

1 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MC - MQAC]:
Message Queuing (MSMQ):
ActiveX Client Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

Á Copyrights. This documentation is covered by Microsoft copyrights. Regardles s of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute p ortions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDLôs, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Á Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise . If you would prefer a written license, or if the te chnologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associatio n with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specific ally described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Micr osoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

08/10/2007 0.1 Major Initial Availability

09/28/2007 0.2 Minor Updated the technical content.

10/23/2007 1.0 Major Updated and revised the technical content.

11/30/2007 2.0 Major Performed XML markup and page conversions;

restructured content.

01/25/2008 2.0.1 Editorial Revised and edited the technical content.

03/14/2008 3.0 Major Updated and revised the technical content.

05/16/2008 4.0 Major Updated and revised the technical content.

06/20/2008 5.0 Major Updated and revised the technical content.

08/29/2008 5.1 Minor Updated the technical content.

10/24/2008 6.0 Major Updated and revised the technical content.

12/05/2008 7.0 Major Updated and revised the technical content.

01/16/2009 7.0.1 Editorial Revised and edited the technical content.

02/27/2009 7.0.2 Editorial Revised and edited the technical content.

04/10/2009 7.0.3 Editorial Revised and edited the technical content.

05/22/2009 8.0 Major Updated and revised the technical content.

07/02/2009 9.0 Major Updated and revised the technical content.

08/14/2009 9.0.1 Editorial Revised and edited the technical content.

09/25/2009 9.1 Minor Updated the technical content.

11/06/2009 9.2 Minor Updated the technical content.

12/18/2009 9.2.1 Editorial Revised and edited the technical content.

01/29/2010 9.3 Minor Updated the technical content.

03/12/2010 10.0 Major Updated and revised the technical content.

04/23/2010 11.0 Major Updated and revised the technical content.

06/04/2010 12.0 Major Updated and revised the technical content.

07/16/2010 12.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Date

Revision

History

Revision

Class Comments

08/27/2010 13.0 Major Significantly changed the technical content.

10/08/2010 14.0 Major Significantly changed the technical content.

11/19/2010 15.0 Major Significantly changed the technical content.

01/07/2011 15.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 15.1 Minor Clarified the meaning of the technical content.

03/25/2011 16.0 Major Significantly changed the technical content.

05/06/2011 17.0 Major Significantly changed the technical content.

06/17/2011 18.0 Major Significantly changed the technical content.

09/23/2011 18.1 Minor Clarified the meaning of the technical content.

12/ 16/2011 19.0 Major Significantly changed the technical content.

03/30/2012 19.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 19.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 20.0 Major Significantly changed the technical content.

01/31/2013 20.1 Minor Clarified the meaning of the technical content.

08/08/2013 20.2 Minor Clarified the meaning of the technical content.

11/14/2013 20.2 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 20.2 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Contents

1 Introduction 14
1.1 Glossary 14
1.2 References 16

1.2.1 Normative References 16
1.2.2 Informative References 17

1.3 Overview 18
1.4 Relationship to Other Protocols 18
1.5 Prerequisites/Preconditions 20
1.6 Applicability Statement 20
1.7 Versioning and Capability Negotiation 20
1.8 Ven dor -Extensible Fields 20
1.9 Standards Assignments 20

2 Messages 24
2.1 Transport 24
2.2 Common Data Types 24

2.2.1 OLE Automation Data Types 24
2.2.2 Enumerations 24

2.2.2.1 MQTRANSACTION 25
2.2.2.2 MQSHARE 26
2.2.2.3 MQACCESS 27
2.2.2.4 MQJOURNAL 28
2.2.2.5 MQTRANSACTIONAL 28
2.2.2.6 MQAUTHENTICATE 29
2.2.2.7 MQPRIVLEVEL 29
2.2.2.8 MQMSGCURSOR 30
2.2 .2.9 MQMSGCLASS 31
2.2.2.10 MQMSGDELIVERY 34
2.2.2.11 MQMSGACKNOWLEDGEMENT 34
2.2.2.12 MQMSGJOURNAL 35
2.2.2.13 MQMSGTRACE 36
2.2.2.14 MQMSGSENDERIDTYPE 37
2.2.2.15 MQMSGPRIVLEVEL 37
2.2.2.16 MQMSGAUTHLEVEL 38
2.2.2.17 MQMSGAUTHENTICATION 39
2.2.2.18 MQCALG 40
2.2.2.19 QUEUE_STATE 41
2.2.2.20 RELOPS 42
2.2.2.21 XACTTC 43

2.2.3 Structures 43
2.2.3.1 BOID 44
2.2.3.2 XACTTRANSINFO 44

2.2.4 Data Collections 44
2.2.4.1 IncomingTransactionalTransferInfo 45
2.2.4.2 OutgoingTransferInfo 46
2.2.4.3 SequenceInfoCollection 47

2.3 Directory Service Schema Elements 48

3 Protocol Details 49
3.1 Common Implementation Details 49

5 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1 Abstract Data Model 49
3.1.1.1 Shared Data Elements 49
3.1.1.2 ApplicationQueue 50

3.1.2 Timers 50
3.1.3 Initialization 50
3.1.4 Message Processing Events and Sequencing Rules 50

3.1.4.1 Security 50
3.1.4.2 Optional Arguments 51
3.1.4.3 Out Paramet ers and Errors 51

3.1.5 Timer Events 51
3.1.6 Other Local Events 51

3.1.6.1 Events Raised by Related Protocols 51
3.1.6.1.1 Time To Be Received Expiration 51

3.1.6.2 Get Queue Format Name from Pathname 52
3.2 MSMQApplication Coclass Details 54

3.2.1 Abstract Data Model 54
3.2.2 Timers 54
3.2.3 Initialization 54
3.2.4 Message Processing Events and Sequencing Rules 55

3.2.4.1 IMSMQApplication Interface 56
3.2.4.1.1 MachineIdOfMachineName (Opnum 7) 56

3.2.4.2 IMSMQApplication2 Interface 57
3.2.4.2.1 Reg isterCertificate (Opnum 8) 58
3.2.4.2.2 MachineNameOfMachineId (Opnum 9) 61
3.2.4.2.3 MSMQVersionMajor (Opnum 10) 62
3.2.4.2.4 MSMQVersionMinor (Opnum 11) 62
3.2.4.2.5 MSMQVersionBuild (Opnum 12) 62
3.2.4.2.6 IsDsEnabled (Opnum 13) 63
3.2.4.2.7 Properties (Opnum 14) 63

