackupELFA This method instructs the server to back up the event log to a specified file name.

Opnum: 13

ElfrOpenELA This method instructs the server to return a handle to a live event log. For this to
succeed, the caller has to have permission to read the file that contains the event
log. The server has an ACL that is used to control access to the log. The protocol
does not have any methods for reading or setting that ACL.

Opnum: 14

ElfrRegist erEventSourceA This method instructs the server to return a handle to an event log for writing. For
this to succeed, the caller MUST have permission to write to the file that contains
the event log. The module name argument specifies the event source, whic h is
used to determine the relevant event log, as specified in the following sections.

Opnum: 15

ElfrOpenBELA This method instructs the server to return a handle to a backup event log. For this
to succeed, the caller MUST have permission to read the file that contains the
backup event log.

Opnum: 16

ElfrReadELA This method reads events from the event log; the server transmits these events to
the client and advances the reader's position in the e vent log associated with this
handle. The strings in the returned events MUST be ANSI.

Opnum: 17

ElfrReportEventA This method writes events to the event log; the server receives these events from
the client.

Opnum: 18

Opnum19NotUsedOnWire Reserved for local use.

Opnum: 19

Opnum20NotUsedOnWire Reserved for local use.

Opnum: 20

Opnum21NotUsedOnWire Reserved for local use.

Opnum: 21

ElfrGetLogInformation This method instructs the server to return information about an event log.

Opnum: 22

Opnum23NotUsedOnWire Reserved for local use.

Opnum: 23

ElfrReportEventAndSourceW This m ethod <43> instructs the server to write an event to an event log. It differs
from the other methods for writing an event by specifying the event source at the
time of the write. The other me thods for writing an event required the event
source to be specified when the handle was opened for write. This method is
intended for client applications that forward events, reading them from one event
log and writing them to another. Such applications n eed to forward the events
from multiple original event sources.

Opnum: 24

56 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Method Description

ElfrReportEventExW This method writes events to the event log; the server receives these events from
the client.

Opnum: 25

ElfrReportEventExA This method writes events to the event log; the server receives these events from
the client.

Opnum: 26

In the preceding table, the phrase "Reserved for local use" means t hat the client MUST NOT send the
opnum, and the server behavior is undefined because it does not affect interoperability.

3.2.4.1 Client Processing of Event Descriptions and Other Localizable Strings

The event description and localizable strings are stored in server files as specified in section 3.1.7 .
The following subsections specify how the client accesses and displays them.

3.2.4.1.1 Loading Event Log Description Information

The localizable event log description is retrieved from DisplayNameFile and DisplayNameID by a
client. The client MUST attempt to expand an environment variable, as described in section 3.2.4.1.5.4
to retrieve the full pa th to the resource file if the DisplayNameFile contains the environment variable.
If the client is accessing a remote source, it MUST then convert the expanded resource file path to a
UNC path: When the path begins with an "X:" pattern, where the first character is a drive letter and

the second character is ":", the client MUST transform it to \ \ messageSourceServer \ X$\ path.

The format of the resource file is specified in [PE-COFF].

If both "DisplayNameFile"and "DisplayNameID" values are present, the client SHOULD attempt to load
the resource file <44> by using the SMB P rotocol, as specified in [MS -SMB] , and to retrieve the
resource string with the ID number specified by the "DisplayNameID" value data. <45>

If either of these two values is missing, the client will use the event log name directly as the
description string.

3.2.4.1.2 Retrieving Event Parameter Strings

"ParameterMessageFile" data MAY con tain environment variables enclosed in percent characters (%).
The client MUST attempt to expand an environment variable as specified in section 3.2.4.1.5.4 to
retrieve the full path to the resour ce file. If the client is accessing a remote source, it MUST then
convert the expanded resource file path to a UNC path: when the path begins with an "X:" pattern,
where the first character is a drive letter and the second character is ":", the client MUST transform it

to \ \ messageSourceServer \ X$\ path.

The format of the resource file is specified in [PE-COFF].

When the "ParameterMe ssageFile" value is present, the client SHOULD attempt to load the resource

file <46> by using the SMB Protocol, as specified in [MS -SMB] , and retrieve parameter resource
strings with ID numbers corresponding to the parameter insertion code encountered during the
process of expanding a description string for that source. <47> Parameter insertion rules are further

described in 3.2.4.1.5.2 .

3.2.4.1.3 Retrieving Event Category Strings

If an event source contains localizable category names, the server machine MUST configure them
via the CategoryMessageFile and CategoryCount registry values under the log registry key
described in 3.1.1.3 .

https://go.microsoft.com/fwlink/?LinkId=93292
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=93292
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

57 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

CategoryMessageFile data MUST contain a single path to a category message file for this source.
The path data MAY contain environment variables that are enclosed by percent signs (%). The client

MUST attempt to expand an environment variable as described in 3.2.4.1.5.4 to retrieve the full path
to the resource file. If the client is accessing a remote source, it MUST then convert the exp anded

resource file path to a UNC path; when the path begins with an "X:" pattern, where the first character
is a drive letter and the second character is ":", the client MUST transform it to
\ \ messageSourceServer \ X$\ path. <48>

The format of the resource file is specified in [PE-COFF].

CategoryCount is the number of ca tegories for this event source. Unlike Event IDs and parameters,
category numbers are required to be sequential starting from 1.

When both the CategoryMessageFile and CategoryCount values are present, the client SHOULD

attempt to load the category resource file <49> by using the SMB Protocol, as specified in [MS -SMB] ,
and retrieve the category resource string with th e ID number that is specified by the EventCategory
EVENTLOGRECORD field. <50> The client MAY retrieve all category descriptions at once and cache
them for subsequent access.

3.2.4.1.4 Retrieving Unexpa nded Event Description Strings

The Event Message File is a binary resource file defining unexpanded description strings for an
event source , where the resource ID corresponds to the EventID . Thus, a string with the resource
ID 5 is the unexpanded description st ring for events with EventID 5, where EventID is a field of
EVENTLOGRECORD as specified in 2.2.3 .

"EventMessageFile" value MUST be of type REG_EXPAND_SZ.

"EventMessageFile" data MAY contain envir onment variables enclosed by % signs. The client MUST
attempt to expand an environment variable as specified in 3.2.4.1.5.4 to retrieve the full path to the

resource file. If the client is accessi ng a remote source, it MUST then convert the expanded resource
file path to a UNC path: When the path begins with an "X:" pattern, where the first character is a
drive letter and the second char acter is ":", the client MUST transform it to

\ \ messageSourceServer \ X$\ path.

The format of the resource file is specified in [PE-COFF].

"EventMessageFile" data MAY contain several paths to event message files for this source, delimited
by comma or semicolon. The client MUST expand any environment variables in each file path as

specified above.

When an "EventMessageFile" value is pr esent, the client SHOULD attempt to load the resource
file <51> using the SMB Protocol, as specified in [MS -SMB] , and retrieve the unexpanded description
string with a resource ID number corresponding to the EventID for that record. <52>

If several event message files are specified, the client MUST atte mpt to load the resource string from
these files in the order in which the files are specified until the resource string is successfully loaded.

If the client cannot find an event description st ring , it SHOULD attempt to load the "PrimaryModule"
value for the event log . The client SHOULD use the file whose path is found in the "PrimaryModule"

value as a fallback message file for loadin g event description strings and all sources in the log.
"PrimaryModule" data MAY contain environment variables enclosed by % signs. The client MUST
attempt to expand an environment variable as specified in 3.2.4.1.5.4 to retrieve the full path to the
resou rce file. If the client is accessing a remote source, it MUST then convert the expanded resource
file path to a UNC path: When the path begins with an "X:" pattern, where the first character is a drive

letter and the second character is ":", the client MUS T transform it to
\ \ messageSourceServer \ X$\ path.

