
1 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[MS -COMA]:

Component Object Model Plus (COM+) Remote
Administration Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,

file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute po rtions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Á Patents . Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise . If you would prefer a written license, or if the te chnologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks . T he names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, e -mail

addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associat ion with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than specif ically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to M icrosoft

programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and

network programming art, and assumes that the reader eit her is familiar with the aforementioned
material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 0.1.1 Editorial Changed language and formatting in the technical content.

10/23/2007 0.1.2 Editorial Changed language and formatting in the technical content.

11/30/2007 0.1.3 Editorial Changed language and formatting in the technical content.

1/25/2008 0.1.4 Editorial Changed language and formatting in the technical content.

3/14/2008 0.1.5 Editorial Changed language and formatting in the technical content.

5/16/2008 0.1.6 Editorial Changed language and formatting in the technical content.

6/20/2008 1.0 Major Updated and revised the technical content.

7/25/2008 1.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 1.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 1.1 Minor Clarified the meaning of the technical content.

12/5/2008 1.2 Minor Clarified the meaning of the technical content.

1/16/2009 2.0 Major Updated and revised the technical content.

2/27/2009 2.1 Minor Clarified the meaning of the technical content.

4/10/2009 2.2 Minor Clarified the meaning of the technical content.

5/22/2009 2.2.1 Editorial Changed language and formatting in the technical content.

7/2/2009 2.2.2 Editorial Changed language and formatting in the technical content.

8/14/2009 2.2.3 Editorial Changed language and formatting in the technical content.

9/25/2009 2.3 Minor Clarified the meaning of the technical content.

11/6/2009 2.3.1 Editorial Changed language and formatting in the technical content.

12/18/2009 2.3.2 Editorial Changed language and formatting in the technical content.

1/29/2010 2.4 Minor Clarified the meaning of the technical content.

3/12/2010 2.5 Minor Clarified the meaning of the technical content.

4/23/2010 3.0 Major Updated and revised the technical content.

6/4/2010 4.0 Major Updated and revised the technical content.

7/16/2010 4.0 None No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 5.0 Major Updated and revised the technical content.

10/8/2010 6.0 Major Updated and revised the technical content.

11/19/2010 6.0 None No changes to the meaning, language, or formatting of the
technical content.

3 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Date
Revision
History

Revision
Class Comments

1/7/2011 6.0 None No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 6.0 None No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 6.0 None No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 6.0 None No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 6.1 Minor Clarified the meaning of the technical content.

9/23/2011 7.0 Major Updated and revised the technical content.

12/16/2011 8.0 Major Updated and revised the technical content.

3/30/2012 8.0 None No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 8.0 None No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 8.0 None No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 8.0 None No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 8.1 Minor Clarified the meaning of the technical content.

11/14/2013 8.1 None No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 8.1 None No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 8.1 None No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 9.0 Major Significantly changed the technical content.

4 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Table of Contents

1 Introduction 10
1.1 Glossary 10
1.2 References 15

1.2.1 Normative References 15
1.2.2 Informative References 15

1.3 Overview 17
1.3.1 Background 17
1.3.2 Catalog 17
1.3.3 Catalog Versions and Partition Support 20
1.3.4 Role-Based Security Configuration 20
1.3.5 Bitness 21
1.3.6 Registration 22
1.3.7 Export and Import 22
1.3.8 Instantiation Concepts 22
1.3.9 Instance Load Balancing 23
1.3.10 Protection of Co nfiguration State 24
1.3.11 Events 24
1.3.12 Replication 24

1.4 Relationship to Other Protocols 25
1.5 Prerequisites /Preconditions 26
1.6 Applicability Statement 26
1.7 Versioning and Capability Negotiation 26
1.8 Vendor -Extensible Fields 27
1.9 Standards Assignments 27

2 Messages 31
2.1 Transport 31
2.2 Common Data Types 31

2.2.1 Table Formats 32
2.2.1.1 fTableFlags 32
2.2.1.2 eDataType 32
2.2.1.3 eSpecialQueryOption 33
2.2.1.4 QueryCell 33
2.2.1.5 QueryCellArray 34
2.2.1.6 QueryComparisonData 35
2.2.1.7 PropertyMeta 36
2.2.1.8 fPropertyStatus 37
2.2.1.9 TableEntryFixed 38
2.2.1.10 TableDataFixed 40
2.2.1.11 eTableEntryAction 40
2.2.1.12 TableEntryFixedWrite 41
2.2.1.13 TableDataFixedWrite 41
2.2.1.14 TableEntryVariab le 42
2.2.1.15 TableDataVariable 43
2.2.1.16 TableDetailedError 43
2.2.1.17 TableDetailedErrorArray 44

2.2.2 Property Formats 44
2. 2.2.1 Placeholder Property Formats 45

2.2.2.1.1 PlaceholderPartitionIdProperty 45
2.2.2.1.2 PlaceholderGuidProperty 45
2.2.2.1.3 PlaceholderStringProperty 45
2.2.2.1.4 Placeho lderIntegerProperty 46

2.2.2.2 ImplementationSpecificPathProperty 46
2.2.2.3 Threading Model Property Formats 46

2.2.2.3.1 ThreadingModelEnumerationProperty 47

5 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.2.3.2 ThreadingModelStringProperty 48
2.2.2.4 ScriptingProgramIdProperty 48
2.2.2.5 BitnessPr operty 48
2.2.2.6 NameProperty 49
2.2.2.7 DescriptionProperty 49
2.2.2.8 ContextFacilityProperty 49
2.2.2.9 BooleanProper ty 50

2.2.2.9.1 BooleanBitProperty 50
2.2.2.10 Pool Size Property Formats 50

2.2.2.10.1 MinPoolSizeProperty 50
2.2.2.10.2 MaxPoolSizeP roperty 50

2.2.2.11 Timeout Property Formats 51
2.2.2.11.1 LongTimeoutInSecondsProperty 51
2.2.2.11.2 ShortTimeoutInSecondsProperty 51
2.2.2.11.3 LongTimeoutInMinutesProperty 51
2.2.2.11.4 ShortTimeoutInMinutesProperty 51

2.2.2.12 ApplicationSpecificStringProperty 52
2.2.2.13 ORB-Specific Property Formats 52

2.2.2.13.1 ORBSpecificExceptionClassProperty 52
2.2.2.13.2 ORBSpecificModuleIdentifierProperty 52
2. 2.2.13.3 ORBSpecificTypeIdentifierProperty 52
2.2.2.13.4 ORBSpecificAlternateLaunchNameProperty 53
2.2.2.13.5 ORBSpecificAlternateLaunchParametersProperty 53
2.2.2.13.6 ORBSpecificCommandLineProperty 53
2.2.2.13.7 ORBSpecificWebServerVirtualDirectoryProper ty 53
2.2.2.13.8 ORBSpecificSubscriptionFilterCriteriaProperty 54
2.2.2.13.9 ORBSpecificAlternateActivationProperty 54
2.2.2.13.10 ORBSpecificProtocolSequenceMnemonicProperty 54

2.2.2.14 TransactionIsolationLevelProperty 54
2.2.2.15 ComputerNameProperty 55
2.2.2.16 ComputerNameOrAddressProperty 55
2.2.2.17 SecurityPrincipalNameProperty 56
2.2.2.18 Passwo rdProperty 56
2.2.2.19 YesNoProperty 56
2.2.2.20 LegacyYesNoProperty 56
2.2.2.21 SecurityDescriptorProperty 57

2.2.2.21.1 Component Access Mask Types 57
2.2.2.21.1.1 Component Access Constants 57
2.2.2.21.1.2 OldV ersionComponentAccessMask 58
2.2.2.21.1.3 NewVersionComponentAccessMask 58

2.2.2.21.2 Component ACE Types 58
2.2.2.21.2.1 OldVersion ComponentAccessAllowedACE 58
2.2.2.21.2.2 NewVersionComponentAccessAllowedACE 58
2.2.2.21.2.3 OldVersionComponentAccessDeniedACE 59
2.2.2.21.2.4 NewVersionComponentAccessDeniedACE 59
2.2.2.21.2.5 ComponentMandatoryLabelACE 59

2.2.2.21.3 Component Access Control List Types 59
2.2.2.21.3.1 OldVersionComponentDACL 59
2.2.2.21.3.2 NewVersionComponentDACL 60
2.2.2.21.3.3 ComponentSACL 60

2.2.2.21.4 ComponentSecurityDescriptor 60
2.2.2.22 DefaultAuthenticationLevelProperty 61
2.2.2.23 ActivationTypeProperty 61
2.2.2.24 TrustLevelProperty 61
2.2.2.25 DefaultImpersonationLevelProperty 61
2.2.2.26 ORBSecuritySettingsProperty 62
2.2.2.27 MaxDumpC ountProperty 63
2.2.2.28 ConcurrentAppsProperty 63

6 / 27 2

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.2.29 RecyclingCriterionLimitProperty 63
2.2.2.30 MaxT hreadsProperty 64
2.2.2.31 PortsListProperty 64
2.2.2.32 Subscription Property Typed Value Formats 64

2.2.2.32.1 SubscriptionPropertyTypeProperty 64
2.2.2.32.2 SubscriptionPropertyValueProperty 65

2.2.3 fModuleStatus 65
2.2.4 fComponentStatus 66
2.2.5 eComponentType 67
2.2.6 SRPLevelInfo 67
2.2.7 CatSrvServices 67
2.2.8 CatSrvServiceState 68
2.2.9 InstanceContainer 68

3 Protocol Details 70
3.1 Server Details 70

3.1.1 Abstract Data Model 70
3.1.1.1 Configuration and the ORB 70

3.1.1.1.1 Transactions 70
3.1.1.1.2 Pooling 71
3.1.1.1.3 Role-Based Security 71
3.1.1.1.4 Publisher -Subscriber Framework 71
3.1.1.1.5 Transport Protocols 71
3.1.1.1.6 Instance Load Balancing 72
3.1.1.1.7 Configure d Proxies 72
3.1.1.1.8 Transport Security 73
3.1.1.1.9 Software Restriction Policy 73
3.1.1.1.10 Crash Dump 73
3.1.1.1.11 Partitions and Users 73
3.1.1.1.12 System Services 74

3.1.1.2 Tables 74
3.1.1.2.1 Table Metadata 74
3.1.1.2.2 Supported Queries 74
3.1.1.2.3 Multiple -Bitness Support 74
3.1.1.2.4 Table Flags 75
3.1.1.2.5 Constraints 75
3.1.1.2.6 Default Values 75
3.1.1.2.7 Internal Properties 76
3.1.1.2.8 Write Restrictions 76
3.1.1.2.9 Triggers 76
3.1.1.2.10 Cascades 77
3.1.1.2.11 Populates 77

3.1.1.3 Table Definitions 77
3.1.1.3.1 ComponentsAndFullConfigurations Table 78
3.1.1.3.2 ComponentFullConfigurationsReadOnly Table 86
3.1.1.3.3 ComponentLegacyConfigurations Table 89
3.1.1.3.4 ComponentNativeBitness Table 92
3.1.1.3.5 ComponentNonNativeBitness Table 93
3.1.1. 3.6 Conglomerations Table 94
3.1.1.3.7 Partitions Table 100
3.1.1.3.8 MachineSettings Table 102
3.1.1.3.9 Roles Table 104
3.1.1.3.10 RoleMembers Table 105
3.1.1.3.11 ConfiguredInterfaces Table 106
3.1.1.3.12 ConfiguredMethods Table 108
3.1.1.3.13 RolesForComponent Table 110
3.1.1.3.14 RolesForInterface Table 112
3.1.1.3.15 RolesForMethod Table 113

7 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.1.3.16 PartitionUsers Table 115
3.1.1.3.17 PartitionRoles Table 116
3.1.1.3.18 PartitionR oleMembers Table 117
3.1.1.3.19 InstanceLoadBalancingTargets Table 118
3.1.1.3.20 ServerList Table 118
3.1.1.3.21 InstanceContainers Table 119
3.1.1.3.22 EventClasses Table 120
3.1.1.3.23 Subscription s Table 121
3.1.1.3.24 SubscriptionPublisherProperties Table 124
3.1.1.3.25 SubscriptionSubscriberProperties Table 125
3.1.1.3.26 Protocols Table 127
3.1.1.3.27 FilesForImport T able 127

3.1.1.4 Alternate Launch Configurations 129
3.1.1.5 Per-Session State 130
3.1.1.6 Replication Directories 130

3.1.2 Timers 130
3.1.3 Initialization 130
3.1.4 Message Processing Events and Sequencing Rules 130

3.1.4.1 Catalog Version Negotiation 131
3.1.4.2 64 -Bit QueryCell Marshaling Format Capability Negotiation 131
3.1.4.3 Multiple -Partition Support Capability Negotiation 132
3.1.4.4 Multiple -Bitness Capability Negotiation 132
3.1.4.5 ICatalogSession 132

3.1.4.5.1 InitializeSession (Opnum 7) 133
3.1.4.5.2 GetServerInformation (Opnum 8) 133

3.1.4.6 ICata log64BitSupport 134
3.1.4.6.1 SupportsMultipleBitness (Opnum 3) 135
3.1.4.6.2 Initialize64BitQueryCellSupport (Opnum 4) 135

3.1.4.7 ICatalogTableInfo 136
3.1.4.7.1 GetClientTableInf o (Opnum 3) 136

3.1.4.8 ICatalogTableRead 138
3.1.4.8.1 ReadTable (Opnum 3) 138

3.1.4.9 ICatalogTableWrite 141
3.1.4.9.1 WriteTable (Opnum 3) 142

3.1.4.10 IRegister 148
3.1.4.10.1 RegisterModule (Opnum 3) 148

3.1.4.11 IRegister2 152
3.1.4.11.1 CreateFullConfiguration (Opnum 3) 152
3.1.4.11 .2 CreateLegacyConfiguration (Opnum 4) 154
3.1.4.11.3 PromoteLegacyConfiguration (Opnum 5) 155
3.1.4.11.4 RegisterModule2 (Opnum 8) 157

3.1.4.12 IImport 161
3.1.4.12.1 ImportFromFile (Opnum 3) 161
3.1.4.12.2 QueryFile (Opnum 4) 166

3.1.4.13 IImport2 167
3.1.4.13.1 SetPartition (Opnum 3) 168

3.1.4.14 IExport 168
3.1.4.14.1 ExportConglomeration (Opnu m 3) 169

3.1.4.15 IExport2 170
3.1.4.15.1 ExportPartition (Opnum 3) 170

3.1.4.16 IAlternateLaunch 171
3.1.4.16.1 CreateConfiguration (Opnum 3) 171
3.1.4.16.2 DeleteConfiguration (Opnum 4) 172

3.1.4.17 ICatalogUtils 173
3.1.4.17.1 ValidateUser (Opnum 3) 173
3.1.4.17.2 WaitForEndWrites (Opnum 4) 174
3.1.4.17.3 GetEventClassesForIID (Opnum 5) 174

3.1.4.18 ICatalogUtils2 175

8 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.1.4.18.1 CopyConglomerations (Opnum 3) 176
3.1.4.18.2 CopyComponentConfiguration (Opnum 4) 178
3.1.4.18.3 AliasComponent (Opnum 5) 179
3.1.4.18.4 MoveComponentConfiguration (Opnum 6) 181
3.1.4.18.5 GetEventClassesForIID2 (Opnum 7) 182
3.1.4.18.6 IsSafeToDelete (Opnum 8) 183
3.1.4.18.7 FlushPartitionCache (Opnum 9) 184
3.1.4.18.8 EnumerateSRPLevels (Opnum 10) 185
3.1.4.18.9 GetComponentVersions (Opnum 11) 185

3.1.4.19 ICapabilitySupport 186
3.1.4.19.1 Start (Opnum 3) 187
3.1.4.19.2 Stop (Opnum 4) 187
3.1.4.19.3 IsInstalled (Opnum 7) 188
3.1.4.19.4 IsRunning (Opnum 8) 188

3.1.4.20 IContainerControl 189
3.1.4.20.1 CreateContainer (Opnum 3) 189
3.1.4.20.2 Shutdo wnContainers (Opnum 4) 190
3.1.4.20.3 RefreshComponents (Opnum 5) 190

3.1.4.21 IContainerControl2 190
3.1.4.21.1 ShutdownContainer (Opnum 3) 191
3.1.4.21.2 PauseContainer (Opnum 4) 191
3.1.4.21.3 ResumeContainer (Opnum 5) 192
3.1.4.21.4 IsContainerP aused (Opnum 6) 192
3.1.4.21.5 GetRunningContainers (Opnum 7) 193
3.1.4.21.6 GetContainerIDFromProcessID (Opnum 8) 193
3.1. 4.21.7 RecycleContainer (Opnum 9) 194
3.1.4.21.8 GetContainerIDFromConglomerationID (Opnum 10) 194

3.1.4.22 IReplicationUtil 195
3.1.4.22.1 CreateShare (Opnum 3) 195
3.1.4.22.2 CreateEmptyDir (Opnum 4) 196
3.1.4.22.3 RemoveShare (Opnum 5) 197
3.1.4.22.4 BeginReplica tionAsTarget (Opnum 6) 198
3.1.4.22.5 QueryConglomerationPassword (Opnum 7) 198
3.1.4.22.6 CreateReplicationDir (Opnum 8) 199

3.1.5 Timer Events 199
3.1.6 Other Local Events 199

3.2 Client Details 200
3.2.1 Abstract Data Model 200

3.2.1.1 Per-Session State 200
3.2.2 Timers 200
3.2.3 Initialization 200
3.2.4 Message Processing Events and Sequencing Rules 200

3.2.4.1 Catalog Version Negotiation 201
3.2.4.2 64 -Bit Qu eryCell Marshaling Format Capability Negotiation 203
3.2.4.3 Multiple -Partition Support Capability Negotiation 203
3.2.4.4 Multiple -Bitness Capability Negotiation 203
3.2.4.5 Reads and Writes 204
3.2.4.6 Write Validation 204
3.2.4.7 Write Synchronization 204
3.2.4.8 IsSafeToDelete 204

3.2.5 Timer Events 204
3.2.6 Other Local Events 204

4 Protocol Examples 205
4.1 Catalog Session and Capabilities Initialization 205
4.2 Reading a Table 207
4.3 Writing to a Table 213
4.4 Registration 217

9 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

5 Security 220
5.1 Security Considerations for Implementers 220
5.2 Index of Security Parameters 220

6 Appendix A: Full ID L 222

7 Appendix B: Product Behavior 232

8 Change Tracking 264

9 Index 266

10 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1 Introduction

This document specifies the Component Object Mod el Plus (COM+) Remote Administration Protocol
(COMA), which allows clients to manage the configuration of software components and to control
running instances of these components.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119] . Sections 1.5 and 1.9 are also

normative but do not c ontain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are specific to this document:

activation : In COM, a local mechanism by which a client provides the CLSID of an object class (3)
and obtains an object (3), either an object from that object class or a class factory that is able

to create such objects.

atomic transaction : A shared activity that p rovides mechanisms for achieving the atomicity,
consistency, isolation, and durability (ACID) properties when state changes occur inside
participating resource managers.

authentication level : A numeric value indicating the level of authentication or messag e protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS -RPCE].

bitness : The distinction between 32 -bit and 64 -bit address spaces, and the potential differences in
instantiation of components that this entails.

catalog : A data store that holds the configuration properties for components and
conglomerations .

class identifie r (CLSID) : A GUID that identifies a software component; for instance, a DCOM
object class (4) or a COM class .

COM class : An object c lass (3).

component : A representation of a constituent transport address if a candidate consists of a set of
transport addresses. For example, media streams that are based on the Real -Time Transfer
Protocol (RTP) have two components, one for RTP and anothe r for the Real -Time Transfer

Control Protocol (RTCP).

component configuration : A particular component configuration.

component configuration entry : An entry in the catalog that represents a part icular
configuration of a component.

component full configuration entry : A type of component configuration entry that supports

configuration of the full set of services provided by an Object Req uest Broker (ORB), and to
which the configuration properties of its containing conglomeration fully apply.

component instance : An instantiation of a component.

component legacy configuration entry : A type of component configuration entry that
supports configuration of only a small subset of the services provided by an Object Request
Broker (ORB), and to which only a subset of its containing conglomeration's configuration
properties apply. Compone nt legacy configuration entries are typically used to configure
components that, for technical reasons, do not support component full configuration entries.

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

11 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

computer name : The DNS or NetBIOS name.

configured interface : A set of methods that is supported by a component with a component

full configuration entry , for which configuration at the interface level is supported.

configured method : A method in a configured interface that supports configuration at the

method level.

configured proxy : A preferred client configuration for a component or conglomeration that is
provided by another Object Request Broker (ORB) .

conglomeration : A collection of component configuration entries , together with a component -
independent configuration that i s conceptually shared by the component configuration
entries . A conglomeration is identified by a conglomeration identifier .

conglom eration identifier : A GUID that identifies a conglomeration .

container identifier : A GUID that identifies an instance container.

con tainer pooling : Enabling a conglomeration to support multiple concurrent instance containers.

directory : The database that stores information about objects such as users, groups, computers,
printers, and the directory service that makes this information av ailable to users and
applications.

dynamic endpoint : A network -specific server address that is requested and assigned at run time.

For more information, see [C706].

endpoint : In the context of a web service, a network target to which a SOAP message can be
addressed. See [WSADDR] .

event : A discrete unit of historical data that an application exposes that may be relevant to other
applications. An example of an event would be a particular user lo gging on to the computer.

event class : A collection of events that are grouped together based on criteria that the publishing

application specifies.

export : The process of creating an installer package file for a conglomeration or partition on
a COMA server, so that it can be imported onto another server.

global partition : The default, required partition on a COMA server.

globally unique identifier (GUID) : A term used interchangeably with unive rsally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID . See also universally unique
identifier (UUID) .

GUID_NULL : A GUID that has the value "{00000000 -0000 -0000 -0000 -000000000000}".

import : The process of creating a conglomeration or partition on a COMA server based on
modules and configu rations extracted from an installer package file .

installer package file : A file that packages together modules and configuration st ates sufficient

to create a conglomeration or partition on a server.

Instance container : A container for the instantiation of components that are configured in a
single conglomeration.

http://go.microsoft.com/fwlink/?LinkId=113065
http://go.microsoft.com/fwlink/?LinkId=90460

12 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

instance load balancing : The process of automatically distributing instantiation of components
acr oss instance containers on multiple servers, according to run - time information, such as the

comparative load on each server.

instance load balancing router : An ORB that performs instance load balancing .

instance load balancing target : A machine that participates in instance load balancing as a
target for component instantiation.

instance pooling : The act of enabling component instances that are no longer active to return to
a pool for reuse.

interface : A specification in a Component Object Model (COM) server that describes how to access
the methods of a class. For more information, see [MS -DCOM] .

Interface Definition Language (IDL) : The International Standards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

IPv4 address in string format : A string representation of an IPv4 ad dress in dotted -decimal
notation, as described in [RFC1123] section 2.1.

IPv6 address in string format : A string representation of an IPv6 address, as described in
[RFC4291] section 2.2.

little - endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

module : A file used by a server to register and inst antiate one or more components. It contains
either implementations of the components or metadata that a server can use to find
implementations.

Object Request Broker (ORB) : A set of mechanisms that collectively enable local or remote
clients to create inst ances of software components , and to invoke operations on these

instances.

opnum : An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS -RPCE].

partition : A container for conglomerations . Every COMA server has at least one partition -- the
Global Partition -- and may have additional partitions. A partition is identified by a partition
identifier .

partition identifier : A GUID that identifies a partition .

paused : A service that is not available because it has been placed in a suspended state, usually as
a result of explicit administrative action.

pausing : Temporarily disabling the creation of new component instances in an instance container.

process : A context in which an instance container can be created, consisting of one or more
threads of execution with a shared memory address space and shared security properties. A

process is identified by a process identifier.

protected conglomeration : A conglomeration for which configuration changes are permanently
disabled; for example, because modifying the configuration would impact system -wide stability.

publisher : An application that needs to publish historical data that may be of interest to other
applications.

%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90268
http://go.microsoft.com/fwlink/?LinkId=90464

13 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

publisher - subscriber framework : An application framework that allows applications to expose
historical data to other applications that might receive this data.

queue listener : A conceptual service that waits for queued messages for one or more
components on an ORB that enables queuing .

queuing : A transport protocol stack that consists of an asynchronous remote procedure call
protocol layered over a reliable messaging protocol.

recycling : To permanently disable the creation of new component instances in an instance
container.

registration : The pro cess of making components known to a server so that they will be
represented in the catalog and can be configured.

remote procedure call (RPC) : A context -dependent term commonly overloaded with three

meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three defin itions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this

meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The pref erred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The

preferred usage for this term is "RPC message". For more information about RPC, see [C706].

replication : An administration scen ario in which a replication client application automatically
copies multiple conglomerations from a replication source to one or more replication
targets .

replication client application : A client application that provides automatic copying of
conglomerations between COMA servers, typically using COMA export and import
functionality.

replication source : A COMA server whose catalog contains conglomerations to be copied.

replication target : A COMA server whose catalog is to contain the copied conglomerations

after replication is perf ormed.

role : A set of role members that represents authorization for a set of operations that is supported
by a conglomeration . A ro le is identified by a role name .

role member : A predicate indicating that a particular user account belongs to a role .

role name : A string that identifies a role within a conglomeration .

RPC protocol sequence : A character string that represents a valid combinati on of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS -RPCE].

security descriptor : A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a

discretionary access control list (DACL) with SIDs for the security principals who are allowed
or de nied access. Applications use this structure to set and query an object's security status.
The security descriptor is used to guard access to an object as well as to control which type of
auditi ng takes place when the object is accessed. The security descriptor format is specified in
[MS -DTYP] section 2.4.6; a string representation of security descriptors , called SDDL, is
specified in [MS -DTYP] section 2.5.1.

%5bMS-DTYP%5d.pdf

14 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

security principal : A unique entity that is identifiable through cryptographic means by at least
one key. It frequently corresponds to a human user, but also can be a service that offers a

resource to other security principals. Also referred to as principal.

security principal name (SPN) : The name that identifies a security principal (for example,

machinename$@domainname for a machine joi ned to a domain or username@domainname for
a user). Domainname is resolved using the Domain Name System (DNS).

share : A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files
(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "sticky share". So me

share names are reserved for specific functions and are referred to as special shares : IPC$,
reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

subscriber : An application that needs to receive events that are published by another application.

subscription : A registration performed by a subscriber to specify a requirement to receive
events, future messages, or historical data.

target Object Reque st Broker (target ORB) : The ORB for which a COMA server manages
configuration.

trust : To accept another authority's statements for the purposes of authentication and
authorization, especially in the case of a relationship between two domains. If domain A trusts
domain B, domain A accepts domain B's authentication and authorization statements for
principals represented by security principal objects in domain B; for example, the list of groups
to w hich a particular user belongs. As a noun, a trust is the relationship between two domains

described in the previous sentence.

trust level : A numerical value used to determine the degree of trust associated with a
component .

unconfigured component : A component tha t has no component configuration entries .

Uniform Resource Locator (URL) : A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738] .

Universal Naming Convention (UNC) : A string format that specifies the location of a resource.

For more information, see [MS -DTYP] section 2.2.57.

universally uni que identifier (UUID) : A 128 -bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross -process communication such as client and server interfaces, man ager
entry -point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in

the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the

use of this te rm does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

http://go.microsoft.com/fwlink/?LinkId=90287
http://go.microsoft.com/fwlink/?LinkId=90317

15 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently publish ed version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS -CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol ".

[MS -DCOM] Microsoft Corporation, " Distributed Component Object Model (DCOM) Remote Protocol ".

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -LCID] Microsoft Corporation, " Windows Language Code Identifier (LCID) Reference ".

[MS -OAUT] Microsoft Corporation, " OLE Automation Protocol ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extensions ".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indic ate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", R FC

4234, October 2005, http://www.rfc -editor.org/rfc/rfc4234.txt

[RFC821] Postel, J., "SIMPLE MAIL TRANSFER PROTOCOL", STD 10, RFC 821, August 1982,
http://www.rfc -editor.org/rfc/rfc821.txt

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP) 1.1",
May 2000, http://www.w3.org/TR/2000/NOTE -SOAP-20000508/

1.2.2 Informative References

[ARIESTrnsRcvr] Mohan, C., Haderle, D., Lindsay, B., et al., "ARIES: a transaction recovery method
suppo rting fine -granularity locking and partial rollbacks using write -ahead logging", ACM Transactions
on Database Systems (TODS), Volume 17 Issue 1, March 1992,
http://portal.acm.org/citation.cfm? id=128770

[CORBA] Object Management Group, "The Common Object Request Broker: Architecture and
Specification", CORBA version 2.1, August 26, 1997, http://www.omg.org/cgi -bin/doc?formal/97 -09 -
01

[MC -COMQC] Microsoft Corporation, " Component Object Model Plus (COM+) Queued Components

Protocol ".

[MS -COMA] Microsoft Corporation, " Component Object Model Plus (COM+) Remote Administrati on
Protocol ".

http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-CIFS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-LCID%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90496
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkID=94408
http://go.microsoft.com/fwlink/?LinkId=94411
http://go.microsoft.com/fwlink/?LinkId=94411
%5bMC-COMQC%5d.pdf
%5bMC-COMQC%5d.pdf
%5bMS-COMA%5d.pdf
%5bMS-COMA%5d.pdf

16 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[MS -COMEV] Microsoft Corporation, " Component Object Model Plus (COM+) Event System Protocol ".

[MS -COMT] Microsoft Corporation, " Component Object Model Plus (COM+) Tracker Serv ice Protocol ".

[MS -COM] Microsoft Corporation, " Component Object Model Plus (COM+) Protocol ".

[MS -KILE] Microsoft Corporation, " Kerberos Protocol Extensions ".

[MS -MQMP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Client Protocol ".

[MS -MQMQ] Microsoft Corporation, " Message Queuing (MSMQ): Data Structures ".

[MS -NLMP] Microsoft Corporation, " NT LAN Manager (NTLM) Authentication Protocol ".

[MS -SCMR] Microsoft Corporation, " Service Control Manager Remote Protocol ".

[MS -SMB2] Microsoft Corporation, " Server Message Block (SMB) Protocol Versions 2 and 3 ".

[MS -SMB] Microsoft Corporation, " Server Message Block (SMB) Protocol ".