3.2.4.3 IMSMQApplication3 Interface 64
3.2.4.3.1 ActiveQueues (Opnum 15) 65
3.2.4.3.2 PrivateQueues (Opnum 16) 65
3.2.4.3.3 Direc toryServiceServer (Opnum 17) 66
3.2.4.3.4 IsConnected (Opnum 18) 67
3.2.4.3.5 BytesInAllQueues (Opnum 19) 68
3.2.4.3.6 Machine (Opnum 20) 68
3.2.4.3.7 Machine (Opnum 21) 68
3.2.4.3.8 Connect (Opnum 22) 69
3.2.4.3.9 Disconnect (Opnum 23) 69
3.2.4.3.10 Tidy (Opnum 24) 70

3.2.5 Timer Events 70
3.2.6 Other Local Events 70

3.3 MSMQManagement Coclas s Details 71
3.3.1 Abstract Data Model 71
3.3.2 Timers 71
3.3.3 Initialization 71
3.3.4 Message Processing Events and Sequencing Rules 72

3.3.4.1 IMSMQManagement Interface 72
3.3.4.1.1 Init (Opnum 7) 73
3.3.4.1.2 FormatName (Opnum 8) 75
3.3.4.1.3 Machine (Opnum 9) 75
3.3.4.1.4 MessageCount (Opnum 10) 76
3.3.4.1.5 ForeignStatus (Opnum 11) 76

6 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3.4.1.6 QueueTy pe (Opnum 12) 77
3.3.4.1.7 IsLocal (Opnum 13) 79
3.3.4.1.8 TransactionalStatus (Opnum 14) 79
3.3.4.1.9 BytesInQueue (Opnum 15) 80

3.3.5 Timer Eve nts 81
3.3.6 Other Local Events 81

3.3.6.1 Get Management Object from Queue Format Name 81
3.3.6.2 QMMgmt Get Info 83
3.3.6.3 QMMgmt Action 84

3.4 MSMQQueueManagement Coclass Details 85
3.4.1 Abstract Data Model 85
3.4.2 Timers 85
3.4.3 Initialization 85
3.4.4 Message Processing Events and Sequencing Rules 86

3.4.4.1 IMSMQQueueManagement Interface 86
3.4.4 .1.1 JournalMessageCount (Opnum 16) 86
3.4.4.1.2 BytesInJournal (Opnum 17) 87
3.4.4.1.3 EodGetReceiveInfo (Opnum 18) 88

3.4.5 Timer Events 88
3.4.6 Other Local Events 88

3.5 MSMQOutgoingQueueManagement Coclass Details 88
3.5.1 Abstract Data Model 89
3.5.2 Timers 89
3.5.3 Initialization 89
3.5 .4 Message Processing Events and Sequencing Rules 89

3.5.4.1 IMSMQOutgoingQueueManagement Interface 89
3.5.4.1.1 State (Opnum 16) 90
3.5.4.1.2 NextHops (Opnum 17) 91
3.5.4.1.3 EodGetSendInfo (Opnum 18) 92
3.5.4.1.4 Resume (Opnum 19) 94
3.5.4.1.5 Pause (Opnum 20) 94
3.5.4.1.6 EodResend (Opnum 21) 95

3.5.5 Timer Events 95
3.5.6 Other Local Events 95

3.6 MSMQTransactionDispen ser Coclass Details 96
3.6.1 Abstract Data Model 96
3.6.2 Timers 96
3.6.3 Initialization 96
3.6.4 Message Processing Events and Sequencing Rules 96

3.6.4.1 IMSMQTransactionDispenser3 Interface 96
3.6.4.1.1 BeginTransaction (Opnum 7) 97
3.6.4.1.2 Properties (Opnum 8) 97

3.6.5 Timer Events 98
3.6.6 Other Local Events 98

3.7 MSMQCoordinatedTransa ctionDispenser Coclass Details 98
3.7.1 Abstract Data Model 98
3.7.2 Timers 98
3.7.3 Initialization 98
3.7.4 Message Processing Events and Sequencing Rules 98

3.7.4.1 IMSMQCoordinatedTransactionDispenser3 Interface 99
3.7.4.1.1 BeginTransaction (O pnum 7) 99
3.7.4.1.2 Properties (Opnum 8) 100

3.7.5 Timer Events 100

7 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.7.6 Other Local Events 100
3.8 TransactionImpl Class Details 101

3.8.1 Abstract Data Model 101
3.8.2 Timers 101
3.8.3 Initialization 101
3.8.4 Message Processing Events and Sequencing Rules 101

3.8.4.1 ITransaction Interface 101
3.8.4.1.1 Commit (Opnum 3) 102
3.8.4.1.2 Abort (Opnum 4) 103
3.8.4.1.3 GetTransactionInfo (Opnum 5) 104

3.8.5 Timer Events 104
3.8.6 Other Local Events 104

3.9 MSMQTransaction Coclass Detai ls 104
3.9.1 Abstract Data Model 105
3.9.2 Timers 105
3.9.3 Initialization 105
3.9.4 Message Processing Events and Sequencing Rules 105

3.9.4.1 IMSMQTransaction Interface 106
3.9.4.1.1 Transaction (Opnum 7) 106
3.9.4.1.2 Commit (Opnum 8) 107
3.9.4.1.3 Abort (Opnum 9) 107

3.9.4.2 IMSMQTransactio n2 Interface 108
3.9.4.2.1 InitNew (Opnum 10) 108
3.9.4.2.2 Properties (Opnum 11) 110

3.9.4.3 IMSMQTransaction3 Interface 110
3.9.4.3.1 ITransaction (Opnum 12) 110

3.9.5 Timer Events 111
3.9.6 Other Local Events 111

3.10 MSMQQueueInfo Coclass Details 111
3.10.1 Abstract Data Model 111
3.10.2 Timers 111
3.10.3 Initialization 111
3.10.4 Message Processing Events and Sequencing Rul es 112

3.10.4.1 IMSMQQueueInfo4 Interface 115
3.10.4.1.1 QueueGuid (Opnum 7) 118
3.10.4.1.2 ServiceTypeGuid (Opnum 8) 119
3.10.4.1.3 Se rviceTypeGuid (Opnum 9) 119
3.10.4.1.4 Label (Opnum 10) 120
3.10.4.1.5 Label (Opnum 11) 120
3.10.4.1.6 PathName (Opnum 12) 120
3.10.4.1.7 PathName (Opnum 13) 121
3.10.4.1.8 FormatName (Opnum 14) 121
3.10.4.1.9 FormatName (Opnum 15) 122
3.10.4.1.10 IsTransactional (Opnum 16) 122
3.10.4.1.11 PrivLevel (Opnum 17) 123
3.10.4.1.12 PrivLevel (Opnum 18) 123
3.10.4.1.13 Journ al (Opnum 19) 124
3.10.4.1.14 Journal (Opnum 20) 124
3.10.4.1.15 Quota (Opnum 21) 125
3.10.4.1.16 Quota (Opnum 22) 125
3.10.4.1.17 BasePriority (Opnum 23) 126
3.10.4.1.18 BasePriority (Opnum 24) 126
3.10.4.1.19 CreateTime (Opnum 25) 127

