

1 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MC-NETCEX]:
.NET Context Exchange Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

04/08/2008 0.1 Initial availability.

05/16/2008 0.1.1 Editorial Revised and edited the technical content.

06/20/2008 0.1.2 Editorial Revised and edited the technical content.

07/25/2008 0.1.3 Editorial Revised and edited the technical content.

08/29/2008 0.1.4 Editorial Revised and edited the technical content.

10/24/2008 0.1.5 Editorial Revised and edited the technical content.

12/05/2008 0.1.6 Editorial Revised and edited the technical content.

01/16/2009 0.1.7 Editorial Revised and edited the technical content.

02/27/2009 1.0 Major Updated and revised the technical content.

04/10/2009 1.0.1 Editorial Revised and edited the technical content.

05/22/2009 1.0.2 Editorial Revised and edited the technical content.

07/02/2009 1.0.3 Editorial Revised and edited the technical content.

08/14/2009 1.0.4 Editorial Revised and edited the technical content.

09/25/2009 1.1 Minor Updated the technical content.

11/06/2009 1.1.1 Editorial Revised and edited the technical content.

12/18/2009 1.1.2 Editorial Revised and edited the technical content.

01/29/2010 1.2 Minor Updated the technical content.

03/12/2010 1.2.1 Editorial Revised and edited the technical content.

04/23/2010 1.2.2 Editorial Revised and edited the technical content.

06/04/2010 1.2.3 Editorial Revised and edited the technical content.

07/16/2010 2.0 Major Significantly changed the technical content.

08/27/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 2.0 No change No changes to the meaning, language, or formatting of

3 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Date

Revision

History

Revision

Class Comments

the technical content.

02/11/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 2.1 Minor Clarified the meaning of the technical content.

09/23/2011 2.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 3.0 Major Significantly changed the technical content.

03/30/2012 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments .. 13

2 Messages.. 14
2.1 Transport .. 14
2.2 Message Syntax .. 14

2.2.1 CONTEXT_XML ... 15
2.2.2 CALLBACK_CONTEXT_XML .. 16
2.2.3 CONTEXT_NV ... 17
2.2.4 HTTP Client Message Header .. 17
2.2.5 HTTP Server Message Header .. 17
2.2.6 Server Context Establishing Message .. 18
2.2.7 Context Participating Message ... 18

3 Protocol Details .. 19
3.1 Context Exchange Client Role Details ... 19

3.1.1 Abstract Data Model ... 19
3.1.1.1 IDLE State ... 20
3.1.1.2 WAIT_CORRELATED_SM State ... 20
3.1.1.3 WAIT_SM State .. 20
3.1.1.4 ENDED State .. 21

3.1.2 Timers .. 21
3.1.3 Initialization .. 21
3.1.4 Higher-Layer Triggered Events ... 21

3.1.4.1 SEND_CM .. 21
3.1.4.2 TERMINATE .. 22

3.1.5 Message Processing Events and Sequencing Rules .. 22
3.1.5.1 RECEIVE_SM .. 22

3.1.6 Timer Events ... 23
3.1.7 Other Local Events ... 23

3.2 Context Exchange Server Role Details .. 23
3.2.1 Abstract Data Model ... 23

3.2.1.1 WAIT_CM State .. 24
3.2.1.2 ENDED State .. 24

3.2.2 Timers .. 24
3.2.3 Initialization .. 24
3.2.4 Higher-Layer Triggered Events ... 25

3.2.4.1 TERMINATE .. 25
3.2.5 Message Processing Events and Sequencing Rules .. 25

3.2.5.1 RECEIVE_CM .. 25

5 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.2.6 Timer Events ... 27
3.2.7 Other Local Events ... 27

3.3 Callback Context Exchange Client Role Details ... 27
3.3.1 Abstract Data Model ... 27

3.3.1.1 WAIT_SM State .. 27
3.3.1.2 ENDED State .. 28

3.3.2 Timers .. 28
3.3.3 Initialization .. 28
3.3.4 Higher-Layer Triggered Events ... 28

3.3.4.1 TERMINATE .. 28
3.3.5 Message Processing Events and Sequencing Rules .. 28

3.3.5.1 SEND_CM .. 28
3.3.5.2 RECEIVE_SM .. 29

3.3.6 Timer Events ... 29
3.3.7 Other Local Events ... 29

3.4 Callback Context Exchange Server Role Details ... 30
3.4.1 Abstract Data Model ... 30

3.4.1.1 WAIT_CM State .. 30
3.4.1.2 ENDED State .. 30

3.4.2 Timers .. 30
3.4.3 Initialization .. 31
3.4.4 Higher-Layer Triggered Events ... 31

3.4.4.1 TERMINATE .. 31
3.4.5 Message Processing Events and Sequencing Rules .. 31

3.4.5.1 RECEIVE_CM .. 31
3.4.5.2 SEND_SM .. 31

3.4.6 Timer Events ... 32
3.4.7 Other Local Events ... 32

4 Protocol Examples .. 33
4.1 Using the .NET Context Exchange Protocol with SOAP 1.2 ... 33

4.1.1 Establishing Context Using SOAP 1.2 .. 33
4.1.2 Subsequent Context Participating Messages Using SOAP 1.2 34
4.1.3 Continue Using Context Using SOAP 1.2 .. 35
4.1.4 Establish a Callback Context .. 35
4.1.5 Subsequent Callback Messages .. 36

4.2 Using the .NET Context Exchange Protocol with HTTP ... 37
4.2.1 Establishing Context Using HTTP .. 37
4.2.2 Subsequent Context Participating Messages Using HTTP 38
4.2.3 Continue Using the Context Using HTTP .. 38

4.3 Processing an Unrecognized Context Using SOAP 1.2 ... 38
4.4 Processing an Unrecognized Context Using HTTP ... 39

5 Security .. 41
5.1 Security Considerations for Implementers ... 41
5.2 Index of Security Parameters .. 41

6 Appendix A: Product Behavior .. 42

7 Change Tracking... 43

8 Index ... 44

6 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

This document specifies the .NET Context Exchange Protocol, which specifies a message syntax for
identifying context that is shared between a client and a server, and a protocol for establishing that
context.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

base64
client
endpoint

.NET Framework
server
SOAP envelope
SOAP fault
SOAP header
SOAP message

UTF-8

The following terms are specific to this document:

callback context: The context that is needed for a server to make callbacks to a client. A
callback context consists of an endpoint reference for a client endpoint with an optional
context identifier.

Client Context Initiating Message: A client message that requests a server to establish a
context.

client message: A message that is sent from a client to a server.

connection: A time-bounded association between two endpoints that allows the two endpoints
to exchange messages.

context: An abstract concept that represents an association between a resource and a set of
messages that are exchanged between a client and a server. A context is uniquely identified
by a context identifier.

context identifier: A set of name-value pairs, where each name in the set is unique.

Context Participating Message: A client message or a server message that is one of a set

of messages associated with a context.

endpoint reference: Conveys the information that is needed to address an endpoint.