[MSDN -Assemblies] Microsoft Corporation, "Assemblies", http://msdn.microsoft.com/en -
us/library/hk5f40ct(VS.71).aspx

[MSDN -COM+] Microsoft Corporation, "COM+ (Component Services)", http: //msdn.microsoft.com/en -

us/library/ms685978.aspx

[MSDN -COMADMIN] Microsoft Corporation, "COM+ Administration Reference",
http://msdn.microsoft.com/en -us/library/ms681189.aspx

[MSDN -COMMonikers] Microsoft Corporation, "COM Monikers", http://msdn.microsoft.com/en -
us/library/ms691261.aspx

[MSDN -CreateProcess] Microsoft Corporation, "CreateProcess function",

http://msdn.microsoft.com/en -us/library/ms682425.aspx

[MSDN - IIS] Microsoft Corporation, "Internet Information Services (IIS)",
http://msdn.microsoft.com/e n-us/library/aa286507.aspx

[MSDN -MarshalDetails] Microsoft Corporation, "Marshaling Details", http://msdn.microsoft.com/en -
us/library/ms692621.aspx

[MSDN -SOFTWRSTRPOLICY] Microsoft Corporation , "Software Restriction Policy (COM)",
http://msdn.microsoft.com/en -us/library/ms682195.aspx

[MSDN -ThreadMDLS] Microsoft Corporation, "COM+ Threading Models",
http://msdn.microsoft.com/en -us/library/ms686448(VS.85).aspx

[MSDN -TypeLibraries] Microsoft Corporation, "COM, DCOM and Type Libraries",
http://msdn.microsoft.c om/en -us/library/aa366757.aspx

[MSDN -WindowsInstaller] Microsoft Corporation, "Windows Installer", http://msdn.microsoft.com/en -
us/library/cc185688(VS.85).aspx

[MSDN -WINSVC] Microsoft Corporat ion, "Services", http://msdn.microsoft.com/en -
us/library/ms685141.aspx

[RFC2460] Deering, S., and Hinden, R., "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460,

December 1998, http://www.rfc -editor.org/rfc/rfc2460.txt

%5bMS-COMEV%5d.pdf
%5bMS-COMT%5d.pdf
%5bMS-COM%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-SCMR%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=94412
http://go.microsoft.com/fwlink/?LinkId=94412
http://go.microsoft.com/fwlink/?LinkId=92752
http://go.microsoft.com/fwlink/?LinkId=92752
http://go.microsoft.com/fwlink/?LinkId=93840
http://go.microsoft.com/fwlink/?LinkId=92755
http://go.microsoft.com/fwlink/?LinkId=92755
http://go.microsoft.com/fwlink/?LinkId=136553
http://go.microsoft.com/fwlink/?LinkId=93379
http://go.microsoft.com/fwlink/?LinkId=93841
http://go.microsoft.com/fwlink/?LinkId=93841
http://go.microsoft.com/fwlink/?LinkID=94413
http://go.microsoft.com/fwlink/?LinkId=136556
http://go.microsoft.com/fwlink/?LinkID=93842
http://go.microsoft.com/fwlink/?LinkId=93843
http://go.microsoft.com/fwlink/?LinkId=93843
http://go.microsoft.com/fwlink/?LinkId=90701
http://go.microsoft.com/fwlink/?LinkId=90701
http://go.microsoft.com/fwlink/?LinkId=90357

17 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[RFC791] Postel, J., Ed., "Internet Protocol: DARPA Internet Program Protocol Specification", RFC 791,
September 1981, http://www.rfc -editor.org/rfc/rfc791.txt

[UML] Object Management Group, "Unified Modeling Language", http://www.omg.org/spec/UML/

1.3 Overview

The COM+ Remote Administration Protocol (COMA) enables remote clients to register, import,

remove, configure, control, and monitor components and conglomerations for an Object Request
Broker (ORB) . The server end of the protocol is a conceptual service that maintains a catalog of
configurations for an ORB. A COMA server exposes interfaces that enable a client to manage the
catalog and control component instances and instance containers .

1.3.1 Background

An ORB is a conceptual service that enables local or remote clients to instantiate, and to invoke
software operations on, software components (sometimes known as objects). Examples of ORBs

include a DCOM server [MS -DCOM] , a COM+ server [MS -COM] , and a CORBA/IIOP ORB [CORBA] .

1.3.2 Catalog

A catalog is a data store that holds configuration for a single ORB, hereafter known as the target
ORB . A COMA catalog organizes the config urations as hierarchically structured collections of various
types of configurable objects. Most of the configuration in the catalog can be understood in terms of
the following object types: component, component configuration entry , conglomeration, partition ,
and machine settings. The following Unified Modeling Language (UML) [UML] diagram shows the

relationships between these types of objects.

http://go.microsoft.com/fwlink/?LinkId=392659
http://go.microsoft.com/fwlink/?LinkId=93768
%5bMS-DCOM%5d.pdf
%5bMS-COM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=94411
http://go.microsoft.com/fwlink/?LinkId=93768

18 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 1 : Relationship between objects in the catalog

A component is an indivisible unit of software functionality. Examples of components include DCOM
object classes [MS -DCOM] and event classes described in [MS -COMEV] . Each component known to
the server is identif ied by a GUID , known as the class identifier (CLSID) .

A component configuration entry represents a particular configuration of a com ponent. In general, it is
possible for a component to have more than one component configuration entry on a server. It is also
possible for a component to have no component configuration entries, in which case it is said to be an

unconfigured component .

A conglomeration is a collection of component configuration entries for components that a component
developer or administrator wishes to be managed as a group, and is identified by a conglomeratio n
identifier. A component that has a component configuration entry in a conglomeration is said to be
configured in that conglomeration. A conglomeration also has a set of configuration properties that
apply to members of the collection. The conglomeration model assumes that component developers

and administrators group together components based on application architecture, administrative
policies, and performance concerns related to the shared use of system resources. Most of the
configuration exposed by [MS -COMA] at the conglomeration level is therefore related to broad - level
security policy, such as role membership (section 1.3.4), and configuration of shared syst em

%5bMS-DCOM%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COMA%5d.pdf

19 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

resources such as compensating resource managers (section 3.1.1.1.1) and queue listeners (section
3.1.1.1.5). Some conglomeration - lev el configuration properties may not apply to all component

configuration entries, as explained in more detail in the sections that follow.

There are two types of component configuration entries, component legacy configuration entries

and component full configuration entries , each of which has a different purpose and a different
set of configuration properties. Component full configurat ion entries support configuration for the full
set of services provided by the target ORB. Component legacy configuration entries, if supported by
the target ORB, enable configuring a component to be part of a conglomeration, where for technical
reasons it may not be possible or desirable to create a component full configuration entry for the
component.

Many of the configuration properties of component full configuration entries are not supported by

component legacy configuration entries. For example, component legacy configuration entries do not
have properties for synchronization or queuing . Additionally, some of the configuration properties of
conglomerations do not apply to component lega cy configuration entries. Component legacy
configuration entries do however have equivalent configuration properties at the component level for a
subset of configuration, such as user identity and authentication level, that is usually managed at the

conglo meration level.

Figure 2 : Types of component configurations

A partition is a container for conglomerations and is identified by a partition identifier . Every server
has at least one partition, the global partition , and may have additional partitions and support the
creation of new partitions. Multiple partitions on a server enable multiple co nfigurations of a
component. Component configuration entries for a component are subject to the following constraints:

Á There can be at most one component configuration entry for any one component in a single
conglomeration.

Á Only conglomerations in the glob al partition can contain component legacy configuration entries.

Á There can be at most one component configuration entry in the conglomerations in each partition

that is associated with a given component, or at most one per bitness , if multiple bitnesses are
supported (section 1.3.5).

Á A component that has a component legacy configuration entry cannot have any other component
configuration entries, or no other component configuration entries for the same bitness, if multiple
bitnesses are supported (section 1.3.5).

The singleton machine settings object represents machine -wide configuration for the server.

20 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.3.3 Catalog Versions and Partition Supp ort

This document specifies three catalog versions, which correspond to changes in the configuration state
model. Version 3.00 is the initial catalog version. Version 4.00 supports new types of configurable

objects, and adds configuration properties to existing types of objects. Version 5.00 is a minor update
that adds a configuration property to enable multiple -partition support to the machine settings object.
To ensure interoperability, the client and serve r perform version negotiation (section 1.7) and use the
same catalog version.

One of the biggest differences between catalog version 3.00 and version 4.00 is the addition of explicit
support for p artitions. In catalog version 3.00, all conglomerations are implicitly contained in the
global partition, and the catalog does not represent partitions or support their configuration. In catalog

version 4.00, partitions are represented in the catalog and c an be configured, and optionally new
partitions can be created.

A server might support catalog version 4.00 or catalog version 5.00 but not support multiple
partitions. COMA provides a mechanism for a client to determine whether a server allows multiple -
partition support to be enabled. However, for historical reasons, catalog version 4.00 does not provide

a reliable mechanism to determine whether multiple -partition support is actually enabled on the

server. Catalog version 5.00 adds a configuration propert y to the machine settings object that
indicates to the client whether multiple -partition support is enabled and optionally enables the client to
change this configuration.

1.3.4 Role -Based Security Configuration

Role-based security is a model for authorization in which user accounts are grouped into roles and
authorization decisions for an operation are based on whether the user account of the requestor of an
operation belongs to a particular role. COMA enables configuration of role -based security for
conglomerations through role and role member objects. The following UML diagram shows the
relationship between these types of objects and other object types in the catalog.

Figure 3 : Role - related objects

21 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

A role is identified by a role name and is a set of role members that represents authorization for a set
of operations that is supported by the components configured in a conglomeration. A role member is a

predicate indicating that a particular user account belongs to a role.

Role-based security can be programmatic (dynamic) or declarative (static). In the programmatic

model, the ORB provides an implementation -specific mechanism by which a component configured in
a conglomeration can dynamically determine whether the user accou nt of the requestor belongs to a
particular role, in order to make authorization decisions. In the declarative model, the component
configuration entries in a conglomeration statically specify which roles are authorized to perform
specific operations. COMA enables configuration of both programmatic and declarative role -based
security.

COMA supports enabling or disabling role -based security for a conglomeration. If role -based security is

enabled, programmatic role -based security is automatically supported. D eclarative role -based
security, on the other hand, may be enabled and configured at multiple levels of granularity.

A conglomeration is said to be configured for conglomeration - level access checks if all operations
supported by the components configured in the conglomeration require the user account of the

requestor to belong to one of the conglomeration's roles. Conglomerations can be configured to enable
or disable conglomeration - level access checks.

A COMA server optionally supports configuration of comp onents at the interface and method levels,
the primary purpose of which is declarative role -based security configuration. This configuration is
supported for component full configuration entries only. A configured interface is a set of methods
supported by a component and for which configuration at the interface level is supported. A configured
interface is identified by an interface identifier (IID). A configured method is a method in a
configured interface for which configuration at the method level is supported.

A component is said to be configured for component - level access checks i f the component uses

declarative role -based security configuration at the component, interface, and method levels for
authorization. For the purpose of component - level access checks, roles can be associated with
component full configuration entries, config ured interfaces, and configured methods. This
configuration has the following semantics:

Á If a role is associated with a component full configuration entry, that role is authorized for all
methods supported by the component.

Á If a role is associated with a c onfigured interface, that role is authorized for all methods in that

interface.

Á If a role is associated with a configured method, that role is authorized for that method.

1.3.5 Bitness

For technical reasons, a COMA server may need to make a distinction between instantiation of
components in a process with a 32 -bit or 64 -bit address space. The term bitness refers to the
distinc tion between 32 -bit and 64 -bit address spaces and the potential differences in instantiation of
components that this entails.

For example, the target ORB may provide a local interoperability mechanism that instantiates a
component in its creator's process. In this case, a server that supports both 32 -bit and 64 -bit address
spaces would be required to determine whether a given component supports the creator's bitness.

Furthermore, if a component supports multiple bitnesses, the details of its instantiation m ight be
different. For example, each bitness might be implemented in a different module (section 1.3.6).

To support multiple bitnesses , a COMA server keeps a separate copy of a component's properties for
each bitness the component supports and allows each bitness to be configured separately. Bitness is
exposed in the catalog as a property of component configuration entries, and a COMA se rver enables a
bitness -aware client to specify which bitness of a component that it is configuring.

22 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Not all COMA servers support multiple component bitnesses. If a server supports only a single bitness,
bitness is opaque to the client, and all flags and co nfiguration options related to bitness are ignored. A

bitness -aware client performs capability negotiation for the multiple -bitness capability (section 1.7) to
determine whether it is required to select bitness when performing configuration.

1.3.6 Registration

Registration is the process of making components known to a COMA server so that they will be
represented in the cat alog and can be configured. For example, registration might be part of an

application -specific process for installing components on a machine. A server typically supports one or
more implementation -specific registration mechanisms, which may be invoked in response to local
events and may also be exposed by the server through COMA.

A module is a file that a server uses to register one or more components. Once the components are
registered, the mod ule is used to instantiate the components. A module might contain component
implementations or metadata that a server can use to find the implementations. It is important to
note that modules are implementation -specific; in other words, a module that is su pported by one

COMA server will not necessarily be supported by other COMA servers.

1.3.7 Export and Import

COMA enables exporting a conglomeration to a file, which can the n be imported on another server.
The export procedure packages the modules for components that are configured in the

conglomeration, the complete configuration state from the catalog, and possib ly other files and
installation instructions into an installer package file . The client can then import this file on another
server if the installer package file and the modules it contains are appropriate to (supported by) the
other server.

COMA also enables exporting all of the conglomerations in a partition at once to an installer package
file; this is known as exporting a partition. An exported partition can be imported on a server that

suppo rts multiple partitions.

1.3.8 Instantiation Concepts

A COMA server optionally provides run - time control of instance containers -- conceptual containers in
which components are instantiated -- by forwarding client requests (via an imple mentation -specific

mechanism) to its target ORB. This section describes instantiation concepts.

An ORB typically provides local and/or remote mechanisms by which components can be instantiated.
An example of a remote instantiation mechanism is DCOM activation , ([MS -DCOM] section 1.3.1). An
instantiation of a component is known as a component instance.

For historical reasons, COMA enables control over instanti ation of components only in cases where the
instantiation is associated with a component configuration entry in a conglomeration. Although the
details of instantiation may vary, the following conceptual steps are part of any instantiation that can

be contr olled in COMA:

Á By some implementation -specific mechanism, the ORB associates the instantiation with a

component configuration entry in a conglomeration.

Á The ORB finds an existing instance container for the conglomeration, or creates a new instance
containe r, and associates it with the conglomeration. An instance container is a conceptual
container in which components that are configured in a single conglomeration can be instantiated.

Á The ORB creates the component instance in the selected instance container.

An instance container is identified by a GUID, known as the container identifier .

%5bMS-DCOM%5d.pdf

23 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The following UML diagram summarizes the relationships between components, component
configuration entries, con glomerations, component instances, and instance containers.

Figure 4 : Relationships between static and run - time objects

Recycling refers to permanently disabling the c reation of new component instances in an instance
container. An instance container that is recycled is shut down as soon as the existing component
instances in the container are destroyed. Recycling enables a problematic instance container to
gradually dra in its component instances rather than being immediately and forcibly shut down. An

ORB optionally recycles instance containers automatically based on run - time information, such as the
number of component instances that have been created in its context or the system resources it has
consumed. COMA enables automatic recycling to be configured for a conglomeration and also enables
clients to recycle instance containers.

Pausing refers to temporaril y disabling the creation of new component instances in an instance
container. COMA enables clients to pause instance containers.

1.3.9 Instance Load Balancing

COMA also supports instance load balancing , in which instantiation of components is automatically
distributed across instance containers on multiple servers, according to run - time information, such as
the comparative load on each ser ver. Instance container load balancing may also enable a

rudimentary form of failover, in which a server that is experiencing system failures is temporarily
disabled so that it can be restarted or otherwise returned to a good state.

An ORB that performs in stance load balancing is said to be configured as an instance load balancing
router . A machine that participates in instance load balancing as a target for component instantiation
is known as an instance load balancing target . COMA enables configuration of instance container
load balancing as follows:

24 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á A COMA server optionally enables instance load balancing support to be started or sto pped for its
configured ORB.

Á The machine settings object has a configuration property that indicates whether the target ORB is
configured as an instance load balancing router and, optionally, enables a client to change this

configuration.

Á A COMA server that configures an instance load balancing router, exposes its list of instance load
balancing targets in its catalog, and allows this list to be modified.

1.3.10 Protection of Configuration State

A conglomeration can be configured to disable configuration changes to the conglomeration and to the
component configuration entries and roles contained in that conglomeration. A conglomeration can
also be configured to disable its deletion. A conglomeration's configuration includes properties that
indicate whether it is changeable or can be deleted, and optionally enable a client to change this
configuration. Additionally, in catalog version 4.00 and catalog version 5.00, a part ition can be
configured to disable changes to all conglomerations in the partition, and to disable deletion of

conglomerations in the partition or creation of new conglomerations in the partition.

The primary purpose of these configuration properties is to prevent accidental changes to a
conglomeration by an administrator, not to act as a security measure. Changing a conglomeration that
is marked as not changeable is usually possible by first marking the conglomeration as changeable
and by then making the d esired configuration changes. However, there might be conglomerations in a
COMA server's catalog for which configuration is fixed because, for example, modifying the
configuration would impact system -wide stability. Such a conglomeration is said to be a protected

conglomeration .

1.3.11 Events

A publisher - subscriber framework allows applications to publish historical information that other

applications might request. The applications that publish the information are called publishers , while
the applications that sub scribe to the information are called subscribers . A publisher can specify this

information in discrete units. Each discrete unit of information is called an event. Similarly, a
subscriber may su bscribe to an event by creating a subscription for it.

COMA enables management of events and their respective subscriptions on the server's target ORB as
follows:

Á A COMA server optionally enable s event classes -- collections of events that are grouped together

based on criteria specified by the publishing application -- to be registered as components.

Á A COMA server with registered event classes enables clients to create, update, or remove
subscriptio ns to events in those event classes.

Á COMA enables application -specific properties to be associated with the publisher or subscriber of a
subscription.

1.3.12 Replication

Replication is a special -case administration scenario involving two or more COMA servers, in which a
replication client application (which can be but is not always to one of the servers) automatically
copie s one or more conglomerations from a replication source . A replication source is a server
whose catalog contains the conglomerations to be copied to one or more replication targets , servers

whose catalogs are to contain the copied conglomerations after the replication procedure has
completed.

25 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

COMA does not support replication directly, but most of a typical replication procedure can be
performed using COMA export and import functionality and remote file operations; for example,

Server Message Block (SMB) [MS -SMB] or SMB2 [MS -SMB2] can be used. However, replication
scenario s can differ from other administration scenarios in which conglomerations are copied between

COMA servers, in that replication is a batch procedure and cannot take advantage of information
usually provided by the administrator during interactive configurat ion. COMA enables the following
tasks specific to replication:

Á Managing directories and Common Internet File System (CIFS) file shar es (for details, see [MS -
CIFS]) to be used for copying installer package files.

Á Limited management of replication history and backup state.

Á Retrieving user passwords from the replication source, when they are necessary, in order to

configure a conglomeration on a replication target to run as the same user as for the replication
source.

Many of the details of replication are specific to the replication client application. In particular, the

conglomerations to be copied can be all or just a subset of the conglomerations on the replication
source, and are selected according to application -specific criteria. However, conglomerations in a
COMA catalog have an informational configuration property that indicates to replication client

applications whether or not the conglomeration is intended to be available for replication. This is an
advisory value and does not otherwise affect COMA protocol behavior.

1.4 Relationship to Other Protocols

COMA is built on top of DCOM, as described in [MS -DCOM] .

The COM+ Tracker Service Protocol is another protocol that provides functionality for obtaining run -
time information about instance containers (for more information, see [MS -COMT]). The COM+
Tracker Service Protocol makes obsolete that functionality provided by this protocol by enabling clients
to obtain a richer set of information and by providing a push model.

The COM+ Event System Protocol is another protocol that provides functionality for configuring event

classes and subscriptions (for more information, see [MS -COMEV]). The COM+ Event System Protocol

makes obsolete that functionality provided by this protocol by enabling configuration for additional
types of subscriptions.

COMA can be used to configure COM+ on a server. COMA partitions have a natural mapping to COM+
partitions, and many configuration properties of objects in the COMA catalog are designed to support
configuration of COM+ behavior that is implementation -specific as described in [MS -COM] .

COMA can be used to configure the COM+ Queued Components Protocol on a server (for more
information, see [MC -COMQC]). Several configuration properties of objects in the COMA catalog are

designed to support enabling the COM+ Queued Components Protocol as a transport for
communication between components.

COMA can be used to configure system services (also known as daemons) for conglomerations. The
Service Control Manager Remote Protocol is another protocol for configuring system services (for more

information, see [MS -SCMR]). Neither protocol makes the other obsolete because each enables
configuration that is not available in the other.

COMA provides limited management of CIFS file shares (for details, see [MS -CIFS]) for use in

replication scenarios. COMA replication functionality is intended to be used alongside CIFS to copy
conglomerations between COMA servers in these replication scenarios. Other COMA functionality
requiring remote file operations might use CIFS, but this is no t required by the protocol.

%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-COMT%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMS-COM%5d.pdf
%5bMC-COMQC%5d.pdf
%5bMS-SCMR%5d.pdf
%5bMS-CIFS%5d.pdf

26 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.5 Prerequisites/Preconditions

COMA expects that a client application that requests to write an IPv4 address in string format or
IPv6 address in string format as values for properties identifying computers has determined that

the COMA server supports the Internet Protocol [RFC791] or Internet Protocol, version 6 [RFC2460] ,
respectively.

COMA expects that a client application that requests to set properties representing component - related
security descriptors detects which versions of the security descriptors are supported by the COMA
server.

COMA expects that a client application that has to register components on a COMA server is able to
locate modules supported by the COMA server. COMA expects that a client application that has to

import a conglomeration or a partition on a COMA server has an in staller package file that the COMA
server recognizes.

COMA expects that a client application that has to install instance load balancing support on a COMA
server recognizes the location of a file that a COMA server can use to install this support.

COMA expects that a replication client application that has to perform replication recognizes that
installer package files created by the replication source are also supported by the replication targets.

1.6 Applicability Statement

COMA is not a general -purpose or extensible configuration protocol. The configuration state model
specified in this document is based on the following:

Á COM+ Protocol, as described in [MS -COM] .

Á COM+ Event Syste m Protocol as described in [MS -COMEV] .

Á COM+ Queued Components Protocol as described in [MC -COMQC] .

Á A specific set of services provided by the server.

COMA is appropriate for configuration of an ORB or for administration of a server by a single client at a
time because it does not provide any guarantees of consistency between multiple clients.

COMA replication functionality for managing replication directories and file shares is appropriate for
copying files between COMA servers as part of batch replication. It is not appropriate for general file

system or file share management.

1.7 Versioning and Capability Negotiation

This section covers versioning issues in the following areas.

Capability Negotiation: This protocol performs explicit negotiation as described in this section.

This document specifies three catalog versions: 3.00, 4.00, and 5.00. A COM A server and a COMA
client perform catalog version negotiation before exchanging configuration data in the catalog. Except

where otherwise noted, catalog version negotiation is completed before the client makes any other
calls to the server.

Each COMA clie nt and each COMA server may support a range of catalog versions. Catalog version
negotiation is initiated by the client by sending the server its supported range. The catalog server

selects the negotiated catalog version as the highest catalog version that both the client and the
server support and returns the negotiated version to the client, as specified in section 3.1.4.1 .

This document specifies two custom marshaling formats for queries, as use d in certain server
interfaces. One of the custom marshaling formats is optimized for implementations that use a 32 -bit

http://go.microsoft.com/fwlink/?LinkId=392659
http://go.microsoft.com/fwlink/?LinkId=90357
%5bMS-COM%5d.pdf
%5bMS-COMEV%5d.pdf
%5bMC-COMQC%5d.pdf

27 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

address space and the other for implementations that use a 64 -bit address space. A COMA client and
a COMA server optionally perform capa bility negotiation for the 64 -bit query marshaling format

capability, as specified in section 3.1.4.2 .

On behalf of a client application that wishes to configure multiple partitions, a COMA client and a

COMA server may perform capability negotiation for the multiple -partition support capability, as
specified in section 3.1.4.3 .

On behalf of a bitness -aware client application, a COMA client and a COMA server perform capability
negotiation for the multiple -bitness capability to determine whether the COMA client needs to select
bitness when performing configuration, as specified in section 3.1.4.4 .

1.8 Vendor -Extensible Fields

This protocol uses HRESULT values, as specified in [MS -ERREF]. Vendors can define their own
HRESULT values, provided that they set the C bit (0x20000000) for each vendor -defined value,
indicating that the value is a customer code.

1.9 Standards Assignments

There are no standard assignments for this protocol. The following is a table of well - known GUIDs
(generated using the mechanism specified in [C706] section A.2.5) in COMA.

 Parameter Value

DCOM CLSID for the COMA server (CLSID_COMAServer) {182C40F0 -32E4 -11D0 -818B -
00A0C9231C29}

remote procedure call (RPC) IID for ICatalogSession interface
(IID_ICatalogSession)

{182C40FA -32E4 -11D0 -818B -
00A0C9231C29}

RPC IID for ICatalog64BitSupport interface (IID_IC atalog64BitSupport) {1D118904 -94B3 -4A64 -9FA6-
ED432666A7B9}

RPC IID for ICatalogTableInfo interface (IID_ICatalogTableInfo) {A8927A41 -D3CE-11D1 -8472 -
006008B0E5CA}

RPC IID for ICatalogTableRead interface (IID_ICatalogTableRead) {0E3D6630 -B46B -11D1 -
9D2D -006008B0E5CA}

RPC IID for ICatalogTableWrite interface (IID_ICatalogTableWrite) {0E3D6631 -B46B -11D1 -
9D2D -006008B0E5CA}

RPC IID for IRegister interface (IID_IRegister) {8DB2180E -BD29 -11D1 -8B7E-
00C04FD7A924}

RPC IID for IRegister2 interface (IID_IRegister2) {971668DC -C3FE-4EA1 -9643 -
0C7230F494A1}

RPC IID for IImport interface (IID_IImport) {C2BE6970 -DF9E-11D1 -8B87 -
00C04FD7A924}

RPC IID for IImport2 interface (IID_Import2) {1F7B1697 -ECB2-4CBB-8A0E-
75C427F4A6F0}

RPC IID for IExport interface (IID_IExport) {CFADAC84 -E12C-11D1 -B34C -
00C04F990D54}

RPC IID for IExport2 interface (IID_IExport2) {F131EA3E -B7BE-480E -A60D -
51CB2785779E}

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

28 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Parameter Value

RPC IID for IAlternateLaunch interface (IID_IAlternateLaunch) {7F43B400 -1A0E-4D57 -BBC9-
6B0C65F7A889}

RPC IID for ICatalogUtils interface (IID_ICatalogUtils) {456129E2 -1078 -11D2 -B0F9 -
00805FC73204}

RPC IID for ICatalogUtils2 interface (IID_ICatalogUtils2) {C726744E -5735 -4F08 -8286 -
C510EE638FB6}

RPC IID for ICapabilitySupport interface (IID_ICapabilitySupport) {47CDE9A1 -0BF6 -11D2 -8016 -
00C04FB9988E}

RPC IID for IContainerControl interface (IID_IContainerControl) {3F3B1B86 -DBBE-11D1 -9DA6 -
00805F85CFE3}

RPC IID for IContainerControl2 interface (IID_IContainerControl2) {6C935649 -30A6 -4211 -8687 -

C4C83E5FE1C7}

RPC IID for IReplicationUtil interface (IID_IReplicationUtil) {98315903 -7BE5 -11D2 -ADC1-
00A02463D6E7}

Catalog identifier for the COMA catalog {6E38D3C4 -C2A7 -11D1 -
8DEC-00C04FC2E0C7}

Table identifier for ComponentsAndFullConfigurations table {6E38D3C8 -C2A7 -11D1 -
8DEC-00C04FC2E0C7}

Table identifier for ComponentFullConfigurationsReadOnly table {6E38D3CA -C2A7 -11D1 -
8DEC-00C04FC2E0C7}

Table identifie r for ComponentLegacyConfigurations table {09487519 -892D -4CA0 -A00B -
58EEB1662A68}

Table identifier for ComponentNativeBitness table {39344B1F -EFE8-4286 -9DB8 -
AC0A3D791FF2}

Table identifier for ComponentNonNativeBitness table {96EC9BF1 -063B -4ABF-8B90 -
42C878D9033E}

Table identifier for Conglomerations table {D495F321 -AF37 -11D1 -8B7E-
00C04FD7A924}

Table identifier for Partitions table {E4AD9FD6 -D435 -4CF5-95AD -
20AD9AC6B59F}

Table identifier for MachineSettings table {61436562 -EE01-11D1 -BFE4-
00C04FB9988E}

Table identifier for Roles table {CD331D11 -C739 -11D1 -
9D35 -006008B0E5CA}

Table identifier f or RoleMembers table {CD331D10 -C739 -11D1 -
9D35 -006008B0E5CA}

Table identifier for ConfiguredInterfaces table {D13B72C6 -C426 -11D1 -8507 -
006008B0E79D}

Table identifier for ConfiguredMethods table {D13B72C4 -C426 -11D1 -8507 -
006008B0E79D}

Table identifier for RolesForComponent table {CD331D12 -C739 -11D1 -
9D35 -006008B0E5CA}

29 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Parameter Value

Table identifier for RolesForInterface table {CD331D13 -C739 -11D1 -
9D35 -006008B0E5CA}

Table identifier for RolesForMethod table {CD331D14 -C739 -11D1 -
9D35 -006008B0E5CA}

Table identifier for PartitionUsers table {0AF55FDC -30B5 -4B6E -B258 -
A9DE4B64818C}

Table ide ntifier for PartitionRoles table {9D29E285 -E24D -4096 -98E1 -
44DBB2EAF7F0}

Table identifier for PartitionRoleMembers table {352131CD -E0FF-4C46 -9675 -
C3808B249F69}

Table identifier for InstanceLoadBalancingTargets table {B7EEEA91 -B3B9 -11D1 -8B7E-

00C04FD7A924}

Table identifier for ServerList table {2DAF1D50 -BD53 -11D1 -8280 -
00A0C9231C29}

Table identifier for InstanceContainers table {DF2FCC47 -B7B7 -4CB9 -8B40 -
0B3D1E59E7 DD}

Table identifier for EventClasses table {E12539AD -CDE0-4E46 -9211 -
916018B8C4D2}

Table identifier for Subscriptions table {5A84E823 -7277 -11D2 -9029 -
3078302C2030}

Table identifier for SubscriptionPublisherProperties table {5A84E824 -7277 -11D2 -9029 -
3078302C2030}

Table identifier for SubscriptionSubscriberProperties table {5A84E825 -7277 -11D2 -9029 -
3078302C2030}

Table identifier for Protocols table {61436563 -EE01-11D1 -BFE4-
00C04FB9988E}

Table identifie r for FilesForImport table {E4053366 -BF8F-4E84 -B4B2 -
72B3C2626CC9}

RequiredFixedGuid (used by ICatalogTableInfo::GetClientTableInfo) {92AD68AB -17E0 -11D1 -B230 -
00C04FB9473F}

AuxiliaryGuid for ComponentsAndFullConfigurations table (used by
ICatalogTableInfo::GetClientTableInfo)

{B4B3AECB -DFD6 -11D1 -
9DAA -00805F85CFE3}

AuxiliaryGuid for SubscriptionPublisherProperties and
SubscriptionSubscr iberProperties tables (used by
ICatalogTableInfo::GetClientTableInfo)

{EB56EAE8 -BA51 -11D2 -B121 -
00805FC73204}

Partition identifier for global partition {41E90F3E -56C1 -4633 -81C3 -
6E8BAC8BDD70}

GUIDs reserved for conglomeration identifiers of protected conglomerations {01885945 -612C -4A53 -A479 -
E97507453926},

{9EB3B62C -79A2 -11D2 -9891 -
00C04F79AF51}, and

{6B97138E -3C20 -48D1 -945F -

81AE63282DEE}

30 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

31 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2 Messages

2.1 Transport

All protocol messages MUST be transported via DCOM, as specified in [MS -DCOM] . COMA uses the

dynamic endpoints allocated and managed by the DCOM infrastructure.

COMA implementations MUST override the default RPC authentication level of the underlying DCOM
implementation to use RPC_C_AUTHN_LEVEL_PKT_PRIVACY ([MS -RPCE] section 2.2.1.1.8).