8 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.10.4.1.20 ModifyTime (Opnum 26) 127
3.10.4.1.21 Authenticate (Opnum 27) 128
3.10.4.1.22 Authenticate (Opnum 28) 129
3.10.4.1.23 J ournalQuota (Opnum 29) 129
3.10.4.1.24 JournalQuota (Opnum 30) 130
3.10.4.1.25 IsWorldReadable (Opnum 31) 130
3.10.4.1.26 Create (Opnum 32) 131

3.10.4.1.26.1 Creating a Queue Security Descriptor 132
3.10.4.1.27 Delete (Opnum 33) 134
3.10.4. 1.28 Open (Opnum 34) 135
3.10.4.1.29 Refresh (Opnum 35) 136
3.10.4.1.30 Update (Opnum 36) 138
3.10.4.1.31 PathNameDNS (Opnum 37) 139
3.10.4.1.32 Pro perties (Opnum 38) 140
3.10.4.1.33 Security (Opnum 39) 140
3.10.4.1.34 Security (Opnum 40) 140
3.10.4.1.35 IsTransactional2 (Opnum 41) 141
3.10.4.1.36 IsWorldReadable2 (Opnum 42) 141
3.10.4.1.37 MulticastAddress (Opnum 43) 142
3.10.4.1.38 MulticastAddress (Opnum 44) 142
3.10.4.1.39 ADsPath (Opnum 45) 143

3.10.5 Timer Events 144
3.10.6 Other Local Events 144

3.10.6.1 Update QueueFo rmatName 144
3.11 MSMQQueue Coclass Details 146

3.11.1 Abstract Data Model 147
3.11.1.1 Object State Machine 147

3.11.2 Timers 147
3.11.3 Initialization 148
3.11.4 Message Processing Events and Sequencing Rules 148

3.11.4.1 IMSMQQueue4 Interface 150
3.11.4.1.1 Access (Opnum 7) 153
3.11.4.1.2 ShareMode (Opnum 8) 153
3.11.4.1.3 QueueInfo (Opnum 9) 154
3.11.4.1.4 Handle (Opnum 10) 154
3.11.4.1.5 IsOpen (Opnum 11) 155
3.11.4.1.6 Close (Opnum 12) 155
3.11.4.1.7 Receive_v1 (Opnum 13) 156
3.11.4.1.8 Peek_v 1 (Opnum 14) 160
3.11.4.1.9 EnableNotification (Opnum 15) 162
3.11.4.1.10 Reset (Opnum 16) 165
3.11.4.1.11 ReceiveCurrent_v1 (Opnum 17) 165
3.11.4.1.12 PeekNext_v1 (Opnum 18) 168
3.11.4.1.13 PeekCurrent_v1 (Opnum 19) 171
3.1 1.4.1.14 Receive (Opnum 20) 173
3.11.4.1.15 Peek (Opnum 21) 176
3.11.4.1.16 ReceiveCurrent (Opnum 22) 179
3.11.4.1.17 PeekNext (Opnum 23) 183
3.11.4.1.18 PeekCurrent (Opnum 24) 185
3.11.4.1.19 Pro perties (Opnum 25) 187
3.11.4.1.20 Handle2 (Opnum 26) 188
3.11.4.1.21 ReceiveByLookupId (Opnum 27) 188
3.11.4.1.22 ReceiveNextByLookupId (Opnum 28) 192

9 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.11.4. 1.23 ReceivePreviousByLookupId (Opnum 29) 195
3.11.4.1.24 ReceiveFirstByLookupId (Opnum 30) 198
3.11.4.1.25 ReceiveLastByLookupId (Opnum 31) 201
3.11.4.1.26 PeekByLookupId (Opnum 32) 204
3.11.4.1.27 PeekNextByLookupId (Opnum 33) 206
3.11.4.1. 28 PeekPreviousByLookupId (Opnum 34) 209
3.11.4.1.29 PeekFirstByLookupId (Opnum 35) 211
3.11.4.1.30 PeekLastByLookupId (Opnum 36) 213
3.11.4.1.31 Purge (Opnum 37) 215
3.11.4.1.32 IsOpen2 (Opnum 38) 215
3.11.4.1.33 ReceiveByLookupIdAllowPeek (Opnum 39) 216

3.1 1.5 Timer Events 219
3.11.6 Other Local Events 219

3.12 MSMQDestination Coclass Details 219
3.12.1 Abstract Data Model 220
3.12.2 Timers 220
3.12.3 Initialization 220
3.12.4 Message Processing Events and Sequencing Rules 220

3.12.4.1 IMSMQDestination Interface 220
3.12.4.1.1 Open (Opnum 7) 222
3.12.4.1.2 Close (Opnum 8) 222
3.12.4.1.3 IsOpen (Opnum 9) 223
3.12.4.1.4 IADs (Opnum 10) 223
3.12.4.1.5 IADs (Opnum 11) 224
3.12.4.1.6 ADsPath (Opnum 12) 224
3.12.4.1.7 ADsPath (Opnum 13) 225
3.12.4.1.8 PathName (Opnum 14) 225
3.12.4.1.9 PathName (Opnum 15) 226
3.12.4.1.10 FormatName (Opnum 16) 226
3.12.4.1.11 FormatName (Opnum 17) 227
3.12.4.1.12 Destinations (Opnum 18) 227
3.12.4.1.13 Destinations (Opnum 19) 228
3.12.4.1.14 Properties (Opnum 20) 228

3.12.4.2 IMSMQPrivateDestination Interface 228
3.12.4.2.1 Handle (Opnum 7) 229
3.12.4.2.2 Handle (Op num 8) 229

3.12.5 Timer Events 230
3.12.6 Other Local Events 230

3.12.6.1 Get Queue Format Name from ADsPath 230
3.13 MSMQQuery Coclass Details 231

3.13.1 Abstract Data Model 232
3.13.2 Timers 232
3.13.3 Initialization 232
3.13.4 Message Processing Events and Sequencing Rules 232

3.13.4.1 IMSMQQuery4 Interface 232
3.13.4.1.1 LookupQueue_v2 (Opnum 7) 233
3.13.4.1.2 Properties (Opnum 8) 235
3.13.4.1.3 LookupQueue (Opnum 9) 235

3.13.5 Timer Events 238
3.13.6 Other Local Events 238

3.14 MSMQQueueInfos Coclass Details 238
3.14.1 Abstract Data Model 238
3.14.2 Timers 238

10 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.14.3 Initialization 238
3.14.4 Message Processing Events and Sequencing Rules 239