Server Context Establishing Message: A server message that establishes a new context and
is correlated to a Client Context Initiating Message.

server message: A message that is sent from a server to a client.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

7 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Simple Object Access Protocol (SOAP): Either the Simple Object Access Protocol (SOAP) 1.1
[SOAP1.1] or SOAP 1.2 [SOAP1.2-1/2007]. This term is used in cases where the difference

between the two SOAP version specifications has no impact on the specification of the .NET
Context Exchange Protocol.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2234] Crocker, D., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
2234, November 1997, http://www.ietf.org/rfc/rfc2234.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt

[RFC3548] Josefsson, S., Ed., "The Base16, Base32, and Base64 Data Encodings", RFC 3548, July
2003, http://www.ietf.org/rfc/rfc3548.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629,

November 2003, http://www.ietf.org/rfc/rfc3629.txt

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP)
1.1", May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[SOAP1.2-1/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition) ", W3C Recommendation 27, April 2007,
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[W3C-XSD] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", October

2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

[WSA] Gudgin, M., Hadley, M., and Rogers, T., "Web Services Addressing 1.0 - Core", W3C
Recommendation, May 2006, http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90323
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90432
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=90563
http://go.microsoft.com/fwlink/?LinkId=120448

8 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[XML1.0] Bray, T., Paoli, J., Sperberg-McQueen, C.M., and Maler, E., "Extensible Markup Language
(XML) 1.0 (Second Edition)", W3C Recommendation, October 2000,

http://www.w3.org/TR/2000/REC-xml-20001006

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[RFC2109] Kristol, D., and Montulli, L., "HTTP State Management Mechanism", RFC 2109, February
1997, http://www.ietf.org/rfc/rfc2109.txt

[RFC2965] Kristol, D., and Montulli, L., "HTTP State Management Mechanism", RFC 2965, October
2000, http://www.ietf.org/rfc/rfc2965.txt

[RFC4346] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.1",

RFC 4346, April 2006, http://www.ietf.org/rfc/rfc4346.txt

[WSS1] Nadalin, A., Kaler, C., Hallam-Baker, P., et al., "Web Services Security: SOAP Message

Security 1.0 (WS-Security 2004)", March 2004, http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf

1.3 Overview

The .NET Context Exchange Protocol specifies a message syntax for identifying context that is
shared between a client and a server independent of connection usage, and a protocol for
establishing that context. For example, in some scenarios, the connection between a client and a
server is sufficient for the server to relate the client messages to specific resources; a chat
application can define a conversation resource and relate chat messages to a conversation by
associating the conversation with chat messages that arrive over a particular connection.

It is typical, however, for a set of client messages to be associated with a resource that is

independent of a connection. For example, a SOAP-based shopping application can define a
shopping cart resource and relate client messages to the shopping cart even if the first few

messages arrive on one connection and the remaining messages arrive on a different connection.
The .NET Context Exchange Protocol facilitates this more general connection-independent case.

The .NET Context Exchange Protocol can be used in one of two modes: stateless or stateful. In
stateless mode, a client and server use the message syntax specified in section 2.2; however, the
interpretation of this syntax is defined by the client and server implementations. In stateful mode

the client and server must interpret the message syntax as specified in section 3. Unless explicitly
mentioned, this document discusses the .NET Context Exchange Protocol in stateful mode.

This protocol specifies two roles for context exchange: a client role and a server role. The server role
is responsible for creating context identifiers in response to client requests and associating
context identifiers with resources. For example, a shopping service may create a context identifier
with the following (property name, property value) pair.

Property name Property value

shoppingCartId 1a1913b1-cb24-4d94-91d2-cf414a569481

It may then store a shopping cart resource by using the value of the shoppingCartId as a key.

The client role initiates communication with the server role, captures the context identifier that is
sent from the server role, and attaches the context identifier to all subsequent client messages that
are related to the resources in question. For example, a client shopping application may use the

http://go.microsoft.com/fwlink/?LinkId=90599
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90315
http://go.microsoft.com/fwlink/?LinkId=90399
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=131547
http://go.microsoft.com/fwlink/?LinkId=131547
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

previously mentioned shopping service to create a shopping cart resource using the .NET Context
Exchange Protocol. The client stores the context identifier that is generated by the server and

attaches it to each message that is intended to manipulate the shopping cart.

The protocol also specifies two roles for callback context exchange: a client role and a server

role.<1> The initial communication of the client role with the server role may specify a callback
context to enable duplex communication. The callback context consists of an endpoint reference
that specifies the address of the client endpoint. The endpoint reference may optionally contain a
context identifier that is associated with resources by the client. For example, a customer of a
shopping service may create a context identifier with the following (property name, property value)
pair.

Property name Property value

customerId 9b0e43f0-e783-4cb9-8343-106d677c4ed7

Note that the roles for context exchange and callback context exchange compose. For example, the

entity acting as the client role for context exchange may also act as the client role for callback
context exchange.

The following figure describes the typical use of the .NET Context Exchange Protocol.

%5bMS-GLOS%5d.pdf

10 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 1: Typical use of the .NET Context Exchange Protocol

Each message that is exchanged between client and server is an application-specific message. This
protocol is a header-based protocol that composes into client and server messages:

11 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1. The client sends a Client Context Initiating Message to the server. The server recognizes this
message as a Client Context Initiating Message because it does not have a context identifier

attached.

2. The server creates a resource (for example, a shopping cart) and a new context identifier. It then

associates the resource with the new context identifier.

3. The server returns a Server Context Establishing Message to the client with the newly
created context identifier attached.

4. The client stores the attached context identifier so that it can be retrieved even if the client
process is restarted.

5. The client sends the server a Context Participating Message with the context identifier
attached. This message is intended to manipulate the resource that is created in step 2. For

example, it may be intended to add an item to the shopping cart.

6. The server dereferences the resource using the context identifier. For example, it may use the

property value of the property named "shoppingCartId" in the predicate of a database query to
retrieve the shopping cart. It may then act on the resource according to the message it received.

7. The server sends a response back to the client.

8. At some point later on a different connection, the client retrieves the context identifier that it

stored earlier in step 4.

9. The client then sends the server a Context Participating Message that has the context identifier
attached. This message is intended to manipulate the resource that was created in step 2. For
example, it may be intended to purchase the items in the shopping cart.

The message that is sent by the client is also a Callback Context Establishing Message that has a
callback context attached. This allows the server to engage in a duplex conversation with the
client. For example, it allows the server to notify the client when the purchased items have

shipped.

10.The server dereferences the resource from the context identifier, as described in step 6.

11.The server stores the endpoint reference that is sent in the callback context from the client.

12.The server sends a response back to the client. For example, the server acknowledges that the
items in the shopping cart have been purchased.

13.At some point later on a different connection, the server retrieves the endpoint reference that it
stored earlier in step 11.

14.The server sends a Context Participating Message to the endpoint reference from the callback
context. For example, it notifies the specific customer that purchased items have been shipped.

These examples and the examples in section 4 of this document demonstrate sending a context
identifier from a server to a client in a Server Context Establishing Message. This protocol does not

require a client and server to exchange a context identifier by using a Client Context Initiating
Message and a Server Context Establishing Message. A client and server may agree on a context

identifier without this initial exchange. The protocol that is specified in section 3 allows the client to
acquire a context identifier by using a Client Context Initiating Message and a Server Context
Establishing Message; then subsequently, to send Context Participating Messages.

12 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Alternatively, this protocol allows an implementation-specific context exchange mechanism to be
leveraged to initialize the protocol with a context identifier. This context identifier can then be

attached to subsequent Context Participating Messages.

Similarly, the callback context need not be established using a Callback Context Establishing

Message, but could instead be established through an implementation-specific callback context
exchange mechanism.

1.4 Relationship to Other Protocols

The .NET Context Exchange Protocol can be used with HTTP [RFC2616] or SOAP-formatted
messages [SOAP1.2-1/2007] [SOAP1.1]. The following figure shows a protocol stack.

Figure 2: Protocol stack for the .NET Context Exchange Protocol

1.5 Prerequisites/Preconditions

The .NET Context Exchange Protocol requires that the client role can communicate with a server role

so that client messages and server messages can be exchanged.

The .NET Context Exchange Protocol requires an underlying protocol in which a server message
can be correlated to a unique client message.

1.6 Applicability Statement

The .NET Context Exchange Protocol is applicable to scenarios where a client and server application
requires a set of client messages to be associated with a resource independent of a connection. The

client and server application use this protocol to share context.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: This protocol can be implemented by using transports that support

sending HTTP [RFC2616] or SOAP messages, as discussed in section 2.1.