The COMA client implementations SHOULD <1> override the default impersonation leve l of the
underlying DCOM implementation to use RPC_C_IMP_LEVEL_IMPERSONATE, as specified in [MS -RPCE]
section 2.2.1.1.9.

The COMA client implementations SHOULD <2> override the default security provider of the underlying
DCOM implementation to use RPC_C_AUTHN_GSS_NEGOTIATE, as specified in [MS -RPCE] section
2.2.1.1.7.

For historical reasons, ASCII MUST be used as the character representation format (as specified in
[C706] section 14.2.4) and little - endian MUST be used as the integer format, as specified in [C706]
section 14.2.5.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS -DTYP] , additional data types
are defined in the following table.

Field types in packet diagrams are defined by the packet diagram and the field descriptions. All fields
in packet diagrams use little -endian byte ordering unless o therwise stated.

All extra padding bytes MUST be zero unless otherwise stated and MUST be ignored on receipt.

This protocol uses the following types specified in [MS -DTYP] and [MS -OAUT] .

 Type Reference

ACCESS_ALLOWED_ACE [MS -DTYP], section 2.4.4.2

ACCESS_DENIED_ACE [MS -DTYP], section 2.4.4.4

ACL [MS -DTYP], section 2.4.5

BOOL [MS -DTYP], section 2.2.3

BSTR [MS -OAUT], section 2.2.23

BYTE [MS -DTYP], section 2.2.6

Curly Braced GUID String Syntax [MS -DTYP], section 2.3.4.3

DWORD [MS -DTYP], section 2.2.9

GUID [MS -DTYP], section 2.3.4.2

HRESULT [MS -DTYP], section 2.2.18

LCID [MS -DTYP], section 2.3.6

LONG [MS -DTYP], section 2.2.27

%5bMS-DCOM%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf

32 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Type Reference

LPCWSTR [MS -DTYP], section 2.2.34

LPWSTR [MS -DTYP], section 2.2.36

RPC GUID [MS -DTYP], section 2.3.4

SECURITY_DESCRIPTOR [MS -DTYP], section 2.4.6

SYSTEM_MANDATORY_LABEL_ACE [MS -DTYP], section 2.4.4.13

ULONG [MS -DTYP], section 2.2.51

VARIANT_BOOL [MS -OAUT], section 2.2.27

VARIANT Type Constants [MS -OAUT] , section 2.2.7

2.2.1 Table Formats

The following sections specify the formats of structures related to reads from and writes to tables in a
catalog, as performed by the ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1),
ICatalogTableRead::ReadTable (section 3.1.4.8.1) , and

ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods.

2.2.1.1 fTableFlags

The fTableFlags type represents a selector for component bitness in reads from and writes to certain
tables. fTableFla gs is an enumeration that MUST be one of the following values.

Flag Description

fTABLE_UNSPECIFIED

0x00000000

Bitness is unspecified by this value, either because bitness is not distinguished for the
type of object being read or because it is specified th rough another mechanism.

fTABLE_32BIT

0x00200000

32 -bit component bitness.

fTABLE_64BIT

0x00400000

64 -bit component bitness.

2.2.1.2 eDataType

The eDataType enumeration represents the data type of variable - typed data, as used in queries and

PropertyMeta (section 2.2.1.7) structures. In Query Cell (section 2.2.1.4) structures, which are
custom -marshaled, an eDataType is represented by a 32 -bit unsigned integer. In a PropertyMeta
structure, an eDataType is marshaled as a DWORD, as specified in [MS -DTYP] section 2 .2.9.

eDataType is an enumeration that MUST be set to one of the following values.

Value Description

eDT_ULONG

0x00000013

Tags data of type ULONG

%5bMS-DTYP%5d.pdf

33 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Description

eDT_GUID

0x00000048

Tags data of type GUID

eDT_BYTES

0x00000080

Tags data that is an opaque array of BYTES

eDT_LPWSTR

0x00000082

Tags data of type LPWSTR

2.2.1.3 eSpecialQueryOption

The eSpecialQueryOption enumeration is used in queries to identify QueryCell (section 2.2.1.4)

structures that represent a special option for the query, rather than a property in the table. An

eSpecialQueryOption is represented by a 32 -bit unsigned integer. eSpecialQueryOption is an
enumeration that MUST be set to the following value.

Value Descrip tion

eSQO_OPTHINT

0xF0000005

An advisory value that for historical reasons is required as a cell in certain queries, where it
MUST be associated with a comparison value of 1. <3>

2.2.1.4 QueryCell

The QueryCell structure represents either a constraint on a single property in a table, as used to
construct a query on the table or, alternatively, one of the special query options identified by an

eSpecialQueryOption (section 2.2.1.3) value.

The QueryCell type is a custom -marshaled type for which two custom marshaling formats are specified
in this section. The 32 -bit QueryCell marshaling format is optimized for implementations that use a
32 -bit addre ss space, and the 64 -bit QueryCell marshaling format is optimized for implementations

that use a 64 -bit address space. All implementations MUST support the 32 -bit format and MAY <4>
additionally support the 64 -bit format.

A client and a server optionally perform capability negotiation, as specified in section 3.1.4.2 , for the
64 -bit QueryCell marshaling format. If this capability negotiation is performed, and if bo th the client
and the server support the 64 -bit format, the 64 -bit format MUST be used. If this capability
negotiation is not performed, or if either the client or the server does not support the 64 -bit format,
the 32 -bit format MUST be used.

A QueryCell i s always associated with a variable - typed comparison data value, although this value can
be null. The comparison data value is not part of the QueryCell marshaling format; instead, it is

supplied in a separate parameter when marshaling a query, as specifie d in section 2.2.1.6 . The
QueryCell does, however, specify the size, in bytes, of its associated comparison data, the data type
of the comparison data, and whether the comparison data is non -null.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NonNullComparisonData (variable)

34 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

QueryOperator

IndexOrOption

ComparisonDataType

ComparisonDataSize

NonNullComparisonData (variable): Size depends on negotiated QueryCell marshaling format. It
MUST be 4 bytes in the 32 -bit format and MUST be 8 bytes in the 64 -bit format. It MUST be set to
zero if the comparison data is null and MUST be set to a nonzero value if the comparison data is

non -null. On receipt, the server MUST t reat all nonzero values identically.

QueryOperator (4 bytes): MUST be set to one of the following values.

Value Meaning

eOPERATOR_EQUAL

0x00000000

The QueryCell represents an equality constraint.

eOPERATOR_NOTEQUAL

0x00000001

The QueryCell represents an inequality constraint.

IndexOrOption (4 bytes): MUST be set to either the zero -based index of a property in a table
(values strictly less than 0xF0000000) or an eSpecialQueryOption value (values greater than or
equal to 0xF0000000).

Compari sonDataType (4 bytes): The eDataType (section 2.2.1.2) value that represents the data
type of the comparison data.

ComparisonDataSize (4 bytes): The size, in bytes, of the comparison data. If the representation of
the comparison data in a QueryComparisonData (section 2.2.1.6) structure requires padding to a
multiple of 4 bytes, this size MUST NOT include the padding bytes. If the comparison data is null,
this MUST be set to zero. If the comparison data is non -null and the ComparisonDataType field

is one of the following data type tags, this field is constrained as follows.

Data type tag Constraint

eDT_ULONG MUST be set to 0x00000004.

eDT_GUID MUST be set to 0x00000010 (decimal 16).

eDT_LPWSTR MUST be a multiple of 2.

2.2.1.5 QueryCellArray

The QueryCellArray is part of the representation of a query, as used in the
ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1) ,
ICatalogTableRead::ReadTable (section 3.1.4.8.1) , and
ICatalogTableWrite::Wri teTable (section 3.1.4.9.1) methods. It is always used along with a

QueryComparisonData (section 2.2.1.6) structure.

35 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

QueryCellArray is a custom -marshaled type that is passed in a char* parameter. A QueryCellArray is
marshaled as an array of zero or more QueryCell structures (a query with zero QueryCell structures

MUST be represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

QueryCell (variable)

...

QueryCell (variable): MUST be a sequence of zero or more QueryCell structures, custom -marshaled
in the negotiated format, as specified in QueryCell.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

QueryCell 0 (variable)

QueryCell 1 (variable)

...

QueryCell n (variable)

2.2.1.6 QueryComparisonData

The QueryComparisonData structure is part of the representation of a query, as used in the

ICatalogTableInfo::GetClientTableInfo (section 3.1.4.7.1) ,
ICatalogTableRead::ReadTable (section 3.1.4.8.1) , and
ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods. It is always used along with a
QueryCellArray (section 2.2.1.5) structure.

QueryComparisonData is a custom -marshaled type that is passed in a char* parameter. A
QueryComparisonData is marshaled as an array of zero or more custom -marshaled comparison data
values, each of which is associated with a QueryCell . Each non -null comparison data value MUST be
marshaled in the same order as the QueryCell to which it is associated and according to the custom
marshaling defined as follows for each of the supported types (a query with ze ro non -null comparison
data values MUST be represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ComparisonData (variable)

...

ComparisonData (variable): A sequence of zero or more comparison data values, marshaled
according to type.

36 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Type Custom marshaling

eDT_ULONG Marshaled as a 32 -bit, unsigned integer in little -endian byte order.

eDT_GUID Marshaled as specified in [MS -DTYP], section 2.3.4.2.

eDT_BYTES Marshaled as an array of bytes, padded with zeros to a multiple of 4 bytes.

eDT_LPWSTR Marshaled as a null - terminated array of wchar_t in little -endian byte order, padded with zeros to
a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ComparisonData 0 (variable)

ComparisonData 1 (variable)

...

ComparisonData m (variable)

2.2.1.7 PropertyMeta

The PropertyMeta structure represents the type, size, and meta -properties (specified in this section) of
a property in a table.

 typedef struct {

 DWORD dataType;

 ULONG cbSize;

 DWORD flags;

 } PropertyMeta;

dataType: The eDataType (section 2.2.1.2) value that represents the data type of the property.

cbSize: A size, in bytes, associated with the property. The meaning of this value depends on the
value of the dataType field and whether the fPROPERTY_FIXEDLENGTH flag is set in the flags
field.

 Value of
dataType

 fPROPERTY_FIXEDLENGTH
set? Meaning

eDT_ULONG - The fixed size of the property. MUST be set to
0x00000004.

eDT_GUID - The fixed size of the property. MUST be set to
0x00000010 (decimal 16).

eDT_BYTES No The maximum size of the property. A value of 0xFFFFFFFF
indicates the property's size is unconstrained.

eDT_BYTES Yes The fixed size of the property.

%5bMS-DTYP%5d.pdf

37 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Value of
dataType

 fPROPERTY_FIXEDLENGTH
set? Meaning

eDT_LPWSTR No The maximum size of the property. A value of 0xFFFFFFFF
indicates the property's size is unconstrained.

eDT_LPWSTR Yes The fixed size of the property. MUST be set to a multiple
of 2.

flags: A bit field specifying the meta -properties of the property. MUST be a combination of zero or
more of the following flags.

Value Meaning

fPROPERTY_PRIMARYKEY

0x00000001

This property is part of the primary key for its table. MUST be set if
fPROPERTY_NOTNULLABLE is set.

fPROPERTY_NOTNULLABLE

0x00000002

This property cannot be null.

fPROPERTY_FIXEDLENGTH

0x00000004

This eDT_BYTES or eDT_LPWSTR property has a fixed size. MUST NOT be set
for properties of type eDT_ULONG or eDT_GUID.

fPROPERTY_NOTPERSISTABLE

0x00000008

This property contains sensitive data such as passwords that MUST NO T be
written in plaintext to persistent storage.

fPROPERTY_CASEINSENSITIVE

0x00000020

This eDT_LPWSTR property MUST be treated as case - insensitive for purposes of
comparison. MUST NOT be set for properties of type eDT_ULONG, eDT_GUID, or
eDT_BYTES.

2.2.1.8 fPro pertyStatus

The fPropertyStatus structure represents the status of a property value in a table entry, as
represented in a TableEntryFixed (section 2.2.1.9) structure. fPropertyStatus is a bit field 1 byte in
length.

0

1

2

3

4

5

6

7

0 R

1

W R

E

R

2

N

T

C N

N

Where the bits are defined as:

Value Description

R1

Reserved1 (2 bits) . MUST be cleared when sent and MUST be ignored on receipt.

W

Write (1 bit) . For historical reasons, this flag SHOULD <5> be set for a write and MUST be set for a
write if the property has variable length and any of the following is true:

Á Action equals eACTION_ADD (section 2.2.1.11).

Á Action equals eACTION_UPDATE (section 2.2.1.11).

38 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Description

Á Action equals eACTION_DELETE (section 2.2.1.11) and the property is a primary key.

This flag MUST be cleared for a read. It SHOULD <6> be ignored on receipt.

RE

Read (1 bit) . For historical reasons, this flag SHOULD <7> be set for a read and MUST be set for a
read if the property has variable length. This flag MUST be clea red for a write and SHOULD <8> be
ignored on receipt.

R2

Reserved2 (1 bit) . MUST be cleared when sent and MUST be ignored on receipt.

NT

NoTouch (1 bit) . For a write, this flag MUST be set on certain properties for his torical reasons. For
information about which properties require this flag, see the table definitions in section 3.1.1.3 . For
a read, this flag MUST be clear.

C

Changed (1 bit) . For a write, indi cates that the property value is to be changed. For a read, MAY
be set by the server and MUST be ignored by the client on receipt.

NN

NonNull (1 bit) . The property value is non -null.

2.2.1.9 TableEntryFixed

The TableEntryFixed structure is used in the TableDataFixed (section 2.2.1.10) and
TableDataFixedWrite (section 2.2.1.13) structures. These structures are always used along with a
TableDataVariable (section 2.2.1.15) structure. This type represents fixed -size parts of the data in a
table entry:

Á The status of each property value.

Á The size of each no nfixed size eDT_BYTES property.

Á The property value for each fixed size property.

Á An offset, in bytes, to the property value within a TableDataVariable for each nonfixed size
property.

This structure is marshaled as specified in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Status 0 Status 1

Status n Padding

Size 0

Size 1

...

Size m

39 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ValueOrOffset 0 (variable)

ValueOrOffset 1 (variable)

...

ValueOrOffset n (variable)

Status 0 - n: The property status for each property, in order by index. MUST be an
fPropertyStatus (section 2.2.1.8) value.

Padding: Padding with zeros to a 4 -byte boundary from the start of the structure.

Size 0 - m: The size, in bytes, represented by an unsigned integer, of the property value for each
nonfixed size eDT_BYTES property, in order by index. If the representation of the property value
in the associated TableDataVariable structure requires padding to a multiple of 4 bytes, this size

does not include the padding bytes.

ValueOrOffset 0 - n: The property value or offset for each property, in order by index. The format of
this field depends on the type of the property, whether the fPROPERTY_FIXEDLENGTH f lag is set in

the property's section PropertyMeta (section 2.2.1.7), and whether the NonNull (see section
2.2.1.8) bit is set in the property's Status field.

Type of
property

fPROPERTY_FIXEDLENGTH
set?

NonNull
set? Format

eDT_ULONG - The property value, marshaled as a 32 -bit
unsigned integer.

eDT_GUID - - The property value, marshaled as specified
in [MS -DTYP], section 2.3.4.2.

eDT_BYTES No No A 4 -byte field, which SHOULD <9> be zero
and MUST be ignored on receipt.

eDT_BYTES No Yes A 32 -bit unsigned integer, which MUST be
the offset in bytes to the property value
from the start of the associated
TableDataVariable structure. MUST be a
multiple of 4.

eDT_BYTES Yes No A field with length equal to the fixed size of
the property, rounded up to a multiple of 4.
SHOULD be filled with zeros and MUST be
ignored on receipt.

eDT_BYTES Yes Yes The property value, marshaled as an array
of bytes, padded with zeros to a multiple of
4 bytes.

eDT_LPWSTR No No A 4 -byte field, which SHOULD <10> be zero
and MUST be ignored on receipt.

eDT_LPWSTR No Yes A 32 -bit unsigned integer, which MUST be
the offset in bytes to the property value
from the start of the associated
TableDataVariable structure. MUST be a
multiple of 4.

eDT_LPWSTR Yes No A field with the length equal to the fixed

%5bMS-DTYP%5d.pdf

40 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Type of
property

fPROPERTY_FIXEDLENGTH
set?

NonNull
set? Format

size of the property, ro unded up to a
multiple of 4. SHOULD be filled with zeros
and MUST be ignored on receipt.

eDT_LPWSTR Yes Yes The property value, marshaled as a null -
terminated array of wchar_t in little -endian
byte order, padded with zeros to a multiple
of 4 bytes.

2.2.1.10 Tabl eDataFixed

The TableDataFixed structure represents the fixed -size parts of the data in zero or more entries in a
table, as returned by the ICatalogTableRead::ReadTable (section 3.1.4.8.1) method. It is always used

along with a TableDataVariable (section 2.2.1.15) structure.

TableDataFixed is a custom -marshaled type that is returned in a char** parameter. A Tabl eDataFixed
structure is marshaled as a sequence of zero or more TableEntryFixed (section 2.2.1.9) structures (a
result with zero table entries is represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry (variable)

...

Entry (variable): A sequence of zero or more TableEntryFixed structures. The order in which these
structures appear MUST be the same as the order in which the corresponding TableEntryVariable

(section 2.2.1.14) structures appear in the associated TableDataVariable structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry 0 (variable)

Entry 1 (variable)

...

Entry n (variable)

2.2.1.11 eTableEntryAction

The eTableEntryAction enumeration represents a write action to an entry in a table. An
eTableEntryAction is represented by a 32 -bit unsigned integer. The eTableEntryAction enumeration
MUST be set to one of the following values.

41 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Description

eACTION_ADD

0x00000001

Add an entry to the table.

eACTION_UPDATE

0x00000002

Update an existing entry in the table.

eACTION_REMOVE

0x00000003

Remove an entry from the table.

2.2.1.12 TableEntryFixedWrite

The TableEntryFixedWrite structure represents the fixed -size parts of the data, along with the write

action, for a write to an entry in a table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry (variable)

...

Action

Entry (variable): A TableEntryFixed structure, marshaled as specified in section 2.2.1.9.

Action (4 bytes): An eTableEntryAction (section 2.2.1.11) value identifying the type of write action.

2.2.1.13 TableDataFixedWrite

The TableDataFixedWrite structure repre sents the fixed -size parts of the data, along with write
actions, for a write to zero or more entries in a table, as used in the
ICatalogTableWrite::WriteTable (section 3.1.4.9.1) method. It is al ways used along with a
TableDataVariable (section 2.2.1.15) structure.

TableDataFixedWrite is a custom -marshaled type that is passed in a char* parameter. A

TableDataFixedWrite structure is marsha led as a sequence of zero or more
TableEntryFixedWrite (section 2.2.1.12) structures (a write with zero table entries MUST be
represented by a NULL pointer).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryWrite (variable)

...

EntryWrite (variable): A sequence of zero or more TableEntryFixedWrite structures. The order in
which these structures appear MUST be the same as the order in which the corresponding
TableEntryVariable (section 2.2.1.14) structures appear in the associated TableDataVariable

structure.

42 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryWrite 0 (variable)

EntryWrite 1 (variable)

...

EntryWrite n (variable)

2.2.1.14 TableEntryVariable

The TableEntryVariable structure represents the variable -size parts of the data in an entry in a table or

in a write to an entry in a table. It con sists of a sequence of zero or more variable -size property
values.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value (variable)

...

Value (variable): A sequence of zero or more property values, with one value for each variable -size
property, in order by index. The format of each property value depends on the type of the
property.

Type of
property Format

eDT_BYTES

0x00000080

The property value, marshaled as an array of bytes, padded with zeros to a multiple of 4
bytes.

eDT_LPWSTR

0x00000082

The property value, marshaled as a null - terminated array of wchar_t in little -endian byte
order, padded with zeros to a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Value 0 (variable)

Value 1 (variable)

...

Value n (variable)

43 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.1.15 TableDataVariable

The TableDataVariable structure represents the variable -size parts of the data in zero or more entries
in a table, as returned by the ICatalogTableRead::ReadTable (section 3.1.4.8.1) method, or in a write

to zero or m ore entries in a table, as used in the ICatalogTableWrite::WriteTable (section 3.1.4.9.1)
method. It is always used along with a TableDa taFixed (section 2.2.1.10) or
TableDataFixedWrite (section 2.2.1.13) structure, which specifies the offsets to each of the values in
this structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry (variable)

...

Entry (variable): A sequence of zero or more TableEntryVariable (section 2.2.1.14) structures. The

order in which these structures appear MUST be the same as the order in which the corresponding

TableEntryFixed (section 2.2.1.9) or TableEntryFixedWrite (section 2.2.1.12) structures appear in
the associated TableDataFixed or TableDataFixedWrite structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Entry 0 (variable)

Entry 1 (variable)

...

Entry n (variable)

2.2.1.16 TableDetailedError

The TableDetailedError structure represents a record of an error related to a particular property of a
particular table entry, which contributed to a partial failure in a read from a table (see section
3.1.4.8.1) or a failure in a write to a table (see section 3.1.4.9.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntryIndex

Reason

PropertyIndex

EntryIndex (4 bytes): An unsigned integer that represents the zero -based index of the entry to

which this error corresponds.

Reason (4 bytes): An HRESULT value that represents the reason for failure. MUST be a failure
result, as specified in [MS -ERREF] section 2.1.

%5bMS-ERREF%5d.pdf

44 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

PropertyIndex (4 bytes): An unsigned integer that represents the zero -based index of the propert y
to which this error corresponds.

2.2.1.17 TableDetailedErrorArray

The TableDetailedErrorArray structure represents an unordered collection of one or more detailed
errors that contributed to a partial failure in a read from a table (see section 3.1.4.8.1) or a failure in
a write to a table (see section 3.1.4.9.1).

TableDetailedErrorArray is a custom -marshaled type that is returned in a char** parameter. A

TableDetailedErrorArray structure is marshaled as an array of one or more
TableDetailedError (section 2.2.1.16) structures, the order of which is not significant.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DetailedError (variable)

...

DetailedError (variable): One or more TableDetailedError structures, marshaled as specified in
section 2.2.1.16.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DetailedError 0

...

...

DetailedError 1

...

...

DetailedError m

...

...

2.2.2 Property Formats

The definition of a property in a table (see section 3.1.1.3 for details) includes the domain of valid
property values, its representation on the wire, and the semantics of the configuration it represents.
The fields of a property's PropertyMeta (section 2.2.1.7) structure represent some low - level typing

metadata -- a simple type (one of the eDataType (section 2.2.1.2) values), size, an d whether or not
null is a valid value -- but do not specify any higher - level constraints or semantics. For example, many

45 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

properties that are represented as an eDT_ULONG are required to have a value from an enumeration,
where each enumeration value has a spe cific meaning. The following sections specify common types

for properties in tables, where the constraints and semantics are not clearly implied by the property's
PropertyMeta values.

For historical reasons, COMA does not apply a consistent requirement for server and client validation
responsibilities across all property types. For example, some type validity constraints require only
server validation, while others require only client validation. Therefore, validity constraints on the
types defined in these sections are specified separately from the validation requirements for servers
and clients. For details on server and client validation requirements, see sections 3.1.4.9.1 and
3.2.4.6 respectively.

Each property type definition includes the following information:

Simple type: The eDataType value for properties of this type, as used when representing a property
of this type in a call to t he ICatalogTableRead::ReadTable (section 3.1.4.8.1) and
ICatalogTableWrite::WriteTable (section 3.1.4.9.1) methods. If properties of this type are also
used as method parameters, the wire represen tation used in these methods is mentioned here as

well.

Validity: Constraints on the values that represent valid configuration for properties of this type. If a

property of this type is set to a value that does not conform to these constraints, the resulti ng
ORB behavior is undefined.

Server validation: Requirements for validation of writes received by a server implementation.

Client validation: Requirements for validation of writes sent by a protocol client implementation on
behalf of a client application.

2.2.2.1 Placeholder Property Formats

The following sections specify property formats for properties that are reserved or otherwise not used
in a particular context. The valu es required for properties of these types are placeholder values only
and have no meaning.

2.2.2.1.1 PlaceholderPartitionIdProperty

Simple type: eDT_GUID

Validity: MUST have the value {41E90F3E -56C1 -4633 -81C3 -6E8BAC8BDD70} (the partition identifier
of the global partition).

Server validation: Servers SHOULD enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.1.2 PlaceholderGuidProperty

Simple type: eDT_GUID

Validity: MUST have the value GUID_NULL.

Serve r validation: Servers SHOULD enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.1.3 PlaceholderStringProperty

Simple type: eDT_LPWSTR

46 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Validity: MUST be null.

Server validation: Servers SHOULD enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.1.4 PlaceholderIntegerP roperty

Simple type: eDT_ULONG

Validity: MUST be zero.

Server validation: Servers SHOULD enforce validity constraints.

Client vali dation: Clients MUST enforce validity constraints.

2.2.2.2 ImplementationSpecificPathProperty

The ImplementationSpecificPathProperty represents a path to a resourc e in a format that is specific to
a COMA server implementation.

Simple type: eDT_LPWSTR. Represented as an LPWSTR or LPCWSTR when used as a method
parameter.

Validity: Character length MUST be at least 1 and at most 260, not including the terminating null
character. Additional constraints are implementation -specific. <11> However, paths in Universal
Naming Convention (UNC) SHOULD be valid.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.3 Threading Model Property Formats

If an ORB provides a feature for hosting component instances on different types of threads,
restrictions on the types of threads on which the component instances for a particular component will
be hosted is represented in the catalog as a pr operty of the component and of its component
configurations.

An ORB that provides this feature divides all threads in a given process that will be used to host

component instances into one of two categories:

Á Single threaded apartment (STA) threads are primarily used to host component instances when
the component expects that all calls to any given component instance will be executed on a single
thread. Optionally, the ORB designates one STA thread in each proc ess as the Main STA thread.

Á Multi - threaded apartment (MTA) threads are used to host component instances when the
component does not have such an expectation.

An ORB that provides this feature furthermore assigns to each component instance one of the

follow ing hosting models at the time that the component is instantiated:

Á In the STA -hosted model, all calls to the component instance are executed on the same thread.
The component instance is said to be hosted on that thread.

Á In the MTA -hosted model, all calls to the component instance are executed on one of the MTA
threads in the process. The specific thread used for any given call is selected according to ORB -
specific criteria. <12>

47 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á In the neutral -hosted model, calls to the c omponent instance are executed on any STA or MTA
thread, selected according to ORB -specific criteria. <13>

Properties that use the formats specified in the following sections are an indication of how the ORB will
select t he hosting model for component instances. These property values are typically selected by the

component itself, and COMA does not provide a mechanism for modifying the values. If an ORB does
not provide such a feature, this SHOULD be indicated by using the values eTM_NEUTRAL and "Neutral"
for all components. If an ORB does not designate one STA thread in each process as the Main STA
thread, the values eTM_MAIN and null SHOULD NOT be used.

2.2.2.3.1 ThreadingModelEnumerationProperty

The ThreadingModelEnumerationProperty type represents how the hosting model is to be selected for

component instances.

Simple type: eDT_ULONG

Validity: MUST be one of the following values.

Value Meaning

eTM_APARTMENT

0x00000000

Each component instance is to be STA -hosted. The STA thread used to host the
component instance is to be selected as follows:

If an instantiation request originates from an STA thread in the same process in
which the component is to be instantiated, the component instance is to be hosted
on that thread.

Otherwise, the ORB is to select an existing STA thread or create a new STA thread
to host the component instance accordi ng to some ORB -specific criteria. <14>

eTM_FREE

0x00000001

Each component instance is to be MTA -hosted. If no MTA threads exist in the
process in which the component is to be instantiated at the time of the instantiation
request, the ORB is to create at least one MTA thread.

eTM_MAIN

0x00000002

Each component instance is to be STA -hosted in the Main STA thread. If no STA
threads exist in the process in which the component is to be instantiated at the time
of the instantiation request, the ORB is to create one STA thread and designate it
the Main STA thread.

eTM_BOTH

0x00000003

Each component instance is to be either STA -hosted or MTA -hosted, according to
the following cr iteria:

If an instantiation request originates from an STA thread in the same process in
which the component is to be instantiated, the component instance is to be STA -
hosted on that thread.

If an instantiation request originates from an MTA thread in the same process in
which the component is to be instantiated, the component instance is to be MTA -
hosted.

If an instantiation request does not originate from within the process in which the
component is to be instantiated, the component instance is to be MTA -hosted. If no
MTA threads exist in the process at the time of the instantiation request, the ORB is
to create at least one MTA thread.

eTM_NEUTRAL

0x00000004

Component instances are to be neutrally hosted.

Server validation: No validation requirements (C OMA does not provide a mechanism for writing
properties of this type).

Client validation: No validation requirements (COMA does not provide a mechanism for writing
properties of this type).

48 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.2.3.2 ThreadingModelStringProperty

The ThreadingModelStringProperty type represents how the hosting model is to be selected for
component instances . For historical reasons, some properties use this format instead of the

ThreadingModelEnumerationProperty (section 2.2.2.3.1) format. Each allowed value of this format
corresponds to one of the T hreadingModelEnumerationProperty values.

Simple type: eDT_LPWSTR

Validity: MUST be one of the following values.

Value Corresponding ThreadingModelEnumerationProperty value

"Apartment" eTM_APARTMENT

"Free" eTM_FREE

null eTM_MAIN

"Both" eTM_BOTH

"Neutral" eTM_NEUTRAL

Server validation: No validation requirements (COMA does not provide a mechanism for writing

properties of this type).

Client validation: No validation requirements (COMA does not provide a mechanism for writing
properties of this type).

2.2.2.4 ScriptingProgramIdProperty

The ScriptingProgramIdProperty represents a scripting - friendly unique name for a component,
intended for use in scripting environments an d for display purposes.

Simple type: eDT_LPWSTR. It is represented as an LPWSTR or LPCWSTR type, as specified in [MS -
DTYP] section 2.2.36, when used as a method parameter.

Validity: Character length MUST be at least 1 and a t most 39, not including the terminating null
character. Each value MUST uniquely identify a component.

Server validation: Servers MAY enforce character length restrictions and SHOULD enforce
uniqueness.

Client validation: Clients MAY enforce character len gth restrictions and SHOULD NOT enforce
uniqueness.

2.2.2.5 BitnessProperty

The BitnessProperty type represents the bitness of a component configuration.

Simple type: eDT_ULONG

Validity: It MUST be one of the following values.

Value Meaning

0x00000001 The component configuration is for the 32 -bit bitness of the component.

0x00000002 The component configuration is for the 64 -bit bitness of the component.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

49 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.6 NameProperty

The NameProperty represents a scripting - friendly name for an object, intended for use in scripting
environments and for display purposes.

Simple type: eDT_LPWSTR. It is represented as an LPCWSTR type, as specified in [MS -DTYP] section
2.2. 34, when used as a method parameter.

Validity: MUST NOT be null.

Server validation: Servers MUST enforce validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,
not i ncluding the terminating null character.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.7 DescriptionProperty

The DescriptionProperty represents a human - readable descript ion for an object, intended for display
purposes.

Simple type: eDT_LPWSTR

Validity: No restrictions.

Server validation: Servers MAY enforce an implementation -specific character length limit. If so, this

limit SHOULD be at least 255 characters, not includin g the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.8 ContextFacilityProperty

The ContextFacilityPropert y enumeration represents how, if at all, a particular facility provided by an
ORB is to be automatically integrated into the context of a new component instance from an incoming
instantiation request.