3.14.4.1 IMSMQQueueInfos4 Interface 239
3.14.4.1.1 Reset (Opnum 7) 240
3.14.4.1.2 Next (Opnum 8) 240
3.14.4.1.3 Properties (Opnum 9) 241

3.14.5 Timer Events 241
3.14.6 Other Local Events 241

3.15 MSMQCollection Coclass Details 241
3.15.1 Abstract Data Model 242
3.15.2 Timers 242
3.15.3 Initialization 242
3.15.4 Message Processing Events and Sequencing Rules 242

3.15.4.1 IMSMQCollection Interface 242
3.15.4.1.1 Item (Opnum 7) 243
3.15.4.1.2 Count (Opnum 8) 243
3.15.4.1.3 _NewEnum (Opnum 9) 244

3.15.5 Timer Events 244
3.15.6 Other Local Events 244

3.16 MSMQEvent Coclass Details 244
3.16.1 Abstract Data Model 244
3.16.2 Timers 245
3.16.3 Initialization 245
3.16.4 Message Processing Events and Sequencing Rules 245

3.16.4.1 IMSMQEvent2 Interface 245
3.16.4.1.1 Properties (Opnum 7) 246

3.16.4.2 IMSMQEvent3 Interface 246
3.16.4.3 IMSMQPrivateEvent Interface 246

3.16.4.3.1 Hwnd (Opnum 7) 247
3.16.4.3.2 FireArrivedEvent (Opnum 8) 247
3.16.4.3.3 FireArrivedErrorEvent (Opnum 9) 248

3.16.4.4 _DMSMQEventEvents Interface 249
3.16.4.4.1 Ar rived (Opnum 7) 249
3.16.4.4.2 ArrivedError (Opnum 8) 249

3.16.4.5 IConnectionPoint Interface 250
3.16.4.5.1 GetConnectionInterface (Opnum 3) 250
3.16.4.5.2 GetConnectionPointContainer (Opnum 4) 251
3.16.4.5.3 Advise (Opnum 5) 251
3.16.4.5.4 Unadvise (Opnum 6) 252
3.16.4.5.5 EnumConnections (Opnum 7) 253

3.16.4.6 IConnectionPointContainer Interface 253
3.16.4.6.1 EnumConnectionPoints (Opnum 3) 254
3.16.4.6. 2 FindConnectionPoint (Opnum 4) 254

3.16.5 Timer Events 255
3.16.6 Other Local Events 255

3.17 MSMQMessage Coclass Details 255
3.17.1 Abstract Data Model 255
3.17.2 Timers 256
3.17.3 Initialization 256
3.17.4 Message Processing Events and Sequencing Rules 258

3.17.4.1 IMSMQMessage4 Interface 265
3.17.4.1.1 Class (Opnum 7) 272
3.17.4.1.2 PrivLevel (Opnum 8) 273

11 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.17.4.1.3 PrivLevel (Opnum 9) 273
3.17.4.1.4 AuthLevel (Opnum 10) 273
3.17.4.1.5 AuthLevel (Opnum 11) 274
3.17.4.1.6 IsAuthenticated (Opnum 12) 274
3.17.4.1.7 Delivery (Opnum 13) 275
3.17.4.1.8 Delivery (Opnum 14) 275
3.17.4.1.9 Trace (Opnum 15) 276
3.17.4.1.10 Trace (Opnum 16) 276
3.17.4.1.11 Priority (Opnum 17) 276
3.17.4.1.12 Priority (Opnum 18) 277
3.17.4.1.13 Journal (Opnum 19) 277
3.17.4.1.14 Journal (Opnum 20) 278
3.17.4.1.15 ResponseQueueInfo_v1 (Opnum 21) 278
3.17.4.1.16 ResponseQueueInfo_v1 (Opnum 22) 279
3.17.4. 1.17 AppSpecific (Opnum 23) 27 9
3.17.4.1.18 AppSpecific (Opnum 24) 280
3.17.4.1.19 SourceMachineGuid (Opnum 25) 280
3.17.4.1.20 BodyLength (Opnum 26) 281
3.17.4.1.21 Body (Opnum 27) 281
3.17.4.1.22 Body (Opnum 28) 281
3.17.4.1.23 AdminQueueInf o_v1 (Opnum 29) 282
3.17.4.1.24 AdminQueueInfo_v1 (Opnum 30) 283
3.17.4.1.25 Id (Opnum 31) 283
3.17.4.1.26 CorrelationId (Opnum 32) 284
3.17.4.1.27 C orrelationId (Opnum 33) 284
3.17.4.1.28 Ack (Opnum 34) 284
3.17.4.1.29 Ack (Opnum 35) 285
3.17.4.1.30 Label (Opnum 36) 285
3.17.4.1.31 Label (Opnum 37) 286
3.17.4.1.32 MaxTimeToReachQueue (Opnum 38) 286
3.17.4.1.33 MaxTimeToReachQueue (Opnum 39) 286
3.17.4.1. 34 MaxTimeToReceive (Opnum 40) 287
3.17.4.1.35 MaxTimeToReceive (Opnum 41) 287
3.17.4.1.36 HashAlgorithm (Opnum 42) 287
3.17.4.1.37 HashAlgorithm (Opnum 43) 288
3.17.4.1.38 EncryptAlgorithm (Opnum 44) 288
3.17.4.1.39 EncryptAlgorithm (Opnum 45) 289
3.17.4.1.40 SentTime (Opnum 46) 289
3.17.4.1.41 ArrivedTime (Opnum 47) 289
3.17.4.1.42 Des tinationQueueInfo (Opnum 48) 290
3.17.4.1.43 SenderCertificate (Opnum 49) 290
3.17.4.1.44 SenderCertificate (Opnum 50) 291
3.17.4.1.45 SenderId (Opnum 51) 291
3.17.4.1.46 SenderIdType (Opnum 52) 291
3.17.4.1.47 SenderIdType (Opnum 53) 292
3.17.4.1.48 Send (Opnum 54) 292
3.17.4.1.49 AttachCurrentSecurityContext (Opnum 55) 296
3.17.4.1.50 SenderVersion (Opnum 56) 296
3.17.4.1.51 Extension (Opnum 57) 297
3.17.4.1.52 Exten sion (Opnum 58) 297
3.17.4.1.53 ConnectorTypeGuid (Opnum 59) 297
3.17.4.1.54 ConnectorTypeGuid (Opnum 60) 298
3.17.4.1.55 TransactionStatusQueueInfo (Opnum 61) 299