Protocol Versions: When this protocol is implemented by using SOAP, it requires the use of

SOAP messaging version 1.1 [SOAP1.1] or SOAP messaging 1.2 [SOAP1.2-1/2007]. When this
protocol is implemented by using HTTP, it requires the use of HTTP version 1.1.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664

13 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Capability Negotiation: The .NET Context Exchange Protocol does not support negotiation of

the version to use. Instead, an implementation must be configured to process only messages as

described in section 2.1.

1.8 Vendor-Extensible Fields

Vendors and implementers MAY extend the protocol by including additional attributes [XML1.0] on
the CONTEXT_XML element or its child Property element. The interpretation of these attributes is
defined by the implementation. For example, an extension MAY be used to:

Convey lifetime information for a particular context identifier.

Convey metadata about the applicability of the context identifier.

Similarly, vendors and implementers MAY extend the protocol by including additional attributes
[XML1.0] on the CALLBACK_CONTEXT_XML element. The interpretation of these attributes is defined
by the implementation.

1.9 Standards Assignments

There are no standards assignments for this protocol.

http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90599

14 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Messages

2.1 Transport

The .NET Context Exchange Protocol can be used over any transport protocol that supports
transmitting messages that are specified by the following protocols:

HTTP 1.1 [RFC2616]

SOAP 1.1 [SOAP1.1]

SOAP 1.2 [SOAP1.2-1/2007]

This specification uses the term SOAP to mean either SOAP 1.1 or SOAP 1.2. Where the differences
between the two versions of SOAP are significant, either SOAP 1.1 or SOAP 1.2 is referenced.

An implementation of the .NET Context Exchange Protocol MUST support the processing of

messages that are specified by HTTP 1.1 or either of the SOAP versions. This section specifies the
format of .NET Context Exchange Protocol messages using the message formats of both HTTP 1.1

and SOAP.

2.2 Message Syntax

This section specifies the messages that are used by the .NET Context Exchange Protocol and their
relationship to HTTP 1.1 [RFC2616] and SOAP.

When used with SOAP, the .NET Context Exchange Protocol uses a CONTEXT_XML element as a
SOAP header using the SOAP extensibility model, specified in [SOAP1.2-1/2007] section 3, to form

a Server Context Establishing Message or a Context Participating Message. The following figure
shows the containment of CONTEXT_XML in a SOAP envelope.

Figure 3: Context Participating Message or Server Context Establishing Message using

SOAP

The .NET Context Exchange Protocol uses CALLBACK_CONTEXT_XML as a SOAP header using the
SOAP extensibility model, specified in [SOAP1.2-1/2007] section 3, to form a Callback Context
Establishing Message. The following figure shows the containment of CALLBACK_CONTEXT_XML in a
SOAP envelope.

Figure 4: Callback Context Establishing Message using SOAP

When used with HTTP 1.1, the .NET Context Exchange Protocol uses:

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=94664
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=94664

15 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

An HTTP Client Message Header as an HTTP header in an HTTP request message to form a

Context Participating Message; or

An HTTP Server Message Header as an HTTP header in an HTTP response message to form a

Server Context Establishing Message.

The next figure shows the containment of message structures, which are defined in section 2, within
an HTTP request message.

Figure 5: Client Context Participating Message using HTTP 1.1

The following figure shows the containment of message structures, which are defined in section 2,
within an HTTP response message.

Figure 6: Server Context Establishing Message using HTTP 1.1

2.2.1 CONTEXT_XML

CONTEXT_XML is an XML element [XML1.0] that represents a context identifier, as specified by the
following XML schema [W3C-XSD].

<xs:schema

 targetNamespace="http://schemas.microsoft.com/ws/2006/05/context"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

>

 <xs:element name="Context">

 <xs:complexType>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:element name="Property">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="name">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[A-Za-z\.\-_]+"/>

 </xs:restriction>

 </xs:simpleType>

http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90563

16 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 </xs:attribute>

 <xs:anyAttribute namespace="##any"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:anyAttribute namespace="##any"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

For a context identifier and a CONTEXT_XML element to be isomorphic, all the following statements

MUST be true:

The number of Property XML elements in the CONTEXT_XML element is equal to the number of

(property name, property value) pairs in the context identifier.

No two Property XML elements, when inside the CONTEXT_XML element, have the same value as

the name XML attribute.

For each Property XML element that is inside the CONTEXT_XML element, there is exactly one

(property name, property value) pair in the context identifier so that:

The Property name is equal to the value of the name XML attribute of the Property XML

element, and

The Property value is equal to the value of the content of the Property XML element.

2.2.2 CALLBACK_CONTEXT_XML

CALLBACK_CONTEXT_XML is an XML element [XML1.0] that represents a callback context, as

specified by the following XML schema [W3C-XSD].

<xs:schema

 targetNamespace="http://schemas.microsoft.com/ws/2008/02/context"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

>

 <xs:element name="CallbackContext">

 <xs:complexType>

 <xs:sequence minOccurs="1" maxOccurs="1">

 <xs:element name="CallbackEndpointReference" type="wsa:EndpointReferenceType">

 </xs:sequence>

 <xs:anyAttribute namespace="##any"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

To specify a context identifier as part of the callback context, a CONTEXT_XML element MUST be
included as a reference parameter of the endpoint reference that is specified by the

CallbackEndpointReference element.

For a callback context and a CALLBACK_CONTEXT_XML element to be isomorphic, the following
statement MUST be true:

http://go.microsoft.com/fwlink/?LinkId=90599
http://go.microsoft.com/fwlink/?LinkId=90563

17 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The CallbackEndpointReference element in the CALLBACK_CONTEXT_XML element is an XML

Infoset representation of the endpoint reference from the callback context as defined by [WSA].

2.2.3 CONTEXT_NV

CONTEXT_NV specifies a literal that results from resolving the following context_nv Augmented
Backus-Naur Form (ABNF) rule [RFC2234].

context-nv = %x57.73.63.43.6F.6E.74.65.78.74 ; WscContext

 lws "=" lws

 %x22 context-v %x22

context-v = *base64

base64 = %x30-39 / %x41-5A / %x61-7A / %x2B / %x2F / %x3D

lws = *(%x0D.0A / %x09 / %x20) ; CRLF, space, or tab

For a context identifier and a CONTEXT_NV literal to be isomorphic, the value of context-v MUST be

a base64 [RFC3548] encoding of a UTF-8 encoding [RFC3629] of a CONTEXT_XML element that is

isomorphic to the context identifier.

2.2.4 HTTP Client Message Header

The HTTP Client Message Header is an HTTP header [RFC2616] that results from resolving the

following client_context_header ABNF rule [RFC2234].

client_context_header = lws "Cookie" lws ":"

 *(any-nv ";") lws

 context-nv

 lws *(";" any-nv)

any-nv = lws token lws "=" lws (token / quoted-string) lws

lws = *(%x0D.0A / %x09 / %x20) ; CRLF, space, or tab

This is a new header which does not have any relation with the "Cookie" header as described in

[RFC2109] and [RFC2965].

The rules token and quoted-string of this grammar are specified in [RFC2616] section 2.2.

The context_nv rule MUST resolve to a CONTEXT_NV literal.

For a context identifier and an HTTP Client Message Header to be isomorphic, the context_nv rule
MUST resolve to a value that is isomorphic to the context identifier, as specified in CONTEXT_NV.

2.2.5 HTTP Server Message Header

The HTTP Server Message Header is an HTTP header [RFC2616] that results from resolving the
following server_context_header ABNF rule [RFC2234].

server_context_header = lws "Set-Cookie" lws ":"

 *(any-nv ";") lws

 context-nv

 lws *(";" any-nv)

any-nv = lws token lws "=" lws (token / quoted-string) lws

lws = *(%x0D.0A / %x09 / %x20) ; CRLF, space, or tab

http://go.microsoft.com/fwlink/?LinkId=120448
http://go.microsoft.com/fwlink/?LinkId=90323
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90432
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90323
http://go.microsoft.com/fwlink/?LinkId=90315
http://go.microsoft.com/fwlink/?LinkId=90399
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90323

18 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This is a new header which does not have any relation with the "Set-Cookie" header as described in

[RFC2109].