3.2.4.1.5 Expanding Unexpanded Event Description Strings

https://go.microsoft.com/fwlink/?LinkId=93292
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=93292
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688

58 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The following insertion codes MAY appear as part of unexpanded description strings or during the
process of expanding a description string.

Insertion
code Explanation

%n EVENTLOGRECORD string: string indexed (n -1) in the EVENTLOGRECORD.Strings array, as
specified in section 2.2.3

%%n Parameter string : string with resource ID n in the parameter message file

%{S...} Security identifier (SID)

%{...} Globally unique identifier (GUID) (as specified in [MS -DTYP] section 2.3.4)

The client MUST replace insertion codes recursively <53> so that if the expanded string appears to
contain another insertion code, it will also be expanded. The client MUST limit the number of

substitutions to ensure that the algorithm will finish. <54>

This protocol does not contain an "escaping" mechanism to allow a literal string to go unexpanded
when it contains a substring that looks like an insertion code. For example, suppose the unexpanded
description string contains insertion code "%1", and the first EVENTLOGRECORD string (as specified in
section 2.2.3) is a file name that in this case happens to contain "%1". The file name will be
substituted into the description string, then the "%1" inside the file name will be interpreted as an
insertion code and substituted with the whole file name, and so on, until the cap on the number of

substitutions is reached (if such a cap is part of the client implementation).

3.2.4.1.5.1 Inserting EVENTLOGRECORD Strings

Individual EVENTLOGRECORD structures, as defined in 2.2.3 , can have zero or more strings at tached
to them. The first EVENTLOGRECORD string MUST be specified in the unexpanded description
string as "%1", not "%0".

For example, when the client encounters insertion code "%1" within an un expanded description string,

it MUST replace it with the first attached string.

If EVENTLOGRECORD string insertion fails for any reason, the client SHOULD quote the insertion code
verbatim.

3.2.4.1.5.2 Inserting Parameter Strings

See 3.2.4.1.2 for how parameter strings are retrieved.

When the client encounters insertion code "%%n", it MUST attempt to replace the insertion code with
resource ID number n from the parameter message file .

If parameter replacement fails for any reason, the client SHOULD quote the insertion code verbatim.

3.2.4.1.5.3 Inserting SIDs and G UIDs

Services that write Event Log entries MAY record the identity of Active Directory objects (for
example, users) and security principals as insertion strings in (respectively) GUID (as specified in

[MS -DTYP] section 2.3.4) and SID format. The client MAY expand these GUIDs and SIDs into readable
names of objects. <55>

If the client does not attempt to resolve SID or GUID insertion codes, or if resolving them fails for any
reason, the client SHOULD quote SID and GUID strings verbatim.

3.2.4.1.5.4 Expanding Environment Variables

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

59 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Whenever the server machine registry contains a path to a message file, that (REG_EXPAND_SZ)
path MAY contain a reference to an environment variable such as "%systemroot%" or

"%systemdrive%".

The client MUST attempt to expan d the "%systemroot%" and "%systemdrive%" environment

variables. The client MUST attempt to replace "%systemroot%" with the registry value on the server
computer that is read in the "SystemRoot" value of the
"HKEY_LOCAL_MACHINE \ SOFTWARE\ Microsoft \ Windows NT \ CurrentVersion" registry key , and
replace "%systemdrive%" with the first two characters of that value. <56>

Expanding environmen t variables other than "%systemroot%" and "%systemdrive%" are not part of
this protocol. The client MAY employ other heuristics or leave these variables unexpanded.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

60 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

4 Protocol Examples

4.1 Obtain Records Stored in an Event Log

In this example, a client application wants to obtain records stored in an event log . This involves the

following steps:

1. To establish a connection to the server, the client application calls ElfrOpenELW with the following
values for the parameters.

 NTSTATUS = {to be filled in by server}

 ElfrOpenELW(

 [in] EVENTLOG_HANDLE_W

 UNCServerName = "servername",

 [in] PRPC_UNICODE_STRING ModuleName = {"Application"},

 [in] PRPC_UNICODE_STRING RegModuleName = {""},

 [in] unsigned long MajorVersion = 0x00000001,

 [in] unsigned long MinorVersion = 0x00000001,

 [out] IELF_HANDLE * LogHandle =

 {to be fille d in by server}

);

The server verifies that the client application has read access, and, if so, returns a handle
(LogHandle) to the client application. The server maintains an association between the handle
and a particular event log and keeps track of the position of the last read operation, if any.

In applicable Windows Server releases, the application log is typically configured in the Windows
registry as follows:

Name Type Data

(Default) REG_SZ (value not set)

AutoBackupLogFiles REG_DWORD 0x00000000 (0)

DisplayNameFile REG_EXPAND_SZ %SystemRoot% \ system32 \ wevtapi.dll

DisplayNameID REG_DWORD 0x00000100 (256)

File REG_EXPAND_SZ %SystemRoot% \ system32 \ winevt \ Logs \ Application.evtx

MaxSize REG_DWORD 0x00ed0000 (15532032)

PrimaryModule REG_SZ Application

RestrictGuestAccess REG_DWORD 0x00000001 (1)

Retention REG_DWORD 0x00000000 (0)

If the log is successfully opened, in a Windows -based implementation, an IELF_HANDLE is
created in the server side as follows:

 struct _ELF_HANDLE {

 ULONG Signature; = 0x654c6648

 ULONG Flags; = 0

 unsigned __int64 LastRecordRead; = - 1 (not start reading)

 ULONG MajorVersion; = 0x00000001

 ULONG MinorVersion; = 0x00000001

 void* LogPublisher; = (a memory address poi nting to event source.)

61 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ULONG NameLength; = 0x0000000b

 [size_is(NameLength)] WCHAR Name[]; = {"Application"}

 } *IELF_HANDLE;

The server maintains the content of this data structure and only passes the pointer to the client.

2. The client application then reads the records using the ElfrReadELW (section 3.1.4.7) method. The
client application specifies the context handle (LogHandle) obtained in the previous step. To
retr ieve records in sequential order, the client application calls ElfrReadELW with the following
parameters.

 NTSTATUS = {to be filled in by server}

 ElfrReadELW(

 [in] IELF_HANDLE LogHandle =

 {handle obtained by the call to ElfrOpenELW},

 [in] unsigned long ReadFlags = 0x00000005,

 [in] unsigned long RecordOffset = 0x00000000,

 [in, range(0, 0x7FFFF)]

 unsigned long NumberOfBytesToRead = 0x3ffff,

 [out, size_is(NumberOfBytesToRe ad)]

 unsigned char * Buffer = {to be filled in by server},

 [out] unsigned long * NumberOfBytesRead =

 {to be filled in by server},

 [out] unsigned long * MinNumberOfBytesNeeded =

 {to be filled in by server}

);

The server then returns one or more records. The number of records returned is limited by
what fits in the buffer and by what is actually available in the log, whatever is less.

If the buffer provided by the client can fit 5 records, and the client starts to read the log from
the beginning, the LastRecordRead field value in IELF_HANDLE (depicted in step 1) will

become 5 after this function returns.

If the RecordOffset is a non -zer o value, for instance, it is set as 0x00000500 and the sizes of

the first three records in the event log file are 0x200, 0x250, and 0x140. The server gets the
size value from the length field of the event log record that is specified in section 2.2.3 . Since
the offset value is larger than the total length of the first two records, but less than the total
length of the first three, the server will round the value to the length of the first two recor ds and
start to read the third record.