12 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.17.4.1.56 DestinationSymmetricKey (Opnum 62) 299
3.17.4.1.57 DestinationSymmetricKey (Opnum 63) 300
3.17.4.1.58 Signature (Opnum 64) 300
3.17.4.1.59 Signature (Opnum 65) 300
3.17.4.1.60 AuthenticationProviderType (Opnum 66) 301
3.17.4.1.61 AuthenticationProviderType (Opnum 67) 301
3.17.4.1.62 AuthenticationProviderName (Opnum 68) 301
3.17.4.1.63 AuthenticationProviderName (Opnum 69) 302
3.17.4.1.64 SenderId (Opnum 70) 302
3.17.4.1.65 MsgClass (Opnum 71) 303
3.17.4.1.66 MsgClass (Opnum 72) 303
3.17.4.1.67 Prope rties (Opnum 73) 304
3.17.4.1.68 TransactionId (Opnum 74) 304
3.17.4.1.69 IsFirstInTransaction (Opnum 75) 304
3.17.4.1.70 IsLastInTransaction (Opnum 76) 305
3.17.4.1.71 ResponseQueueInfo_v2 (Opnum 77) 305
3.17.4.1.72 ResponseQueueInfo_v2 (Opnum 78) 306
3.17.4.1.73 AdminQueueInfo_v2 (Opnum 79) 306
3.17.4.1.74 AdminQueueInfo_v2 (Opnum 80) 307
3.17.4.1.75 ReceivedAuthenticationLevel (Opnum 81) 307
3.17.4.1.76 ResponseQueueInfo (Opnum 82) 307
3.17.4.1.77 ResponseQueueInfo (Opnum 83) 308
3.17.4.1.78 AdminQueueInfo (Opnum 84) 308
3.17.4.1.79 AdminQueueInfo (Opnum 85) 309
3.17.4.1.80 ResponseDestination (Opnum 86) 309
3.17.4.1.81 ResponseDestination (Opnum 87) 310
3.17.4.1.82 Destination (Opnum 88) 310
3.17.4.1.83 LookupId (Opnum 89) 311
3.17.4.1.84 IsAuthenticated2 (Opnum 90) 311
3.17.4.1.85 IsFirstInTransaction2 (Opnum 91) 312
3.17.4.1.86 IsLastInTransaction2 (Opnum 92) 312
3.17.4. 1.87 AttachCurrentSecurityContext2 (Opnum 93) 312
3.17.4.1.88 SoapEnvelope (Opnum 94) 313
3.17.4.1.89 CompoundMessage (Opnum 95) 314
3.17.4.1.90 SoapHeader (Opnum 96) 314
3.17.4.1.91 SoapBody (Opnum 97) 314

3.17.5 Timer Events 315
3.17.6 Other Local Events 315

4 Protocol Examples 316
4.1 Scenario: Retrieving the Count of Messages in a Queue 316
4.2 Scenario: Retrieving IncomingTransactionalTransferInfo for an ApplicationQueue 316
4.3 Scenario: Pausing an OutgoingQueue 317
4.4 Scenario: Discovering DirectoryQueues in the Dire ctory 318
4.5 Scenario: Receiving a Message from a Queue Asynchronously via Event Callbacks 319
4.6 Scenario: Sending a Multicast Message 320
4.7 Scenario: Sending a Message with an Internal Transaction 321
4.8 Scenario: Sending a Message with an External Transaction 322
4.9 Scenario: Sending a Message to a Queue 323

5 Security 325
5.1 Security Considerations for Implementers 325
5.2 Index of Security Parameters 325

13 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6 Appendix A: Full IDL 326

7 Appendix B: Product Behavior 367

8 Change Tracking 382

9 Index 383

14 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1 Introduction

This document specifies the Message Queuing (MSMQ): ActiveX Client Protocol, a collection of
Distributed Component Object Model (DCOM) [MS -DCOM] interfaces that expose message queuing
functionality for use by client applications. Operations that a client would perform by using this
protocol include:

Á Queuing system management.

Á Queue management.

Á Queue discovery.

Á Transaction management.

Á Sending and re ceiving messages.

Notational Conventions

The following notational conventions are used throughout this document:

Á The period, or "dot" ("."), notation is used to refer to a property of a system abstract data model

element. If A refers to an element of the s ystem abstract data model, A .Property denotes the
Property property of the element A .

Á The elements of the abstract data models that are defined in section 3 are referred to as instance

variables. The nam es of instance variables and local input parameters are formatted in italics .
Elements of the abstract data model in [MS -MQDMPR] that are referred to in this document are

in bold and non - italicized.

Á A monospace font is used for all method signatures and Interface Definition Language (IDL)

declarations.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY,

SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are
also normative but cannot contain those terms. All other sections and examples in this

specification are informative.

1.1 Glossary

The following terms are defined in [MS -GLOS] :

administrator
anonymous user

ASCII
Augmented Backus - Naur Form (ABNF)
certificate
certificate store

class identifier (CLSID)
client
commit request

computer name
Coordinated Universal Time (UTC)
directory service (DS)

%5bMS-DCOM%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

15 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

fully qualified domain name (FQDN)
globally unique identifier (GUID)

handle
Interface Definition Language (IDL)

interface identifier (IID)
Lightweight Directory Access Protocol (LDAP)
NetBIOS
object
opnum
Phase One
Phase Two

private key
remote procedure call (RPC)
security identifier (SID)
server
SOAP envelope
SOAP message

symmetric key
transaction
two - phase commit
universally unique identifier (UUID)

The following terms are defined in [MS -MQMQ] :

administration queue
connector application

connector queue
cursor
dead - letter queue
distribution list
external transaction
foreign queue
format name

internal transaction
message
Microsoft Message Queuing (MSMQ)
private queue
public queue
queue

queue alias
queue journal
queue manager
SOAP Reliable Messaging Protocol (SRMP)
transactional message
transactional queue
XML digital signature

The following terms are specific to this document:

coclass: A component object (an associatio n between a CLSID and a set of named
implementations of IUnknown) that is defined by using the coclass keyword.

message queuing system: A distributed system that allows clients to exchange message s . An
instance of a message queuing system is the Microsoft Message Queuing (MSMQ)
system.

%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

16 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

negative source journaling: The process of retaining copies of unsuccessfully delivered
messages . The cop ies are retained by the QueueManager . Also known as dead - lettering.

open queue: A queue for which the Queue.OpenQueueDescriptorCollection is not empty.
An open queue represents the rights grante d by a queue manager to clients of this protocol

for purposes of operating on a queue . An open queue is created by, and maintained for, the
specific purpose of the clients of this protocol.

path name: A string that identifies a queue , as specified in [MS -MQMQ] section 2.1.1.

positive source journaling: The process of retaining copies of successfully delivered
messages . The copies are retained by the QueueManager.

response queue: A queue by which a client receives application - level response messages .