The rules token and quoted-string of this grammar are specified in [RFC2616] section 2.2.

The context_nv rule MUST resolve to a CONTEXT_NV literal.

For a context identifier and an HTTP Server Message Header to be isomorphic, the context_nv rule
MUST resolve to a value that is isomorphic to the context identifier, as specified in CONTEXT_NV.

2.2.6 Server Context Establishing Message

The Server Context Establishing Message MUST be either:

A server message that is an HTTP response message [RFC2616] that contains an HTTP Server

Message Header.

A server message that is a SOAP envelope that contains a CONTEXT_XML element as a SOAP

header.

2.2.7 Context Participating Message

The Context Participating Message MUST be either:

A client message that is an HTTP request message [RFC2616] that contains an HTTP Client

Message Header.

A client message that is a SOAP envelope that contains a CONTEXT_XML element as a SOAP

header.

http://go.microsoft.com/fwlink/?LinkId=90315
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

19 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Details

3.1 Context Exchange Client Role Details

In this section, "client role" refers to the client role for context exchange.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

The client role MUST maintain the following data elements:

Context Identifier Store: A data element that is capable of holding an instance of a context

identifier or an empty value.

State: An enumeration that identifies the current state of the client role with the following

possible values:

IDLE

WAIT_CORRELATED_SM

WAIT_SM

ENDED

The following figure shows the relationship between the client role states.

20 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Figure 7: State diagram for the client role

3.1.1.1 IDLE State

IDLE is the initial state. The following events are processed in this state:

SEND_CM

TERMINATE

3.1.1.2 WAIT_CORRELATED_SM State

The following events are processed in the WAIT_CORRELATED_SM state:

RECEIVE_SM

TERMINATE

3.1.1.3 WAIT_SM State

The following events are processed in the WAIT_SM state:

RECEIVE_SM

21 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TERMINATE

3.1.1.4 ENDED State

The ENDED state is the final state.

3.1.2 Timers

None.

3.1.3 Initialization

When the client role is initialized:

The State field MUST be set to IDLE.

The Context Identifier Store field MUST be set to a value that is obtained from an

implementation-specific source.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 SEND_CM

The SEND_CM event MUST be signaled by the higher-layer business logic with the following
arguments:

The Client Message argument.

The Protocol argument with two possible values: HTTP or SOAP.

The ServerMessageExpected argument with two possible values: true or false.

If the SEND_CM event is signaled, the client role implementation MUST perform the following

actions:

If the Context Identifier Store contains an empty value:

Send the client message to the server role by using the underlying transport protocol.

Set the State field to WAIT_CORRELATED_SM.

Otherwise:

Transform the client message to a Context Participating Message by performing the following

steps:

If the Protocol value is HTTP and the client message is an HTTP request message

[RFC2616]:

Create an HTTP Client Message Header that is isomorphic with the value of the Context

Identifier Store.

Add the HTTP Client Message Header to the client message.

Else if the Protocol value is SOAP and the client message is a SOAP envelope:

http://go.microsoft.com/fwlink/?LinkId=90372

22 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Create a CONTEXT_XML element that is isomorphic with the value of the Context

Identifier Store.

Add the CONTEXT_XML element to the client message as a SOAP header.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Send the Context Participating Message to the server role by using the underlying transport

protocol.

If the ServerMessageExpected value is true:

Set the State field to WAIT_SM.

3.1.4.2 TERMINATE

The TERMINATE event MUST be signaled by the higher-layer business logic.

If the TERMINATE event is signaled, the client role implementation MUST perform the following
action:

Set the State field to ENDED.

3.1.5 Message Processing Events and Sequencing Rules

3.1.5.1 RECEIVE_SM

The RECEIVE_SM event MUST be signaled by the underlying transport protocol with the following

arguments:

The Server Message argument.

The Protocol argument with two possible values: HTTP or SOAP.

The ServerMessageExpected argument with two possible values: true or false.

If the RECEIVE_SM event is signaled, the client role implementation MUST perform the following
actions:

If the State field is WAIT_CORRELATED_SM:

If the server message is a Server Context Establishing Message:

Create the context identifier from the Server Context Establishing Message by performing

the following steps:

If the Protocol value is HTTP and the server message contains an HTTP Server Message

Header:

Create a context identifier that is isomorphic with the HTTP Server Message Header

from the server message.

Else if the Protocol value is SOAP and the server message contains a SOAP header that

matches a CONTEXT_XML element:

23 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Create a context identifier that is isomorphic with the SOAP header from the server

message that matches a CONTEXT_XML element.

Otherwise:

Set the State field to ENDED.

Return an implementation-specific failure result to the higher-layer business logic.

Set the Context Identifier Store field to the value of the created context identifier.

Provide the server message to the higher-layer business logic.

Otherwise:

Set the State field to ENDED.

Return an implementation-specific failure result to the higher-layer business logic.

Otherwise:

If the server message is a Server Context Establishing Message:

Set the State field to ENDED.

Return an implementation-specific failure result to the higher-layer business logic.

Otherwise:

Provide the server message to the higher-layer business logic.

If the ServerMessageExpected value is true:

Set the State field to WAIT_SM.

Otherwise:

Set the State field to IDLE.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Context Exchange Server Role Details

In this section "server role" refers to the server role for context exchange.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is

described in this document.

24 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The server role MUST maintain the following data elements:

Context Identifier Store: A data element that is capable of holding an instance of a context

identifier or an empty value.

State: An enumeration that identifies the current state of the server role with the following

possible values:

WAIT_CM

ENDED

The following figure shows the relationship between server role states.

Figure 8: State diagram for the server role

3.2.1.1 WAIT_CM State

The WAIT_CM state is the initial state. The following events are processed in the WAIT_CM state:

RECEIVE_CM

TERMINATE

3.2.1.2 ENDED State

The ENDED state is the final state.

3.2.2 Timers

None.

3.2.3 Initialization

When the server role is initialized:

The State field MUST be set to WAIT_CM.

The Context Identifier Store field MUST be set to a value that is obtained from an

implementation-specific source.

25 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.2.4 Higher-Layer Triggered Events

3.2.4.1 TERMINATE

The TERMINATE event MUST be signaled by the higher-layer business logic.

If the TERMINATE event is signaled, the server role implementation MUST perform the following
action:

Set the State field to ENDED.

3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 RECEIVE_CM

The RECEIVE_CM event MUST be signaled by the underlying transport protocol with the following
arguments:

The Client Message argument.

The Protocol argument with two possible values: HTTP or SOAP.

If the RECEIVE_CM event is signaled, the server role implementation MUST perform the following
actions:

Initialize the NEW_CONTEXT Boolean local data element to false.

If the client message is a Context Participating Message:

Create the context identifier from the Context Participating Message by performing the

following steps:

If the Protocol value is HTTP and the client message is an HTTP request message

[RFC2616]:

Create a context identifier that is isomorphic with the HTTP Client Message Header from

the client message.

Else if the Protocol value is SOAP and the server message is a SOAP envelope:

Create a context identifier that is isomorphic with the SOAP header from the client

message that matches the CONTEXT_XML element.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Invoke a function in the higher-layer business logic that accepts the created context identifier

and the value from the Context Identifier Store field; and returns one of three values:
PARTICIPATE, NEW, or FAIL.

If the value that is returned from the higher-layer business logic is PARTICIPATE:

Provide the client message to the higher-layer business logic.

Set NEW_CONTEXT to false.