3. The client application can continue invoking this method to obtain additional records. When the
client application is finished reading records, it releases the log handle by calling ElfrCloseEL as

follows.

 NTSTATUS = {to be filled in by server} ElfrCloseEL(

 [in, out] IELF_HANDLE * LogHandle

 = {handle obtained from ElfrOpenELW}

);

 The server removes its state for the h andle and returns success.

4.2 Write Events to an Event Log

In this example, the client application wants to write events t o an event log . This involves the
following:

62 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

1. To establish a connection to the server, the client application calls ElfrRegisterEventSourceW with
the following values for the parameters.

 NTSTATUS = {to be filled in by server}

 ElfrRegisterEventSourceW(

 [in] EVENTLOG_HANDLE_W

 UNCServerName = "servername",

 [in] PRPC_UNICODE_STRING ModuleName = {"MySource"},

 [in] PRPC_UNICODE_STRING RegModuleName = {""},

 [in] unsigned long MajorVersion = 0x00000001,

 [in] unsigned long MinorVersion = 0x00000001,

 [out] IEL F_HANDLE * LogHandle =

 {to be filled in by server}

);

 The server verifies that the client application has write access to the application log. For
example, assume that MySource is registered under the application log. If t he server has a

CustomSD specified in the registry (as specified in section 3.1.1.2) like the following security
descriptor that was written using the Security Descriptor Definition Language (SDDL) (specified
in [MS -DTYP]): "O:BAG:SYD:(A;;0x7;;;SY)(A;;0x7;;;BA)(A;;0x1;;;S -1-5-32 -573)". It means
that the local system and administrators have the right to write, read or cl ear the application
log, but event log users are only able to read the application log. Using this security descriptor,

the server can check if a client has write access to the application log.

If the check is successful, the server returns a handle to the client application. The server
maintains an association between the handle and a particular event log. The handle is returned
as IELF_HANDLE, and its value will be:

 typedef [context_handle] str uct _ELF_HANDLE {

 ULONG Signature; = 0x654c6648

 ULONG Flags; = 0

 unsigned __int64 LastRecordRead; = 0

 ULONG MajorVersion; = 1

 ULONG MinorVersion; = 0

 void* LogPublisher; = {pointer to the MySource}

 ULONG NameLength; = 0x0000000b

 [size_is(NameLength)] WCHAR Name[] = "Application"

 } *IELF_HANDLE;

As shown in the example, the application log is recorded in the Name field of the

IELF_HANDLE , that is how the server maintains the association between the handle and a
particular event log.

2. The client application writes the events by using the ElfrReportEventW method. The client
application specifies the context handle (LogHandle) obtained in t he preceding step. The
parameters to the ElfrReportEventW method are as follows.

 NTSTATUS = {to be filled in by server}

 ElfrReportEventW(

 [in] IELF_HANDLE LogHandle =

 {handle obtained from ElfrRegisterEventSourceW},

 [in] unsigned long Time =

 {number of seconds since Jan 1, 1970},

 [in] unsigned short EventType = 0x0004,

 [in] unsigned short EventCategory = 0x0001,

 [in] unsigned long EventID = 0x00000017,

 [in, range(0, 0x100)]

 unsigned short NumStrings = 0x0002,

 [in, range(0, 0x3FFFF)]

 unsigned long DataSize = 0x00000010,

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

63 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] PRPC_UNICODE_STRING

 ComputerName = {"Computer"},

 [in, unique] PRPC_SID UserSID = NULL,

 [in, size_is(NumStrings), unique]

 PRPC_UNICODE_STRING Strings[*] = {"First" "Second"},

 [in, size_is(DataSize), unique]

 unsigned char * Data = {some binary data whose le ngth is 16 bytes},

 [in] unsigned short Flags = 0x0000,

 [in, out, unique] unsigned long * RecordNumber = NULL,

 [in, out, unique] unsigned long * TimeWritten = NULL

);

If the client specifies the UserSID parameter, it needs to generate a PSID data type first. The
function ConvertStringSidToSid (as described in [MSDN -ConvertStringSidToSid]) can convert the

string SID to the PSID. Assume the SID the client wants to pass is: S -X-X-X. The function
ConvertStringSidToSid can be used to get the PSID type value and pass it in as the UserSID
parameter.

The server writes a record to the event log that is associated with the handle and returns
success.

The newly wri tten event record looks like the following:

 +0x000 Length : 0xa8

 +0x004 Reserved : 0x654c664c

 +0x008 RecordNumber : 0x00000100

 +0x00c TimeGenerated : 0x4cb3bb01

 +0x010 TimeWritten : 0x4cb3bb19

 +0x014 EventID : 0x00000 017

 +0x018 EventType : 4

 +0x01a NumStrings : 2

 +0x01c EventCategory : 1

 +0x01e ReservedFlags : 0

 +0x020 ClosingRecordNumber : 0

 +0x024 StringOffset : 0x76

 +0x028 UserSidLength : 0xc

 +0x02c UserSidOffset : 0x6a

 +0x030 DataLength : 0x10

 +0x034 DataOffset : 0x90

The following table shows how the source, computer name, SID, strings and binary data are
packed together in the file.

Data Description

G.e.n.e.r.a.t.e.E.v.e.n.t. Source Name.

C.O.M.P.U.T.E.R Computer Name.

(00000100 00460000) User SID (including 4 bytes of padding).

F.i.r.s.t. The first string.

S.e.c.o.n.d The second string.

(760b5486 423ebe9e ff64b096 01532b77) The binary data.

The client application can continue invoking this method to write additional events.

https://go.microsoft.com/fwlink/?LinkId=204164

64 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

3. When the client application is finished writing events, it releases the handle by calling
ElfrDeregisterEventS ource with the following parameter.

 NTSTATUS = {to be filled in by server}

 ElfrDeregisterEventSource(

 [in, out] IELF_HANDLE * LogHandle =

 {handle obtained from ElfrRegisterEventSourceW}

);

The server removes its state for the handle and returns success.

4.3 Back Up the Event Log

In the following example, the client application backs up a live event log file:

1. To establis h a connection to the server, the client application calls the ElfrOpenELW method with

the following values for the parameters.

 NTSTATUS = {to be filled in by server}

 ElfrOpenELW(

 [in] EVENTLOG_HANDLE_W

 UNCServerName = "servername",

 [in] PRPC_UNICODE_STRING ModuleName = {"Application"},

 [in] PRPC_UNICODE_STRING RegModuleName = {""},

 [in] unsigned long MajorVersion = 0x00000001,

 [in] unsigned long MinorVersion = 0x00000001,

 [out] IELF_HANDLE * LogHandle =

 {to be filled in by server}

);

This step is the same as step 1 in the example in section 4.1 . Refer to the example in section

4.1 for more detailed information.

2. The client application backs up the event log by using the ElfrBackupELFW method.

 NTSTATUS ElfrBackupELFW(

 [in] IELF_HA NDLE LogHandle, = {handle obtained from ElfrOpenELW}

 [in] PRPC_UNICODE_STRING BackupFileName = "c: \ \ BackupLog.evt"

);

After the function returns, the file "c: \ BackupLog.evt" is the backup log file for the application
log.

4.4 Expanding Unexpanded Event Description Strings

In this example, assume that the unexpanded description string is "Error %2 occurred while

performing operation %1 on file %3" and that the record strings (as specified in section 2.2.3) are as
follows.

 first String: "%%2"

 second String: "Access Denied"

 third String: "C: \ securestuff \ noaccess.db"

 parameter string 2: "Modify"

The first substitution replaces "%2" with "Access Denied", resulting in the f ollowing.