SOAP attachment: A Multipurpose Internet Mail E xtensions (MIME) [RFC2045] binary

representation that is associated with a SOAP message .

VARIANT: A late -binding (at run time) data type, structure, or object.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available .

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol] .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We
will assist you in finding the relevant information.

[C193] The Open Group, "Distributed TP: The XA Specification", February 1992,
https://www2.opengroup.org/ogsys/catal og/c193

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MC -MQSRM] Microsoft Corporation, " Message Queuing (MSMQ): SOAP Reliable Messaging Protocol
(SRMP) ".

[MS -ADA3] Microsoft Corporation, " Active Directory Schema Attributes N -Z".

[MS -ADTS] Microsoft Corporation, " Active Directory Tec hnical Specification ".

[MS -COM] Microsoft Corporation, " Component Object Model Plus (COM+) Protocol ".

[MS -DCOM] Microsoft Corporation, " Distributed Component Object Model (DCOM) Remote Protocol ".

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90307
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89820
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMC-MQSRM%5d.pdf
%5bMC-MQSRM%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-COM%5d.pdf
%5bMS-DCOM%5d.pdf

17 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MS-DTCO] Microsoft Corporation, " MSDTC Connection Manager: OleTx Transaction Protocol ".

[MS -DTYP] Microsoft Corporation, " Windows Data Types ".

[MS -ERREF] Microsoft Corporation, " Windows Error Codes ".

[MS -MQDMPR] Microsoft Corporation, " Message Queuing (MSMQ): Common Data Model and

Processing Rules ".

[MS -MQDSSM] Microsoft Corporation, " Message Queuing (MSM Q): Directory Service Schema
Mapping ".

[MS -MQMP] Microsoft Corporation, " Message Queuing (MSMQ): Queue Manager Client Protocol ".

[MS -MQMR] Microsoft Corporation, " Message Queuing (MSMQ): Queue Manager Management
Protocol ".

[MS -MQMQ] Microsoft Corporation, " Message Queuing (MSMQ): Data Structures ".

[MS -MQQB] Microsoft Corporation, " Message Queuing (MSMQ): Me ssage Queuing Binary Protocol ".

[MS -OAUT] Microsoft Corporation, " OLE Automation Protocol ".

[MS -RPCE] Microsoft Corporation, " Remote Procedure Call Protocol Extensions ".

[RFC1321] Rivest, R., "The MD5 Message -Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2045] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part One:

Format o f Internet Message Bodies", RFC 2045, November 1996, http://ietf.org/rfc/rfc2045.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 199 7, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) P rofile", RFC 3280, April 2002,
http://www.ietf.org/rfc/rfc3280.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN

Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

1.2.2 Informative References

[Box98] Box, D., "Essential COM", Addison -Wesley, 1998, ISBN: 0201634465.

[LDAP] Microsoft Corporation, "About Lightweight Directory Access Protocol",
http://msdn.microsoft.com/en -us/library/aa366075.aspx

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Glossary ".

[MS -MQOD] Microsoft Corporation, " Message Queuing Protocols Overview ".

[MSDN-EC] Microsoft Corporation, "IEnumConnections", http://msdn.microsoft.com/en -
us/library/ms682237(VS.85).aspx

[MSDN -ECP] Microsoft Corporation, "IEnumConnectionPoints", http://msdn.microsoft.com/en -
us/library/ms688265%28VS.85%29.aspx

%5bMS-DTCO%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89932
%5bMS-GLOS%5d.pdf
%5bMS-MQOD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=128914
http://go.microsoft.com/fwlink/?LinkId=128914
http://go.microsoft.com/fwlink/?LinkId=128916
http://go.microsoft.com/fwlink/?LinkId=128916

18 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MSDN -MQCOC] Microsoft Corporation, "Message Queuing COM Components",
http://msdn.microso ft.com/en -us/library/ms704064.aspx

[MSDN -MQEIC] Microsoft Corporation, "Message Queuing Error and Information Codes",
http://msdn.microsoft.com/en -us/library/ms700106.aspx

1.3 Overview

The MSMQ: ActiveX Client Protocol defines how clients interact with a queue manager to perform
message queuing operations as shown in the protocol diagram in [MS -MQDMPR] section 1.4.

This document describes the client protocol that exercises an abstract system model rather than a
specific implementation. However, some aspects of the client protocol reference specific details of
the implementation of the Microsoft message queuing system (known as Microsoft Message

Queuing (MSMQ)). Where that happens, the abstract meaning of the concepts is described
together with informative referen ces to the specific MSMQ implementation details.

A message queuing system consists of one or more queue managers that facilitate message

exchanges between clients of this protocol and a directory that exposes relevant information about
the queue managers. Clients of this protocol primarily discover information in a directory and
operate via queue managers. A message queuing system implementation is not restricted to any

particular distributed system topology as long as the externally visible behavior adhere s to what is
described in this document.

1.4 Relationship to Other Protocols

The MSMQ: ActiveX Client Protocol defines a comprehensive object model for clients to use a subset
of the services of the message queuing system, such as:

Á Transactional Messaging : Messages can be sent and received within the scope of a

transaction. Transactions can be either internal, in which case they are coordinated by the
message queuing system itself; or distributed, in which case they are controlled by an external
transaction coordinator.

Á Notifications : The message queuing system provides notifications of various events that occur

in the system. Such notifications are exposed as internally generated administrative messages
that are deposited in client -spec ified and system -managed queues . An administrative message

is distinguished from a standard Message through the Class property that identifies its meaning.
Administrative messages can be categor ized as follows: delivery acknowledgments; negative
acknowledgments that are used for the asynchronous reporting of error conditions that occur
during the message transfer process; and reports about the behavior of the system, known as
trace messages.

Á Deli very Assurance : The message queuing system supports two delivery assurance modes,

Express and Recoverable. Choosing between these modes, through the Delivery Guarantee
property of the Message, controls the tradeoff between performance (in terms of message
throughput) and reliability (in terms of delivery guarantees). Specifically, recoverable messages
survive system shutdowns and therefore, are typically stored in durable storage. Conversely,
express messages do not survive system shutdowns and therefore, d o not incur the same costs

in terms of durable storage access. Consequently, express messages typically offer faster
communications than recoverable messages.

Á Security : The message queuing system provides the following security - related features: user

authe ntication, queue - level access control over the sending and receiving of messages, and
signing and encryption to ensure integrity and privacy of message exchange during the message
transfer process.

http://go.microsoft.com/fwlink/?LinkId=111046
http://go.microsoft.com/fwlink/?LinkId=90044
%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

19 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Message Journaling : The message queuing system supports th e ability to record copies of

messages that pass through the system, a process known as message journaling. Journaling is

controlled via the PositiveJournalingRequested and NegativeJournalingRequested

properties of the Message. If journaling is enabled, wh en a message is received by a client and
consequently removed from an ApplicationQueue , a copy of the Message is placed in the Journal
Queue that is referenced by the Journa lQueueReference of the ApplicationQueue.