Else if the value that is returned from the higher-layer business logic is NEW:

http://go.microsoft.com/fwlink/?LinkId=90372

26 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set the Context Identifier Store field to an empty value.

Set NEW_CONTEXT to true.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Otherwise:

Set NEW_CONTEXT to true.

If NEW_CONTEXT is true:

If the Context Identifier Store field is empty:

Invoke a function in the higher-layer business logic that returns a context identifier.

Invoke a function in the higher-layer business logic that accepts the client message and

returns a correlated server message using a correlation mechanism that is supplied by the
underlying transport protocol.

Transform the server message to a Server Context Establishing Message by performing the

following steps:

If the Protocol value is HTTP and the server message is an HTTP response message

[RFC2616]:

Create an HTTP Server Message Header that is isomorphic with the context identifier.

Add the HTTP Server Message Header to the server message [RFC2616].

Else if the Protocol value is SOAP and the server message is a SOAP envelope:

Create a CONTEXT_XML element that is isomorphic with the context identifier.

Add the CONTEXT_XML element to the server message as a SOAP header.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Send the Server Context Establishing Message to the client role by using the underlying

transport protocol.

Set the Context Identifier Store field to the value of the context identifier that is

returned by higher-layer business logic.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Invoke a function in the higher-layer business logic that accepts the client message and returns a

(possibly empty) collection of correlated server messages by using a correlation mechanism that
is supplied by the underlying transport protocol.

For each server message in the collection of the server messages:

Send the server message to the client role by using the underlying transport protocol.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

27 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Callback Context Exchange Client Role Details

In this section, "client role" refers to the client role for callback context exchange.

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

The client role MUST maintain the following data elements:

Context Identifier Store: A data element that is capable of holding an instance of a context

identifier or an empty value.

State: An enumeration that identifies the current state of the client role with the following

possible values:

WAIT_SM

ENDED

The following figure shows the relationship between the client role states.

Figure 9: State diagram for the callback context exchange client role

3.3.1.1 WAIT_SM State

The WAIT_SM state is the initial state. The following events are processed in the WAIT_SM state:

SEND_CM

RECEIVE_SM

TERMINATE

28 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.3.1.2 ENDED State

The ENDED state is the final state.

3.3.2 Timers

There are no timers specified for the client role.

3.3.3 Initialization

When the client role is initialized:

The State field MUST be set to WAIT_SM.

The Context Identifier Store field MUST be set to a value that is obtained from an

implementation-specific source.

3.3.4 Higher-Layer Triggered Events

3.3.4.1 TERMINATE

The TERMINATE event MUST be signaled by the higher-layer business logic.

If the TERMINATE event is signaled, the client role implementation MUST perform the following
actions:

Set the State field to ENDED.

3.3.5 Message Processing Events and Sequencing Rules

3.3.5.1 SEND_CM

The SEND_CM event MUST be signaled by the higher-layer business logic with the following

arguments:

The Client Message argument.

The Callback Context argument.

If the SEND_CM event is signaled, the client role implementation MUST perform the following

actions:

Transform the client message to a Callback Context Establishing Message by performing the

following steps:

If the client message is a SOAP envelope:

Create a CALLBACK_CONTEXT_XML element that is isomorphic with the callback context.

Add the CALLBACK_CONTEXT_XML element to the client message as a SOAP header.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Send the Callback Context Establishing Message to the server role by using the underlying

transport protocol.

29 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the callback context specifies a context identifier:

Set the Context Identifier Store field to the value of the context identifier.

3.3.5.2 RECEIVE_SM

The RECEIVE_SM event MUST be signaled by the underlying transport protocol with the following
arguments:

The Server Message argument.

If the RECEIVE_SM event is signaled, the client role implementation MUST perform the following
actions:

If the server message is a Context Participating Message:

Create the context identifier from the Context Participating Message by performing the

following steps:

If the server message is a SOAP envelope:

Create a context identifier that is isomorphic with the SOAP header from the server

message that matches the CONTEXT_XML element.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Invoke a function in the higher-layer business logic that accepts the created context identifier

and the value from the Context Identifier Store field and returns one of two values:

PARTICIPATE or FAIL.

If the value that is returned from the higher-layer business logic is PARTICIPATE:

Provide the client message to the higher-layer business logic.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Invoke a function in the higher-layer business logic that accepts the server message and returns

a (possibly empty) collection of correlated client messages using a correlation mechanism that is
supplied by the underlying transport protocol.

For each client message in the collection of the client messages:

Send the client message to the server role by using the underlying transport protocol.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

30 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4 Callback Context Exchange Server Role Details

In this section, "server role" refers to the server role for the callback context exchange.

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

The server role MUST maintain the following data elements:

Endpoint Reference Store: A data element that is capable of holding an instance of an

endpoint reference or an empty value.

State: An enumeration that identifies the current state of the server role with the following

possible values:

WAIT_CM

ENDED

The following figure shows the relationship between server role states.

Figure 10: State diagram for the callback context exchange server role

3.4.1.1 WAIT_CM State

The WAIT_CM state is the initial state. The following events are processed in the WAIT_CM state:

RECEIVE_CM

SEND_SM

TERMINATE

3.4.1.2 ENDED State

The ENDED state is the final state.

3.4.2 Timers

None.

31 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3.4.3 Initialization

When the server role is initialized:

The State field MUST be set to WAIT_CM.

The Endpoint Reference Store field MUST be set to a value that is obtained from an

implementation-specific source.

3.4.4 Higher-Layer Triggered Events

3.4.4.1 TERMINATE

The TERMINATE event MUST be signaled by the higher-layer business logic.

If the TERMINATE event is signaled, the server role implementation MUST perform the following
actions:

Set the State field to ENDED.

3.4.5 Message Processing Events and Sequencing Rules

3.4.5.1 RECEIVE_CM

The RECEIVE_CM event MUST be signaled by the underlying transport protocol with the following
arguments:

The Client Message argument.

If the RECEIVE_CM event is signaled, the server role implementation MUST perform the following
actions:

If the client message is a Callback Context Establishing Message:

If the client message contains a SOAP header that matches a CALLBACK_CONTEXT_XML

element:

Create a callback context that is isomorphic with the SOAP header from the client message

that matches the CALLBACK_CONTEXT_XML element.

Set the Endpoint Reference Store field to the value of the endpoint reference from the

created callback context.

Provide the client message to the higher-layer business logic.

3.4.5.2 SEND_SM

The SEND_SM event MUST be signaled by the underlying transport protocol with the following

argument:

The Server Message argument.

If the SEND_SM event is signaled, the server role implementation MUST perform the following
actions:

If the server message is a SOAP message:

%5bMS-GLOS%5d.pdf

32 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the Endpoint Reference Store field is not empty:

Send the server message to the endpoint reference that is stored in the Endpoint

Reference Store field by using the process that is specified in [WSA] section 3.3.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

Otherwise:

Return an implementation-specific failure result to the higher-layer business logic.

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

http://go.microsoft.com/fwlink/?LinkId=120448

33 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Protocol Examples

The following sections describe common scenarios to illustrate typical use of the .NET Context
Exchange Protocol:

Using the .NET Context Exchange Protocol with SOAP 1.2 [SOAP1.2-1/2007].

Using the .NET Context Exchange Protocol with HTTP [RFC2616].

Processing an Unrecognized Context Using SOAP 1.2 [SOAP1.2-1/2007].

These examples assume that the client role can establish a connection with the server role by using
a transport protocol that supports exchanging HTTP or SOAP messages.

4.1 Using the .NET Context Exchange Protocol with SOAP 1.2

This scenario shows how a client establishes a context with a server that associates Context

Participating Messages to a shopping cart resource. The scenario also shows how the client
reestablishes that context after the original connection with the server is closed. Finally the scenario

shows how the client establishes a callback context with the server.