Simple type: eDT_ULONG

Validity: MUST be one of the fol lowing values.

Value Meaning

Ignored

0x00000000

The presence of the facility in the incoming request is to be ignored.

Unsupported

0x00000001

The presence of the facility in the incoming request is to result in failure for the
instantiation.

Supported

0x00000002

The facility is to be integrated into the component instance's context if present in the
instantiation request, but no instance of the facility is to be created if absent.

Required

0x00000003

The facility is to be integrated into the component instance's context if present in the
instantiation request, and a new instance of the facility is to be created if absent.

RequiresNew Regardless of whether the facility is present in the incoming instantiation request, a

%5bMS-DTYP%5d.pdf

50 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x00000004 new instance of the facility is to be created.

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.9 BooleanProperty

The BooleanProperty represents a Boolean value.

Simple type: eDT_ULONG

Validity: MUST be one of the values TRUE (0x00000001) or FALSE (0x00000000).

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce valid ity constraints.

2.2.2.9.1 BooleanBitProperty

The BooleanBitProperty type represents a Boolean value multiplexed with other Boolean values in an
eDT_ULONG property.

Simple type: This type is always a bit in an eDT_ULONG property.

Validity: No restrictions.

Server validation: No requirements.

Client validation: No requirements.

2.2.2.10 Pool Size Property Formats

The following sections specify the property formats for properties used to configure instance pooling .

2.2.2.10.1 MinPoolSizeProperty

The MinPoolSizeProperty type represents the minimum size of a pool of component instances.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000 000 and 0x00100000 (decimal 1048576), inclusive. Furthermore,
table entries with a property of this type also have a corresponding property of type
MaxPoolSizeProperty (section 2.2.2.10.2) . The va lue of this property MUST be less than or equal

to the corresponding MaxPoolSizeProperty.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.10.2 MaxPoolSizeProperty

The MaxPoolSizeProperty type represents the maximum size of a pool of component instances.

Simple type: eDT_ULONG

51 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Validity: MUST be between 0x 00000001 and 0x00100000 (decimal 1048576), inclusive. Furthermore,
table entries with a property of this type also have a corresponding property of type

MinPoolSizeProperty (section 2.2.2.10.1) . The value of this property MUST be greater than or
equal to the corresponding MinPoolSizeProperty.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11 Timeout Property Formats

The following sections specify property formats that represent timeout values.

2.2.2.11.1 LongTimeoutInSecondsProperty

The LongTimeoutInSecondsProperty type represents a timeout as a number of seconds.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x0000FFFF (decimal 6 5535), inclusive, where a zero
value indicates an infinite timeout.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11.2 ShortTimeoutInSecondsProperty

The ShortTimeoutInSecondsProperty type represents a timeout as a number of seconds.

Simple type: eDT_ULONG

Validity: MUST be bet ween 0x00000000 and 0x00000EA0 (decimal 3744) inclusive.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11.3 LongTimeoutInMinutesProperty

The LongTimeoutInMinutesProperty type represents a timeout as a number of minutes.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x00007620 (decimal 30240), inclusive.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.11.4 ShortTimeoutInMinutesProperty

The ShortTimeoutInMinutesProperty type represents a timeout as a number of minutes.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and0x000005A0 (decimal 1440) inclusive.

Server validation: Servers MAY enforce validity constraints.

52 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.12 ApplicationSpecificStringProperty

The ApplicationSpecificStringProperty type represents a string with application -specific meaning, which
is not interpreted by the target ORB but rather provided as a parameter to compone nts at runtime.

Simple type: eDT_LPWSTR

Validity: No restrictions.

Server validation: Servers MAY enforce an implementation -specific character length limit. If so, this

limit SHOULD be at least 255 characters, not including the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.13 ORB -Specific Property Formats

The following sections specify pro perty formats with ORB -specific meaning and validity constraints.

2.2.2.13.1 ORBSpecificExceptionClassProperty

The ORBSpecifi cExceptionClassProperty type represents an application -provided software component
that an ORB is to use for handling an exceptional condition in an instance container.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <15>

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an

implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client vali dation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.13.2 ORBSpecificModuleIdentifierProperty

The ORBSpecificModuleIdentifierProperty type represents an ORB -specific identifier for a module.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <16>

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD pass through the value provide d by the client application.

2.2.2.13.3 ORBSpecificTypeIdentifierProperty

The ORBSpecificTypeIdentifierProperty type represen ts an identifier for a type in an ORB -specific type
system.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <17>

53 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.4 ORBSpecificAlter nateLaunchNameProperty

The ORBSpecificAlternateLaunchNameProperty type represents the name of a resource in an ORB -
specific namespace that is to be used by the ORB when creating instance containers via an ORB -
specific alternate launch mechanism.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <18>

Server validation : Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.5 ORBSpecificAlternateLaunchParametersProperty

The ORBSpecificAlternateLaunchParametersProperty type represents the additional parameters that
are to be used by the ORB when creating instance containers via an ORB -specific alternate launch
mechanism.

Simple type: eDT_LPWSTR

Validity: ORB-specif ic. <19>

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.6 ORBSpecificCommandLineProperty

The ORBSpecificCommandLineProperty type represents a command to be executed by the ORB in an
ORB-specific syntax.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <20>

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHO ULD pass through the value provided by the client application.

2.2.2.13.7 ORBSpecificWebServerVirtualDirectoryProperty

The ORBSpecificWebServerVirtualDirectoryProperty type represents a virtual directory within the
namespace used by the ORB's web server.

Simple type: eDT_LPWSTR

54 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Validity: ORB-specific. <21>

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an

implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.8 ORBSpecificSubscriptionFilterCriteriaProperty

The ORBSpecificSubscriptionFilterCriteriaProperty type represents criteria for a subscriber to receive
events from a publisher in an ORB -specific syntax.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <22>

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,

not including the terminating null charact er.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.9 ORBSpecificAlternateActivationProperty

The ORBSpecificAlternateActivationProperty type represents a string to be used by an ORB to activate
a component via an ORB -specific alternate activation mechanism.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <23>

Server validation: Servers MAY enforce ORB -specific validity constraints. Servers MAY enforce an
implementation -specific character length limit. If so, this limit SHOULD be at least 255 characters,
not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.13.10 ORBSpecificProtocolSequenceMnemonicProperty

The ORBSpecificProtocolSequenceMnemonicProperty type is an ORB -specific string mnemonic for one
or more RPC protocol sequences , to be used by an ORB for configuring DCOM.

Simple type: eDT_LPWSTR

Validity: ORB-specific. <24>

Server validation: Servers SHOULD enforce ORB -specific validity constraints. Servers MAY enforce
an implementation -specific charact er length limit. If so, this limit SHOULD be at least 255
characters, not including the terminating null character.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.14 TransactionIsolationLevelProperty

The TransactionIsolationLevelProperty type represents the level to which component instances in the
context of an ORB -provided atomic transaction are to be isolated from entities external to this
transaction.

Simple type: eDT_ULONG

55 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Validity: MUST be one of the following values.

Value Meaning

eTXIL_ANY

0x00000000

The ORB is to select one of the other transaction isolation levels
according to ORB -specific criteria.

eTXIL_READUNCOMMITTED

0x00000001

The ORB is to allow the component instance to read data even if it is
being modified in the context of another transaction tha t has not been
committed.

eTXIL_READCOMMITTED

0x00000002

The ORB is to prevent the component instance from reading data that
is being modified in the context of another transaction that has not
been committed.

eTXIL_REPEATABLEREAD

0x00000003

The ORB is t o guarantee that data read by the component instance is
not modified by entities external to the transaction until the
transaction finishes. The ORB makes no guarantees about whether
new data written by an external entity is visible to the component
instan ce.

eTXIL_SERIALIZABLE

0x00000004

The ORB is to guarantee that data read by the component instance is
not modified by entities external to the transaction until the
transaction finishes. The ORB is also to guarantee that new data
written by an external entity is not made visible to the component
instance until the transaction finishes.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.15 ComputerNameProperty

The ComputerNameProperty type represents a computer name .

Simple type: eDT_LPWSTR

Vali dity: If not null, it MUST be a computer name.

Server validation: Servers MAY enforce validity constraints but SHOULD NOT attempt to enforce that
the computer identified exists or is reachable. Servers MAY enforce an implementation -specific
character lengt h limit. If so, this limit SHOULD be at least 255 characters, not including the

terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.16 ComputerNameOrAddressProperty

The ComputerNameOrAddressProperty type represents a computer name, an IPv4 address in string

format if the server supports the Internet Protocol [RFC791] , or an IPv6 address in string format if the

server supports the Internet Protocol, version 6 [RFC2460] .

Simple type: eDT_LPWSTR

Validity: If not null, it MU ST be a computer name, an IPv4 address in string format, or an IPv6
address in string format. It MUST NOT be an IPv4 address in string format if the server does not
support the Internet Protocol. It MUST NOT be an IPv6 address in string format if the serve r

supports the Internet Protocol, version 6.

http://go.microsoft.com/fwlink/?LinkId=392659
http://go.microsoft.com/fwlink/?LinkId=90357

56 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server validation: Servers MAY enforce validity constraints, but SHOULD NOT attempt to enforce
that the computer identified exists or is reachable. Servers MAY enforce an implementation -

specific character length limit. If so, this limit SHOULD be at least 255 characters, not including
the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.17 SecurityPrincipalNameProperty

The SecurityPrincipalNameProperty type represents a security principal name (SPN) .

Simple type: eDT_LPWSTR. It is represen ted as an LPWSTR or LPCWSTR type, as specified in [MS -
DTYP] section 2.2.36, when used as a method parameter.

Validity: MUST be a security principal name.

Server validation: Servers MAY enforce validity constraints. Servers MAY enforce an implementation -
specific character length limit. If so, this limit SHOULD be at least 255 characters, not including

the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client applica tion.

2.2.2.18 PasswordProperty

The PasswordProperty type represents a password associated with a security principal .

Simple type: eDT_LPWSTR. It is represented as an LPWSTR or LPCWSTR type (as specified in [MS -
DTYP] section 2.2.36), or an array of bytes containing a null - terminated array of wchar_t in little -

endian byte order and marshaled in a char*, when used as a method parameter.

Validity: No restrictions.

Server validation: Servers MAY enforce an implementation -specific character length limit. If so, this
limit SHOULD be at least 255 characters, not including the terminating null character.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

Except where otherwise noted, properties of this type MUST NOT be persisted in plaintext or returned

to clients.

2.2.2.19 YesNoProperty

The YesNoProperty represents a Boolean value. For historical reasons, this type is used instead of
BooleanProperty (section 2.2.2.9) for certain properties.

Simple type: eDT_LPWSTR

Validity: MUST be one of the following values: "Y" (for true) or "N" (for false).

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.20 LegacyYesNoProperty

The LegacyYesNoProper ty represents a Boolean value. For historical reasons, this type is used instead
of BooleanProperty (section 2.2.2.9) for certain properties. This type is equivalent to YesNoProperty ,
but null values are permitted and have the same meaning as "N" (false).

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

57 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Simple type: eDT_LPWSTR.

Validity: If not null, MUST be one of the following values: "Y" (for true) or "N" (for false).

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.21 SecurityDescriptorProperty

The SecurityDescriptorProperty type represents a security descriptor used by an ORB to authorize
instantiation of components and access to component instances.

Simple type: eDT_BYTES

Validity: If not null, it MUST be a ComponentSecurityDescriptor (section 2.2.2.21.4) .

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD simply pass through the value provided by the client application.

2.2.2.21.1 Component Acces s Mask Types

The following sections specify types used in acce ss masks for component - related security descriptors.

2.2.2.21.1.1 Component Access Constants

The following values are used as flags in the access mask of an Access Control Entry (ACE) in a
component - related security descriptor.

Value Meaning

COM_RIGHTS_EXECUTE

0x00000001

In an OldVersion ComponentAccessMask (section 2.2.2.21.1.2) , this value
represents a combination of all of the rights represented by
COM_RIGHTS_EXECUTE_LOCAL, COM_RIGHTS_EXECUTE_REMOTE,
COM_RIGHTS_ACTIVATE_LOCAL, and COM_RIGHTS_ACTIVATE_REMOTE.

In a NewVersionComponentAccessMask (section 2.2.2.21.1.3) , this flag has
no specific meaning but is required to be set for historical reasons.

COM_RIGHTS_EXECUTE_LOCAL

0x00000002

In a NewVersionComponentAccessMask, this val ue represents the right of a
security principal to use ORB -specific local mechanisms to cause a
component to be executed, where the precise meaning of execute depends
on the context.

In a component access security descriptor, this right controls whether or not
a principal is authorized to execute method calls on component instances.

In a component launch security descriptor, this right controls whether or not
a principal is authorized to create a process in which the component will be
hosted.

COM_RIGHTS_EX ECUTE_REMOTE

0x00000004

In a NewVersionComponentAccessMask, this value represents the right of a
security principal to use ORB -specific remote mechanisms to cause a
component to be executed, where the precise meaning of execute depends
on the context.

In a component access security descriptor, this right controls whether or not
a principal is authorized to execute method calls on component instances.

In a component launch security descriptor, this right controls whether or not
a principal is authorized to create a process in which the component will be
hosted.

COM_RIGHTS_ACTIVATE_LOCAL In a NewVersionComponentAccessMask, this value represents the right of a

58 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x00000008 security principal to use ORB -specific local mechanisms to activate a
component.

This right is meaningful only in a component launch security descriptor.

COM_RIGHTS_ACTIVATE_REMOTE

0x000000010

In a NewVersionComponentAccessMask, this value represents the right of a
security principal to use ORB -specific local mechanisms to activate a
compo nent.

This right is meaningful only in a component launch security descriptor.

2.2.2.21.1.2 OldVersionComponentAccessMask

The OldVersionComponentAccessMask type represents an access mask that uses only the flag
COM_RIGHTS_EXECUTE to specify rights.

Fields of this type are 32 -bit unsigned integers that MUST have the flag COM_RIG HTS_EXECUTE
(0x00000001) set and furthermore MUST NOT have any of the following flags set:
COM_RIGHTS_EXECUTE_LOCAL (0x00000002), COM_RIGHTS_EXECUTE_REMOTE (0x00000004),

COM_RIGHTS_ACTIVATE_LOCAL (0x00000008), and COM_RIGHTS_ACTIVATE_REMOTE
(0x00000010). O ther bits of the value are not meaningful and SHOULD NOT be set.

2.2.2.21.1.3 NewVersionComponentAccessMask

The NewVersionComponentAccessMask type represents an access mask that uses the more granular
component access constants to specify rights.

Fields of this type are 32 -bit unsigned integers that for historical reasons MUST ha ve the flag

COM_RIGHTS_EXECUTE (0x00000001) set, and furthermore MUST have one or more of the following
flags set: COM_RIGHTS_EXECUTE_LOCAL (0x00000002), COM_RIGHTS_EXECUTE_REMOTE
(0x00000004), COM_RIGHTS_ACTIVATE_LOCAL (0x00000008), and

COM_RIGHTS_ACTIVAT E_REMOTE (0x00000010). Other bits of the value are not meaningful and
SHOULD NOT be set.

2.2.2.21.2 Component ACE Types

The following sections specify types used as Access Control Entries (ACEs) in component - related
security descriptors.

2.2.2.21.2.1 OldVersionComponentAccessAllowedACE

The OldVersionComponentAccessAllowedACE type represents an ACCESS_ALLOWED_ACE as specified
in [MS -DTYP] section 2.4.4.2, where the access mask is an
OldVersionComponentAccessMask (section 2.2.2.21.1.2) .

A field of this type MUST be an ACCESS_ALLOWED_ACE ([MS -DTYP] section 2.4.4.2). Furthermore,
the Mask field MUST be an OldVersionComponentAccessMask. The AceFlags subfield of the Header

field is not meaningful and SHOULD be zero.

2.2.2.21.2.2 NewVersionComponentAccessAllowedACE

The NewVersionComponentAccessAllowedACE type represents an ACCESS_ALLOWED_ACE as specified
in [MS -DTYP] section 2 .4.4.2, where the access mask is a

NewVersionComponentAccessMask (section 2.2.2.21.1.3) .

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

59 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

A field of this type MUST be an ACCESS_ALLOWED_ACE ([MS -DTYP] section 2.4.4.2). Furthermore,
the Mask field MUST be a NewVersionComponentAccessMask. The AceFlags subfield of the Header

field is not meaningful and SHOULD be zero.

2.2.2.21.2.3 OldVersionComponentAccessDeniedACE

The OldVersionComponentAccessDeniedACE type represents an ACCESS_DENIED_ACE as specified in
[MS -DTYP] section 2.4.4.4, wher e the access mask is an
OldVersionComponentAccessMask (section 2.2.2.21.1.2) .

A field of this type MUST be an ACCESS_DENIED_ACE ([MS -DTYP] section 2.4.4.4). Furthermore, the
Mask field MUST be an OldVersionComponentAccessMask. The AceFlags subfield of the Header field
is not meaningful and SHOULD be zero.

2.2.2.21.2.4 NewVersionComponentAccessDeniedACE

The NewVersionComponentAccessDeniedACE type represents an ACCESS_DENIED_ACE as specified in
[MS -DTYP] section 2.4.4.4, where the access mask is a

NewVersionComponentAccessMask (section 2.2.2.21.1.3) .

A field of this type MUST be an ACCESS_DENIED_ACE ([MS -DTYP] section 2.4.4.4). Furthermore, the

Mask field MUST be a NewVersionComponent AccessMask. The AceFlags subfield of the Header field
is not meaningful and SHOULD be zero.

2.2.2.21.2.5 ComponentMandatoryLabelACE

The ComponentMandatoryLabelACE type represents a SYSTEM_MANDATORY_LABEL_ACE as specified
in [MS -DTYP] section 2.4.4.13 that can be used in the System Access Control List (SACL) of a
component - related security descriptor.

A packet of this type MUST be a SYSTEM_MANDATORY_LABEL_ACE ([MS -DTYP] section 2.4.4.13). The
only access flag in the Mask field that is meaningful is
SYSTEM_MANDATORY_LABEL_NO_EXECUTE_UP (0x00000004). For the purpose of access checks

against a component - related security descriptor that includes an ACE of this type in its SACL, all
Component Access Constants (section 2.2.2.21.1.1) are considered execute rights. Other ac cess flags
are not meaningful and SHOULD NOT be set. The AceFlags subfield of the Header field is not
meaningful and SHOULD be zero.

2.2.2.21.3 Component Access Control List Types

The following sections specify types used as Access Control Lists (ACLs) in component - rel ated security
descriptors.

2.2.2.21.3.1 OldVersionComponentDACL

The OldVersio nComponentDACL type represents a DACL in a component - related security descriptor

that uses only the flag COM_RIGHTS_EXECUTE to specify rights in each of its ACEs.

A field of this type MUST be an ACL as specified in [MS -DTYP] section 2.4.5. Furthermore, the

following restrictions apply to the Ace fields:

Á Each Ace field SHOULD be an OldVersionComponentAccessAllowedACE (section 2.2.2.21.2.1) or
OldVersionComponentAccessDeniedACE (section 2.2.2.21.2.3) .

Á Each Ace field MUST NOT be a NewVersionComponentAccessAllowedACE (section 2.2.2.21.2.2) or
NewVersionComponentAccessDeniedACE (section 2.2.2.21.2.4) .

Other ACE types are not meaningful and SHOULD NOT be present.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

60 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.2.21.3.2 NewVersionComponentDACL

The NewVersionComponentDACL type represents a DACL in a component - related security descriptor
that uses the more granular com ponent access constants to specify rights in each of its ACEs.

A field of this type MUST be an ACL as specified in [MS -DTYP] section 2.4.5. Furthermore, the
following restrictions apply to the Ace fields:

Á Each Ace field SHO ULD be a NewVersionComponentAccessAllowedACE (section 2.2.2.21.2.2) or
NewVersionComponentAccessDeniedACE (section 2.2.2.21.2.4) .

Á Each Ace field MUST NOT be an OldVersionComponentAccessAllowedACE (section 2.2.2.21.2.1) or
OldVersionComponentAccessDeniedACE (section 2.2.2.21.2.3) .

Other ACE types are not meaningful and SHOULD NOT be present.

2.2.2.21.3.3 ComponentSACL

The ComponentSACL type represents a SACL in a component - related security descriptor.

A field of this type MUST be an ACL as specified in [MS-DTYP] section 2.4.5. Furthermore, the
following restrictions apply to the Ace fields:

Á There SHOULD be at most one Ace field, which if present SHOULD be a

ComponentMandatoryLabelACE (section 2.2 .2.21.2.5) type.

Á Duplicate ComponentMandatoryLabelACE fields are not meaningful and SHOULD NOT be present.

Other ACE types are not meaningful and SHOULD NOT be present.

2.2.2.21.4 ComponentSecurityDescriptor

The ComponentSecurityDescriptor type represents a component - related security descriptor.

A packet of this type MUST be a SECURITY_DESCRIPTO R as specified in [MS -DTYP] section 2.4.6.

Furthermore, the following restrictions apply to the fields:

Á The OwnerSid field MUST be present, but its value has no meaning.

Á The GroupSid field MUST be present, but its value has no meaning.

Á The Sacl field, if present, MUST be a ComponentSACL (section 2.2.2.21.3.3) .

Á The Dacl field, if present, MUST be either an OldVersionComponentDACL (section 2.2.2.21.3.1) or
a NewVersionComponentDACL (section 2.2.2.21.3.2) .

An ORB might interpret the DACLs in all component - related security descriptors as if they were

OldVersionComponentDACLs, or it might interpret both OldVersionComponentDACLs and
NewVersionComponentDACLs. The NewVersionComponentDACL type has the property that, if
interpreted as an OldVersionComponentDACL, each access allowed and access denied ACEs will grant
or deny all rights to the trustee rather than the more granular access rights. Whether or not an ORB

interprets NewVersionComponentDACLs is ORB -specific. <25>

An ORB might or might not interpret the SACL, if present , in a component - related security descriptor.
An ORB that does not interpret ComponentSACLs does not make authorization decisions on the basis

of mandatory integrity level. Whether or not an ORB interprets ComponentSACLs is ORB -
specific. <26>

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

61 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.2.22 DefaultAuthenticationLevelProperty

The DefaultAuthenticationLevelProperty type represents an authentication level, a s specified in [MS -
RPCE] section 2.2.1.1.8, to be used by the ORB as follows for DCOM calls:

Á The default authentication level for outgoing DCOM calls.

Á The minimum authentication level for incoming DCOM calls.

The scope with in which this default or minimum value is to be applied is specified for each of the
individual properties of this type.

Simple type: eDT_ULONG

Validity: MUST be one of the authentication level constants specified in [MS -RPCE] section 2.2.1.1.8.

Server val idation: Servers SHOULD <27> enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.23 ActivationTypeProperty

The ActivationTypeProperty type represents whether instance containers for a conglomeration are to

be hosted in a new process or in the creator's process.

Simple type: eDT_LPWSTR

Validity: MUST be one of the following values.

Value Meaning

"Local" Instanc e containers are to be hosted in a new process.

"Inproc" Instance containers are to be hosted in the creator's process.

Server validation: Servers SHOULD <28> enforce validity constraints.

Client validation: Clients MUS T enforce validity constraints.

2.2.2.24 TrustLevelProperty

The TrustLevelProperty type represents a numerical trust level .

Simple typ e: eDT_ULONG

Validity: MUST be a trust level supported by the ORB. The set of trust levels that are supported is

ORB-specific, <29> but all supported numerical values MUST be in the range 0x00000000
(meaning untrusted) to 0x00040000 (meaning fully trusted).

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.25 Defa ultImpersonationLevelProperty

The DefaultImpersonationLevelProperty type represents an impersonation level, as specified in [MS -
RPCE] section 2.2.1.1.9, to be used as a default value by the ORB for outgoing DCOM calls. The scope
within which this default is to be applied is specified for each of the individual properties of this type.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

62 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Simple type: eDT_ULONG

Validity: It MUST be one of the following values.

Value Meaning

eIMP_ANONYMOUS

0x00000001

The ORB is to make unsecured calls by default.

eIMP_IDENTIFY

0x00000002

The ORB is to use RPC_C_IMPL_LEVEL_IDENTITY by default.

eIMP_IMPERSONATE

0x00000003

The ORB is to use RPC_C_IMPL_LEVEL_IMPERSONATE by default.

eIMP_DELEGATE

0x00000004

The ORB is to use RPC_C_IMPL_LEVEL_DELEGATE by default.

Server validation: Servers SHOULD <30> enforce validity constraints.

Client validation : Clients MUST enforce validity constraints.

2.2.2.26 ORBSecuritySettingsProperty

The ORBSecuritySettingsProperty type represents a set of ORB security settings as an integer.

Si mple type: eDT_ULONG

Validity: MUST be a combination of the following flags.

Flag Meaning

fAC_MUTUAL_AUTH

0x00000001

The ORB is to provide mutual authentication services if this capability is
supported.

fAC_SECURE_REFS

0x00000002

The ORB is to provide services to secure reference counting against
malicious tampering if this capability is supported.

fAC_DYNAMIC

0x00000010

This flag is reserved for future use and SHOULD NOT be set.

fAC_STATIC_CLOAKING

0x00000020

The ORB is to configure th e default behavior for outgoing calls to use
static cloaking if this capability is supported. Static cloaking means that
on the first outgoing call to a particular target, the ORB captures the
identity of an impersonated client, if any, and uses this ident ity for all

calls to this target. It MUST NOT be used with
fAC_DYNAMIC_CLOAKING.

fAC_DYNAMIC_CLOAKING

0x00000040

The ORB is to configure the default behavior for outgoing calls to use
dynamic cloaking if this capability is supported. Dynamic cloaking
means that on each outgoing call, the ORB captures the identity of an
impersonated client, if any, and uses this identity for the call. It MUST
NOT be used with fAC_STATIC_CLOAKING.

fAC_ANY_AUTHORITY

0x00000080

The ORB is to accept any certificate as a root certificate for the purposes
of certificate -based authentication mechanisms if this capability is
supported.

fAC_MAKE_FUL LSIC

0x00000100

The ORB is to configure the default behavior for its security negotiation
mechanism to send security principal names in a format that represents

63 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Flag Meaning

the complete certificate chain if this capability is supported.

fAC_REQUIRE_FULLSIC

0x00000200

The ORB is to prevent its security negotiation mechanisms from sending
security principal names in a format that does not represent the
complete certificate chain if this capability is supported.

fAC_DISABLE_AAA

0x00001000

The ORB is to configure the def ault behavior for outgoing activation
requests to disallow activation of components that are configured to run
as the security identity of the client if this capability is supported.

fAC_NO_CUSTOM_MARSHAL

0x00002000

The ORB is to prevent the use of custom marshalers that are not trusted
if this capability is supported.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.27 MaxDumpCountProperty

The MaxDumpCountProperty type represents an upper limit on the number of debugging data files
that can be associated with a conglomeration.

Simple type: eDT_ULONG

Validity: MUST be b etween 0x00000000 and 0x000000C8 (decimal 200).

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.28 ConcurrentAppsProperty

The ConcurrentAppsProperty type represents an upper limit on the number of instance containers that

can be associated with a conglomeration.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000001 and 0x00100000 (decimal 1048576).

Serv er validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.29 RecyclingCriterionLimitProperty

The RecyclingCriterionLimitProperty type represents a numerical limit to be used in a criterion for
automatic recycling applied by an ORB.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x00100000 (decimal 1048576). A value of zero

indicates t hat the associated criterion is not to be applied by the ORB for automatic recycling.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

64 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.2.30 MaxThreadsProperty

The MaxThreadsProperty type represents a maximum number of threads an ORB is to use for a
particular purpose.

Simple type: eDT_ULONG

Validity: MUST be between 0x00000000 and 0x000003E8 (decimal 1000). A value of z ero indicates
that the ORB is to select a maximum based on ORB -specific criteria.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD enforce validity constraints.

2.2.2.31 PortsListProperty

The PortsListProperty type represents a list of TCP port numbers and ranges of TCP port numbers as a
string.

Simple type: eDT_LPWSTR

Validity: MUST be a PortsList according to the following Augmented Backus -Naur Form (ABNF)

syntax, as specified in [RFC4234] :

 PortsList = PortNumberOrRange / (PortNumberOrRange "," PortsList)

 PortNumbe rOrRange = PortNumber / PortRange

 PortRange = (PortNumber " - " PortNumber)

 PortNumber = 1*DIGIT

Furthermore, the following constraints MUST be met:

Á Each substring matching the PortNumber production MUST be the decimal representation of an
integer in the ran ge 0 to 65535, inclusive.

Á In each substring matching the PortRange production, the first PortNumber term MUST
represent an integer value strictly less than the value represented by the second PortNumber

term.

Server validation: Servers MAY enforce validity constraints.

Client validation: Clients SHOULD pass through the value provided by the client application.

2.2.2.32 Subscription Property Typed Value Formats

The publisher -subscriber framework data model exposed by COMA enables subscriptions to be
assigned name/typed value pairs with application -specific semantics, known as subscription
properties. Each subscription property's typed value is r epresented by two property values in a table
entry, one identifying the type and the other containing an encoding of the typed value. The formats
of these properties are specified in the following sections.

2.2.2.32.1 SubscriptionPropertyTypeProperty

The SubscriptionPropertyTypeProperty type represents the type of a subscription property's typed
va lue.

Simple type: eDT_ULONG

Validity: MUST be one of the following constants, as specified in [MS -OAUT] section 2.2.7: VT_BSTR,
VT_I4, VT_I8 or VT_I2.

http://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-OAUT%5d.pdf

65 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server validation: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.2.32.2 SubscriptionPropertyValueProperty

The SubscriptionPropertyValueProperty type represents an encoding of a subscription property's typed
value according to the subscription property's type as identified by a corresponding
SubscriptionPropertyTypeProperty (section 2.2.2.32.1) .

Simple type: eDT_BYTES

Validity: MUST be an encoding of the property's value according to type as follows:

Type Value encoding

VT_BSTR Encoded as a null - terminated array of wchar_t in little -endian byte order.

VT_I4 Encoded as a 32 -bit signed integer in little -endian byte order.

VT_I8 Encoded as a 64 -bit signed integer in little -endian byte order.

VT_I2 Encoded as a 16 -bit signed integer in little -endian byte order.

Server validatio n: Servers MUST enforce validity constraints.

Client validation: Clients MUST enforce validity constraints.

2.2.3 fModuleStatus

The fModuleStatus enumeration represents detailed status results from processing a file as a module,
as used in the IRegister::RegisterModule (section 3.1.4.10.1) ,
IRegister2::RegisterModule2 (section 3.1.4.11.4) , and IImport::ImportFromFile (section 3.1.4.12.1)

methods. A value of this type is specified to be a combination of zero or more of the following flags.