Á Message Expiry : The message queuing system allows clients to specify the useful lifetime of a

Message that clients send via two expiry properties: TimeToReachQueue and
TimeToBeReceived . If the relevant conditions ar e not met within the specified times, the
message is removed from the Queue in which it is contained and is moved to one of the system

dead letter queues of the source or destination QueueMana ger depending on the value of the
Queue. Transaction property of the destination queue. The dead lettering behavior is controlled
by the NegativeJournalingRequested property of the Message.

Many methods defined by this protocol enable the client to configur e or manipulate aspects of the
server that are defined in detail by other protocol specifications. This specification does not
mandate specific protocols for such instances; however, it does reference specific exemplary

protoc ol specifications when they describe the aspects of the server that this protocol configures or
manipulates.

This protocol is implemented over DCOM and RPC , and as a result, has the prerequisites that are
identified in [MS -DCOM] , [MS -OAUT] , [MS -COM] , and [MS -RPCE] as being common to the
Distributed Component Object Model, OLE Automation, Component Object M odel Plus, and Remote
Procedure Call Extensions interfaces. See the following protocol stack diagram.

Figure 1: Protocol stack

The protocols that are described in the remainder of this section are referenced throughout this
document to describe external protocols with which an implementation of the MSMQ: ActiveX Client
Protocol must interact.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-COM%5d.pdf
%5bMS-RPCE%5d.pdf

20 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1.5 Prerequisites/Preconditions

This protocol is implemented over DCOM and RPC. As a result, it has the prerequisites that are
identified in [MS -DCOM] , [MS -OAUT] , [MS -COM] , and [MS -RPCE] as described in section 1.4 .

The MSMQ: ActiveX Client Protocol assumes that a client has obtained the name of a server that
supports this protocol su ite before the protocol is invoked. This protocol also assumes that the client
has sufficient security privileges to interact with the message queuing system.

1.6 Applicability Statement

The MSMQ: ActiveX Client Protocol provides clients with remote access to the functionality of the
message queuing system. Message queuing applications on client computers use this protocol to

instruct the server to perform message queuing operations in response to client requests, as if the
client application were executing locally on the server computer.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Á Supported Transports : The protocol uses the DCOM Remote Protocol , which in turn, uses RPC

over TCP as its only transport. See section 1.5 for details.

Á Protocol Version : This protocol is composed of several DCOM classes that are described in

section 3. Each class may feature multiple interface revisions, where each interface revision is a
binary -compatible successor to the previous revision.

Capability Negotiation : When binding to a server, the client negotiates for a specific set of server
functionalities by specifying the UUID that corresponds to the desired RPC interface via the COM

IUnknown::QueryInterface method. For more information, see section 3.1 .

1.8 Vendor - Extensible Fields

This protocol uses HRESULT values as defined in [MS -ERREF] section 2.1. Vendors can define their
own HRESULT values, provided that they set the C bit (0x20000000) for each vendor -defined
value, indicating that the value is a customer code.

1.9 Standards Assignments

The following table contains well -known GUIDs that are defined by the MSMQ: ActiveX Client
Protocol. Included are class identifier (CLSID) and interface identifier (IID) GUIDs.

Parameter Value

RPC interface UUID for IMSMQQuery . d7d6e072 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQQuery2 . eba96b0e -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQQuery3 . eba96b19 -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQQuery4 . eba96b24 -2168 -11d3 -898c -

00e02c074f6b

%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-COM%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

21 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Parameter Value

Coclass UUID for MSMQQuery . d7d6e073 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQMessage . d7d6e074 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQMessage2 . d9933be0 -a567 -11d2 -b0f3 -

00e02c074f6b

RPC interface UUID for IMSMQMessage3 . eba96b1a -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQMessage4 . eba96b23 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQMessage . d7d6e075 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQQueue . d7d6e076 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQQueue2 . ef0574e0 -06d8 -11d3 -b100 -

00e02c074f6b

RPC interface UUID for IMSMQQueue3 . eba96b1b -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQQueue4 . eba96b20 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQQueue . d7d6e079 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQPrivateEvent . d7ab3341 -c9d3 -11d1 -bb47 -

0080c7c5a2c0

RPC interface UUID for IMSMQEvent . d7d6e077 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQEvent2 . eba96b12 -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQEvent3 . eba96b1c -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for _DMSMQEventEvents . d7d6e078 -dccd -11d0 -aa4b -

0060970debae

Coclass UUID for MSMQEvent . d7d6e07a -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQQueueInfo . d7d6e07b -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQQueueInfo2 . fd174a80 -89cf -11d2 -b0f2 -

00e02c074f6b

RPC interface UUID f or IMSMQQueueInfo3 . eba96b1d -2168 -11d3 -898c -

22 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Parameter Value

00e02c074f6b

RPC interface UUID for IMSMQQueueInfo4 . eba96b21 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID f or MSMQQueueInfo . d7d6e07c -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQQueueInfos . d7d6e07d -dccd -11d0 -aa4b -

0060970debae

RPC interface UU ID for IMSMQQueueInfos2 . eba96b0f -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQQueueInfos3 . eba96b1e -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQQueueInfos4 . eba96b22 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQQueueInfos . d7d6e07e -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQTransaction . d7d6e07f -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQTransaction2 . 2ce0c5b0 -6e67 -11d2 -b0e6 -

00e02 c074f6b

RPC interface UUID for IMSMQTransaction3 . eba96b13 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQTransaction . d7d6e080 -dccd -11d0 -aa4b -

006 0970debae

RPC interface UUID for

IMSMQCoordinatedTransactionDispenser .

d7d6e081 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for

IMSMQCoordinatedTransactionDispenser2 .

eba96b10 -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for

IMSMQCoordinatedTransactionDispenser3 .

eba96b14 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQCoordinatedTransactionDispenser . d7d6e082 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQTransactionDispenser . d7d6e083 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQTransactionDispenser2 . eba96b11 -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQTransactionDispenser3 . eba96b15 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQTransactionDispenser . d7d6e084 -dccd -11d0 -aa4b -

0060970debae

23 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Parameter Value

RPC interface UUID for IMSMQApplication . d7d6e085 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQApplication2 . 12a30900 -7300 -11d2 -b0e6 -

00e02c074f6b

RPC interface UUID for IMSMQApplication3 . eba96b1f -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQApplication . d7d6e086 -dccd -11d0 -aa4b -