The scenario starts after the client connects to the server by using a transport protocol that supports
the exchange of SOAP messages.

All messages that are exchanged in this scenario use [SOAP1.2-1/2007].

4.1.1 Establishing Context Using SOAP 1.2

A client establishes context with a server by sending the server a Client Context Initiating Message.

This message is a SOAP message [SOAP1.2-1/2007] that does not contain CONTEXT_XML as a
SOAP header.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http:

//www.w3.org/2005/08/addressing">

<s:Header>

<a:Action

s:mustUnderstand="1">http://machine1.example.org/Sample/IShoppingCart/Create</a:Action>

<a:MessageID>urn:uuid:04133e99-4c4f-4433-b2de-4aca4132e78f</a:MessageID>

<a:ReplyTo>

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

</a:ReplyTo>

<a:To s:mustUnderstand="1">http://machine2.example.org/ShoppingCart</a:To>

</s:Header>

<s:Body>

<Create xmlns="http://machine1.example.org/Sample">

<customerId>571</customerId>

</Create>

</s:Body>

</s:Envelope>

When the server receives this message, it invokes a business logic function according to its rules for

processing SOAP messages ([SOAP1.2-1/2007] section 2.6). This function creates a new shopping
cart resource, associates it with a new context identifier, and creates a response message. The
context identifier has a single pair (property name, property value).

http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=94664

34 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Property name Property value

instanceId 1a1913b1-cb24-4d94-91d2-cf414a569481

The server then transforms the response message into a Server Context Establishing Message by

adding a SOAP header and sends it to the client. This header is a CONTEXT_XML element that is
isomorphic to the context identifier that is associated with the shopping cart.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http:

//www.w3.org/2005/08/addressing">

<s:Header>

<a:Action

s:mustUnderstand="1">http://machine1.example.org/Sample/IShoppingCart/CreateResponse</a:Actio

n>

<a:RelatesTo>urn:uuid:04133e99-4c4f-4433-b2de-4aca4132e78f</a:RelatesTo>

<Context xmlns="http://schemas.microsoft.com/ws/2006/05/context">

<Property name="instanceId">1a1913b1-cb24-4d94-91d2-cf414a569481</Property>

</Context>

</s:Header>

<s:Body>

<CreateResponse xmlns="http://machine1.example.org/Sample"/>

</s:Body>

</s:Envelope>

When the client receives the Server Context Establishing Message, it creates a context identifier that

is isomorphic to the CONTEXT_XML element from the SOAP message and stores it.

4.1.2 Subsequent Context Participating Messages Using SOAP 1.2

After the context is established as described in section 4.1.1, the client sends SOAP messages
[SOAP1.2-1/2007] that are intended to manipulate the associated shopping cart. All these messages
are Context Participating Messages with a CONTEXT_XML element that is isomorphic to the client’s

stored context identifier, as shown in the following example.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing">

<s:Header>

<a:Action

s:mustUnderstand="1">http://machine1.example.org/Sample/IShoppingCart/AddItem</a:Action>

<a:MessageID>urn:uuid:a807e1f4-2096-40f3-9c6c-bbc3f45bc509</a:MessageID>

<a:ReplyTo>

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

</a:ReplyTo>

<Context xmlns="http://schemas.microsoft.com/ws/2006/05/context">

<Property name="instanceId">1a1913b1-cb24-4d94-91d2-cf414a569481</Property>

</Context>

<a:To s:mustUnderstand="1">http://machine2.example.org /ShoppingCart</a:To>

</s:Header>

<s:Body>

<AddItem xmlns="http://machine1.example.org /Sample">

<item>scarf</item>

</AddItem>

</s:Body>

</s:Envelope>

http://go.microsoft.com/fwlink/?LinkId=94664

35 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

When the server receives each message, it creates a context identifier that is isomorphic to the

CONTEXT_XML element from the SOAP message and invokes a business logic function according to
its rules for processing SOAP messages. This function determines that a shopping cart exists for the
provided context identifier and performs the appropriate action on the shopping cart by using the
content of the SOAP message.

The client then closes the connection to the server.

4.1.3 Continue Using Context Using SOAP 1.2

To continue using the context that is associated with the shopping cart that was created in section
4.1.1, the client connects to the server by using a transport protocol that supports the exchange of
SOAP messages [SOAP1.2-1/2007]. It then sends Context Participating Messages to the server. The
creation, transmission, and processing of these messages is as described in section 4.1.2.

4.1.4 Establish a Callback Context

To enable duplex communication with the server, the client sends another Context Participating
Message to the server (as in section 4.1.2) that is also a Callback Context Establishing Message.

The client invokes a business logic function that creates a new customer resource and associates it
with a new context identifier. The context identifier has a single pair (property name, property
value).

Property name Property value

instanceId c4b4e186-a5eb-4a8c-9f64-f8bb099e84eb

The client adds a CALLBACK_CONTEXT_XML element as a SOAP header to the message to specify
the endpoint reference to which callback messages should be sent. The endpoint reference also

contains a context identifier for the client.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing">

<s:Header>

<a:Action

s:mustUnderstand="1">http://machine1.example.org/Sample/IShoppingCart/Purchase</a:Action>

<a:MessageID>urn:uuid:31d9ce06-a90b-4d81-9a0b-b1b8eaf67b28</a:MessageID>

<a:ReplyTo>

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

</a:ReplyTo>

<Context xmlns="http://schemas.microsoft.com/ws/2006/05/context">

<Property name="instanceId">1a1913b1-cb24-4d94-91d2-cf414a569481</Property>

</Context>

<CallbackContext xmlns="http://schemas.microsoft.com/ws/2008/02/context">

<CallbackEndpointReference>

<a:Address>http://machine3.example.org</a:Address>

<a:ReferenceParameters>

<Context xmlns="http://schemas.microsoft.com/ws/2006/05/context">

<Property name=”instanceId”>c4b4e186-a5eb-4a8c-9f64-f8bb099e84eb</Property>

</Context>

<a:ReferenceParameters>

</CallbackEndpointReference>

http://go.microsoft.com/fwlink/?LinkId=94664

36 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

</CallbackContext>

<a:To s:mustUnderstand="1">http://machine2.example.org/ShoppingCart</a:To>

</s:Header>

<s:Body>

<Purchase xmlns="http://machine1.example.org/Sample">

<customerId>571</customerId>

</Purchase>

</s:Body>

</s:Envelope>

When the server receives the Server Context Establishing Message, it creates an endpoint reference
that is isomorphic to the endpoint reference in the CALLBACK_CONTEXT_XML element from the

SOAP message and stores it.

The client then closes the connection with the server.

4.1.5 Subsequent Callback Messages

After the callback context is established as described in section 4.1.4, the client connects to the
server by using a transport protocol that supports exchanging SOAP messages as specified in
[SOAP1.2-1/2007]. The server then sends a SOAP message that is intended for the associated

customer. The server sends this message to the endpoint reference that was stored when the
callback context was established. The context identifier for the customer is as described in WS-
Addressing [WSA].

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing">

<s:Header>

<a:Action

s:mustUnderstand="1">http://machine1.example.org/Sample/INotifyCustomer/ShippedItems</a:Actio

n>

<a:MessageID>urn:uuid:323d365c-e69a-4d9e-99f1-3c2a57490926</a:MessageID>

<a:ReplyTo>

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

</a:ReplyTo>

<Context xmlns="http://schemas.microsoft.com/ws/2006/05/context">

<Property name="instanceId">c4b4e186-a5eb-4a8c-9f64-f8bb099e84eb</Property>

</Context>

<a:To s:mustUnderstand="1">http://machine3.example.org</a:To>

</s:Header>

<s:Body>

<ShippedItems xmlns="http://machine1.example.org/Sample">

<item>scarf</item>

</ShippedItems>

</s:Body>

</s:Envelope>

When the client receives the message, it creates a context identifier that is isomorphic to the

CONTEXT_XML element from the SOAP message and invokes a business logic function according to
its rules for processing SOAP messages. This function determines that the customer exists for the

provided context identifier and performs the appropriate action on the customer instance by using
the content of the SOAP message.

http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=120448

37 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4.2 Using the .NET Context Exchange Protocol with HTTP

This scenario shows how a client establishes a context with a server that associates a Context
Participating Message to a shopping cart resource and how the client reestablishes that context after

the original connection with the server is closed.