65 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 Error Access Denied occurred while performing operation %1 on file %3

The next substitution replaces "%1" with "%%2", resulting in the following.

 Error Access Denied occurred while performing operation %%2 on file %3

The next substitution replace s "%%2" with "Modify", resulting in the following.

 Error Access Denied occurred while performing operation Modify on file %3

Finally, the last substitution replaces "%3" with "C: \ securestuff \ noaccess.db", resulting in the
following event description string .

 Error Access Denied occurred while performing operation Modify on file

C: \ securestuff \ noaccess.db

66 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

5 Security

5.1 Security Considerations for Implementers

Take care to enforce the read/write permissions specified in section 3.1.4 to prevent unauthorized

access to event logs .

Note Server prerequisites required for remote event description rendering (as defined in section
1.5.1) can make the server more at risk to security attacks. Therefore, apply with caution.

5.2 Index of Security Parameters

 Security parameter Section

Authentication Service 2.1

67 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided as follows, where "ms -dtyp.idl" is the IDL found in
[MS -DTYP] section 5, Appendix A: Full MS -DTYP IDL.

 import "ms - dtyp.idl";

 [

 uuid(82273FDC - E32A- 18C3- 3F78- 827929DC23EA),

 version(0.0),

 #ifdef __midl

 ms_union,

 #endif // __midl

 pointer_default(unique)

]

 interface eventlog

 {

 // the following line(s) commented out to avoid redefinition of MS - DTYP types

 //typedef long NTSTATUS;

 #define MAX_STRINGS 0x00000100

 #define MAX_SINGLE_EVENT 0x0003FFFF

 #define MAX_BATCH_BUFF 0x0007FFFF

 typedef struct _RPC_STRING

 {

 unsigned short Length;

 unsigned short MaximumLength;

 [size_is(MaximumLength)] char* Buffer;

 } RPC_STRING, *PRPC_STRING;

 typedef struct _RPC_CLIENT_ID {

 unsigned long UniqueProcess;

 unsigned long UniqueThread;

 } RPC_CLIENT_ID, *PRPC_CLIENT_ID;

 typedef [handle, unique] wchar_t * EVENTLOG_HANDLE_W;

 typedef [handle, unique] char * EVENTLOG_HANDLE_A;

 typedef [context_handle] void * IELF_HANDLE;

 typedef [context_handle] void ** PIELF_HANDLE;

 typedef [range(0, MAX_BATCH_BUFF)] unsigned long RULONG;

 NTSTATUS

 ElfrClearELFW (

 [in] IELF_HANDLE LogHandle,

 [in,unique] PRPC_UNICODE_STRING BackupFileName

);

 NTSTATUS

 ElfrBackupELFW (

 [in] IELF_HANDLE LogHandle,

 [in] PRPC_UNICODE_STRING BackupFileName

);

 NTSTATUS

 ElfrCloseEL (

 [in,out] IELF_HANDLE * LogHandle

);

 NTSTATUS

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

68 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 ElfrDeregisterEventSource (

 [in,out] IELF_HANDLE * LogHandle

);

 NTSTATUS

 ElfrNumberOfRecords(

 [in] IELF_HANDLE LogHandle,

 [out] unsigned long * NumberOfRecords

);

 NTSTATUS

 ElfrOldestRecord(

 [in] IELF_HANDLE LogHandle,

 [out] unsigned long * OldestRecordNumber

);

 NTSTATUS

 ElfrChangeNotify(

 [in] IELF_HANDL E LogHandle,

 [in] RPC_CLIENT_ID ClientId,

 [in] ULONG Event

);

 NTSTATUS

 ElfrOpenELW (

 [in] EVENTLOG_HANDLE_W UNCServerName,

 [in] PRPC_UNICODE_STRING ModuleName,

 [in] PRPC_UNICODE_STRING RegModuleName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE * LogHandle

);

 NTSTATUS

 ElfrRegisterEventSourceW (

 [in] EVE NTLOG_HANDLE_W UNCServerName,

 [in] PRPC_UNICODE_STRING ModuleName,

 [in] PRPC_UNICODE_STRING RegModuleName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE * LogHandle

);

 NTSTATUS

 ElfrOpenBELW (

 [in] EVENTLOG_HANDLE_W UNCServerName,

 [in] PRPC_UNICODE_STRING BackupFileName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE * LogHandle

);

 NTSTATUS

 ElfrReadELW (

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long ReadFlags,

 [in] unsigned long RecordOffset,

 [in] RULONG NumberOfBytesToRead,

 [out, size_is(NumberOfBytesToRead)] unsigned char * Buffer,

 [out] unsigned long * NumberOfBytesRead,

 [out] unsigned long * MinNumberOfBytesNeeded

);

 NTSTATUS

 ElfrReportEventW (

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long Time,

 [in] unsigned short EventType,

 [in] unsigned short EventCategory,

69 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] unsigned long EventID,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_UNICODE_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique] PRPC_UNICODE_STRING Strings[*],

 [in, size_is(DataSize), unique] unsigned char * Data,

 [in] unsigned short Flags,

 [in,out,unique] unsigned long * RecordNumber,

 [in,out,unique] unsigned long * TimeWritten

);

 NTSTATUS

 ElfrClearELFA (

 [in] IELF_HANDLE LogHandle,

 [in,unique] PRPC_STRING BackupFileName

);

 NTSTATUS

 ElfrBackupELFA (

 [in] IELF_HANDLE LogHandle,

 [in] PRPC_STRING BackupFileName

);

 NTSTATUS

 ElfrOpenELA (

 [in] EVENTLOG_HANDLE_A UNCServerName,

 [in] PRPC_STRING ModuleName,

 [in] PRPC_STRING RegModuleName,

 [in] unsi gned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE * LogHandle

);

 NTSTATUS

 ElfrRegisterEventSourceA (

 [in] EVENTLOG_HANDLE_A UNCServerName,

 [in] PRPC_STRING ModuleName,

 [in] PRPC_STRING RegModuleName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE * LogHandle

);

 NTSTATUS

 ElfrOpenBELA (

 [in] EVENTLOG_HANDLE_A UNCServerName,

 [in] PRPC_STRING BackupFileName,

 [in] unsigned long MajorVersion,

 [in] unsigned long MinorVersion,

 [out] IELF_HANDLE * LogHandle

);

 NTSTATUS

 ElfrReadELA (

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long Read Flags,

 [in] unsigned long RecordOffset,

 [in] RULONG NumberOfBytesToRead,

 [out, size_is(NumberOfBytesToRead)] unsigned char * Buffer,

 [out] unsigned long * NumberOfBytesRead,

 [out] unsigned long * MinNumberOfBytesNeeded

);

 NTSTATUS

 ElfrReportEventA (

 [in] IELF_HANDLE LogHandle,

70 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] unsigned long Time,

 [in] unsigned short EventType,

 [in] unsigned short EventCategory,

 [in] unsigned long EventID,

 [in, range(0, 256)] unsigned short Num Strings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique] PRPC_STRING Strings[*],

 [in, size_is(DataSize), unique] unsigned char * Data,

 [in] unsigned short Flags,

 [in,out,unique] unsigned long * RecordNumber,

 [in,out,unique] unsigned long * TimeWritten

);

 void Opnum19NotUsedOnWire(void);

 void Opnum20NotUsedOnWire(void);

 void Opnum21NotUsedOnWire(void);

 NTSTATUS

 ElfrGet LogInformation(

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long InfoLevel,

 [out, size_is(cbBufSize)] unsigned char * lpBuffer,

 [in, range(0, 1024)] unsigned long cbBufSize,

 [out] unsigned long * pcbBytesNeeded

);

 void Opnum23NotUsedOnWire(void);