Flag Description

fMODULE_LOADED

0x00000001

The file is a dynamically linked library and was successfully loaded by the
server.

fMODULE_INSTANTIATE

0x00000002

The file is a dynamically linked library that has an implementation -defined
entry point for instantiating components. <31>

fMODULE_SUPPORTCODE

0x00000004

The file contains implementation -defined support code for communication
between components. <32>

fMODULE_CONTAINSCOMP

0x00000008

The file was recognized as a module (contains one or more components).

fMODULE_TYPELIB

0x00000010

The file was recognized as containing a "type library", an implementation -
specific format for component metadata. <33>

fMODULE_SELFREG

0x00000020

The file is a dynamically linked library that has an entry point to regist er its
own components. <34>

fMODULE_SELFUNREG

0x00000040

The file is a dynamically linked library that has an entry point to unregister
its own components. <35>

fMODULE_LOADFAILED The file appears to be a dynamically linked library, but the server failed to

66 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Flag Description

0x00 000080 load it.

fMODULE_DOESNOTEXIST

0x00000100

Either there is no file at the path specified or the file is inaccessible.

fMODULE_ALREADYINSTALLED

0x00000200

The file was recognized as a module (contains one or more components) but
the components that it contains are already registered.

fMODULE_BADTYPELIB

0x00000400

The file appears to contain a type library, but it is malformed.

fMODULE_CUSTOMSUPPORTED

0x00002000

The file contains a type library that specifies a custom mechanism to register
components, and this mechanism is supported by the server.

fMODULE_CUSTOMUNSUPPORTED

0x00004000

The file contains a type library that specifies a custom mechanism to register
components, but this mechanism is not supported by the server.

fMODULE_TYPELIBFAILED

0x00008000

An attempt to register the module by using the metadata in its type library
failed.

fMODULE_SELFREGFAILED

0x00010000

An attempt to register the modu le by using its self - registration entry point
failed.

fMODULE_CUSTOMFAILED

0x00020000

An attempt to register the module by using a custom mechanism failed.

2.2.4 fComponentStatus

This type represents detailed status results from an attempt to register or verify a component in a

module, as used in the IRegister::RegisterModule (section 3.1.4.10.1) ,
IRegister2::RegisterModule2 (section 3.1.4.11.4) , and IImport::ImportFromFile (section 3.1.4.12.1)
methods. A value of this type is specified to be a combination of zero or more of the following flags.

 Flag Meaning

fCOMPONENT_TYPELIBFOUND
(0x00000001)

Metadata for this component was found in a "type library", an
implementation -specific format for component metadata. <36>

fCOMPONENT_COMADATA
(0x00000002)

Metadata for the component's preferred configuration in a component full
configuration entry was found in a type library.

fCOMPONENT_INTERFACES
(0x00000008)

Metadata for this component's interfaces was found in a type librar y.

fCOMPONENT_INSTALLED
(0x00000010)

This component is already installed.

fCOMPONENT_PROXY
(0x00000100)

The component was handled specially due to import of a configured
proxy . MUST NOT be used by IRegister::RegisterModule or
IRegister2::RegisterModule2.

fCOMPONENT_CLSIDCONFLICT
(0x00000200)

The CLSID of this component matches the conglomeration identifier of an
existing conglomeration (used to flag a common configuration error by the
user).

fCOMPONENT_NOTYPELIB No metadata for this component was found in a type library.

67 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Flag Meaning

(0x00000800)

fCOMPONENT_HIDDEN
(0x00001000)

Metadata for this component was found in a type library but it is marke d
as hidden.

2.2.5 eComponentType

The eComponentType enumeration is used to select a component bitness when multiple bitnesses
might exist for the same component.

 typedef enum

 {

 eCT_UNKNOWN = 0x00000000,

 eCT_32BIT = 0x00000001,

 eCT_64BIT = 0x00000002,

 eCT_NATIVE = 0x00001000

 } eComponentType;

eCT_UNKNOWN: The component bitness is unknown to the client. The server MUST select the
native bitness of the component if it exists; otherwise, the serv er MUST select the non -native
bitness of the component.

eCT_32BIT: The server MUST select the 32 -bit bitness of the component.

eCT_64BIT: The server MUST select the 64 -bit bitness of the component.

eCT_NATIVE: The server MUST select the native bitness (see section 3.1.4.4) of the component.

2.2.6 SRPLevelInfo

The SRPLevelInfo structure defines a software restriction policy trust level, as spec ified in section

3.1.1.1.9 , supported by the server.

 typedef struct {

 DWORD dwSRPLevel;

 [string] WCHAR* wszFriendlyName;

 } SRPLevelInfo;

dwSRPLevel: The numerical identifier of the software restriction policy level. This MUST be between
0x00000000 and 0x00040000.

wszFriendlyName: A user - friendly display name for the software restriction policy level.

2.2.7 CatSrvServices

The CatSrvServices e numeration identifies the optional catalog - related capabilities of a COMA server
that can be controlled dynamically by the ICapabilitySupport (section 3.1.4.19) interface. The current
version of C OMA defines one such capability, instance load balancing.

 typedef enum

 {

 css_lb = 1

68 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 } CatSrvServices;

css_lb: Identifies the instance load balancing capability.

2.2.8 CatSrvServiceState

The CatSrvServiceState enumeration identifies possible run - time states for instance load balancing.

 typedef enum

 {

 css_serviceStopped = 0,

 css_serviceStartPending = 1,

 css_serviceStopPending = 2,

 css_serviceRunning = 3,

 css_serviceContinuePending = 4,

 css_servicePausePending = 5,

 css_servicePaused = 6,

 css_serviceUnknownState = 7

 } CatSrvServiceState;

css_serviceStopped: Instance load balancing is not running.

css_serviceStartPending: Instance load balancing is not yet running, but it is in the process of
starting.

css_serviceStopPending: Instance load balancing is running, but it is in the process of stopping.

css_serviceRunning: Instance load balancing is running.

css_serviceContinuePending: Instance loa d balancing is running, has been paused, and is in the
process of resuming.

css_servicePausePending: Instance load balancing is running, but it is in the process of pausing.

css_servicePaused: Instance load balancing is running, but it is paused.

css_ser viceUnknownState: The server was unable to determine the state of instance load
balancing.

2.2.9 InstanceContainer

 The InstanceContainer structure represents an instance container.

 typedef struct {

 GUID ConglomerationID;

 GUID PartitionID;

 GUID ContainerID;

 DWORD dwProcessID;

 BOOL bPaused;

 BOOL bRecycled;

 } InstanceContainer;

ConglomerationID: The conglomeration identifier of the conglomeration associated with the
instance container.

Part itionID: The partition identifier of the partition that contains the conglomeration associated with
the instance container.

69 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ContainerID: The activation of the instance container.

dwProcessID: The value of the instance container's ProcessIdentifier pr operty, as described in

section 3.1.1.3.21 .

bPaused: A flag that indicates whether or not the instance container is paused .

bRecycled: A flag that indicates whether or not the instance container has been recycled.

70 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3 Protocol Details

The following sections specify details of COMA, including abstract data models, message processing
events, and sequencing rules.

The client initiates a conversation with a server by performing DCOM activation <37> (see [MS -
DCOM] section 1.3.1) of the COMA server CLSID (CLSID_COMAServer) specified in section 1.9 . After
getting the interface pointer to the DCOM object as a result of the activation, the client works with the

object by making calls on the DCOM interface that it supports. When complete, the client performs a
release on the interface pointer. For the purposes of initialization and other behavior described in this
section, the conversation between a server and a single client from the time of activation to the time
that the client releases its last reference on one of the server interfaces will be referred to as a
session .

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The de scribed organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

3.1.1.1 Conf iguration and the ORB

With the exception of a few meta -configuration properties, such as the Changeable and Deleteable
properties of a conglomeration (section 3.1.1.3.6), the configuration that is stored in the COMA
server's catalog is intended for use by the target ORB and MUST NOT be interpreted by the COMA
server itself. <38> They are merely applied as is to the ORB, which can interpret them in a way that is

independen t of which protocol or mechanism was used to configure them.

However, a COMA server SHOULD manage this configuration in a manner that is sensible for its target
ORB. For example, this protocol permits a server to constrain unused configuration properties t o a
default value. (For more information about implementation -specific constraints, see section 3.1.1.2.5 .)
A COMA server SHOULD therefore constrain properties that do not apply to its ORB.

The fo llowing sections describe facilities that might be provided by an ORB and that are configurable
using COMA. References are provided to the specific configuration in the catalog that applies to these

facilities.

3.1.1.1.1 Transactions

If the target ORB provides facilities for managing atomic transactions, <39> the following SHOULD be
used to configure this facility:

Á The Transaction, FlowTransactionIntegratorProperties, TransactionTimeout, and

TransactionIsolationLevel properties of the ComponentsAndFullConfigurations table, as specified in

section 3.1.1.3.1 .

Á The TransactionTimeout property of the MachineSettings table, as specified in section 3.1.1.3.8 .

Compensation is a well -known technique for guaranteeing atomicity and durability of transactions
using a write -ahead log (for an example of this technique, see [ARIESTrnsRcvr]). A compensating
resource manager is an ORB facility that applies compensation using an ORB -managed log. If the
tar get ORB provides compensating resource managers, <40> the following SHOULD be used to

configure this facility:

%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=94408

71 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Á The CRMEnabled and CRMLogFile properties of the Conglomerations table, as specified in section
3.1.1.3.6 .

3.1.1.1.2 Pooling

An ORB might provide a single instance container, at most, for a conglomeration at any given time, or
it might have the capability to provide multiple instance containers. Enabling a conglomeration to
support multiple concurrent instance containers is known as container pooling . If the target O RB
provides container pooling, <41> the following SHOULD be used to configure this facility:

Á The ConcurrentApps property of the Conglomerations table, as specified in section 3.1.1.3.6 .

Instance pooling refers to enabling component instances that are no longer active to return to a pool
for reuse. If the target ORB provides instance pooling, <42> the following SHOULD be used to

configure this facility:

Á The MinPoolSize, MaxPoolSize, and EnablePooling properties of the
ComponentsAndFullConfigurations table, as specified in section 3.1.1.3.1 .

If an ORB provides instance pool ing, there is a subtle distinction between instantiation and activation,
as these terms are used in the description of configuration properties. Activation refers to the process
of making a component instance active (able to respond to requests), even if t he component instance

had been created previously (for example, if the instance was pooled). Therefore, activation might
involve instantiating a component (if no suitable pooled component instance existed prior to the
activation). If the target ORB does no t provide instance pooling, these terms can be understood to be
interchangeable.

3.1.1.1.3 Role -Based Security

I f the ORB provides role -based security, <43> the following SHOULD be used to configure this facility:

Á The ComponentAccessChecksEnabled property of the ComponentsAndFullConfigurations table, as
specified in section 3.1.1.3.1 .

Á The RoleBasedSecurityEnabled property of the Conglomerations table, as specified in section
3.1.1.3.6 .

Á The Roles (as specified in section 3.1.1.3.9), RoleMembers (as specified in section 3.1.1.3.10),
RolesForComponent (as specified in section 3.1.1.3.13), RolesForInterface (as specified in section
3.1.1.3.14), and RolesForMethod tables (as specified in section 3.1.1.3.15).

3.1.1.1.4 Publisher -Subscriber Framework

If the ORB provides a publisher -subscriber framework, <44> the following SHOULD be used to
configure this facility:

Á The IsEventClass, PublisherID, MultiInterfacePublisherFilterCLSID, AllowInprocSubscribers, and
FireInParallel properties of the ComponentsAndFullConfigurations table, as specified in section
3.1.1.3.1 .

Á The EventClasses (as specified in section 3.1.1.3.22), Subscr iptions (as specified in section
3.1.1.3.23), SubscriptionPublisherProperties (as specified in section 3.1.1.3.24),
SubscriptionSubscrib erProperties (as specified in section 3.1.1.3.25) tables.

3.1.1.1.5 Transport Protocols

Although a majority of the configuration specified in this document is independent of the transport

protocols enabled or used by the target ORB, a few configuration properties are intended to control

72 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

specific transport protocols or transport protocols with specific characteristics. This section covers
these configuration properties.

If the ORB provides a facility for exposing components via SOAP [SOAP1.1] or an extension
thereof, <45> the following SHOULD be used to configure this facility:

Á The SoapAssemblyName and SoapTypeName properties of the ComponentsAndFullConfigurations
table, as specified in section 3.1.1.3.1 .

Á The SoapActivated, SoapVRoot, SoapMailTo, and SoapBaseUrl properties of the Conglomerations
table, as specified in section 3.1.1.3.6 .

Queuing generically refers to a transport protocol stack in which an asynchronous remote procedure
call protocol is layered over a reliable messaging protocol. The following diagram shows queuing, with
the queued components protocol layered over the data structure and the queue manager client

protocol. If an ORB enables queuing, a conceptual service that waits for queued messages for one or
more components is known as a queue listener . For more information about queueing proto cols, see
[MC -COMQC] . For more information about message queuing data structures, see [MS -MQMQ] . For

more information about message queueing client protocols, see [MS -MQMP] .

Figure 5 : Example of a queuing transport stack

If the ORB provides a facility for exposing components via queuing, <46> the following SHOULD be

used to configure this facility:

Á The IsQueued, QCListenerEnabled, QCListenerMaxThreads, and QCAuthenticateMsgs properties of
the Conglomerations table, as specified in section 3.1.1.3.6.

Á The IsQueueable and QueueingSupported properties of the ConfiguredInterfaces table, as
specified in s ection 3.1.1.3.11 .

Finally, the following SHOULD be managed as ORB -wide configuration of transport protocols:

Á The EnableDCOM, EnableCIS, PortsInternetAvailable, UseInternetPorts, and RpcProxyEnabl ed
properties of the MachineSettings table, as specified in section 3.1.1.3.8 .

Á The Protocols table, as specified in section 3.1.1.3.26 .

3.1.1.1.6 Instance Load Balancing

If the ORB provides instance load balancing, <47> the following SHOULD be used to configure this
facility:

Á The LoadBalancingSupported property of the ComponentsAndFullConfigurations table, as specified
in section 3.1.1.3.1 .

Á The Load BalancingCLSID property of the MachineSettings table, as specified in section 3.1.1.3.8 .

3.1.1.1.7 Configured Proxies

http://go.microsoft.com/fwlink/?LinkId=90520
%5bMC-COMQC%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMP%5d.pdf

73 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

A configured proxy is a preferred client configuration for a component or conglomeration provided by
another ORB. If the ORB provides a facility for configured proxies, <48> the following SHOULD be used

to configure this facility:

Á The ServerName and IsProxyApp properties of the Conglomerations table, as specified in section

3.1.1.3.6 .

Á The RemoteServer Name property of the MachineSettings table, as specified in section 3.1.1.3.8 .

3.1.1.1.8 Transport Security

If the ORB enables security parameters of supported transport protocols to be configured, the
following SHOULD be used to configure this facility:

Á The LaunchPermissions, AccessPermissions, and Authentication Level properties of the

ComponentLegacyConfigurations table, as specified in section 3.1.1.3.3 .

Á The Authentication, ImpersonationLevel, AuthenticationCapability, and QCAuthenticateMsgs

properties of the Conglomerations table, as specified in section 3.1.1.3.6 .

Á The DefaultAuthenticationLevel, DefaultImpersonationLevel, EnableSecurityTracking, and
EnableSecureReferences properties of the Mac hineSettings table, as specified in section 3.1.1.3.8 .

3.1.1.1.9 Software Restriction Policy

Software restriction policy is an ORB facility that enables a numerical trust level to be assigned to
components. The trust level represent s the degree of trust that is associated with a component and is
used in an ORB -specific manner to control instantiation of components. If the target ORB provides a
configurable software restric tion policy, the server SHOULD expose the supported set of trust levels to
clients via the ICatalogUtils::EnumerateSRPLevels method (as specified in section 3.1.4.18.8), and the
following SHOULD b e used to configure this facility:

Á The SRPLevel property of the ComponentLegacyConfigurations table, as specified in section
3.1.1.3.3 .

Á The SRPLevel and SRPEnabled properties of the Conglomeration s table, as specified in section
3.1.1.3.6 .

Á The SaferActivateAsActivatorChecks and SaferRunningObjectChecks properties of the
MachineSettings table, as specified in section 3.1.1.3.8 .

3.1.1.1.10 Crash Dump

If the target ORB provides a facility to automatically collect debugging data, known as a crash d ump,
when an instance container encounters an exceptional condition at run time, the following SHOULD be
used to configure this facility:

Á The DumpEnabled, DumpOnException, DumpOnFailfast, MaxDumpCount, and DumpPath
properties of the Conglomerations table (section 3.1.1.3.6) .

3.1.1.1.11 Partitions and Users

If the target ORB has facilities that require users to be associated with partitions, for example, to
assign each user a default partition, the following SHOULD be used to configure this facility:

Á The PartitionUsers (as speci fied in section 3.1.1.3.16), PartitionRoles (as specified in section
3.1.1.3.17), and PartitionRoleMembers tables (as specified in secti on 3.1.1.3.18).

74 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

In addition, if the target ORB has the ability to associate users with partitions that are based on either
local configuration or configuration that is managed by an active directo ry, the following SHOULD be

used to configure this facility:

Á The LocalPartitionLookupEnabled and DSPartitionLookupEnabled properties of the MachineSettings

table, as specified in section 3.1.1.3.8 .

An ORB that uses an active directory in this manner might keep a local cache of user -partition
associations. These associations are not exposed in the COMA catalog, but the method
ICatalogUtils2::FlushPartitionCache , as specified in section 3.1.4.18.7, enables clients to flush a
server's cache in case this information is stale.

3.1.1.1.12 System Services

If the target ORB has a facility that enables components to be instantiated in the context of a system
service or daemon, the following SHOULD be used to configure this facility:

Á The ServiceName and ServiceParameters properties of the ComponentLegacyConfigurations table,

as specified in section 3.1.1.3.3 .

Á Alternate launch configurations, as specified in section 3.1 .1.4 .

3.1.1.2 Tables

The catalog that is managed by the catalog server is organized as a set of tables. A table is a set of
entries, each of which represents a configurable object or a relationship between objects. With the
exception of the ComponentsAndFullConfigurations table, all the entries in a specific table represent
either objects of the same type or relationshi ps between objects of the same types. For historical

reasons, the ComponentsAndFullConfigurations table contains entries that represent two different
types of objects: unconfigured components and component full configuration entries. Each table is
identifi ed by a GUID, known as the table identifier.

An entry is a list of typed properties. Each table has a schema, which specifies the properties that are

present in each entry in the table, and an order for interchange in methods that read and write to
tables. The schemas for each table are listed in the table definitions (see section 3.1.1.3).

Except where otherwise noted, the catalog tables are persistent; in other words, they retain their state

between sessions.

3.1.1.2.1 Table Metadata

Each table has associated metadata, which can be retrieved by a client by calling
ICatalogTableInfo::GetClientTableInfo (see section 3.1.4.7.1). Table metadata consists of the table's
schema, and for historical reasons, an optional AuxiliaryGuid value. This metadata is specified in each

table's definition (see section 3.1.1.3).

3.1.1.2.2 Supported Queries

When reading from or writing to a table, and for historical reasons, when requesting a table's

m etadata, clients provide a query, which selects a subset of the entries in the table according to
constraints on a set of properties in the table. Each table's definition (see section 3.1.1.3) inc ludes a
list of one or more query templates, or rules for constructing a query on that table. A query that is

constructed according to a query template that is listed in a table's definition is known as a supported
query for that table.

3.1.1.2.3 Multiple -Bitness Su pport

75 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

A COMA server that supports catalog version 4.00 or catalog version 5.00 MAY <49> support the
configuration of multiple bitnesses for components. If a server supports this capa bility, then for

historical reasons 64 -bit component bitness is said to be "native bitness" and 32 -bit component
bitness is said to be "non -native bitness" If a server does not support this capability, the single bitness

that is supported by the server is said to be "native bitness".

A COMA server that supports multiple bitnesses has an additional table: the
ComponentNonNativeBitness table, which is not defined for servers that do not support this capability.
In addition, for historical reasons, the Compone ntsAndFullConfigurations table has a "hidden"
component bitness property, which is not present in the representation of the table's entries on the
wire. The hidden component bitness property, when defined, has a value of either 32 -bit or 64 -bit.

3.1.1.2.4 Table Flag s

For historical reasons, a COMA server that supports multiple bitnesses accepts and assigns special
meaning to the values of the fTableFlags type (see section 2.2.1.1) for reads from and writes to
certain tables. A COMA server that does not support multiple bitnesses does not assign special
meaning to these flags and ignores them.

For the ComponentsAndFullConfigurations table, these flags are used to select entr ies based on the

hidden bitness property.

For the ComponentNativeBitness and ComponentNonNativeBitness tables, these flags serve only as a
consistency check (required to have the values fTABLE_64BIT and fTABLE_32BIT, respectively).

For other tables, only t he value zero is supported for table flags.

3.1.1.2.5 Constraints

The table definitions specify constraints on properties other than those that are implied by their type,

size, and flags. All COMA servers MUST ensure that their catalog conf orms to these constraints.

For the purposes of this protocol, two types of constraints can be distinguished: referential and
nonreferential. Referential constraints restrict the legal values of a property in an entry based on

properties of other entries, i ncluding possibly entries in other tables (for example, constraints that
reflect containment relationships). Nonreferential constraints restrict the legal values of a property
independently of the properties of any other entries (for example, a range of le gal values for a
configuration property).

An important class of referential constraints is primary key constraints. Each table definition specifies
a set of properties in the table as its primary key. Entries are constrained so that an entry is uniquely
identified by its values for the primary key properties. In other words, there exists at most one entry
in the table with any given value assignment to all the values in the primary key.

A COMA server MAY enforce implementation -specific, nonreferential const raints, as long as these
constraints are more restrictive than those that are specified in the table definitions. For example, a

server MAY constrain an unused property to a default value. The ICa talogTableWrite::WriteTable (see
section 3.1.4.9.1) method specifies a mechanism by which a server can return TableDetailedError
records (see section 2.2.1.16) to indicate to the client the reason for a failed write. If a server

enforces implementation -specific constraints more restrictive than those that are specified in the table
definitions, it SHOULD return TableDetailedError records for writes that fail due to these more
restrictive constraint s.

A COMA server MUST NOT enforce any referential constraints except those that are specified in the

table definitions.

3.1.1.2.6 Default Values

76 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The following changes to the catalog require the server to set properties to implementation -specific
default values:

Á Adding an entry to a table in a call to ICatalogTableWrite::WriteTable (section 3.1.4.9.1).

Á Creating a component full configuration entry as part of registration in a call to

IRegister::RegisterModule (section 3.1.4.10.1) or IRegister2::RegisterModule2 (section
3.1.4.11.4).

Á Creating a component configurati on entry in a call to IRegister2::CreateFullConfiguration (section
3.1.4.11.1) or IRegister2::CreateLegacyConfiguration (section 3.1.4.1 1.2).

Á Converting a component legacy configuration entry into a component full configuration entry in a
call to IRegister2::PromoteLegacyConfiguration (section 3.1.4.11.3).

A server is free to choo se any default values for properties as long as they conform to the constraints

that are specified in the table definitions.

3.1.1.2.7 Internal Properties

For historical reasons, there are properties in some of the tables that are i ntended for internal use
only and that do not affect interoperability. A COMA server MAY <50> use these properties for
implementation -specific purposes. Internal properties also implicitly disallow writes by the client,

although whether a server enforces this is implementation -specific. <51> Internal properties are
specified as such in the table definitions.

3.1.1.2.8 Write Restrictions

Some tables do not support specific types of writes (add, update, or remove) or disallow writes
altogether. The write operations that are supported by each table are specified in its definition.

Additionally, some tables h ave restrictions on which entries can be legally modified, based on

properties such as the Changeable entry in the Conglomerations table. Where such restrictions exist
for a table, they are specified in its definition.

Finally, some properties are read -onl y, even when the entry allows updates. Read -only properties for
a table that otherwise allows updates are specified in the table definition.

3.1.1.2.9 Triggers

A COMA server MAY <52> modify pr operties of entries automatically as the result of another property

being modified; for example, to enforce configuration dependencies that a client might not have
detected. Such behavior is known as a trigger . A property whose modification causes other pr operties
to be modified is known as the triggering property of a trigger, and any properties so modified are
known as triggered properties .

The following restrictions apply to triggers:

Á Some properties cannot be triggered; in other words, they MUST NOT be triggered. Properties that
cannot be triggered are specified as such in the table definitions.

Á With the exception of internal properties, for which this document does not specify any restrictions
on how they are used, a triggered property MUST be a propert y of the same entry as the
triggering property.

Á A server MAY <53> apply multiple triggers in a write operation to a single entry. However, if
multiple triggers modify the same triggered property, all triggers MUST cause a n identical,
idempotent modification to the triggered property. For example, multiple triggers might have the

effect of setting a property to TRUE if more than one property has a configuration dependency on
the property.

77 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

For the purposes of describing the behavior of the ICatalogTableWrite::WriteTable method (see
section 3.1.4.9.1), the following additional restriction applies to how triggers are performed. If a write

explicitly updates a property and the property is also triggered by an update to another property, the
server MUST do one of the following:

Á The server MAY disallow such a write and fail the call, in which case the server SHOULD return
TableDetailedError records, as specified in section 2.2.1.16 , to indicate to the client why the write
failed.

Á The server MAY <54> perform the modifications in a trigger -consistent order. A trigger -consistent
orde r is defined as an order in which, for all triggers, the triggered properties are ordered before
the triggering property. In other words, the trigger overwrites the explicit modification.

3.1.1.2.10 Cascades

Many of the referent ial constraints that are specified in the table definitions reflect containment
relationships (for example, a component configuration entry is contained in a conglomeration).
Removing an entry from a table, where that entry represents a container in a cont ainment

relationship, causes all the contained entries to be removed. This recursive process is known as a
cascade . Each table definition specifies what cascades, if any, are performed as a result of removing

an entry.

3.1.1.2.11 Populates

The PartitionRoles table, which does not support writes, MAY <55> be populated with entries when a
new entry is added to the Partitions table. See the definition of the Partitions table (section 3.1.1.3.7)
for a specification of this populate.

3.1.1.3 Table Definitions

The following sections specify the schemas and other information for the tables used by COMA. These
definitions cover all catalog versions, but when differences exist between versions, these differences
are called out. Each table definition has the following information:

Table identifier: The GUID for the table.

AuxiliaryGuid : An additional GUID that is returned by
IClientTableInfo::GetClientTabl eInfo (section 3.1.4.7.1) , if this table specifies such a value.

Defined in catalog version: The catalog versions for which the table is defined.

Prerequisites: Restrictions, other than catalog version, on when the table is defined.

Hidden bitness property : Specifies whether the table defines a hidden bitness property.

Supported query templates: A set of templates from which supported queries can be constructed.

Each template is a list of cells, with parameters supplied by the client indicated by <A>, , etc.
Empty queries (no query cells) are listed as "Empty query". See QueryCellArray (section 2.2.1.5)
and QueryComparisonData (section 2.2.1.6) for more details about how queries are represented.

Primary key : The set of properties in the primary key.

Other referential constraints: Referential constraints on table entries besides the primary key
constraint (nonreferential constraints are sp ecified in the individual property definitions).

Write restrictions: Specifies which types of writes (add, update, remove), if any, are supported by

the table, and optionally additional restrictions on which entries can be legally modified.

Cascade: Specifies the cascade that MUST be performed when an entry is removed from the table.

78 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Populate: Specifies the populate that MAY be performed when an entry is added to the table.

Properties: The table's schema, as returned by IClientTableInfo::GetClientTab leInfo, and additional

information about its properties. This is specified in a tabular format similar to the following
example, followed by descriptions of each of the properties.

 Index
(3.00)

 Index
(4.00/.500)

 Property
name Type Size Flags Meta

0 0 ExampleProp1 eDT_GUID 16 0x00000003 RO

- 1 ExampleProp2 eDT_LPWSTR variable 0x00000000 IN,
NT

1 2 ExampleProp3 eDT_ULONG 4 0x00000002 TR

Index (versions): The zero -based index of a property in the table for a particular catalog version or
set of catalog versions. The index values specify the order in which properties are exchanged with

the reads from the table or the writes to the table. They are additionally used as unique identifiers
for properties in QueryCell (section 2.2.1.4) structures and TableDetailedError (section 2.2.1.16)
records. If a property has a dash in the index column for a catalog version, thi s indicates that the
property is not defined for that version.

Property name: A descriptive identifier for the property. These identifiers are used throughout this
document to refer to a particular property in a table, but they are not used on the wire.

Ty pe: The eDataType (section 2.2.1.2) value that specifies the type of the property. This value MUST

be used for the dataType field of the PropertyMeta (section 2.2.1.7) structure for this property.

Size: The size of the property (fixed size or maximum size). See PropertyMeta for more details about
the meaning of this size and how it is represented.

Flags: The value that MUST be used in the Flags field of the PropertyMeta structure for this property.
See PropertyMeta for more details about these flags.

Meta: A list of meta properties that are not implied by Flags. The following mnemonics are used.

 Mnemonic Meaning

IN The property is an internal property (section 3.1.1.2.7).

RO The property is read -only (section 3.1.1.2.8).

TR The property can be tri ggered (section 3.1.1.2.9).

NT The property requires the NoTouch bit (section 2.2.1.8) to be set for writes to the table.

3.1.1.3.1 ComponentsAndFullConfigurations Table

The entries in the ComponentsAndFullConfigurations table can be divided into two categories:

Á Entries represent ing components (or component bitnesses on servers that support multiple
bitnesses) that do not have component full configuration entries.

Á Entries representing component full configuration entries.

79 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Both types of entries have the same schema. However, the se mantics of these types of entries are
different, as are the constraints on the values of their properties. This is specified in more detail in this

section.

Table identifier: {6E38D3C8 -C2A7 -11D1 -8DEC-00C04FC2E0C7}

AuxiliaryGuid: {B4B3AECB -DFD6 -11D1 -9DAA -00 805F85CFE3}

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: Yes (catalog version 4.00 and catalog version 5.00).

Supported query templates

Cell 1 Cell 2

 eSQO_OPTHINT equals 1 ConglomerationIdentifier equa ls <A>

 ConglomerationIdentifier equals null InprocServerPath not equal to null

Primary key

Catalog
version Primary key properties

 3.00 CLSID

 4.00/5.00 Hidden component bitness property, CLSID , PartitionIdentifier, Reserved1,
ConfigurationBitness

For the purposes of constraints and the semantics of certain properties, it is important to make a
distinction between the two types of entries. Entries that have the value GUID_NULL for the

ConglomerationIdentifier property represent components (or component bitnesses on servers that
support multiple bitnesses) that do not have component full configurations on the server. Hereafter

these a re referred to as component entries . Entries that have a value other than GUID_NULL for the
ConglomerationIdentifier property represent component full configurations (hereafter full configuration
entries).

Other referential constraints

For simplicity, the constraints are expressed as if the hidden component bitness property is present on
all servers that support catalog version 4.00 or catalog version 5.00. For these purposes, the hidden

component bitness property can be thought of as ha ving the fixed value of the single bitness
supported by the server on servers that do not support multiple bitnesses.

The following constraints apply to component entries.

Catalog
version Constraints Notes

3.00 If ProgID is not null, there MUST NOT exist
another entry with an identical value for ProgID.

The ProgID is a unique identifier of a
component for scripting environments.

4.00/5.00 Component entries MUST be uniquely identified
by CLSID and hidden component bitness
property.

Implied by constraints on PartitionIdentifier,
Reserved1, and ConfigurationBitness properties
for these entries.

4.00/5.00 There MUST NOT exist a full configuration entry
in the table with identical values for CLSID and

Entries represent components (or component
bitnesses) that do not have component full

80 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Catalog
version Constraints Notes

hidden component bitness property. configuration entries.

4.00/5.00 If ProgID is not null, there MUST NOT exist
another entry with identical values for ProgID
and hidden component bitness property.

The ProgID is a unique identifier of a
component (or component bitness) for
scripting environments.