All messages that are exchanged in this scenario use HTTP [RFC2616]. This scenario starts after the
client has connected to the server by using a transport that supports HTTP.

4.2.1 Establishing Context Using HTTP

A client establishes context with a server by sending the server a Client Context Initiating Message.
This message is an HTTP request message [RFC2616] that does not contain an HTTP Client Message

Header.

POST /ShoppingCart/ HTTP/1.1

Content-Type: application/xml; charset=utf-8

Host: machine2.example.org

Content-Length: 87

Expect: 100-continue

Connection: Keep-Alive

<Create xmlns="http://machine1.example.org/Sample"><customerId>15</customerId></Create>

When the server receives this message, it invokes a business logic function according to its rules for

processing HTTP messages. This function creates a new shopping cart resource, associates it with a
new context identifier, and creates a response message. The context identifier has a single pair

(property name, property value).

Property name Property value

instanceId 0b29289f-45b0-4d37-9c40-6a481945477a

The server then transforms the response message into a Server Context Establishing Message by
adding an HTTP Server Message Header and sends it to the client. This header is isomorphic to the

context identifier that is associated with the shopping cart.

HTTP/1.1 200 OK

Content-Length: 60

Content-Type: application/xml; charset=utf-8

Server: Microsoft-HTTPAPI/2.0

Set-Cookie: WscContext="77u/PENvbnRleHQgeG1sbnM9Imh0dHA6Ly9zY2hlbWFzLm1pY

3Jvc29mdC5jb20vd3MvMjAwNi8wNS9jb250ZXh0Ij48UHJvcGVydHkgbmFtZT0iaW5zdGFuY2

VJZCI+ODIxOWQ2NjItYTAzMi00YzA4LWFjZWItNzZiN2ZmYWYzNTAyPC9Qcm9wZXJ0eT48L0N

vbnRleHQ+";Path=/ShoppingCart/

Date: Thu, 21 Feb 2008 22:01:38 GMT

<CreateResponse xmlns="http://machine1.example.org/Sample"/>

When the client receives the Server Context Establishing Message, it creates a context identifier that

is isomorphic to the HTTP Server Message Header and stores it.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372

38 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4.2.2 Subsequent Context Participating Messages Using HTTP

After the context is established as described in section 4.2.1, the client sends HTTP messages
[RFC2616] that are intended to manipulate the associated shopping cart. All these messages are

Context Participating Messages with an HTTP Client Message Header that is isomorphic to the
client’s stored context identifier, as shown in the following example.

POST /ShoppingCart/AddItem HTTP/1.1

Content-Type: application/xml; charset=utf-8

Cookie: WscContext="77u/PENvbnRleHQgeG1sbnM9Imh0dHA6Ly9zY2hlbWFzLm1pY3Jvc

29mdC5jb20vd3MvMjAwNi8wNS9jb250ZXh0Ij48UHJvcGVydHkgbmFtZT0iaW5zdGFuY2VJZC

I+ODIxOWQ2NjItYTAzMi00YzA4LWFjZWItNzZiN2ZmYWYzNTAyPC9Qcm9wZXJ0eT48L0NvbnR

leHQ+"

Host: machine2.example.org

Content-Length: 80

Expect: 100-continue

<AddItem xmlns="http://machine1.example.org/Sample"><item>scarf</item></AddItem>

When the server receives each message, it creates a context identifier that is isomorphic to the

HTTP Client Message Header and invokes a business logic function according to its rules for
processing HTTP messages. This function determines that a shopping cart exists for the provided
context identifier and performs the appropriate action on the shopping cart based on the content of
the HTTP message.

The client then closes the connection to the server.

4.2.3 Continue Using the Context Using HTTP

To continue using the context that is associated with the shopping cart that was created in section
4.2.1, the client connects to the server by using a transport that supports HTTP [RFC2616]; it then
sends Context Participating Messages to the server. The creation, transmission, and processing of

these messages is as described in section 4.2.2.

4.3 Processing an Unrecognized Context Using SOAP 1.2

A client sends a SOAP message [SOAP1.2-1/2007] that is intended to manipulate a particular
shopping cart. This message is a Context Participating Message with a CONTEXT_XML element that
is isomorphic to the stored context identifier of the client, as shown in the following example.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing">

<s:Header>

<a:Action

s:mustUnderstand="1">http://machine1.example.org/Sample/IShoppingCart/AddItem</a:Action>

<a:MessageID>urn:uuid:5730ae92-2bc3-4576-95bc-ae0ddf4a2be7</a:MessageID>

<a:ReplyTo>

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

</a:ReplyTo>

<Context xmlns="http://schemas.microsoft.com/ws/2006/05/context">

<Property name="instanceId">7da72d4e-41da-467d-bfbb-d66fa8cb5ab9</Property>

</Context>

<a:To s:mustUnderstand="1">http://machine2.example.org/ShoppingCart</a:To>

</s:Header>

<s:Body>

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=94664

39 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<AddItem xmlns="http://machine1.example.org/Sample">

<item>toque</item>

</AddItem>

</s:Body>

</s:Envelope>

When the server receives this message, it creates a context identifier that is isomorphic to the

CONTEXT_XML element from the SOAP message. It invokes a business logic function according to its
rules for processing SOAP messages. This function determines that a shopping cart does not exist
for the provided context identifier, creates a SOAP fault message, and sends it to the client. An
example SOAP fault message follows.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing">

<s:Header>

<a:Action s:mustUnderstand="1">http://schemas.microsoft.com/net/2005/12/windowscommuni

cationfoundation/dispatcher/fault</a:Action>

<a:RelatesTo>urn:uuid:5730ae92-2bc3-4576-95bc-ae0ddf4a2be7</a:RelatesTo>

</s:Header>

<s:Body>

<s:Fault>

<s:Code>

<s:Value>s:Receiver</s:Value>

<s:Subcode>

<s:Value xmlns:a="http://schemas.microsoft.com/net/2005/12/windowscommunicationfoundat

ion/dispatcher">a:InternalServiceFault</s:Value>

</s:Subcode>

</s:Code>

<s:Reason>

<s:Text xml:lang="en-US">The server was unable to process the request

due to an internal error. For more information about the error, either

turn on IncludeExceptionDetailInFaults (either from

ServiceBehaviorAttribute or from the <serviceDebug> configuration

behavior) on the server in order to send the exception information back

to the client, or turn on tracing as per the Microsoft .NET Framework

3.0 SDK documentation and inspect the server trace logs.</s:Text>

</s:Reason>

</s:Fault>

</s:Body>

</s:Envelope>

4.4 Processing an Unrecognized Context Using HTTP

A client sends an HTTP message, as specified in [RFC2616], that is intended to manipulate a
particular shopping cart. This message is a Context Participating Message with an HTTP Client

Message Header that is isomorphic to the stored context identifier of the client, as shown in the

following example.