 NTSTATUS

 ElfrReportEventAndSourceW (

 [in] IELF_HANDLE LogHandle,

 [in] unsigned long Time,

 [in] unsigned short EventType,

 [in] unsigned short EventCategory,

 [in] unsigned long EventID,

 [in] PRPC_UNICODE_STRING SourceName,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_UNICODE_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique] PRPC_UNICODE_STRING Strings[*],

 [in, size_is(DataSize), unique] unsigned char * Data,

 [in] unsigned short Flags,

 [i n,out,unique] unsigned long * RecordNumber,

 [in,out,unique] unsigned long * TimeWritten

);

 NTSTATUS ElfrReportEventExW(

 [in] IELF_HANDLE LogHandle,

 [in] PFILETIME TimeGenerated,

 [in] unsigned short EventType,

 [in] unsigned short EventCate gory,

 [in] unsigned long EventID,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_UNICODE_STRING ComputerName,

 [in, unique] PRPC_SID UserSID,

 [in, size_is(NumStrings), unique] PRPC_UNICODE_ STRING Strings[*],

 [in, size_is(DataSize), unique] unsigned char* Data,

 [in] unsigned short Flags,

 [in, out, unique] unsigned long* RecordNumber

);

 NTSTATUS ElfrReportEventExA(

 [in] IELF_HANDLE LogHandle,

71 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 [in] PFILETIME TimeGenerated,

 [in] unsigned short EventType,

 [in] unsigned short EventCategory,

 [in] unsigned long EventID,

 [in, range(0, 256)] unsigned short NumStrings,

 [in, range(0, 61440)] unsigned long DataSize,

 [in] PRPC_STRING ComputerName,

 [in, unique] PRPC_SID Us erSID,

 [in, size_is(NumStrings), unique] PRPC_STRING Strings[*],

 [in, size_is(DataSize), unique] unsigned char* Data,

 [in] unsigned short Flags,

 [in, out, unique] unsigned long* RecordNumber

);

 }

72 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

Á Window s NT Workstation 4.0 operating system with Service Pack 2 (SP2)

Á Windows 2000 Professional operating system

Á Windows XP operating system

Á Windows Vista operating system

Á Windows 7 operating system

Á Windows 8 operating system

Á Windows 8.1 operating system

Á Windows 10 operating system

Á Windows 11 operating system

Windows Server

Á Windows 2000 Server operating system

Á Windows Server 2003 operating system

Á Windows Server 2008 operating system

Á Windows Server 2008 R2 operating system

Á Windows Server 2012 operating sy stem

Á Windows Server 2012 R2 operating system

Á Windows Server 2016 operating system

Á Windows Server operating system

Á Windows Server 2019 operating system

Á Windows Server 2022 operating system

Á Windows Server 2025 operating system

Exceptions, if any, are not ed in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appe ars with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accord ance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

73 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<1> Section 1.6 : On Windows Vista and later and Windows Server 2008 and later, the EventLog
Remoting Protocol Version 6.0 specified in [MS -EVEN6] is preferred because of its additional

functionality.

Note that the Windows client platforms can act as either a client or a server for this protocol.

Similarly, applicable Windows Server releases can also act as either a client or a server for this
protocol.

<2> Section 1.8.1 : Windows only uses the value s in [MS -DTYP] .

<3> Section 1.8.2 : Windows does not prefix the names of the event logs it creates. In addition,
Windows implementations impose the following limitations on event log names: They are treated in a
case - insensitive manner, they are limited to 200 characters (400 bytes if Unicode is used), and they
do not begin with the character ' \ '. Windows does not verify the collision of the event log names in the

same server. This is prevented by the Windows reg istry. The Windows registry does not allow
duplicate keys.

<4> Section 1.8.3 : Windows does not prefix the names of the event sources it creates. In addi tion,

Windows implementations impose the following limitations on event source names: They are treated
in a case - insensitive manner, they are limited to 200 characters (400 bytes if Unicode is used), and
they do not begin with the character ' \ '. Windows do es not verify the collision of the event log names

in the same server. This is prevented by the Windows registry. The Windows registry does not allow
duplicate keys.

<5> Section 2.1.1 : For more information about th e significance of packet - level authentication, see
Windows NTLM Elevation of Privilege Vulnerability security update June 2021 [MSFT -CVE-2021 -
31958] . Applies to all versions of client and s erver, Windows Vista operating system and Windows
Server 2008 operating system and later.

<6> Section 2.1.2 : For more information about the significance of packet - level authentication, see

Windows NTLM Elevation of Privilege Vulnerability security update June 2021 [MSFT -CVE-2021 -
31958]. Applies to all versions of client and server, Windows Vista and Windows Server 2008 and
later.

<7> Section 2.2.2 : The event sources that wri te to the Windows security log use the
EVENTLOG_AUDIT_SUCCESS and EVENTLOG_AUDIT_FAILURE types exclusively, whereas event
sources that write to other logs use the other four types exclusively.

<8> Section 2.2.3 : Windows sends NetBIOS names, as specified in [MS -SMB] .

<9> Section 2.2.3 : The 32 -bit Windows machines use zero bytes of padding. The 64 -bit Windows
machines use a number of bytes of padding needed to make the end of this field be on an 8 -byte
boundary from the beginning of the structure.

<10> Section 2.2.10 : For information on how Windows convert s between Unicode and ANSI strings,
see [MSDN -ANSI] and [MSDN -TRANS] .

<11> Section 3: The NDR consistency check is at target level 5.0 (Windows versions earlier than

Windows Vista) or target level 6.0 (Windows Vista), as specified in [MS -RPCE] section 3.1.1.5.3.2.2.2.

<12> Section 3.1.1.2 : The CustomSD value is not supported in Windows XP, Windows 2000
Professional, and Windows NT Workstation 4.0 SP2. Applicable Windows Server releases can use the
ConvertStringSecurityDescriptorToSecurityDescriptor function to check if the value is valid; for
more information see [MSDN -CNVTSTRGSDTSD] .

<13> Section 3.1.1.4 : In Windows, the EventID is mapped to a description related to the event by
using a separate file, where the file is specific to the event source. As specified in section 3.1.1.3 , it is

possible to write events under event sources that do not exist in the registry . If the EventID is
relative to an event source that does not exist in the registry, any clients that are reading events will
not be able to find a description for any of the EventIDs.

%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?linkid=2165320
https://go.microsoft.com/fwlink/?linkid=2165320
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=90145
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=202883

74 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

The EventI D layout is used by other operating system components besides the event log. Because of
this, the layout used by Windows has some additional structure (for example, a Facility field and a

Code field) that is not used by the event log and that can be ignore d in this context.

<14> Section 3.1.4 : If ElfrChangeNotify is called remotely, applicable Windows Server releases

typically return STATUS_INVALID_HANDLE , as specified in [MS -ERREF].

<15> Section 3.1.4.1 : Applicable Windows Server releases do not use a specific flag to indicate
whether an event log file is a backup file or not. This means that a check for a backup event log file is
a check that the file is a correctly formatted event log file.

<16> Section 3.1.4.1 : In Windows XP, Windows Server 2003, Windows Vista, and Windows Server
2008, failures other than checks on the BackupFileName parameter erroneously return
STATUS_SUCCESS (0x00000000) with LogHandle set to NULL.

<17> Section 3.1.4.2 : In Windows XP, Windows Server 2003, Windows Vista, and Windows Server
2008, failures other than checks on the BackupFileName parameter erroneously return
STATUS_SUCCESS (0x00000000) with LogHandle set to NULL.

<18> Section 3.1.4.3 : The server has an access control list (ACL) that is used to control access to the
log. The protocol does not have any methods for reading or setting that ACL.