The following constraints apply to component full configuration entries.

Catalog
version Constraints Notes

3.00 There MUST exist an entry in the Conglom erations table
with an identical value for the ConglomerationIdentifier
property.

Each component configuration entry is
contained in a conglomeration.

3.00 There MUST NOT exist an entry in the
ComponentLegacyConfigurations table with identical

CLSID.

A component (or component bitness)
that has a component legacy

configuration can have no other
component configuration entries.

3.00 If ProgID is not null, there MUST NOT exist another entry
with an identical value for ProgID.

The ProgID is a unique ide ntifier of a
component for scripting environments.

3.00 If ServerInitializer is TRUE, the conglomeration identified
by ConglomerationIdentifier MUST have the value
0x00000001 for the Activation property.

The server initializer facility is intended
for i nitialization of instance containers
created in a new process.

4.00/5.00 There MUST exist an entry in the Conglomerations table
with an identical value for the ConglomerationIdentifier
property.

Each component configuration entry is
contained in a congl omeration.

4.00/5.00 The matching entry in the Conglomerations table MUST
have an identical value for the PartitionIdentifier property.

4.00/5.00 There MUST exist an entry in the Partitions table with an
identical value for the PartitionIdentifier pro perty.

4.00/5.00 Full configuration entries MUST be uniquely identified by
CLSID and ConglomerationIdentifier.

Each component can have at most one
component configuration entry in a
conglomeration.

4.00/5.00 There MUST NOT exist another entry in the table with an
identical value for the ConglomerationIdentifier property
and a different value for the ConfigurationBitness
property.

Each conglomeration contains
component full configuration entries
for a single b itness.

4.00/5.00 There MUST NOT exist an entry in the
ComponentLegacyConfigurations table with identical
values for the CLSID and ConfigurationBitness properties.

A component (or component bitness)
that has a component legacy
configuration entry can ha ve no other
component configuration entries.

4.00/5.00 There MUST NOT exist another entry in the table with
identical CLSID and ConfigurationBitness for which the
values of the InprocServerPath, ThreadingModel, ProgID,
Description, VersionMajor, VersionM inor, VersionBuild, or
VersionSubBuild properties have different values.

These properties represent static
properties of the component (or
component bitness), not the
configuration. Note, however, that
VersionMajor, VersionMinor,
VersionBuild, or VersionS ubBuild are
not used for component entries.

4.00/5.00 If ProgID is not null, there MUST NOT exist another entry
with identical values for ProgID and hidden component

The ProgID is a unique identifier of a
component (or component bitness) for

81 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Catalog
version Constraints Notes

bitness property but a different value for CLSID. scripting environments.

4.00/5.00 If ServerInitializer is TRUE, the conglomeration identified
by ConglomerationIdentifier MUST have the value
0x00000001 for the Activation property.

The server initializer facility is intended
for initialization of instance containers
created in a new process.

Write restrictions: Add MUST NOT be supported. Update and remove MUST be supported if and only
if:

Á The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

Á The conglomeration identified by ConglomerationIdentifier has the value "N" for IsSystem.

Á The partition identified by PartitionIdentifier has the value "Y" for Changeable.

Cascade: On removal of a full configuration entry, all entries in the ConfiguredInterfaces table

(section 3.1.1.3.11) and RolesForComponent table (section 3.1.1.3.13) tables that have identical
values for CLSID property (catalog version 3.00), or CLSID, PartitionIdentifier, and
ConfigurationBitness properties (catalog version 4.00) are removed.

Populate: N/A.

Properties:

Index
(3.00)

Index
(4.00/5.0 0) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

1 1 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

2 2 ThreadingModel eDT_ULONG 4 0x00000002 RO

3 3 ProgID eDT_LPWSTR variable 0x00000000 RO

4 4 Description eDT_LPWSTR variable 0x00000000

5 5 Internal1 eDT_LPWSTR variable 0x00000000 IN

- 6 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 7 Reserved1 eDT_GUID 16 0x00000003

- 8 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

6 9 ConglomerationIdentifier eDT_GUID 16 0x00000000 RO

7 10 Internal2 eDT_GUID 16 0x00000000 IN

8 11 VersionMajor eDT_ULONG 4 0x00000002 RO

9 12 VersionMinor eDT_ULONG 4 0x00000002 RO

10 13 VersionBuild eDT_ULONG 4 0x00000002 RO

11 14 VersionSubBuild eDT_ULONG 4 0x00000002 RO

12 15 Internal3 eDT_ULONG 4 0x00000002 IN

13 16 ServerInitializer eDT_ULONG 4 0x00000002 TR

82 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00/5.0 0) Property name Type Size Flags Meta

14 17 Transaction eDT_ULONG 4 0x00000002 TR

15 18 Synchronization eDT_ULONG 4 0x00000002 TR

16 19 Internal4 eDT_ULONG 4 0x00000002 IN

17 20 FlowWebServerProperties eDT_ULONG 4 0x00000002 TR

18 21 FlowTransactionIntegratorProperties eDT_ULONG 4 0x00000002 TR

19 22 JustInTimeActivation eDT_ULONG 4 0x00000002 TR

20 23 ComponentAccessChecksEnabled eDT_ULONG 4 0x00000002 TR

21 24 Internal5 eDT_BYTES variable 0x00000000 IN

22 25 Internal6 eDT_GUID 16 0x00000000 IN

23 26 MinPoolSize eDT_ULONG 4 0x00000002 TR

24 27 MaxPoolSize eDT_ULONG 4 0x00000002 TR

25 28 CreationTimeout eDT_ULONG 4 0x00000002 TR

26 29 ConstructorString eDT_LPWSTR variable 0x00000000 TR

27 30 ConfigurationFlags eDT_ULONG 4 0x00000002 TR

28 31 Internal7 eDT_GUID 16 0x00000000 IN

29 32 Reserved2 eDT_ULONG 4 0x00000002

30 33 Internal8 eDT_LPWSTR variable 0x00000000 IN

31 34 Internal9 eDT_GUID 16 0x00000000 IN

32 35 ExceptionClass eDT_LPWSTR variable 0x00000000 TR

33 36 Internal10 eDT_ULONG 4 0x00000002 IN

34 37 Internal11 eDT_LPWSTR variable 0x00000000 IN

35 38 Internal12 eDT_ULONG 4 0x00000002 IN

36 39 Internal13 eDT_LPWSTR variable 0x00000020 IN

37 40 Internal14 eDT_LPWSTR variable 0x00000000 IN

38 41 Internal15 eDT_LPWSTR variable 0x00000020 IN

39 42 Internal16 eDT_ULONG 4 0x00000002 IN

40 43 IsEventClass eDT_ULONG 4 0x00000002 RO

41 44 PublisherID eDT_LPWSTR variable 0x00000000 TR

42 45 MultiInterfacePublisherFilterCLSID eDT_GUID 16 0x00000000 TR

43 46 AllowInprocSubscribers eDT_ULONG 4 0x00000002 TR

44 47 FireInParallel eDT_ULONG 4 0x00000002 TR

83 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00/5.0 0) Property name Type Size Flags Meta

45 48 Internal17 eDT_ULONG 4 0x00000002 IN

46 49 Internal18 eDT_LPWSTR variable 0x00000000 IN

47 50 TransactionTimeout eDT_ULONG 4 0x00000002 TR

48 51 Internal19 eDT_ULONG 4 0x00000002 IN

- 52 IsEnabled eDT_ULONG 4 0x00000002

- 53 TransactionIsolationLevel eDT_ULONG 4 0x00000002 TR

- 54 IsPrivateComponent eDT_ULONG 4 0x00000002

- 55 SoapAssemblyName eDT_LPWSTR variable 0x00000000 TR

- 56 SoapTypeName eDT_LPWSTR variable 0x00000000 TR

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

CLSID: The CLSID of the component. <56>

InprocServerPath: If not null, an ImplementationSpecificPathProperty (section 2.2.2.2) providing a
path to a module of the component (or component bitness) that is supported for full

configuration. <57> For full configuration entries, it MUST NO T be null.

ThreadingModel: A ThreadingModelEnumerationProperty (section 2.2.2.3.1) representing the
restrictions, if any, that the ORB is to place on the types of threads on which the instantiatio ns of the
component (or component bitness) will be hosted. <58>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) of the component (or compone nt
bitness). <59> If not null, the character length of this property MUST be between 1 and 39.

Description: A DescriptionProperty (section 2.2.2.7) providing a h uman - readable description of the
component (or component bitness). <60>

PartitionIdentifier: For component full configuration entries, the partition identifier of the partition in
which the configuration resides. For comp onent entries, a
PlaceholderPartitionIdProperty (section 2.2.2.1.1) .

Reserved1: A PlaceholderGuidProperty (section 2.2.2.1.2) .

ConfigurationBitness: For full configuration entries, a BitnessProperty (section 2.2.2.5) representing

the bitness for which the component is configured in this component full configuration. <61> This
value MUST represent the same bitness as the hidden bitness property. For component entries, a
PlaceholderIntegerProperty (section 2.2.2.1.4) .

Conglomeratio nIdentifier: For component full configuration entries, the conglomeration identifier of
the conglomeration containing the configuration. For component entries, it MUST be GUID_NULL (this
value indicates a component entry).

VersionMajor: For component full configuration entries, the application -specific major version of the

component. <62> For component entries, a PlaceholderIntegerProperty.

VersionMinor: For component full configuration entries, the application -specific minor version of the
component. <63> For component entries, a PlaceholderIntegerProperty.

84 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

VersionBuild: For component full configuration entries, the app lication -specific build version of the
component. <64> For component entries, a PlaceholderIntegerProperty.

VersionSubBuild: For full configuration entries, the application -specific sub build version of the
component. <65> For component entries, a PlaceholderIntegerProperty.

ServerInitializer: For component full configuration entries, a BooleanProperty (section 2.2.2.9) that
indi cates whether the component is to be activated by the ORB when an instance container is created
for its containing conglomeration. <66> For component entries, a PlaceholderIntegerProperty.

Transaction: For full configurat ion entries, a ContextFacilityProperty (section 2.2.2.8) value indicating
how, if at all, the ORB is to enable atomic transactions for the component. <67> It MUS T be a
ContextFacilityProperty (section 2.2.2.8). For component entries, a PlaceholderIntegerProperty.

Synchronization: For full configuration entries, a ContextFacilityProperty (section 2.2.2.8) value

indicating how, if at all, the ORB is to provide synchronization to components that might not be thread
safe. <68> It MUST be a ContextFacilityProperty (section 2.2.2.8). For component entries, a
PlaceholderIntegerProperty.

FlowWebServerProperties: For fu ll configuration entries, a BooleanProperty that indicates whether
the ORB is to provide special services to component instances if they were created within a context of
a web server servicing a request. <69> It MUST be a BooleanProperty. For component entries, a

PlaceholderIntegerProperty.

FlowTransactionIntegratorProperties: For full configuration entries, a BooleanProperty that
indicates whether the ORB is to provide special services to component instances to interopera te with
other transaction managers not native to the ORB. <70> For component entries, a
PlaceholderIntegerProperty.

JustInTimeActivation: For full configuration entries, a BooleanProperty that indicates whether
component instances are to be activated by the ORB only when a method call arrives. <71> For

component entries, a PlaceholderIntegerProperty.

ComponentAccessChecksEnabled: For full configuration entries, a BooleanProperty that indi cates

whether component - level access checks (section 1.3.4) are to be enabled for the component by the
ORB.<72> For component entries, a PlaceholderIntegerPrope rty.

MinPoolSize: For full configuration entries, a MinPoolSizeProperty (section 2.2.2.10.1) indicating the
minimum pool size for instance pooling by the ORB. <7 3> It MUST be between 0x00000000 and
0x00100000 (decimal 1048576). For component entries, MUST be zero (placeholder value, no

meaning). Note that this property is only meaningful if EnablePooling has the value TRUE.

MaxPoolSize: For full configuration entri es, a MaxPoolSizeProperty (section 2.2.2.10.2) indicating the
maximum pool size for instance pooling by the ORB. <74> For component entries, a
PlaceholderIntegerP roperty. Note that this property is only meaningful if EnablePooling has the value
TRUE.

CreationTimeout: For full configuration entries, a

LongTimeoutInSecondsProperty (section 2.2.2.11.1) indica ting how long the ORB is to wait for a
pooled component instance to complete its activation. <75> This property is only meaningful if

EnablePooling has the value TRUE. For component entries, a PlaceholderIntegerProperty.

ConstructorString: For full configuration entries, an
ApplicationSpecificStringProperty (section 2.2.2.12) to be used for configurable initialization as part of
instantiation of the component by t he ORB. <76> This property is only meaningful if
EnableConstruction has the value TRUE. For component entries, a

PlaceholderStringProperty (section 2.2.2.1.3) .

85 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ConfigurationFlags: For full configuration entries, a bit field used to configure different properties on
the component, each of which is a BooleanBitProperty (section 2.2.2.9.1) . For component en tries, a

PlaceholderIntegerProperty. ConfigurationFlags is specified as follows for full configuration entries.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

Internal
D

C

C

C
In

E

E

L

B

E

C

E

P
Internal

All bits marked Internal (or In) MUST NOT be interpreted by clients. (To modify any of the non -
Internal bits in this bit field, as specified in section 3.2.4.5 , clients are expected to first read the value
of the bit field, construct a value with the non - Internal bits modified, and then write the result back to
the server.) The server's use of these bits is implementation -specific as it does not affect
interoperability.

Á MustRunInDefaultC ontext (DC): For full configuration entries, a BooleanBitProperty that

indicates whether the ORB is to restrict activation of the component such that it can only be

activated in a default environment. <77> The definition of the default environment is ORB -specific.

Á MustRunInClientContext (CC): For full configuration entries, a BooleanBitProperty that
indicates whether the ORB is to restrict activation of the component such that it can only be
activated in the client's envir onment. If an application requires this behavior for its component, it
can set this property. <78>

Á EnableEvents (EE): For full configuration entries, a BooleanBitProperty that indicates whether

the ORB is to collect activ ity statistics for component instances. <79>

Á LoadBalancingSupported (LB): For full configuration entries, a BooleanBitProperty that
indicates whether the ORB is to provide instance load balancing for the component. <80>

Á EnableConstruction (EC): For full configuration entries, a BooleanBitProperty that indicates
whether the ORB is to provide a configurable initialization for components during activation. <81>

Á EnablePooling (EP): For full configuration entries, a BooleanBitProperty that indicates whether

or not the ORB is to provide instance pooling for the component. <82>

Reserved2: A PlaceholderIntegerProperty.

Exception Class: For full configuration entries, an
ORBSpecificExceptionClassProperty (section 2.2.2.13.1) to be used in creating an exception -handling
object if an error condition occurs while the ORB is s ervicing method calls to the component. <83> For
component entries, a PlaceholderStringProperty.

IsEventClass: For full configuration entries, a BooleanProperty that indicates whether the component

is an event class that can be used in a publisher -subscriber framework. <84> For component entries, a
PlaceholderIntegerProperty.

PublisherID: For full configuration entries, a NameProperty (section 2.2.2.2) providing a unique
identifier for a publisher in a publisher -subscriber framework provided by the ORB, or null to indicate

that the configuration is not a publisher. <85> If not null, IsEven tClass must have the value TRUE
(0x00000001). For component entries, a PlaceholderStringProperty.

MultiInterfacePublisherFilterCLSID: For full configuration entries, a CLSID of a component that

provides filtering for events in a publisher -subscriber framew ork provided by the ORB, or GUID_NULL
to indicate that the configuration does not use such a filter component. <86> If not GUID_NULL,
PublisherID MUST NOT be null. For component entries, a PlaceholderGuidProperty (section 2.2.2.1.2).

86 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

AllowInprocSubscribers: For full configuration entries, a BooleanProperty that indicates whether a
publisher allows subscriber components to be instantiated in its process. <87> This property is only

meaningf ul if IsEventClass has the value TRUE. For component entries, a PlaceholderIntegerProperty.

FireInParallel: For full configuration entries, a BooleanProperty that indicates whether subscribers

will be notified of events from this event class in parallel (a s opposed to serially). <88> This property
has no meaning if the component is not an event class. If TRUE, IsEventClass MUST have the value
TRUE. For component entries, a PlaceholderIntegerProperty.

TransactionTimeout: For full configuration entries, a LongTimeoutInSecondsProperty indicating how
long the ORB is to allow the component to run with a specific transaction before it is forcibly
aborted. <89> For component entries, a Placeholde rIntegerProperty.

IsEnabled: For full configuration entries, a BooleanProperty that indicates whether the ORB is to

enable instantiation of the component. <90> For component entries, a PlaceholderIntegerProperty.

Transact ionIsolationLevel: For full configuration entries, a
TransactionIsolationLevelProperty (section 2.2.2.14) the ORB is use when managing atomic

transactions for the component (or component bitness). <91> For component entries, a
PlaceholderIntegerProperty.

IsPrivateComponent: For full configuration entries, a BooleanProperty that indicates whether or not

instantiation of the component is to be scoped by the ORB so t hat only components in the same
conglomeration can instantiate it. <92> For component entries, a PlaceholderIntegerProperty.

SoapAssemblyName: For full configuration entries, an
ORBSpecificModuleIdentifierProperty (section 2.2.2.13.2) for a module to be used by the ORB to
expose the component as a SOAP [SOAP1.1] endpoint . In order to provide such a feature, an ORB
MAY need a module to interpret calls from SOAP to the component. If an application wishes to use this
feature, it can set this property. <93> This property has no meaning if not specified in conjunction

with SoapTypeName field. For component entries, a PlaceholderStringProperty.

SoapTypeName: For full configuration entries, an
ORBSpeci ficTypeIdentifierProperty (section 2.2.2.13.3) for the type name used by the ORB to locate

an entity in the module specified by the SoapAssemblyName, to be used by the ORB to expose the
component as a SOAP [SOAP1.1] endpoint. If an application wishes to us e this feature, it can set this
property. <94> This property has no meaning if not specified in conjunction with the
SoapAssemblyName property. For component entries, a PlaceholderStringProperty.

3.1.1.3.2 ComponentFullConfiguratio nsReadOnly Table

The entries in the ComponentFullConfigurationsReadOnly table represent component full
configurations. This table contains c opies of component full configuration properties from entries in the
ComponentsAndFullConfigurations table. It MUST be read -only.

Table identifier: {6E38D3CA -C2A7 -11D1 -8DEC-00C04FC2E0C7}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions .

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1

 ConglomerationIdentifier equals <A>

http://go.microsoft.com/fwlink/?LinkId=90520

87 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Primary key:

Catalog
version Primary key properties

 3.00 CLSID

 4.00/5.00 Hidden component bitness property, CLSID , PartitionIdentifier, Reserved1,
ConfigurationBitness

Other referential constraints: For each entry, there MUST exist an entry in the

ComponentsAndFullConfigurationsTable for which the values of all common properties (indicated by
the same property name) have identical values.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved1 eDT_GUID 16 0x00000003 RO

- 3 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

1 4 ConglomerationIdentifier eDT_GUID 16 0x00000000 RO

2 5 Internal2 eDT_GUID 16 0x00000000 RO,
IN

3 6 VersionMajor eDT_ULONG 4 0x00000002 RO

4 7 VersionMinor eDT_ULONG 4 0x00000002 RO

5 8 VersionBuild eDT_ULONG 4 0x00000002 RO

6 9 VersionSubBuild eDT_ULONG 4 0x00000002 RO

7 10 Internal3 eDT_ULONG 4 0x00000002 RO,
IN

8 11 ServerInitializer eDT_ULONG 4 0x00000002 RO

9 12 Transaction eDT_ULONG 4 0x00000002 RO

10 13 Synchronization eDT_ULONG 4 0x00000002 RO

11 14 Internal4 eDT_ULONG 4 0x00000002 RO,
IN

12 15 FlowWebServerProperties eDT_ULONG 4 0x00000002 RO

13 16 FlowTransactionIntegratorProperties eDT_ULONG 4 0x00000002 RO

14 17 JustInTimeActivation eDT_ULONG 4 0x00000002 RO

88 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

15 18 ComponentAccessChecksEnabled eDT_ULONG 4 0x00000002 RO

16 19 Internal5 eDT_BYTES variable 0x00000000 RO,
IN

17 20 Internal6 eDT_GUID 16 0x00000000 RO,
IN

18 21 MinPoolSize eDT_ULONG 4 0x00000002 RO

19 22 MaxPoolSize eDT_ULONG 4 0x00000002 RO

20 23 CreationTimeout eDT_ULONG 4 0x00000002 RO

21 24 ConstructorString eDT_LPWSTR variable 0x00000000 RO

22 25 ConfigurationFlags eDT_ULONG 4 0x00000002 RO

23 26 Internal7 eDT_GUID 16 0x00000000 RO,
IN

24 27 Reserved2 eDT_ULONG 4 0x00000002 RO

25 28 Internal8 eDT_LPWSTR variable 0x00000000 RO,
IN

26 29 Internal9 eDT_GUID 16 0x00000000 RO,
IN

27 30 ExceptionClass eDT_LPWSTR variable 0x00000000 RO

28 31 Internal10 eDT_ULONG 4 0x00000002 RO,
IN

29 32 Internal11 eDT_LPWSTR variable 0x00000000 RO,
IN

30 33 Internal12 eDT_ULONG 4 0x00000002 RO,
IN

31 34 Internal13 eDT_LPWSTR variable 0x00000020 RO,

IN

32 35 Internal14 eDT_LPWSTR variable 0x00000000 RO,
IN

33 36 Internal15 eDT_LPWSTR variable 0x00000020 RO,
IN

34 37 Internal16 eDT_ULONG 4 0x00000002 RO,
IN

35 38 IsEventClass eDT_ULONG 4 0x00000002 RO

36 39 PublisherID eDT_LPWSTR variable 0x00000000 RO

37 40 MultiInterfacePublisherFilterCLSID eDT_GUID 16 0x00000000 RO

38 41 AllowInprocSubscribers eDT_ULONG 4 0x00000002 RO

39 42 FireInParallel eDT_ULONG 4 0x00000002 RO

89 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

40 43 Internal17 eDT_ULONG 4 0x00000002 RO,
IN

41 44 Internal18 eDT_LPWSTR variable 0x00000000 RO,
IN

42 45 TransactionTimeout eDT_ULONG 4 0x00000002 RO

43 46 Internal19 eDT_ULONG 4 0x00000002 RO,
IN

- 47 IsEnabled eDT_ULONG 4 0x00000002 RO

- 48 TransactionIsolationLevel eDT_ULONG 4 0x00000002 RO

- 49 IsPrivateComponent eDT_ULONG 4 0x00000002 RO

- 50 SoapAssemblyName eDT_LPWSTR variable 0x00000000 RO

- 51 SoapTypeName eDT_LPWSTR variable 0x00000000 RO

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

3.1.1.3.3 ComponentLegacyConfigurations Table

The entries in the ComponentLegacyConfigurations table represent component legac y configurations.

Table identifier: {09487519 -892D -4CA0 -A00B -58EEB1662A68}

AuxiliaryGuid: None.

Present in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1

 ConglomerationIdentifier equals <A>

Primary key: CLSID, ConfigurationBitness.

Other referential constraints: There MUST NOT exist an entry in the

ComponentsAndFullConfigurations table with identical values for CLSID and ConfigurationBitness
properties.

Write restrictions: Add MUST NOT be supported.

Update and remove MUST be supported if and only if:

Á The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

Á The conglomeration identified by ConglomerationIdentifier has the value "N" for IsSystem.

90 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Cascade: None.

Populate: N/A.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 CLSID eDT_GUID 16 0x00000001 RO

1 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

2 Description eDT_LPWSTR variable 0x00000000

3 ProgID eDT_LPWSTR variable 0x00000000 RO

4 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

5 InprocHandlerPath eDT_LPWSTR variable 0x00000000 RO

6 ThreadingModel eDT_LPWSTR variable 0x00000000 RO

7 LocalServerPath eDT_LPWSTR variable 0x00000000 RO

8 IsEnabled eDT_ULONG 4 0x00000002

9 ConglomerationIdentifier eDT_GUID 16 0x00000000 RO

10 Internal1 eDT_ULONG 4 0x00000000 IN

11 LegacyConglomerationIdentifier eDT_GUID 16 0x00000000 RO

12 Name eDT_LPWSTR variable 0x00000000 RO

13 RemoteServerName eDT_LPWSTR variable 0x00000000

14 ServiceName eDT_LPWSTR variable 0x00000000

15 ServiceParameters eDT_LPWSTR variable 0x00000000

16 SurrogatePath eDT_LPWSTR variable 0x00000000

17 RunAs eDT_LPWSTR variable 0x00000000

18 Password eDT_LPWSTR variable 0x00000000

19 ActivateAtStorage eDT_LPWSTR 4 0x00000004

20 LaunchPermissions eDT_BYTES variable 0x00000000

21 AccessPermissions eDT_BYTES variable 0x00000000

22 AuthenticationLevel eDT_ULONG 4 0x00000000

23 SRPLevel eDT_ULONG 4 0x00000000

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written

to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

CLSID: The CLSID of the component. <95>

ConfigurationBitness: A BitnessProperty (section 2.2.2.5) representing the bitness configured for
the component. <96>

91 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Description: A DescriptionProperty (section 2.2.2.7) providing a human - readable description of the
component. <97>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) of the component (or component
bitness). <98>

InprocServerPath: If not null, an ImplementationSpecificPathProperty (section 2.2.2.2) providing a
path to a module of the component that is supported for full configuration. <99>

InprocHandlerPath : If not null, an ImplementationSpecificPathProperty providing a path to an
alternate module of the component, which is not supported for full configuration. <100>

ThreadingModel: A ThreadingModelStringProperty (section 2.2.2.3.2) representing the restrictions, if
any, that the ORB is to place on the types of threads on which the instantiations of the component (or
component bitness) will be hosted. <101>

LocalServerPath: If not null, an ImplementationSpecificPathProperty providing a path to an alternate
module of the component, which is not supported for full configuration. <102> The charact er length of
this field MUST be between 1 and 260.

IsEnabled: A BooleanProperty (section 2.2.2.9) that indicates whether the server is to enable
instantiation of the component by the ORB. <103>

ConglomerationIdentifier: The conglomeration identifier of the conglomeration containing the

configuration.

LegacyConglomerationIdentifier: An ORB for historical reasons can provide a facility to specify a
conglomeration s tored in some alternate store on the server by means of another unique identifier.
This identifier is given through this property. <104>

Name: If not null, a NameProperty (section 2.2.2.6) providing a human - readable name of the
component. <105>

RemoteServerName: If not null, a ComputerNameOrAddressProperty (section 2.2 .2.16) indicating

the remote server on which the ORB is to attempt to instantiate the component. <106>

ServiceName: If not null, an ORBSpecificAlternateLaunchNameProperty (section 2.2.2.13.4) for use
in an alternate launch mechanism, which the ORB is to use when instantiating the component. <107>

ServiceParameters: If not null, an
ORBSpecificAlternateLaunchParametersProperty (section 2.2.2.13.5) providing additional parameters
an ORB is to use when using an alternate launch mechanism for the component. <108 >

SurrogatePath: If not null, an ImplementationSpecificPathProperty providing a path to a file that the

ORB is to use to host the module specified in InprocServer. <109>

RunAs: If not null, a SecurityPrincipalNameProperty (section 2.2.2.17) indicating the security principal
to be used by the ORB for the process hosting the component. <110>

Password: If not null, a PasswordProperty (section 2.2.2.18) indicating the password for the security
principal specified in the RunAs property. <111> Although for historical reasons, this property does not

have the fPROPERTY_NOTPERSISTABLE (section 2.2.1.7) flag, it MUST NOT be persisted in plaintext

or returned to the client.

ActivateAtStorage: An ORB can provide a facility to activate a c omponent based on the location of a
file. <112> The specification and details of how the file path is given is ORB -specific. This property is a
LegacyYesNoPrope rty (section 2.2.2.20) that indicates whether this feature is to be used.

AccessPermissions: If not null, a SecurityDescriptorProperty (section 2.2.2.21) indicating the access
permissions to be us ed by the ORB to authorize clients to call methods on the component
instance. <113>

92 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

LaunchPermissions: If not null, a SecurityDescriptorProperty indicating the access permissions used
by the ORB to allow clients to launc h instantiate collections for the component. <114>

AuthenticationLevel: A DefaultAuthenticationLevelProperty (section 2.2.2.22) indicating the
authentication level the ORB is to use for instances of the component. <115>

SRPLevel: A TrustLevelProperty (section 2.2.2.24) indicating he trust level that i s to be used by the
ORB in an ORB -specific manner to control instantiation of the component <116>

3.1.1.3.4 ComponentNativeBitness Table

The entries in the ComponentNativeBitness table represent native bitnesses of unconfigured
components.

Table identifier: {39344B1F -EFE8-4286 -9DB8 -AC0A3D791FF2}

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: CLSID.

Other referential constraints: There MUST NOT exist an entry in either the

ComponentsAndFullConfigurations table or the LegacyConfigurations table with an identical value for
CLSID property and Co nfigurationBitness property equal to the native bitness.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 CLSID eDT_GUID 16 0x00000001 RO

1 Internal1 eDT_LPWSTR variable 0x00000000 RO, IN

2 Internal2 eDT_GUID 16 0x00000000 RO, IN

3 Internal3 eDT_LPWSTR variable 0x00000000 RO, IN

4 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

5 Internal4 eDT_LPWSTR variable 0x00000000 RO, IN

6 LocalServerPath eDT_LPWSTR variable 0x00000000 RO

7 ProgID eDT_LPWSTR variable 0x00000000 RO

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

CLSID: The CLSID of the component. <117>

93 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

InprocServerPath: If not null, an ImplementationSp ecificPathProperty (section 2.2.2.2) providing a
path to a module of the component for the native bitness that is supported for full

configuration. <118>

LocalServerPath: If not null, an ImplementationSpecificPathProperty providing a path to an alternate

module of the component for the native bitness, which is not supported for full configuration. <119>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) for the component's native
bitness. <120>

3.1.1.3.5 ComponentNonNativeBitness Table

The entries in the ComponentNonNativeBitness table represent non -native bitness components.

Table identifier: {96EC9BF1 -063B -4ABF-8B90 -42C878D9033E}

Present in catalog version: 4.00 and 5.00.

Prerequisites: Multiple -bitness capab ility supported.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: CLSID.

Other referential constraints: There MUST NOT exist an entry in either the

ComponentsAndFullConfigurations table or the LegacyConfigurations table wit h an identical value for
CLSID property and ConfigurationBitness property equal to the non -native bitness.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 CLSID eDT_GUID 16 0x00000001 RO

1 Internal1 eDT_LPWSTR variable 0x00000000 RO, IN

2 Internal2 eDT_GUID 16 0x00000000 RO, IN

3 Internal3 eDT_LPWSTR variable 0x00000000 RO, IN

4 InprocServerPath eDT_LPWSTR variable 0x00000000 RO

5 Internal4 eDT_LPWSTR variable 0x00000000 RO, IN

6 LocalServerPath eDT_LPWSTR variable 0x00000000 RO

7 ProgID eDT_LPWSTR variable 0x00000000 RO

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

CLSID: The CLSID of the component. <121>

94 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

InprocServerPath: If not null, an ImplementationSpecificPathProperty (section 2.2.2.2) providing a
path to a module of the component for the non -native bitness that is supported for full

configuration. <122>

LocalServerPath: If not null, an ImplementationSpecificPathProperty providing a path to an alternate

module of the component for the non -native bitness, which is not supported for full
configuration. <123>

ProgID: If not null, a ScriptingProgramIdProperty (section 2.2.2.4) for the component's non -native
bitness. <124> The character length of this field MUST be between 1 and 39.