POST /ShoppingCart/AddItem HTTP/1.1

Content-Type: application/xml; charset=utf-8

Cookie: WscContext="77u/PENvbnRleHQgeG1sbnM9Imh0dHA6Ly9zY2hlbWFzLm1pY3Jvc

29mdC5jb20vd3MvMjAwNi8wNS9jb250ZXh0Ij48UHJvcGVydHkgbmFtZT0iaW5zdGFuY2VJZC

I+ODIxOWQ2NjItYTAzMi00YzA4LWFjZWItNzZiN2ZmYWYzNTAyPC9Qcm9wZXJ0eT48L0NvbnR

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372

40 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

leHQ+"

Host: machine2.example.org

Expect: 100-continue

When the server receives this message, it creates a context identifier that is isomorphic to the HTTP

Client Message Header and invokes a business logic function according to its rules for processing
HTTP messages. This function determines that a shopping cart does not exist for the provided

context identifier, and sends an HTTP 500 "Internal Server Error" to the client.

HTTP/1.1 500 Internal Server Error

Content-Length: 734

Content-Type: text/xml; charset=utf-8

Server: Microsoft-IIS/7.5

X-Powered-By: ASP.NET

41 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Security

5.1 Security Considerations for Implementers

If the context information in the HTTP Message and SOAP Headers is not secured, it can be

intercepted, tampered with, and sent to the server with malicious intent. The following mechanisms
are recommended to make sure that the context information is not tampered while in transit:

1. While using the .NET Context Exchange Protocol over HTTP 1.1 [RFC2616], HTTP Client Message
Headers and HTTP Server Message Headers should be sent over a secure channel using the
Transport Layer Security Protocol [RFC4346].

2. While using the .NET Context Exchange protocol over SOAP, the CONTEXT_XML and
CALLBACK_CONTEXT_XML SOAP Headers should be sent over a secure channel using the

Transport Layer Security Protocol [RFC4346] or secured using WS-* security mechanisms, such
as [WSS1].

5.2 Index of Security Parameters

None.

http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=131547

42 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Appendix A: Product Behavior

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see .NET Framework.

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft .NET Framework 3.5

Microsoft .NET Framework 4.0

Microsoft .NET Framework 4.5

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.3: The .NET Framework 3.5 implements only the client and server roles for context
exchange. It does not implement the client and server roles for callback context exchange.

.NET Framework 4.0 and .NET Framework 4.5 implement the client and server roles for both context

exchange and callback context exchange.

%5bMS-GLOS%5d.pdf

43 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

44 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

8 Index

A

Abstract data model
callback context exchange client role 27
callback context exchange server role 30
context exchange client role 19
context exchange server role 23

Applicability 12

C

Capability negotiation 12
Change tracking 43
Client role - callback context exchange

abstract data model 27
higher-layer triggered events 28
initialization 28
local events 29
message processing

RECEIVE_SM 29
SEND_CM 28

overview 27
sequencing rules

RECEIVE_SM 29
SEND_CM 28

timer events 29
timers 28

Client role - context exchange
abstract data model 19
higher-layer triggered events 21
initialization 21
local events 23
message processing - RECEIVE_SM 22
overview 19
sequencing rules - RECEIVE_SM 22
timer events 23

timers 21

D

Data model - abstract
callback context exchange client role 27
callback context exchange server role 30
context exchange client role 19
context exchange server role 23

E

Examples - overview 33

F

Fields - vendor-extensible 13

G

Glossary 6

H

Higher-layer triggered events
callback context exchange client role 28
callback context exchange server role 31
context exchange client role 21
context exchange server role 25

I

Implementer - security considerations 41
Index of security parameters 41
Informative references 8
Initialization

callback context exchange client role 28
callback context exchange server role 31
context exchange client role 21
context exchange server role 24

Introduction 6

L

Local events
callback context exchange client role 29
callback context exchange server role 32
context exchange client role 23
context exchange server role 27

M

Message processing
callback context exchange client role

RECEIVE_SM 29
SEND_CM 28

callback context exchange server role

RECEIVE_CM 31
SEND_SM 31

context exchange client role - RECEIVE_SM 22
context exchange server role - RECEIVE_CM 25

Messages
syntax 14
transport 14

N

Normative references 7

O

Overview (synopsis) 8

P

Parameters - security index 41
Preconditions 12
Prerequisites 12
Product behavior 42

R

References

45 / 45

[MC-NETCEX] — v20130722
 .NET Context Exchange Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

informative 8
normative 7

Relationship to other protocols 12

S

Security
implementer considerations 41
parameter index 41

Sequencing rules
callback context exchange client role

RECEIVE_SM 29
SEND_CM 28

callback context exchange server role
RECEIVE_CM 31
SEND_SM 31

context exchange client role - RECEIVE_SM 22
context exchange server role - RECEIVE_CM 25

Server role - callback context exchange

abstract data model 30
higher-layer triggered events 31
initialization 31
local events 32
message processing

RECEIVE_CM 31
SEND_SM 31

overview 30
sequencing rules

RECEIVE_CM 31
SEND_SM 31

timer events 32
timers 30

Server role - context exchange
abstract data model 23
higher-layer triggered events 25
initialization 24
local events 27
message processing - RECEIVE_CM 25
overview 23
sequencing rules - RECEIVE_CM 25
timer events 27
timers 24

Standards assignments 13
Syntax 14

T

Timer events
callback context exchange client role 29
callback context exchange server role 32
context exchange client role 23
context exchange server role 27

Timers
callback context exchange client role 28
callback context exchange server role 30
context exchange client role 21
context exchange server role 24

Tracking changes 43
Transport 14
Triggered events - higher-layer

callback context exchange client role 28

callback context exchange server role 31

context exchange client role 21
context exchange server role 25

V

Vendor-extensible fields 13
Versioning 12

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 CONTEXT_XML
	2.2.2 CALLBACK_CONTEXT_XML
	2.2.3 CONTEXT_NV
	2.2.4 HTTP Client Message Header
	2.2.5 HTTP Server Message Header
	2.2.6 Server Context Establishing Message
	2.2.7 Context Participating Message

	3 Protocol Details
	3.1 Context Exchange Client Role Details
	3.1.1 Abstract Data Model
	3.1.1.1 IDLE State
	3.1.1.2 WAIT_CORRELATED_SM State
	3.1.1.3 WAIT_SM State
	3.1.1.4 ENDED State

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 SEND_CM
	3.1.4.2 TERMINATE

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.5.1 RECEIVE_SM

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Context Exchange Server Role Details
	3.2.1 Abstract Data Model
	3.2.1.1 WAIT_CM State
	3.2.1.2 ENDED State

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 TERMINATE

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 RECEIVE_CM

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Callback Context Exchange Client Role Details
	3.3.1 Abstract Data Model
	3.3.1.1 WAIT_SM State
	3.3.1.2 ENDED State

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 TERMINATE

	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 SEND_CM
	3.3.5.2 RECEIVE_SM

	3.3.6 Timer Events
	3.3.7 Other Local Events

	3.4 Callback Context Exchange Server Role Details
	3.4.1 Abstract Data Model
	3.4.1.1 WAIT_CM State
	3.4.1.2 ENDED State

	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Higher-Layer Triggered Events
	3.4.4.1 TERMINATE

	3.4.5 Message Processing Events and Sequencing Rules
	3.4.5.1 RECEIVE_CM
	3.4.5.2 SEND_SM

	3.4.6 Timer Events
	3.4.7 Other Local Events

	4 Protocol Examples
	4.1 Using the .NET Context Exchange Protocol with SOAP 1.2
	4.1.1 Establishing Context Using SOAP 1.2
	4.1.2 Subsequent Context Participating Messages Using SOAP 1.2
	4.1.3 Continue Using Context Using SOAP 1.2
	4.1.4 Establish a Callback Context
	4.1.5 Subsequent Callback Messages

	4.2 Using the .NET Context Exchange Protocol with HTTP
	4.2.1 Establishing Context Using HTTP
	4.2.2 Subsequent Context Participating Messages Using HTTP
	4.2.3 Continue Using the Context Using HTTP

	4.3 Processing an Unrecognized Context Using SOAP 1.2
	4.4 Processing an Unrecognized Context Using HTTP

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