<19> Section 3.1.4.7 : In applicable Windows Server releases, the server checks if the signature is

the correct value (as specified in section 3.1.1.5).

<20> Section 3.1.4.9 : In W indows Vista and later and Windows Server 2008 and later, the methods
do not differentiate between handles for event log files and handles for backup event log files. These
methods return STATUS_SUCCESS when called with a handle obtained from ElfrOpenBELA (section
3.1.4.2) or ElfrOpenBELW (section 3.1.4.1) .

<21> Section 3.1.4.9 : Applicable Windows Server releases check the flags field of IELF_HANDLE
(section 3.1.1.5).

<22> Section 3.1.4.9 : UNC paths can only be used as BackupFileName for Windows NT Workstation

4.0 SP2 and Windows 2000 operating system.

<23> Section 3.1.4.9 : ElfrClearELFW (Opnum 0) will erroneously return STATUS_SUCCESS if the
buffer inside BackupFileName is NULL in Windows XP and later and Windows Server 2003 and later.
The ElfrClearELFA method returns a nonzero value (0xC000003A
STATUS_OBJECT_PATH_NOT_FOUND).

<24> Section 3.1.4.9 : In applicable Windows Server releases, the LastRecordRead field of the log

context handle as defined in section 3.1.1.5 is modified to 0 so that the next record ID starts from 1.

<25> Section 3.1.4.11 : Applicable Windo ws Server releases return ERROR_PRIVILEGE_NOT_HELD
(0x00000522) if the user does not have the backup privilege.

<26> Section 3.1.4.12 : In Windows Server 2003 and Windows XP a STATUS_ACCESS_DENIED error
will be rec eived.

<27> Section 3.1.4.13 : Not supported in Windows NT 4.0 operating system Service Pack 2 (SP2),

Windows 2000, Windows Server 2003, and Windows XP.

<28> Section 3.1. 4.13 : Applicable Windows Server releases do not check the Time value and the
EventType .

<29> Section 3.1.4.13 : Applicable Windows Server releases use the IsValidSid function (described in
[MSDN - IsValidSid]) to check the validity of the SID.

<30> Section 3.1.4.13 : In Windows Vista and later and Windows Server 2008 and later, the server
does not set these values. Thus, they retain the values set by the client.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=200696

75 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<31> Section 3.1.4.14 : The API is not intended to support dynamically changing computer names.
Current implementations of Windows cache th e ComputerName parameter the first time a client calls

the API, and use that name on subsequent calls until the machine is rebooted.

<32> Section 3.1.4.15 : This method is supported only on Windows Server 2003 R2 o perating system.

<33> Section 3.1.4.16 : The ElfrReportEventExW method is not implemented in Windows 2000,
Windows XP, Windows Vista, Windows 7, Windows 8, and Windows 8.1.

<34> Section 3.1.4.16 : In Windows, the system time at event generation can be obtained using the
GetSystemTimePreciseAsFileTime method described in [MSDN -PreciseSysTme] .

<35> Section 3.1.4.16 : In applicable Windows Server releases, the server does not check the
TimeGenerated and EventType values.

<36> Section 3.1.4.17 : The ElfrReportEventExA method is not implemented in Windows 2000,

Windows XP, Windows Vista, Windows 7, Windows 8, and Windows 8.1.

<37> Section 3.1.4.18 : In applicable Windows Server releases, the number of rec ords is stored in the
header of the event log file.

<38> Section 3.1.4.19 : In applicable Windows Server releases, the oldest record number is stored in
the header of the event log file.

<39> Section 3.1.4.21 : Applicable Windows Server releases will always close the handle as long as

they can find the handle in their internal table. This occurs even if the handle is not from the
ElfrOpenELW (section 3.1.4.3) method, the ElfrOpenELA (section 3.1.4.4) method, the
ElfrOpenBELW (section 3.1.4.1) method, or the ElfrOpenBELA (section 3.1.4.2) . If the server
closes a handle that is not from one of these methods, it can cause the client application to behave in
an unexpected way. It is the callerôs responsibility to make sure they are passing the right handle to
this method.

<40> Section 3.1.4.21 : Applicable Windows Server releases free the memory of IELF_HANDLE (as

specified in section 3.1.1.5) and returns success.

<41> Section 3.1.4.22 : Applicable Windows Server releases do n ot check whether the passing handle
comes from the ElfrRegisterEventSourceW (section 3.1.4.5) method or the
ElfrRegisterEventSourceA (se ction 3.1.4.6) method.

<42> Section 3.1.4.23 : Windows implementations typically return STATUS_INVALID_HANDLE or
STATUS_INVALID_PARAMETER, as specified in [MS -ERREF] section 2.3.

<43> Section 3.2.4 : This method is not supported on Windows NT operating system, Windows 2000,

Windows Server 2003 prior to Windows Server 2003 R2, or Windows XP. If ElfrChangeNotify is
called remotely, applicable Windows Server releases typically return STATUS_INVALID_HANDLE, as
specified in [MS -ERREF].

<44> Section 3.2.4.1.1 : In Windows client implementations, these are not read for the Security log
due to that subkey's highly restrictive permissions; in this case, the log name is a resource in the
Event Viewer application.

<45> Section 3.2.4.1.1 : Based on knowledge of client preferred locales, Windows client
implementations often try to load a resource string fro m an alternate resource library location.
Windows client implementations for Windows NT 4.0 SP2, Windows 2000, Windows Server 2003, and
Windows XP append a numeric locale identifier (LCID) such as "409" to the file path and a ".mui"
extension to the file n ame. Windows Vista and later and Windows Server 2008 and later insert a
language name such as "en -us". In either case, Windows falls back to the original file path if the
language -specific file is not found. For more information on locale identifiers and l anguage names, see

[MS -LCID] .

https://go.microsoft.com/fwlink/?LinkId=626588
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f

76 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

<46> Section 3.2.4.1.2 : In Windows client implementations, these are not read for the Security log
becau se of the subkey's highly restrictive permissions; in this case, the log name is a resource in the

Event Viewer application.

<47> Section 3.2.4.1.2 : Ba sed on knowledge of client -preferred locales, Windows client

implementations can try to load a resource string from an alternate resource library location. Windows
client implementations for Windows NT 4.0 SP2, Windows 2000, Windows Server 2003, and Window s
XP can append a numeric locale identifier (LCID) such as "409" to the file path and a ".mui" extension
to the file name. Windows Vista and later and Windows Server 2008 and later insert a language name
such as "en -us". In either case, Windows falls back to the original file path if the language -specific file
is not found. For more information about locale identifiers and language names, see [MS -LCID].

<48> Section 3.2.4.1.3 : In Windows client implementations, the se are not read for the Security log

because of the highly restrictive permissions for that subkey; in this case, the log name is a resource
in the Event Viewer application.

<49> Section 3.2.4.1.3 : In Windows clie nt implementations, these are not read for the Security log
because of the highly restrictive permissions for that subkey; in this case, the log name is a resource

in the Event Viewer application.

<50> Section 3.2.4.1.3 : Based on knowledge of client -preferred locales, Windows client

implementations can try to load a resource string from an alternate resource library location. Windows
client implementations for Windows NT 4.0 SP2, Windows 2000, Windows S erver 2003, and Windows
XP can append a numeric locale identifier (LCID) such as "409" to the file path and an ".mui"
extension to the file name. Windows Vista and later and Windows Server 2008 and later insert a
language name such as "en -us". In either ca se, Windows falls back to the original file path if the
language -specific file is not found. For more information about locale identifiers and language names,
see [MS -LCID].