3.1.1.3.6 Conglomerations Table

The entries in the Conglomerations table represent conglomerations.

Table identifier: {D495F321 -AF37 -11D1 -8B7E -00C04FD7A924}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Catalog version 3.00: Empty query.

Catalog version 4.00 and catalog version 5.00:

Cell 1

PartitionIdentifier equals <A>

Primary key: ConglomerationIdentifier

Other referential constraints:

Catalog version 3.00: None.

Catalog version 4.00 and catalog version 5.00: There MUST exist an entry in the Partitions table with
identical value for the PartitionIdentifier property.

Write restricti ons: Add MUST be supported if and only if:

Á Catalog version 4.00 and catalog version 5.00: The partition identified by the PartitionIdentifier
property of the new entry has the Changeable property set to TRUE (0x00000001).

Update MUST be supported if and on ly if:

Á Changeable has the value "Y" or only Changeable and/or Deleteable are updated.

Á IsSystem has the value "N".

Á IsProxyApp has the value FALSE (0x00000000), or no properties designated read -only for proxies

are updated.

Á The conglomeration is not a protec ted conglomeration. <125> For historical reasons, there is no
general mechanism for a client to determine if a conglomeration is protected except to attempt
updating the Changeable property. However, so that clients can avoid making calls that would

95 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

update a protected conglomeration, the following container identifiers are reserved for protected
conglomerations: {01885945 -612C -4A53 -A479 -E97507453926}, {9EB3B62C -79A2 -11D2 -9891 -

00C04F79AF51}, and {6B97138E -3C20 -48D1 -945F -81 AE63282DEE}.

Á Catalog version 4.00 and catalog version 5.00: The partition identified by the PartitionIdentifier

property of the new entry has the Changeable property set to TRUE (0x00000001).

Remove MUST be supported if and only if:

Á Deleteable has the valu e "Y".

Á IsSystem has value "N".

Á Catalog version 4.00 and catalog version 5.00: The partition identified by the PartitionIdentifier
property of the new entry has the Changeable property set to TRUE (0x00000001).

Cascade: On removal of an entry, all entries in the

ComponentsAndFullConfigurations (section 3.1.1.3.1) ,
ComponentLegacyConfigurations (section 3.1.1.3.3) , and Roles (section 3.1.1.3.9) table with identical

values for ConglomerationIdentifier property MUST be removed.

Populate: None.

Properties:

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 1 Name eDT_LPWSTR variable 0x00000002

2 2 Internal1 eDT_ULONG 4 0x00000002 IN

3 3 ServerName eDT_LPWSTR variable 0x00000000

4 4 Internal2 eDT_ULONG 4 0x00000002 IN

5 5 CommandLine eDT_LPWSTR variable 0x00000000 TR

6 6 ServiceName eDT_LPWSTR variable 0x00000000

7 7 Internal3 eDT_ULONG 4 0x00000002 IN

8 8 RunAsUser eDT_LPWSTR variable 0x00000000

9 9 Internal4 eDT_BYTES variable 0x00000000 IN

10 10 Description eDT_LPWSTR variable 0x00000000

11 11 IsSystem eDT_LPWSTR 4 0x00000006 RO

12 12 Authentication eDT_ULONG 4 0x00000002

13 13 ShutdownAfter eDT_ULONG 4 0x00000002 TR

14 14 RunForever eDT_LPWSTR 4 0x00000006 TR

15 15 Password eDT_LPWSTR variable 0x00000008

16 16 Activation eDT_LPWSTR variable 0x00000000 TR

17 17 Changeable eDT_LPWSTR 4 0x00000004

96 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

18 18 Deleteable eDT_LPWSTR 4 0x00000004

19 19 CreatedBy eDT_LPWSTR variable 0x00000000

20 20 Internal5 eDT_BYTES variable 0x00000000 IN

21 21 Internal6 eDT_ULONG 4 0x00000002 IN

22 22 RoleBasedSecurityEnabled eDT_ULONG 4 0x00000002 TR

23 23 Internal7 eDT_BYTES variable 0x00000000 IN,
NT

24 24 ImpersonationLevel eDT_ULONG 4 0x00000002

25 25 ORBSecuritySettings eDT_ULONG 4 0x00000002

26 26 CRMEnabled eDT_ULONG 4 0x00000002 TR

27 27 Enable3GigSupport eDT_ULONG 4 0x00000002 TR

28 28 IsQueued eDT_ULONG 4 0x00000002 TR

29 29 QCListenerEnabled eDT_LPWSTR 4 0x00000006 TR

30 30 EventsEnabled eDT_ULONG 4 0x00000002 TR

31 31 Internal8 eDT_ULONG 4 0x00000002 IN

32 32 Internal9 eDT_ULONG 4 0x00000002 IN

33 33 IsProxyApp eDT_ULONG 4 0x00000002 RO

34 34 CRMLogFile eDT_LPWSTR variable 0x00000000 TR

- 35 DumpEnabled eDT_ULONG 4 0x00000002 TR

- 36 DumpOnException eDT_ULONG 4 0x00000002 TR

- 37 DumpOnFailFast eDT_ULONG 4 0x00000002 TR

- 38 MaxDumpCount eDT_ULONG 4 0x00000002 TR

- 39 DumpPath eDT_LPWSTR variable 0x00000000 TR

- 40 IsEnabled eDT_ULONG 4 0x00000002

- 41 PartitionIdentifier eDT_GUID 16 0x00000002 RO

- 42 ConcurrentApps eDT_ULONG 4 0x00000002 TR

- 43 RecycleLifetimeLimit eDT_ULONG 4 0x00000002 TR

- 44 RecycleCallLimit eDT_ULONG 4 0x00000002 TR

- 45 RecycleActivationLimit eDT_ULONG 4 0x00000002 TR

- 46 RecycleMemoryLimit eDT_ULONG 4 0x00000002 TR

- 47 RecycleExpirationTimeout eDT_ULONG 4 0x00000002 TR

- 48 QCListenerMaxThreads eDT_ULONG 4 0x00000002 TR

97 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

- 49 QCAuthenticateMsgs eDT_ULONG 4 0x00000002 TR

- 50 ApplicationDirectory eDT_LPWSTR variable 0x00000000

- 51 SRPTrustLevel eDT_ULONG 4 0x00000002 TR

- 52 SRPEnabled eDT_ULONG 4 0x00000002 TR

- 53 SoapActivated eDT_ULONG 4 0x00000002 TR

- 54 SoapVRoot eDT_LPWSTR variable 0x00000000 TR

- 55 SoapMailTo eDT_LPWSTR variable 0x00000000 TR

- 56 SoapBaseUrl eDT_LPWSTR variable 0x00000000 TR

- 57 Replicable eDT_ULONG 4 0x00000002 TR

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not af fect interoperability.

ConglomerationIdentifier: The conglomeration identifier for the conglomeration. <126>

Name: A NameProperty (section 2.2.2.6) providing a human - readable name of the
conglomeration. <127> This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

ServerName: A ComputerNameOrAddressProperty (section 2.2.2.16) indicating the remote server on
which the ORB is to attempt to instantiate the components in the conglomeration, if the
conglomeration is a Configured Proxy (section 3.1.1.1.7) .<128> The ServerName property must be
null if IsProxyApp is FALSE (0x00000000).

CommandLine: If not null, an ORBSpecificCommandLineProperty (section 2.2.2.13. 6) containing
command that is to be executed by the ORB to host instance containers for the

conglomeration. <129> This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

ServiceName: If not null, an ORBSpecificAlternateLaunchNameProperty (section 2.2.2.13.4)
corresponding to the AlternateLaunchName property of the alternate launch configuration (section
3.1.1.4) to be used by the ORB to perform an alternate launch for the conglomeration. <130> This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

RunAsUser : If not null, a SecurityPrincipalNameProperty (section 2.2.2.17) indicating the security
principal to be used by the ORB when creating instance containers for the conglomeration. <131> This

property MUST be read -only if IsProxyApp is TRUE (0x00000001).

Description: A DescriptionProperty (section 2.2.2.7) providing a human - readable description of the
conglomeration. <132>

IsSystem: A YesNoProperty (section 2.2.2.19) that indicates whether or not a conglomeration is
distinguished by the COMA server. <133> A distinguished conglomeration is handled much like one for
which Changeable is "N", except that role members for its roles may be added or removed (see write
restrictions for this and other tables for a more formal specification). The criteria for determining

whether or not a conglomeration is distinguished are implementation -specific.

Authentication: A DefaultAuthenticationLevelProperty (section 2.2.2.22) that, when configured for a
conglomeration with Activation set to "Local", indicates the authentication level the ORB is to use for
instance containers associated with the conglomeration. <134> The meaning of this property when

98 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Activation is set to "Inproc" is ORB -specific. <135> This property MUST be read -only if IsProxyApp is
TRUE (0x00000001).

ShutdownAfter: A ShortTimeoutInMinutesProperty (section 2. 2.2.11.4) indicating the time that the
ORB is to allow an instance container to run until it is forcibly shut down. <136> The ORB is to trigger

the timer for this time out once it has determined that the instance collect ion is idle. The criteria for
determining that an instance container is idle are ORB -specific. This property is to be ignored by the
ORB if RunForever is "Y". This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

RunForever: A YesNoProperty t hat indicates whether or not the ORB is to ignore the ShutdownAfter
property. <137> This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

Password: If not null, a PasswordProperty (section 2.2.2.18) indicating the password for the security
principal specified by the RunAsUser property. <138> This property MUST be read -only if IsProxyApp

is TRUE (0x00000001).

Activ ation: An ActivationTypeProperty (section 2.2.2.23) that indicates whether the ORB is to host
instance containers associated with the conglomeration in a new process or the creator's process, for

local instantiation. <139> This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

Changeable: A YesNoProperty that indicates whether or not the conglomeration and its contained
objects are changeable (see wr ite restrictions for this and other tables for a more formal

specification). <140> MUST be "N" for a protected conglomeration.

Deleteable: A YesNoProperty that indicates whether or not the conglomeration is deleteable (s ee
write restrictions for this table for a more formal specification). <141> MUST be "N" for a protected
conglomeration.

CreatedBy: If not null, a NameProperty providing an informational name of the user who created the
conglomeration. <142>

RoleBasedSecurityEnabled: A BooleanProperty (section 2.2.2.9) that indicates whether the ORB is

to enable role -based security for the cong lomeration. <143> This property MUST be read -only if
IsProxyApp is TRUE (0x00000001).

ImpersonationLevel: A DefaultImpersonationLevelProperty (section 2.2.2.25) indicating the
impersonation level to be used by the ORB as the default for outgoing DCOM calls that are made from
instance containers associated with the conglomeration. <144> This property MUST be read -only if
IsProxy App is TRUE (0x00000001).

ORBSecuritySettings: An ORBSecuritySettingsProperty (section 2.2.2.26) indicating security settings

to be used by the ORB for instance containers associated with the cong lomeration. <145> This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

CRMEnabled: A BooleanProperty that indicates whether or not the ORB is to provide a compensating
resource manager for each instance co ntainer associated with the conglomeration. <146> This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

Enable3GigSupport: A BooleanProperty that indicates whether or not the ORB is to provide large

address space support to instance containers associated with the conglomeration. <147> This property

MUST be read -only if IsProxyApp is TRUE (0x00000001).

IsQueued: A BooleanProperty that indicates whether or not the ORB is to enable a queuing transport
(see section 3.1.1.1.5) for components configured in the conglomeration. <148> This property MUST
be read -only if IsProxyApp is TRUE (0x00000001).

QCListenerEnabled: A YesNoProperty that indicates whether or not the ORB is to provide a queue
listener for each instance container associated with the conglomeration. <149> If "Y", the IsQueued

property MUST be TRUE. This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

99 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

EventsEnabled: A BooleanProperty that indicates whether or not the ORB is to collect activity
statistics for instance con tainers associated with the conglomeration. <150> This property MUST be

read -only if IsProxyApp is TRUE (0x00000001).

IsProxyApp: A BooleanProperty that indicates whether or not the conglomeration is a Configured

Proxy. <151> If TRUE (0x00000001), this indicates that instance containers for this conglomeration
are to be hosted by a different ORB, located on the machine identified by ServerMachine.

CRMLogFile: An ImplementationSpecificPathProperty (section 2.2.2.2) providing the path to a log file,
to be used by compensating resource managers provided by the ORB for the conglomeration. <152>
This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

DumpEnabled: A BooleanProperty that indicates whether or not the ORB is to collect debugging data
for an instance container that encounters an exceptional condition. <153> If TRUE, property

DumpPath SHOULD be non -NULL. This property MUST be read -only if IsProxyApp is TRUE
(0x00000001).

DumpOnException: A BooleanProperty that indicates whether or not the ORB is to collect debugging

data when a critical appli cation -specific error occurs. <154> If TRUE, DumpEnabled MUST be TRUE.
This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

DumpOnFailFast: A BooleanProperty that indicates whether or not the ORB is to col lect debugging

data when a critical ORB -specific error occurs. <155> This property is only meaningful if DumpEnabled
has the value TRUE. This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

MaxDumpCount: A MaxDumpCountProperty (section 2.2.2.27) indicating the maximum count of
debugging data files the ORB is to collect for the conglomeration. <156> This property is only
meaningful if DumpEnabled has the value TRUE. This property MUST be read -only if IsProxyApp is
TRUE (0x00000001).

DumpPath: If not null, an ImplementationSpecificPathProperty providing a location where the ORB is

to create debugging data files. <157> This property is only meaningful if DumpEnabled has the value
TRUE. This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

IsEnabled: A BooleanProperty indicating whether or not the ORB is to allow instan tiation of
components configured in the conglomeration. <158> This property MUST be read -only if IsProxyApp
is TRUE (0x00000001).

PartitionIdentifier: The partition identifier of the partition containing the conglomeration.

ConcurrentApps: A ConcurrentAppsProperty (section 2.2.2.28) indicating the maximum number of

instance containers the ORB is to create for the conglomeration at any given time. <159> This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

RecycleLifetimeLimit: A LongTimeoutInMinutesProperty (section 2.2.2.11.3) indicating the time that
the ORB is to allow an instance container to run before it is recycled. <160> A value of zero indicates
that recycling based on instance container lifetime is to be disabled. This property MUST be read -only
if IsProxyApp is TRUE (0x00000001).

RecycleCallLimit: A RecyclingCriterionLimitProperty (section 2.2.2.29) indicating the maximum

number of calls to component instances in an instance container that the ORB is to allow before it is
recycled. <161> This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

RecycleActivationLimit: A RecyclingCriterionLimitProperty indicating the maximum number of
activations of components in an instance container that the ORB is to allow before it is
recycled. <162> This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

RecycleMemoryLimit: A RecyclingCriterionLim itProperty indicating the maximum memory in

kilobytes consumed by an instance container that the ORB is to allow before it is recycled. <163> This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

100 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

RecycleExp irationTimeout: A ShortTimeoutInMinutesProperty (section 2.2.2.11.4) indicating the
time that the ORB is to wait after recycling an instance container before forcibly shutting it

down. <164> This property MUST be read -on ly if IsProxyApp is TRUE (0x00000001).

QCListenerMaxThreads: A MaxThreadsProperty (section 2.2.2.30) indicating the maximum number

of threads the ORB -provided queue listener (section 3.1.1.1.5) is to use in a given instance
container. <165> If nonzero, QCListenerEnabled MUST be "Y". This property MUST be read -only if
IsProxyApp is TRUE (0x00000001).

QCAuthenticateMsgs: A BooleanProperty indicating whether the ORB is to authenticate messages in
an enabled queuing protocol (section 3.1.1.1.5). <166> If TRUE, EnableQueueing MUST be TRUE. This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

ApplicationDirectory: If not null, an ImplementationSpecificPathProperty providing a path that the

ORB is to use to locate additional ORB -specific files containing application -specified
configuration. <167> This property MUST be read -only if IsProxyApp is TRUE (0x00000001).

SRPTrustLevel: If SRPEnabled is TRUE, a TrustLevelProperty (section 2.2.2.24) indicating the trust

level that is to be used by the ORB in an ORB -specific manner t o control instantiation of components
configured in the conglomeration. <168> Otherwise, this property has no meaning. This property
MUST be read -only if IsProxyApp is TRUE (0x00000001).

SRPEnabled: A BooleanProperty tha t indicates whether or not the ORB is to enforce its software
restriction policy (section 3.1.1.1.9) for the conglomeration. <169> This property MUST be read -on ly if
IsProxyApp is TRUE (0x00000001).

SoapActivated: A BooleanProperty that indicates whether or not the ORB is to expose components
configured in the conglomeration as SOAP [SOAP1.1] endpoin ts. <170> This property MUST be read -
only if IsProxyApp is TRUE (0x00000001).

SoapVRoot: If not null, an ORBSpecificWebServerVirtualDirectoryProperty (section 2.2.2.13.7)

providing a path to a virtual directory in a web server that the ORB is to use as the SOAP [SOAP1.1]
endpoint for components in the conglomeration. <171> If not null, SoapActivated MUST be TRUE. This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

SoapMailTo: If not null, a Simple Mail Transfer Protocol (SMTP), as specified in [RFC821] , mailing
address that the ORB is to use as the SOAP, as specified in [SOAP1.1], endpoint for components in the
conglomeration. <172> If not null, SoapActivated MUST be TRUE. This property MUST be read -only if
IsProxyApp is TRUE (0x00000001).

SoapBaseUrl: If not null, a URL that the ORB is to use as the SOAP, as specified in [SOAP1.1],
endpoint for components in the conglomeration. <173> If not null, SoapActivated MUST be TRUE. This
property MUST be read -only if IsProxyApp is TRUE (0x00000001).

Replicable: A BooleanProperty indicating to replication client applications whether or not a
conglomeration is to be copied during replication in which this COMA server is the replic ation
source. <174> This value is advisory and intended for interpretation only by replication client

applications. <175>

3.1.1.3.7 Partitions Table

The entries in the Partitions table represent partitions.

Table identifier: {E4AD9FD6 -D435 -4CF5-95AD -20AD9AC6B59F}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Hidden bitness property: No.

http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90496

101 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Suppo rted query templates: Empty query.

Primary key: PartitionIdentifier.

Other referential constraints: There MUST be exactly one entry if the server does not support
multiple partitions. For catalog version 5.00, there MUST be exactly one entry if the Partiti onsEnabled

property in MachineSettings (section 3.1.1.3.8) has a value of FALSE (0x00000000).

Write restrictions: Add MUST be supported if and only if:

Á Server supports multiple partitions.

Á Catalog version 5.00: PartitionsEnabled in MachineSettings (section 3.1.1.3.8) has a value of TRUE
(0x00000001).

Update to the Changeable and Deleteable properties MUST be supported.

Update to properties other than Changeable and Deleteable MUST be supported if and only if the

Changeable property has a value of TRUE (0x00000001).

Remove MUST be supported if and only if:

Á Deleteable has a value of TRUE (0x00000001).

Á PartitionIdentifier is not the partition identifier of the global partition (section 1.9).

Á There is no entry in the PartitionUsers Table (section 3.1.1.3.16) with an identical value of the
PartitionIdentifier property.

Cascade: On remov al of an entry, all entries in the Conglomerations (section 3.1.1.3.6) and
PartitionRoles (section 3.1.1.3.17) with an identical value o f PartitionIdentifier property MUST be
removed.

Populate: On addition of an entry, a server MAY <176> add an implementation -specific number of
entries to the PartitionRoles (section 3.1.1.3.17) table with PartitionIdenti fier property set to the

partition identifier of the new partition.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 PartitionIdentifier eDT_GUID 16 0x00000003 RO

1 Name eDT_LPWSTR variable 0x00000002

2 Description eDT_LPWSTR variable 0x00000000

3 Changeable eDT_LPWSTR 4 0x00000006

4 Deleteable eDT_LPWSTR 4 0x00000006

PartitionIdentifier: The partition identifier for the partition. <177>

Name: A NameProperty (section 2.2.2.6) providing a human - readable name for the partition. <178>

Description: A DescriptionProperty (section 2.2.2.7) providing a human - readable description for the
partition. <179>

Changeable: A YesNoProperty (section 2.2.2.19) indicating whether or not the partition and its

contained objects are changeable (see write restrictions for this and other tables for a more formal
specification). <180>

102 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Deleteable: A YesNoProperty indicating whether o r not the partition is deleteable (see write
restrictions for this table for a more formal specification). <181>

3.1.1.3.8 MachineSettings Table

The singl e entry in the MachineSettings table represents the singleton machine settings object. The
properties of this object are server -wide configurations.

Table identifier: {61436562 -EE01-11D1 -BFE4-00C04FB9988E}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: Name

Other referential constraints: There MUST be exactly one entry.

Write restrictions: Update MUST be supported, add and remove MUST NOT be supported.

Cascade: N/A.

Populate: N/A.

Properties:

Index
(3.00)

Index
(4.00)

Index
(5.00) Property name Type Size Flags Meta

0 0 0 Name eDT_LPWSTR variable 0x00000001 RO

1 1 1 Description eDT_LPWSTR variable 0x00000000

2 2 2 TransactionTimeout eDT_ULONG 4 0x00000002

3 3 3 Internal2 eDT_LPWSTR variable 0x00000000 IN

4 4 4 ResourcePoolingEnabled eDT_LPWSTR variable 0x00000000

5 5 5 Internal3 eDT_LPWSTR variable 0x00000000 IN

6 6 6 RemoteServerName eDT_LPWSTR variable 0x00000000

7 7 7 Internal4 eDT_ULONG 4 0x00000002 IN

8 8 8 Internal5 eDT_ULONG 4 0x00000002 IN

9 9 9 Internal6 eDT_LPWSTR variable 0x00000000 IN

10 10 10 IsRouter eDT_LPWSTR variable 0x00000000

11 11 11 EnableDCOM eDT_LPWSTR variable 0x00000000

12 12 12 DefaultAuthenticationLevel eDT_ULONG 4 0x00000002

13 13 13 DefaultImpersonationLevel eDT_ULONG 4 0x00000002

103 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00)

Index
(5.00) Property name Type Size Flags Meta

14 14 14 EnableSecurityTracking eDT_LPWSTR variable 0x00000000

15 15 15 EnableCIS eDT_LPWSTR variable 0x00000000

16 16 16 EnableSecureReferences eDT_LPWSTR variable 0x00000000

17 17 17 PortsInternetAvailable eDT_LPWSTR variable 0x00000000

18 18 18 UseInternetPorts eDT_LPWSTR variable 0x00000000

19 19 19 Ports eDT_LPWSTR variable 0x00000000

20 20 20 Internal7 eDT_BYTES variable 0x00000000 IN

21 21 21 Internal8 eDT_BYTES variable 0x00000000 IN

22 22 22 Internal9 eDT_LPWSTR variable 0x00000000 IN

- 23 23 LocalPartitionLookupEnabled eDT_LPWSTR variable 0x00000000

- 24 24 DSPartitionLookupEnabled eDT_LPWSTR variable 0x00000000

23 25 25 RpcProxyEnabled eDT_ULONG 4 0x00000002

24 26 26 OperatingSystem eDT_ULONG 4 0x00000002

25 27 27 LoadBalancingCLSID eDT_GUID 16 0x00000000

- 28 28 SaferRunningObjectChecks eDT_LPWSTR variable 0x00000000

- 29 29 SaferActivateAsActivatorChecks eDT_LPWSTR variable 0x00000000

- 30 30 Internal10 eDT_LPWSTR variable 0x00000000 IN

- - 31 PartitionsEnabled eDT_LPWSTR variable 0x00000002

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

Name: A ComputerNameProperty (section 2.2.2.15) representing the computer name of the server.

Description: A DescriptionProperty (section 2.2.2.7) providing a human - readable description of the
server m achine with respect to COMA. <182>

TransactionTimeout: A ShortTimeoutInSecondsProperty (section 2.2.2.11.2) indicating the ORB -
global default timeout for compon ents running in transactions. <183>

ResourcePoolingEnabled: A YesNoProperty (section 2.2.2.19) that indicates whether the ORB is to
enable a mechanism for pooli ng database connections. <184>

RemoteServerName: A ComputerNameOrAddressProperty (section 2.2.2.16) indicating the ORB -

global default remote computer name for configured proxies.

IsRouter: A YesNoProperty that indicates whether or not the ORB is configured as an instance load
balancing router. <185>

EnableDCOM: A YesNoProperty that indicates whether or not DCOM is to be enabled as a transport
for the ORB. <186> Note that if the COMA server is a component on the ORB, disabling this property
will make the COMA server inaccessible.

104 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

DefaultAuthenticationLevel: A DefaultAuthenticationLevelProperty (section 2.2.2.22) indicating the
authentication level that the ORB is to use as a machine -wide default for processes that are not

explicitly configured to use a specific level. <187>

DefaultImpersonationLevel: A DefaultImpersonationLevelProperty (section 2.2.2.25) indicating the

default im personation level the ORB is to use for DCOM. <188>

EnableSecurityTracking: A YesNoProperty that indicates whether the ORB is to perform ORB -
specific security tracking. <189>

EnabledCI S: A YesNoProperty that indicates whether the ORB is to enable DCOM over Internet
protocols. <190>

EnableSecureReferences: A YesNoProperty that indicates whether the ORB is to perform ORB -
specific security tracking. <191>

PortsInternetAvailable: A YesNoProperty that indicates whether the ORB is to configure DCOM on
the server to use ports specified in the Ports property of this table for Internet (when "Y") or for
intranet (when "N"). <192>

UseInternetPorts: A YesNoProperty that indicates whether the ORB is to configure DCOM on the
server to use Internet ports (when "Y") or Intranet ports (when "N"). <193>

Ports: A PortsListProperty (section 2.2.2.31) describing the port ranges to be used by the server for

DCOM.<194>

LocalPartitionLookupEnabled: A YesNoProperty (section 2.2.2.19) that indicates whether the ORB
should only allow partition lookups locally.

DSPartitionLookupEnabled: A YesNoProperty that indicates whether the ORB should only allow
partitions from an active directory. <195>

RpcProxyEnabled: A YesNoProperty that indicates whether the ORB should enable RPC proxy for the
web server such that RPC calls can be accepted over HTTP. <196>

OperatingSystem: The implementation -specific version number of the operating system version the
server is running. <197>

LoadBalancingCLSID: The ORB -specific CLSID of the DCOM object that is to be used for performing
instance load balancing on the server. <198>

SaferRunningObjectChecks: A YesNoProperty that indicates whether the ORB is to perform trust
level checks for DCOM objects hosted on the server. <199>

SaferActivateAsActivatorChecks: A YesNoProperty tha t indicates whether the ORB is to perform

trust level checks for DCOM activations on the server. <200>

PartitionsEnabled: A YesNoProperty that indicates whether multiple -partition support is enabled on
the server. <201>

3.1.1.3.9 Roles Table

The entries in the Roles table represent roles.

Table identifier: {CD331D11 -C739 -11D1 -9D35 -006008B0E5CA}

AuxiliaryGuid: None.

Defined in catalog version : All catalog versions.

Prerequisites: None.

105 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Hidden bitness property: No.

Supported query templates:

Cell 1

ConglomerationIdentifier equals <A>

Primary key: ConglomerationIdentifier, RoleName.

Other referential constraints: There MUST exist a conglomeration with the conglomeration
identifier specified in ConglomerationIdentifier.

Write restrictions: Add, update, and remove MUST be supported if and only if:

Á The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

Á The conglomeration identified by ConglomerationIdentifier has the value "N" for IsSystem.

Á Catalog version 4.00 and catalog version 5.00: The partition containing the conglomeration
identified by ConglomerationIdentifier has the value "Y" for Changeable.

Cascade: On removal of an entry, all entries in the RoleMembers (section 3.1.1.3.10) ,

RolesForComponent (section 3.1.1.3.13) , RolesForInterface (section 3.1.1.3.14) , and
RolesForMethod (section 3.1. 1.3.15) tables with identical values for ConglomerationIdentifier and
RoleName properties MUST be removed.

Populate: None.

Properties:

Index (3.00/4.00/5.00) Property name Type Size Flags Meta

0 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 Description eDT_LPWSTR variable 0x00000000 IN

ConglomerationIdentifier: The conglomeration associated with the role. There MUST be an entry
for this ID in the conglomeration table.

RoleName: A NameProperty (section 2.2.2.6) providing a human - readable name for the role. <202>
The RoleName MUST be unique for a given conglomerationID specified in the ConglomerationIdentifier
property.

Description: A DescriptionProperty (section 2.2.2.7) providing a human - readable descri ption for the
role. <203>

3.1.1.3.10 RoleMembers Table

The entries in the RoleMembers table represent role members.

Table identifier: {CD331D10 -C739 -11D1 -9D35 -0060 08B0E5CA}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

106 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Hidden bitness property: No.

Supported query templates:

Cell 1 Cell 2

ConglomerationIdentifier equals <A>. RoleName equals .

Primary key: ConglomerationIdentifier, RoleName, RoleMemberName.

Other referential constraints: There MUST exist a role with identical values for
ConglomerationIdentifier and RoleName.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if:

Á The conglomeration identified by ConglomerationIdentifier has the value "Y" for Changeable.

Á Catalog version 4.00 and catalog version 5.00: The partition containing the conglomeration
identified by ConglomerationIdentifier has the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (3.00/4.00/5.00) Property name Type Size Flags Meta

0 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 RoleMemberName eDT_LPWSTR variable 0x00000003 RO

3 Internal1 eDT_BYTES 43 0x00000000 IN

In the previous table, internal property (marked with IN in the Meta column) MUST NOT be written to
or interpreted by the client. The server's use of this property is implementation -specific because it
does not affect interoperability.

ConglomerationIdentifier: The conglomeration identifier of the conglomeration associated with the
role to which this role member belongs.

RoleName: A NamePropert y (section 2.2.2.6) providing the human - readable name of the role to
which this role member belongs.

RoleMemberName: A SecurityPrincipalNameProperty (section 2.2.2.17) identifying the security
pri ncipal of the role member. <204>

3.1.1.3.11 ConfiguredInterfaces Table

The entries in the ConfiguredInterfaces table represent configured interfa ces.

Table identifier: {D13B72C6 -C426 -11D1 -8507 -006008B0E79D}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

107 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Á Catalog version 3.00:

Cell 1

CLSID equals <A> .

Á Catalog version 4.00 and catalog version 5.00:

Cell 1 Cell 2 Cell 3

CLSID equals <A>. PartitionIdentifier equals . ConfigurationBitness equals <C>.

Primary key:

Á Catalog version 3.00: CLSID, IID

Á Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID,
ConfigurationBitness

Other referential constraints:

Á Catalog version 3.00: There MUST exist a component full configuration entry in
ComponentsAndFullConfiguratio ns (section 3.1.1.3.1) with an identical value for CLSID.

Á Catalog version 4.00 and catalog version 5.00: There MUST exist a component full configuration
entry in ComponentsAndFullConfigurations (section 3.1.1.3.1) with identical values for CLSID,
Partition Identifier, and ConfigurationBitness.

Write restrictions: Add and remove MUST NOT be supported.

Update MUST be supported if and only if:

Á The conglomeration in which the component full configuration associated with this interface is
configured has the value "Y" for Changeable.

Á The conglomeration in which the component full configuration associated with this interface is
configured has the value "N" for IsSystem.