<51> Section 3.2.4.1.4 : In Windows clie nt implementations, these are not read for the Security log
due to that subkey's highly restrictive permissions; in this case, the log name is a resource in the
Event Viewer application.

<52> Section 3.2.4.1.4 : Ba sed on knowledge of client -preferred locales, Windows client

implementations try to load a resource string from an alternate resource library location. Windows
client implementations for Windows NT 4.0 SP2, Windows 2000, Windows Server 2003, and Windows
XP append a numeric locale identifier (LCID) such as "409" to the file path and a ".mui" extension to

the file name. Windows Vista and later and Windows Server 2008 and later insert a language name
such as "en -us". In either case, Windows falls back to the o riginal file path if the language -specific file
is not found. For more information on locale identifiers and language names, see [MS -LCID].

<53> Section 3.2.4.1.5 : The replacement behavior is not exactly recursive , although it is very similar
to recursive behavior. Consider the unexpanded description string "%1%2" where the first
EventLogRecord.String is "%". This becomes "%%2", which is a parameter inse rtion, and the second

EventLogRecord.String is never retrieved.

<54> Section 3.2.4.1.5 : The number of substitutions in Windows implementations is capped at 100.

<55> Sect ion 3.2.4.1.5.3 : Expanding SIDs: Starting with Windows 2000, Windows client

implementations attempt to look up the name of the security principal for a properly formatted SID.
The lookup is first attempted on the event source server, and, if that fails, it is attempted in the Global
Catalog server for the forest to which the event source server belongs. For information on how to
implement this lookup, see [MS -LSAD] and [MS -LSAT] .

Expanding GUIDs: Starting with Windows 2000, Windows client implementations attempt to find the
name of the Active Directory object with this GUID . First, the client implementations attempt to look
this up as a well -known schema GUID (for example, Administrators). Then, the client implementations
look for an object by this name on the domain controller (DC) in the sam e domain as the target
computer. Finally, they look for an object by this name on the Global Catalog for the local domain. If

%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc
%5bMS-LSAT%5d.pdf#Section_1ba21e6fd8a9462c91534375f2020894

77 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

the client implementations still have not succeeded, they leave the GUID string in the output as is. For
information on implementi ng this lookup, see [RFC2251] and [MS -ADTS] .

<56> Section 3.2.4.1.5.4 : As a fallback, Windows Event Viewer for SKUs later than Windows XP tries
to resolve the "%systemroot%" and "%systemdrive%" environment variables by reading the local

registry value "HKEY_LOCAL_MACHINE \ SOFTWARE\ Microsoft \ Windows NT \ CurrentVersion" when it
fails to read the remote server registry for the same value.

https://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

78 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, o r None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

Á A document revision that incorporates changes to interoperability requirements.

Á A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision cla ss None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the follow ing table. For more information, please
contact dochelp@microsoft.com .

Section Description
Revision
class

7 Appendix B: Product
Behavior

Added Windows Server 2025 to the list of applicable
products.

Major

mailto:dochelp@microsoft.com

79 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

9 Index

A

Abstract data model
 client 53
 server 23
ANSI 21
Applicability 12
Applicability statement 12

B

Back up the event log example 64

C

Capability negotiation 12
Change tracking 78
Client
 abstract data model 53
 Client Processing of Event Descriptions and Other

Localizable Strings method 56
 initialization 53
 local events 59
 message processing 53
 message transport 15
 overview 53
 sequencing rules 53
 timer events 59
 timers 53
Client processing - event descriptions 56
Client Processing of Event Descriptions and Other

Localizable Strings method 56
Common data types 15
Context handles 26

D

Data model - abstract
 client 53
 server 23
Data types 15
 commo n - overview 15

E

ElfrBackupELFA (Opnum 13) method 41
ElfrBackupELFA method 41
ElfrBackupELFW (Opnum 1) method 40
ElfrBackupELFW method 40
ElfrChangeNotify (Opnum 6) method 52
ElfrChangeNotify method 52
ElfrClearELFA (Opnum 12) method 40
ElfrClearELFA method 40
ElfrCle arELFW (Opnum 0) method 39
ElfrClearELFW method 39
ElfrCloseEL (Opnum 2) method 51
ElfrCloseEL method 51
ElfrDeregisterEventSource (Opnum 3) method 51
ElfrDeregisterEventSource method 51
ElfrGetLogInformation (Opnum 22) method 50
ElfrGetLogInformation method 50

ElfrNumberOfRecords (Opnum 4) method 49
ElfrNumberOfRecords method 49
ElfrOldestRecord (Opnum 5) method 50
ElfrOldestRecord method 50
ElfrOpenBELA (Opnum 1 6) method 31
ElfrOpenBELA method 31
ElfrOpenBELW (Opnum 9) method 30
ElfrOpenBELW method 30
ElfrOpenELA (Opnum 14) method 33
ElfrOpenELA method 33
ElfrOpenELW (Opnum 7) method 32
ElfrOpenELW method 32
ElfrReadELA (Opnum 17) method 38
ElfrReadELA method 38
ElfrReadELW (Opnum 10) method 36
ElfrR eadELW method 36
ElfrRegisterEventSourceA (Opnum 15) method 35
ElfrRegisterEventSourceA method 35
ElfrRegisterEventSourceW (Opnum 8) method 34
ElfrRegisterEventSourceW method 34
ElfrReportEventA (Opnum 18) method 43
ElfrReportEventA method 43
ElfrReportEventAndSourceW (Opnum 24) method 45
ElfrReportEventAndSourceW method 45
ElfrReportEventExA (Opnum 26) method 48
ElfrReportEventExW (Opnum 25) method 46
ElfrReportEventW (Opnum 11) method 41
ElfrReportEventW method 41
Error values 13

Event categories 13
Event log names 13
Event log records 23
Event logs 23
Event source names 13
Event sou rces 25
EventID 26
EventIDs 13
EVENTLOG_AUDIT_FAILURE 15
EVENTLOG_AUDIT_SUCCESS 15
EVENTLOG_ERROR_TYPE 15
EVENTLOG_INFORMATION_TYPE 15
EVENTLOG_SUCCESS 15
EVENTLOG_WARNING_TYPE 15
EVENTLOGRECORD packet 16
Events
 local - client 59
 local - server 52
 timer - client 59
 timer - server 52
Examples
 back up the event log 64
 expanding unexpanded event description strings

64
 obtain records stored in an event log 60
 write events to an event log 61
Expanding environment variables 58
Expanding unexpanded event description strings 57
Expanding unexpanded event description strings

example 64

F

80 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Fields - vendor -exten sible 13
Fields ï vendor -extensible 13
Full IDL 67

G

Glossary 7

H

Handles (section 2.2.6 20 , section 3.1.1.5 26)

I

IDL 67
Implementer - security considerations 66
Index of security parameters 66
Informative references 10
Initialization
 client 53
 server 27
Inserting EVENTLOGRECORD strings 58
Inserting parameter strings 58
Inserting SIDs and GUIDs 58
Introduction 7

L

Loading eve nt log description information 56
Local events
 client 59
 server 52
Localizable strings 56

M

MAX_BATCH_BUFF 21
MAX_SINGLE_EVENT 21

MAX_STRINGS 21
Message processing
 client 53
 server 27
Messages
 common data types 15
 data types 15
 transport 15
 client 15
 overview 15
 server 15
Methods
 Client Processing of Event Descriptions and Other

Localizable Strings 56
 ElfrBackupELFA (Opnum 13) 41
 ElfrBackupELFW (Opnum 1) 40
 ElfrChangeNotify (Opnum 6) 52
 ElfrClearELFA (Opnum 12) 40
 ElfrClearELFW (Opnum 0) 39
 ElfrCloseEL (Opnum 2) 51
 ElfrDeregisterEventSource (Opnum 3) 51
 ElfrGetLogInformation (Opnum 22) 50
 ElfrNumberOfRecords (Opnum 4) 49
 ElfrOldestRecord (Opnum 5) 50
 ElfrOpenBELA (Opnum 16) 31

 ElfrOpenBELW (Opnum 9) 30
 ElfrOpenELA (Opnum 14) 33
 ElfrOpenELW (Opnum 7) 32
 ElfrReadELA (Opnum 17) 38
 ElfrReadELW (Opnum 10) 36
 ElfrRegisterEventSourceA (Opnum 15) 35
 ElfrRegisterEventSourceW (Opnum 8) 34
 ElfrReportEventA (Opnum 18) 43
 ElfrReportEventAndSourceW (Opnum 24) 45
 ElfrReportEventExA (Opnum 26) 48
 ElfrReportEventExW (Opnum 25) 46
 ElfrReportEventW (Opnum 11) 41

N

Names
 event log 13

 event source 13
Normative references 9
NT Object Path 19

O

Obtain records stored in an event log example 60
Overview
 background 11
 event descriptions - other strings 12
 EventLog Remoting Protocol 11

P

Parameters - security index 66
Preconditions 12
 overview 12
 server requirements - string rendering 12
Prerequisites 12
 overview 12
 server requirements - string rendering 12
Product behavior 72
Protocol Details
 overview 23
PRPC_CLIENT_ID 21
PRPC_SID 20
PRPC_STRING 22
PRPC_UNICODE_STRING 21

R

Records - event log 23
References 9
 informative 10
 normative 9
Relationship to other protocols 12
Retrieving event category strings 56
Retrieving event parameter strings 56
Retrieving unexpanded event description strings 57
RPC_CLIENT_ID structure 21
RPC_SID struc ture 20
RPC_STRING structure 22
RPC_UNICODE_STRING structure 21

S

Security

81 / 81

[MS -EVEN] - v20240423
EventLog Remoting Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

 implementer considerations 66
 parameter index 66
Sequencing rules
 client 53
 server 27
Server
 abstract data model 23
 ElfrBackupELFA (Opnum 13) method 41
 ElfrBackupELFW (Opnum 1) method 40
 ElfrChangeNotify (Opnum 6) method 52
 ElfrClearELFA (Opnum 12) method 40
 ElfrClearELFW (Opnum 0) method 39
 ElfrCloseEL (Opnum 2) method 51
 ElfrD eregisterEventSource (Opnum 3) method 51
 ElfrGetLogInformation (Opnum 22) method 50
 ElfrNumberOfRecords (Opnum 4) method 49
 ElfrOldestRecord (Opnum 5) method 50
 ElfrOpenBELA (Opnum 16) method 31
 ElfrOpenBELW (Opnum 9) method 30
 ElfrOpenELA (Opnum 14) method 33
 ElfrOpenELW (Opnum 7) method 32
 ElfrRead ELA (Opnum 17) method 38
 ElfrReadELW (Opnum 10) method 36

 ElfrRegisterEventSourceA (Opnum 15) method 35
 ElfrRegisterEventSourceW (Opnum 8) method 34
 ElfrReportEventA (Opnum 18) method 43
 ElfrRe portEventAndSourceW (Opnum 24) method

45
 ElfrReportEventExA (Opnum 26) method 48
 ElfrReportEventExW (Opnum 25) method 46
 ElfrReportEventW (Opnum 11) method 41
 initialization 27
 local even ts 52
 message processing 27
 message transport 15
 overview 23
 sequencing rules 27
 timer events 52
 timers 27
Standards assignments 14

T

Timer events
 client 59
 server 52
Timers
 client 53
 server 27
Tracking changes 78
Transport 15
Transport - message
 client 15
 overview 15
 server 15

U

Unicode 21

V

Vendor -extensible fields 13
Ver sioning 12

W

Write events to an event log example 61

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Background
	1.3.2 EventLog Remoting Protocol
	1.3.3 Localizable Human-Readable Event Descriptions and Other Strings

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.5.1 Server Requirements to Enable Remote Description String Rendering

	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.8.1 Error Values
	1.8.2 Event Log Names
	1.8.3 Event Source Names
	1.8.4 EventIDs
	1.8.5 Event Categories

	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Server
	2.1.2 Client

	2.2 Common Data Types
	2.2.1 RULONG
	2.2.2 EventType
	2.2.3 EVENTLOGRECORD
	2.2.4 EVENTLOG_FULL_INFORMATION
	2.2.4.1 NT Object Path

	2.2.5 RPC_SID
	2.2.6 IELF_HANDLE
	2.2.7 EVENTLOG_HANDLE_A and EVENTLOG_HANDLE_W
	2.2.8 RPC_CLIENT_ID
	2.2.9 Constants Used in Method Definitions
	2.2.10 Unicode Versus ANSI String Representations
	2.2.11 RPC_UNICODE_STRING
	2.2.12 RPC_STRING

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Event Log Records
	3.1.1.2 Event Logs
	3.1.1.3 Event Sources
	3.1.1.4 EventID
	3.1.1.5 Context Handles

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 ElfrOpenBELW (Opnum 9)
	3.1.4.2 ElfrOpenBELA (Opnum 16)
	3.1.4.3 ElfrOpenELW (Opnum 7)
	3.1.4.4 ElfrOpenELA (Opnum 14)
	3.1.4.5 ElfrRegisterEventSourceW (Opnum 8)
	3.1.4.6 ElfrRegisterEventSourceA (Opnum 15)
	3.1.4.7 ElfrReadELW (Opnum 10)
	3.1.4.8 ElfrReadELA (Opnum 17)
	3.1.4.9 ElfrClearELFW (Opnum 0)
	3.1.4.10 ElfrClearELFA (Opnum 12)
	3.1.4.11 ElfrBackupELFW (Opnum 1)
	3.1.4.12 ElfrBackupELFA (Opnum 13)
	3.1.4.13 ElfrReportEventW (Opnum 11)
	3.1.4.14 ElfrReportEventA (Opnum 18)
	3.1.4.15 ElfrReportEventAndSourceW (Opnum 24)
	3.1.4.16 ElfrReportEventExW (Opnum 25)
	3.1.4.17 ElfrReportEventExA (Opnum 26)
	3.1.4.18 ElfrNumberOfRecords (Opnum 4)
	3.1.4.19 ElfrOldestRecord (Opnum 5)
	3.1.4.20 ElfrGetLogInformation (Opnum 22)
	3.1.4.21 ElfrCloseEL (Opnum 2)
	3.1.4.22 ElfrDeregisterEventSource (Opnum 3)
	3.1.4.23 ElfrChangeNotify (Opnum 6)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.7 Server Configurations for Localizable Event Descriptions

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Client Processing of Event Descriptions and Other Localizable Strings
	3.2.4.1.1 Loading Event Log Description Information
	3.2.4.1.2 Retrieving Event Parameter Strings
	3.2.4.1.3 Retrieving Event Category Strings
	3.2.4.1.4 Retrieving Unexpanded Event Description Strings
	3.2.4.1.5 Expanding Unexpanded Event Description Strings
	3.2.4.1.5.1 Inserting EVENTLOGRECORD Strings
	3.2.4.1.5.2 Inserting Parameter Strings
	3.2.4.1.5.3 Inserting SIDs and GUIDs
	3.2.4.1.5.4 Expanding Environment Variables

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Obtain Records Stored in an Event Log
	4.2 Write Events to an Event Log
	4.3 Back Up the Event Log
	4.4 Expanding Unexpanded Event Description Strings

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