Á Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier ha s
the value "Y" for Changeable.

Cascade: On removal of an entry, all entries in the ConfiguredMethods (section 3.1.1.3.12) and
RolesForI nterface (section 3.1.1.3.14) tables with identical values of CLSID, PartitionIdentifier, and
ConfigurationBitness properties MUST be removed.

Populate: None.

Properties:

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

108 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

- 4 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

- 5 Name eDT_LPWSTR variable 0x00000002 RO

2 6 Internal1 eDT_BYTES variable 0x00000000 IN

3 7 Internal2 eDT_GUID 16 0x00000000 IN

4 8 Internal3 eDT_ULONG 4 0x00000002 IN

5 9 IsQueueable eDT_ULONG 4 0x00000002

6 10 IsQueuingSupported eDT_ULONG 4 0x00000002 RO

7 11 Description eDT_LPWSTR variable 0x00000000

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

CLSID: The CLSID of the component configuration associated with the interface.

PartitionIdentifier: The partition in which the component associated with this interface resides.

Reserved: PlaceholderGuidProperty (section 2.2.2.1.2) .

IID: The IID of the interface. <205>

ConfigurationBitness: A BitnessPrope rty (section 2.2.2.5) indicating the bitness of the component
configuration associated with the interface.

Name: A NameProperty (section 2.2.2.6) providing a human readable name of the interface. <206>

IsQueueable: A BooleanProperty (section 2.2.2.9) that indicates whether the interface is enabled for
queuing (section 3.1.1.1.5). <207> If TRUE, IsQueuingSupported MUST be TRUE.

IsQueuingSupported: A BooleanProperty that indicates whether or not queuing is possible for the
interf ace. <208>

Description: A DescriptionProperty (section 2.2.2.7) providing a human readable description of the
interface. <20 9>

3.1.1.3.12 ConfiguredMethods Table

The entries in the ConfiguredMethods table represent configured methods.

Table identifier: {D13B72C4 -C426 -11D1 -8507 -006008B0E79D}

AuxiliaryGuid: None .

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

109 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Supported query templates:

Á Catalog version 3.00:

Cell 1 Cell 2

CLSID equals <A>. IID equals .

Á Catalog version 4.00 and catalog version 5.00:

Cell 1 Cell 2 Cell 3 Cell 4

CLSID equals <A>. PartitionIdentifier equals . ConfigurationBitness equals <C>. IID equals <D>.

Primary key:

Á Catalog version 3.00: CLSID, IID, Opnum

Á Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID, Opnum,
ConfigurationBitness

Other referential constraints:

Á Catalog version 3.00: There MUST exist a configured interface with identical values for CLSID and
IID properties.

Á Catalog version 4.00 and catalog version 5.00: There MUST exist a configured interface with
identical values for CLSID, PartitionIdentifier, IID, and ConfigurationBitness properties.

Write restrictions: Add and remove MUST NOT be suppo rted.

Update MUST be supported if and only if:

Á The conglomeration in which the component full configuration associated with this interface is

configured has the value "Y" for Changeable.

Á The conglomeration in which the component full configuration associat ed with this interface is
configured has the value "N" for IsSystem.

Á Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has

the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (3.00) In dex (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

2 4 Opnum eDT_ULONG 4 0x00000003 RO

- 5 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

110 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index (3.00) In dex (4.00/5.00) Property name Type Size Flags Meta

3 6 Internal1 eDT_BYTES variable 0x00000000 IN

4 7 Internal2 eDT_GUID 16 0x00000000 IN

5 8 Name eDT_LPWSTR variable 0x00000002 RO

6 9 Internal3 eDT_ULONG 4 0x00000002 IN

7 10 Internal4 eDT_ULONG 4 0x00000002 IN

8 11 AutoComplete eDT_ULONG 4 0x00000002

9 12 Description eDT_LPWSTR variable 0x00000000

In the previous table, internal properties (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of these properties is implementation -specific because
it does not affect interoperability.

CLSID: The CLSID of the component configuration associated with the method. <210>

PartitionIdentifier: The partition identifier of the partition in which the component configuration
associated with the method resides.

Reserved: PlaceholderGuidProperty (section 2.2.2.1.2) .

IID: The Interface Identifier (IID) of the interfa ce associated with the method. <211>

Opnum: The index of the method. <212>

ConfigurationBitness: A BitnessProperty (section 2.2.2.5) indicating the bitness of the component

configuration associated with the method.

Name: A NameProperty (section 2.2.2.6) providing a human - readable name of the method. <213>

AutoComplete: A BooleanProperty (section 2.2.2.9) indicating that a component instance is to be
deactivated by the ORB once a call to this method completes. <214>

Description: A DescriptionProperty (section 2.2.2.7) providing a human - readable description of the
method. <215>

3.1.1.3.13 RolesForComponent Table

The entries in the RolesForComponent table represent associations of roles and configured
components.

Table identifier: {CD331D12 -C739 -11D1 -9D35 -006008B 0E5CA}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Á Catalog version 3.00.

111 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Cell 1

CLSID equals <A>.

Á Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2 Cell 3

CLSID equals <A>. PartitionIdentifier equals . ConfigurationBitness equals <C>.

Primary key:

Á Catalog version 3.00: CLSID, Rolename

Á Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, ConfigurationBitness,
RoleName

Other referential constraints:

Catalog
version Constraints

3.00 There MUST exist a component full configuration entry with an identical value of CLSID.

There MUST exist a role with an identical value of RoleName in the conglomeration containing
the component full configuration associated with this entry.

4.00/5.00 There MUST exist a component full configuration entry with identical values of CLSID,
PartitionIdentifier, and ConfigurationBitness.

There MUST exist a role with an identical value of RoleName in the conglomeration containing
the component full configuration associated with this entry.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if:

Á The conglomeration in whi ch the component full configuration associated with this entry is
configured has the value "Y" for Changeable.

Á The conglomeration in which the component full configuration associated with this entry is
configured has the value "N" for IsSystem.

Á Catalog ver sion 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has
the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

 Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

- 3 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

112 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

1 4 RoleName eDT_LPWSTR 510 0x00000000 RO

CLSID: The CLSID property of the component full configuration.

PartitionIdentifier: The PartitionIdentifier property of the component full configuration.

Reserved: A PlaceholderGuidProperty (section 2.2.2.1.2) .

ConfigurationBitne ss: The ConfigurationBitness property of the component full configuration.

RoleName: The RoleName property of the role. <216>

3.1.1.3.14 RolesForInterface Table

The entries in the RolesForInterface table represent associations of roles and configured interfaces.

Table identifier: {CD331D13 -C739 -11D1 -9D35 -006008B0E5CA}

AuxiliaryGuid: None.

Defined in catalog version : All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Á Catalog version 3.00.

Cell 1 Cell 2

CLSID equals <A>. IID equals .

Á Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2 Cell 3 Cell 4

CLSID equals <A>. IID equals . PartitionIdentifier equals <C>. ConfigurationBitness equals <D>.

Primary key:

Á Catalog version 3.00: CLSID, IID, Rolename

Á Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID,
ConfigurationBitness, RoleName

Other referential constraints:

Catalog
version Constraints

3.00 There MUST exist a configured interface with identical values of CLSID and IID.

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID.

4.00/5.00 There MUST exist a configured interface with identical values of CLSID, PartitionIdentifier, IID, and
ConfigurationBitness.

113 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Catalog
version Constraints

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID,
PartitionIdentifier, and ConfigurationBitness.

Write restrictions: Update MUST NOT be suppor ted.

Add and remove MUST be supported if and only if:

Á The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog version 5.00, PartitionIdentifier and ConfigurationBitness) has

the value "Y" for Changeable.

Á The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog version 5.00, PartitionIdentifier and ConfigurationBitness) has
the value "N" for IsSystem.

Á Catalog version 4.00 an d catalog version 5.00: The partition identified by PartitionIdentifier has
the value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

- 4 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

2 5 RoleName eDT_LPWSTR 510 0x00000000 RO

CLSID: The CLSID property of the configured interface.

PartitionIdentifier: The PartitionIdentifier property of the configured interface.

Reserved: A PlaceholderGuidProperty (section 2.2.2.1.2) .

ConfigurationBitness: The Configur ationBitness property of the configured interface.

IID: The IID property of the configured interface.

RoleName: The RoleName property of the role. <217>

3.1.1.3.15 RolesForMethod Table

The entries in the RolesForMethod table represent associations of roles and methods.

Table identifier: {CD331D14 -C739 -11D1 -9D35 -006008B0E5CA}

AuxiliaryGuid: None.

114 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Á Catalog version 3.00:

Cell 1 Cell 2 Cell 3

CLSID equals <A>. IID equals . Opnum equals <C>.

Á Catalog version 4.00 and catalog version 5.00:

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

CLSID equals
<A>.

IID equals
.

Opnum equals
<C>.

PartitionIdentifier equals
<D>.

ConfigurationBitness equals
<E>.

Primary key:

Á Catalog version 3.00: CLSID, IID, Opnum, RoleName

Á Catalog version 4.00 and catalog version 5.00: CLSID, PartitionIdentifier, Reserved, IID, Opnum,
ConfigurationBitness, RoleName

Other referential constraints:

Catalog
version Constraints

3.00 There MUST exist a configured method with identical values of CLSID, IID, Opnum, and
MethodName.

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID.

4.00/5.00 There MUST exist a configured method with identical values of CLSID, PartitionIdentifi er, IID,
Opnum, ConfigurationBitness, and MethodName.

There MUST exist a role with an identical value of RoleName to this entry and an identical value of
ConglomerationIdentifier to the component full configuration identified by CLSID,
PartitionIdentifier, and ConfigurationBitness.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if:

Á The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog versi on 5.00, PartitionIdentifier and ConfigurationBitness) has

the value "Y" for Changeable.

Á The conglomeration containing the component full configuration identified by CLSID (and in
catalog version 4.00 and catalog version 5.00, PartitionIdentifier and Confi gurationBitness) has
the value "N" for IsSystem.

Á Catalog version 4.00 and catalog version 5.00: The partition identified by PartitionIdentifier has
the value "Y" for Changeable.

Cascade: None.

115 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Populate: None.

Properties:

Index (3.00) Index (4.00/5.00) Property name Type Size Flags Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

- 1 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 Reserved eDT_GUID 16 0x00000003 RO

1 3 IID eDT_GUID 16 0x00000003 RO

2 4 Opnum eDT_ULONG 4 0x00000003 RO

- 5 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

3 6 MethodName eDT_LPWSTR 510 0x00000000 RO

4 7 Internal1 eDT_ULONG 4 0x00000000 IN

5 8 RoleName eDT_LPWSTR 510 0x00000000 RO

In the previous table, the internal property (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of this property is implementation -specific because it
does not affect interoperability.

CLSID: The CLSID property of the configured method.

PartitionIdentifier: The PartitionIdentifier property of the configured method.

Reserved: A PlaceholderGuidProperty (section 2.2.2.1.2) .

ConfigurationBitness: The ConfigurationBitness property of the configured method.

IID: The IID property of the configured method.

MethodName: The MethodName property of the configured method.

RoleName: The RoleName property of the role. <218>

3.1.1.3.16 PartitionUsers Table

The entries in the PartitionUsers table represent associations of partitions and user accounts.

Table identifier: {0AF55FDC -30B5 -4B6E -B258 -A9DE4B64818C}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: UserName

Other referential constraints: There MUST exist a partition with an identical value of
PartitionIdentifier.

116 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if the partition identified by PartitionIdentifier has the

value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

Index (4.00/5.00) Property name Type Size Flags Meta

0 UserName eDT_LPWSTR variable 0x00000003 RO

1 Internal1 eDT_BYTES variable 0x00000000 IN

2 PartitionIdentifier eDT_GUID 16 0x00000002

In the previous table, the internal property (marked with IN in the Meta column) MUST NOT be written

to or interpreted by the client. The server's use of this property is implementation -specific as it does
not affect interoperability.

UserName: A SecurityPrincipalNameProperty (section 2.2.2.17) identif ying the user. <219>

PartitionIdentifier: The partition identifier of the partition. <220>

3.1.1.3.17 PartitionRoles Table

The entries in the PartitionRoles table represent partition roles, which are implementation -specific
collections of users that can be associated with partitions.

Table identifier: {9D29E285 -E24D -4096 -98E1 -44DBB2EAF7F0}

AuxiliaryGuid: None.

Defined in cat alog version: 4.00 and 5.00.

Hidden bitness property: No.

Supported query templates:

Cell 1

PartitionIdentifier equals <A>.

Primary key: PartitionIdentifier, RoleName.

Other referential constraints: There MUST exist a partition with an identical value of
PartitionIdentifier.

Write restrictions: Add and remove MUST NOT be supported.

Update MUST be supported if and only if the partition identified by PartitionIdentifier has the value "Y"
for Changeable.

Cascade: On removal of an e ntry, all entries in PartitionRoleMembers (section 3.1.1.3.18) table with
identical values of PartitionIdentifier and RoleName MUST be removed.

Populate: None.

117 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Properties:

Index (4.00/5.00) Proper ty name Type Size Flags Meta

0 PartitionIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 Description eDT_LPWSTR variable 0x00000000 RO

PartitionIdentifier: The PartitionIdentifier of the partition associated with the role.

RoleName: A NameProperty (section 2.2.2.6) providing a human - readable name for the role. <221>

Description: If not null, a DescriptionProperty (section 2.2.2.7) providing a human - readable
description of the role. <222>

3.1.1.3.18 PartitionRoleMembers Table

The entries in the PartitionRoleMembers table represent partition role members.

Table identifier: {352131CD -E0FF-4C46 -9675 -C3808B249F69}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Hidden b itness property: No.

Supported query templates:

Cell 1 Cell 2

PartitionIdentifier equals <A>. RoleName equals .

Primary key: PartitionIdentifier, RoleName, RoleMember.

Other referential constraints: There MUST exist a partition role with identical values of
PartitionIdentifier and RoleName.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported if and only if the partition identified by PartitionIdentifier has the
value "Y" for Changeable.

Cascade: None.

Populate: None.

Properties:

 Index (4.00/5.00) Property name Type Size Flags Meta

0 PartitionIdentifier eDT_GUID 16 0x00000003 RO

1 RoleName eDT_LPWSTR variable 0x00000003 RO

2 RoleMember eDT_LPWSTR variable 0x00000003 RO

PartitionIdentifier: The PartitionIdentifier property of the partition role.

118 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

RoleName: The RoleName property of the partition role.

RoleMemberName: A SecurityPrincipalNameProperty (section 2.2.2.1 7) identifying the name of the

security principal associated with the partition role identified by PartitionIdentifier and
RoleName. <223>

3.1.1.3.19 InstanceLoadBalancingTargets Table

The entries in the InstanceLoadBalancingTargets table represent instance load balancing targets that
participate in instance load balancing with the target ORB.

Table identifier: {B7EEEA91 -B3B9 -11D1 -8B7E -00C04FD7A924}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: Instance load balancing support is installed on the server. See
ICapabilitySupport::IsInstalled (section 3.1.4.19.3) .

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: MachineName.

Other referential constraints: None.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST always be supported.

Cascade: None.

Populate: None.

Properties:

 Index (3.00/4.00/5.00) Property name Type Size Flags Meta

 0 MachineName eDT_LPWSTR variable 0x00000003 RO

MachineName: A ComputerNameOrAddressProperty (section 2.2.2.16) identifying the instance load
balancing target. <224>

3.1.1.3.20 ServerList Table

The entries in the ServerList table represent machines. This table is used by the COMA server for
implementation -specific <225> purposes not related to component or conglomeration configurations
on the server.

Table identifier: {2DAF1D50 -BD53 -11D1 -8280 -00A0C9231C29}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

119 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Supported query templates: Empty query.

Primary key: MachineName.

Other referential constraints: None.

Write restrictions: Update MUST NOT be supported.

Add and remove MUST be supported.

Cascade: None.

Populate: None.

Properties:

 Index (3.00/4.00/5.00) Property name Type Size Flags Meta

 0 MachineName eDT_LPWSTR variable 0x00000003 RO

MachineName: A ComputerNameOrAddressProperty (section 2.2.2.16) identifying a machine. <226>

3.1.1.3.21 InstanceCo ntainers Table

The entries in the InstanceContainers table represent instance container. Unlike the other tables in the
catalog, this table represents runtime state and can change between reads, even in the same session.

Table identifier: {DF2FCC47 -B7B7 -4CB9 -8B40 -0B3D1E59E7DD}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1 Cell 2

ConglomerationIdentifier equals <A>. PartitionIdentifier equals .

Primary key: ContainerIdentifier.

Other referential constraints: There MUST exist a conglomeration identified by
ConglomerationIdentifier in the partition identified by Partition Identifier.

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

 Index (4.00/5.00) Property name Type Size Flags Meta

0 ContainerIdentifier eDT_GUID 16 0x00000003 RO

120 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Index (4.00/5.00) Property name Type Size Flags Meta

1 ConglomerationIdentifier eDT_GUID 16 0x00000002 RO

2 PartitionIdentifier eDT_GUID 16 0x00000002 RO

3 ProcessIdentifier eDT_ULONG 4 0x00000002 RO

4 Paused eDT_ULONG 4 0x00000002 RO

5 Recycled eDT_ULONG 4 0x00000002 RO

ContainerIdentifier: The container identifier of the instance container .<227>

ConglomerationIdentifier: The conglomeration identifier of the conglomeration associated with the

instance container. <228>

PartitionIdentifier: The partition identifier of the partition containing the conglomeration associated
with the instance container. <229>

ProcessIdentifier: The process hosting the instance collection. <230>

Paused: A BooleanProperty (section 2.2.2.9) that indicates whether or not the instance container is
paused. <231>

Recycled: A BooleanProperty that indicates whether or not the instance co ntainer has been

recycled. <232>

3.1.1.3.22 EventClasses Table

The entries in the EventClasses table represent component full configurations of components that a re
event classes.

Table identifier: {E12539AD -CDE0-4E46 -9211 -916018B8C4D2}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Á Catalog version 3.00: Empty query.

Cell 1

IID equals.

Á Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2

PartitionIdentifier equals . IID equals null.

PartitionIdentifier equals . IID equals <A>.

Primary key: CLSID, ConglomerationIdentifier, PartitionIdentifier, ConfigurationBitness.

121 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Other referential constraints: A component full configuration entry MUST exist in the
ComponentsAndFullConfigurations (section 3.1.1.3.1) table with identical values for all common

properties (identified by identical property names), and for which the IsEventClass property has the
value TRUE (0x00000001).

Write restrictions: No writes supported.

Cascade: N/A.

Populate: N/A.

Properties:

 Index
(3.00)

 Index
(4.00/5.00) Prope rty name Type Size Flags

Meta

0 0 CLSID eDT_GUID 16 0x00000003 RO

1 1 ConglomerationIdentifier eDT_GUID 16 0x00000003 RO

- 2 PartitionIdentifier eDT_GUID 16 0x00000003 RO

- 3 ConfigurationBitness eDT_ULONG 4 0x00000003 RO

2 4 ProgID eDT_LPWSTR variable 0x00000000 RO

3 5 Description eDT_LPWSTR variable 0x00000000 RO

- 6 IsPrivate eDT_ULONG 4 0x00000002 RO

4 7 IID eDT_GUID 16 0x00000002 RO

CLSID: The CLSID of the event class.

ConglomerationIdentifier: The conglomeration in which the event class is configured. <233>

PartitionIdentifier: The PartitionIdentifier of the corresponding component full configuration entry.

ConfigurationBitness: A BitnessProperty (section 2.2.2.5) indicating the bitness for which the event
class is configured. <234>

ProgID: The ProgID property of the corresponding component full configuration entry. <235>

Description: The Description property of the corresponding component full configuration

entry. <236>

IsPrivate: The value of the IsPrivate property of the corresponding component full configuration
entry. <237>

IID: The IID associated with the event class.

3.1.1.3.23 Subscriptions Table

The entries in the Subscriptions table r epresent subscriptions to event classes in a publisher -
subscriber framework.

Table identifier: {5A84E823 -7277 -11D2 -9029 -3078302C2030}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

122 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Cell 1 Cell 2

SubscriberConglomerationIdentifier equals <A>. SubscriberCLSID equals .

Primary key: SubscriptionIdentifier

Other referential constraints:

There MUST be an entry in the ComponentsAndFullConfigurations table for which the values of the
CLSID, PublisherID, and ConglomerationIdentifier (and for catalog version 4.00 and catalog version
5.00 the PartitionIdentifier) properties are identical to thi s entry's EventClassID, PublisherIdentifier,
and EventClassConglomerationIdentifier (and EventClassPartitionIdentifier) properties, respectively.

Write restrictions: No restrictions.

Cascade:

On removal of an entry, all entries in the SubscriptionPublisher Properties and
SubscriptionSubscriberProperties with an identical value for SubscriptionIdentifier MUST be removed.

Populate: None.

Properties:

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 SubscriptionIdentifier eDT_GUID 16 0x00000003 RO

1 1 Name eDT_LPWSTR variable 0x00000002

2 2 EventClassId eDT_GUID 16 0x00000000 RO

3 3 MethodName eDT_LPWSTR variable 0x00000000

4 4 SubscriberCLSID eDT_GUID 16 0x00000000

5 5 PerUser eDT_ULONG 4 0x00000000

6 6 UserName eDT_LPWSTR variable 0x00000000

7 7 Enabled eDT_ULONG 4 0x00000000

8 8 Description eDT_LPWSTR variable 0x00000000

9 9 MachineName eDT_LPWSTR variable 0x00000000

10 10 PublisherIdentifier eDT_LPWSTR variable 0x00000000 RO

11 11 IID eDT_GUID 16 0x00000000

12 12 FilterCriteria eDT_LPWSTR variable 0x00000000

13 13 Internal1 eDT_LPWSTR variable 0x00000000 IN

14 14 SubscriberMoniker eDT_LPWSTR variable 0x00000000 TR

123 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Index
(3.00)

Index
(4.00/5.00) Property name Type Size Flags Meta

15 15 Queued eDT_ULONG 4 0x00000000

16 16 Internal2 eDT_BYTES 4 or 8 0x00000000 IN

- 17 EventClassPartitionIdentifier eDT_GUID 16 0x00000000

- 18 EventClassConglomerationIdentifier eDT_GUID 16 0x00000000

- 19 SubscriberPartitionIdentifier eDT_GUID 16 0x00000000 RO

- 20 SubscriberConglomerationIdentifier eDT_GUID 16 0x00000000

In the previous table, the internal property (marked with IN in the Meta column) MUST NOT be written
to or interpreted by the client. The server's use of this property is implementation -specific, because it
does not affect interoperability.

Internal1 can legally have a maximum size of 4 or 8, at the option of the server
implementation. <238> Note, however, that because this is a nonfixed size eDT_BYTES property, the
actual size of its value will always be explicitly given in its wire representation (see

TableDataFixed (section 2.2.1.10)).

SubscriptionIdentifier: This specifies the identity of the subscription. <239>

Name: A NameProperty (section 2.2.2.6) providing a human - readable name for the
subscription. <240>

EventClassId: The CLSID of the EventClass associated with the subscription. <241>

MethodName: If not null, a NameProperty that provides the name of the event method for which the
subscriber application wishes to receive events. <242>

SubscriberCLSID: The CLSID of the component that is the subscriber to the subscription.

PerUser: A BooleanProperty (section 2.2.2.9) that indicates whether or not the subscription is to be
bound to a user identity. <243>

UserName: A SecurityPrincipalNameProperty (section 2.2.2.17) identifying the security principal that
created the subscription. <244>

Enabled: A BooleanProperty that indicates whether or not the subscription is enabled such that the

publisher applications can publish events to it. <245>

Description: A DescriptionProperty (section 2.2.2.7) providing a human - readable description of the
subscription. <246>

MachineName: A ComputerNameOrAddressPro perty (section 2.2.2.16) identifying the server on
which the subscriber component is hosted. <247>

PublisherIdentifier: If not null, a NameProperty identifying the publisher application for which the
subscription accepts events. <248>

IID: The IID of the event interface for which the subscription is created. <249>

FilterCriteria: An ORBSpecif icSubscriptionFilterCriteriaProperty (section 2.2.2.13.8) representing
application provided criteria specified as a string in an ORB -specific syntax to filter events for the
subscription. <250>

124 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SubscriberMoniker: An ORBSpecificAlternateActivationProperty (section 2.2.2.13.9) providing an
ORB-specific string used for activation of the subscriber component. <251>

Queued: A BooleanProperty that indicates whether or not the ORB is to deliver the event to the
subscriber using a queuing protocol. <252>

EventClassPartitionIdentifier: The partition identifier of the partition in which the config uration of
the event class resides. <253>

EventClassConglomerationIdentifier: The conglomeration identifier of the conglomeration in which
the event class is configured.

SubscriberPartitionIdentifier: The partition identifier of the partition in which the subscriber
resides. <254>

SubscriberConglomerationIdentifier: The conglomeration identifier of the conglomeration in which

the subscriber is configured.

3.1.1.3.24 SubscriptionPubl isherProperties Table

The entries in the SubscriptionPublisherProperties table represent properties associated with the
publisher for a subscription in a publisher -subscriber framework.

Table identifier: {5A84E824 -7277 -11D2 -9029 -3078302C2030}

AuxiliaryGuid: {EB56EAE8 -BA51 -11D2 -B121 -00805FC73204}

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Support ed query templates:

Catalog version 3.00.

Cell 1

SubscriptionIdentifier equals <A>.

Catalog version 4.00 and catalog version 5.00.

Cell 1 Cell 2 Cell 3

SubscriberConglomerationIdentifier equals
<A>.

SubscriberPartitionIdentifier equals
.

SubscriptionIdentifier equals
<C>

Primary key:

Catalog version 3.00: SubscriptionIdentifier, Name

Catalog version 4.00 and catalog version 5.00: SubscriptionIdentifier, SubscriberPartitionIdentifier,
SubscriberConglomerationIdentifier, Name

Other referent ial constraints:

Catalog version 3.00: There MUST exist an entry in the Subscriptions table with an identical value of
SubscriptionIdentifier.

125 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Catalog version 4.00 and catalog version 5.00: There MUST exist an entry in the Subscriptions table
with identica l values of SubscriptionIdentifier, SubscriberPartitionIdentifier, and

SubscriberConglomerationIdentifier.

Write restrictions: No restrictions.

Cascade: None.

Populate: None.

Properties:

 Index
(3.00)

 Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 SubscriptionIdentifier eDT_GUID 16 0x00000003 RO

- 1 SubscriberPartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 SubscriberConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 3 Name eDT_LPWSTR variable 0x00000003 RO

2 4 Type eDT_ULONG 4 0x00000002

3 5 Value eDT_BYTES variable 0x00000000

SubscriptionIdentifier: The SubscriptionIdentifier property of the subscription.

SubscriberPartitionIdentifier: The SubscriptionPartitionIdentifier property of the subscription.

SubscriberConglomerationIdentifier: The SubscriberConglomerationIdentifier property of the
subscription.

Name: A NameProperty (section 2.2.2.6) providing a human - readable name of the application -specific

publisher property. <255>

Type: A SubscriptionPropertyTypeProperty (section 2.2.2.32.1) identifying the type of the application -
specific publisher prop erty.

Value: A SubscriptionPropertyValueProperty (section 2.2.2.32.2) containing an encoding of the
subscription property's value according to the type specified by the Type property. <256>

3.1.1.3.25 SubscriptionSubscriberProperties Table

The entries in the SubscriptionSubscriberProperties table represent properties associated with the

subscriber for a persistent subscription in a publisher -subscriber framework.

Table identifier: {5A84E825 -7277 -11D2 -9029 -3078302C2030}

AuxiliaryGuid: {EB56EA E8-BA51 -11D2 -B121 -00805FC73204}

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates:

Á Catalog version 3.00.

126 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Cell 1

SubscriptionIdentifier equals <A>.

Á Catalog version 4.00 and catal og version 5.00.

Cell 1 Cell 2 Cell 3

SubscriberConglomerationIdentifier equals
<A>.

SubscriberPartitionIdentifier equals
.

SubscriptionIdentifier equals
<C>.

Primary key:

Á Catalog version 3.00: SubscriptionIdentifier, Name

Á Catalog version 4.00 and catalog version 5.00: SubscriptionIdentifier,
SubscriberPartitionIdentifier, SubscriberConglomerationIdentifier, Name

Other referential constraints:

Á Catalog version 3.00: There MUST exist an entry in the Subscriptions table with an identical value
of SubscriptionIdentifier.

Á Catalog version 4.00 and catalog version 5.00: There MUST exist an entry in the Subscriptions
table with identical values of SubscriptionIdentifier, SubscriberPartitionIdentifier, and
SubscriberConglomerationIdentifier.

Write restri ctions: No restrictions.

Cascade: None.

Populate: None.

Properties:

 Index
(3.00)

 Index
(4.00/5.00) Property name Type Size Flags Meta

0 0 SubscriptionIdentifier eDT_GUID 16 0x00000003 RO

- 1 SubscriptionPartitionIdentifier eDT_GUID 16 0x00000003 RO

- 2 SubscriptionConglomerationIdentifier eDT_GUID 16 0x00000003 RO

1 3 Name eDT_LPWSTR variable 0x00000003 RO

2 4 Type eDT_ULONG 4 0x00000002

3 5 Value eDT_BYTES variable 0x00000000

SubscriptionIdentifier: The SubscriptionIdentifier property of the subscription.

SubscriberPartitionIdentifier: The partition of the Subscriber component.

SubscriberConglomerationIdentifier: The application of the Subscriber component.

Name: A NameProperty (section 2.2.2.6) providing a human - readable name of application -specific
subscriber property. <257>

Type: A SubscriptionPropertyTypeProperty (section 2.2.2.32.1) identifying the type of the application -

specific subscriber property.

127 / 272

[MS -COMA] - v20150630
Component Object Model Plus (COM+) Remote Administration Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value: A SubscriptionPropertyValueProperty (section 2.2.2.32.2) containi ng an encoding of the
subscriber property's value according to the type specified by the Type property. <258>

3.1.1.3.26 Protocols Table

The entries in the Protocols t able represent transport protocols supported for components by the
COMA server.

Table identifier: {61436563 -EE01-11D1 -BFE4-00C04FB9988E}

AuxiliaryGuid: None.

Defined in catalog version: All catalog versions.

Prerequisites: None.

Hidden bitness property: No.

Supported query templates: Empty query.

Primary key: Code.

Other referential constraints: None.

Write restrictions: No restrictions.

Cascade: None.

Populate: None.

Properties:

 Index (3.00/4.00/5.00) Property Type Size Flags Meta

0 Code eDT_LPWSTR variable 0x00000001 RO

1 Order eDT_ULONG 4 0x00000002

2 Name eDT_LPWSTR variable 0x00000000 RO

Code: An ORBSpecificProtocolSequenceMnemonicProperty (section 2.2.2.13.10) representing the RPC
protocol sequence for use by the ORB to configure DCOM. <259>

Order: The preference order of the protocol that the ORB should use when choosing a DCOM
protocol, < 260> where 0 means that the protocol will be given highest preference.

Name: A NameProperty (section 2.2.2.6) providing the human - readable name for the protocol. <261>

3.1.1.3.27 FilesForImport Table

The entries in the FilesForImport table represent conglomerations in installer package files available

for import on the COMA server.

Table identifier: {E4053366 -BF8F-4E84 -B4B2 -72B3C2626CC9}

AuxiliaryGuid: None.

Defined in catalog version: 4.00 and 5.00.

Prerequisites: None.