0060970debae

RPC interface UUID for IMSMQDestination . eba96b16 -2168 -11d3 -898c -

00e02c074f6b

RPC interface UUID for IMSMQPrivateDestination . eba96b17 -2168 -11d3 -898c -

00e02c074f6b

Coclass UUID for MSMQDestination . eba96b18 -2168 -11d3 -898c -

00e02c074f6

RPC interface UUID for IMSMQCollection . 0188ac2f -ecb3 -4173 -9779 -

635ca2039c72

Coclass UUID for MSMQCollection . f72b9031 -2f0c -43e8 -924e -

e6052cdc493f

RPC interface UUID for IMSMQManagement . be5f0241 -e489 -4957 -8cc4 -

a452fcf3e23e

Coclass UUID for MSMQManagement . 39ce96fe - f4c5 -4484 -a143 -

4c2d5d324229

RPC interface UUID for IMSMQOutgoingQueueManagement . 64c478fb -f9b0 -4695 -8a7f -

43 9ac94326d3

Coclass UUID for MSMQOutgoingQueueManagement . 0188401c -247a -4fed -99c6 -

bf14119d7055

RPC interface UUID for IMSMQQueueManagement . 7fbe7759 -5760 -444d -b8a5 -

5e7ab9a84cce

Coclass UUID for MSMQQueueManagement . 33b6d07e -f27d -42fa -b2d7 -

bf82e11e9374

24 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2 Messages

2.1 Transport

This protocol is implemented as a collection of DCOM interfaces; as a result, it completely inherits
the transport requirements that are specified in [MS -DCOM] section 2.1.

2.2 Common Data Types

In addition to the RPC base types and definitions specified in [C706] and [MS -RPCE], additional data

types are defined in this section.

2.2.1 OLE Automation Data Types

Refer to [MS -OAUT] section 2.2 for descriptions of the following data types:

Á BSTR

Á DATE

Á IID

Á REFIID

Á VARIANT

Á VARIANT_BOOL

2.2.2 Enumerations

The following enumerated types are defined in the following sections:

Á MQACCESS

Á MQAUTHENTICATE

Á MQCALG

Á MQJOURNAL

Á MQMSGACKNOWLEDGEMENT

Á MQMSGAUT HENTICATION

Á MQMSGAUTHLEVEL

Á MQMSGCLASS

Á MQMSGCURSOR

Á MQMSGDELIVERY

Á MQMSGJOURNAL

Á MQMSGPRIVLEVEL

%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

25 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á MQMSGSENDERIDTYPE

Á MQMSGTRACE

Á MQPRIVLEVEL

Á MQSHARE

Á MQTRANSACTION

Á MQTRANSACTIONAL

Á QUEUE_STATE

Á RELOPS

Á XACTTC

2.2.2.1 MQTRANSACTION

The MQTRANSACTION enumeration defines values that are passed to methods that occur in the
scope of a transaction . Specific values in this enumeration indicate the manner in which an

operation obtains a transaction identifier. A value is reserved to indicate that the operation is not to
be performed in the scope of a transaction.

typedef enum

{

 MQ_NO_TRANSACTION = 0,

 MQ_MTS_TRANSACTION = 1,

 MQ_XA_TRANSACTION = 2,

 MQ_SINGLE_MESSAGE = 3

} MQTRANSACTION;

MQ_NO_TRANSACTION: The operation is not to be performed in the context of a transaction.

Therefore, the operation is to be immediately executed to completion.

MQ_MTS_TRANSACTION: The operation MUST be performed in the context of an MSDTC
coordinated transaction (see [MS -DTCO]). The transaction identifier is to be obtained from the
Component Object Model (COM) activation context, a s defined in [MS -COM] .

MQ_XA_TRANSACTION: A coordinated transaction, as defined by [C193] .

The transaction identifier is to be obtained from the COM activation conte xt, as defined in

[MS -COM].

MQ_SINGLE_MESSAGE: The operation is not to be performed in the context of a transaction.
This flag is required when sending a single message to, or receiving a single message from, a
transactional queue , when not coordinating a transaction with systems beyond message
queuing.

Used by:

Á IMSMQQueue::Receive

Á IMSMQQueue::Receive_v1

Á IMSMQQueue::ReceiveByLookupId

%5bMS-DTCO%5d.pdf
%5bMS-COM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89820
%5bMS-MQMQ%5d.pdf

26 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á IMSMQQueue::ReceiveCurrent

Á IMSMQQueue::ReceiveCurrent_v1

Á IMSMQQueue::ReceiveFirstByLookupId

Á IMSMQQueue::ReceiveLastByLookupId

Á IMSMQQueue::ReceiveNextByLookupId

Á IMSMQQueue::ReceivePreviousByLookupId

Á IMSMQQueue::ReceiveByLookupIdAllowPeek

Á IMSMQMessage::Send

2.2.2.2 MQSHARE

The MQSHARE enumeration defines values that indicate the requested exclusivity level when
opening a Queue . When a queue is opened for exclusive access, other clients of this protocol MUST
NOT be permitted to open the same queue. Also, a client of this protocol MUST NOT acquire

exclusive access to a queue that is already opened by another client.

typedef enum

{

 MQ_DENY_NONE = 0,

 MQ_DENY_RECEIVE_SHARE = 1

} MQSHARE;

MQ_DENY_NONE: This value indicates that the Queue is to be opened for nonexclusive access.

If any OpenQueueDescriptor that refers to the Queue has a ShareMode value of
DenyRe ceive , the IMSMQQueueInfo4::Open method MUST return an error HRESULT . The
ShareMode property of the OpenQueueDescriptor that was created by the Open method

MUST be set to De nyNone . This value maps to the QueueShareMode enumeration constant
of DenyNone , as defined in [MS -MQDMPR] section 3.1.1.17.

MQ_DENY_RECEIVE_SHARE: The Queue MUST be opened for exclusive access. If any

OpenQueueDescriptor al ready refers to the Queue, the Open method MUST return an error
HRESULT . If the Queue is opened successfully, the ShareMode property of the
OpenQueueDescriptor MUST be set to DenyReceive . This value maps to the
QueueShareMode enumeration constant of DenyRe ceive as defined in [MS -MQDMPR],
section 3.1.1.17 .

Note the difference between MQSHARE and MQACCESS :

Á MQSHARE specifies whether a client has exclusive access to a queue, th ereby making the queue

inaccessible to other clients.

Á MQACCESS determines the access to messages in a queue, such as read -only or read/write

access to messages.

Used by:

Á IMSMQQueueInfo::Open

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

27 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.2.3 MQACCESS

The MQACCESS enumeration defines values that indicate the requested access mode for opening a
Queue . When a queue is opened for exclusive access, other clients of this protocol MUST NOT be

permitted to open the same queue. Also, a client of this protocol MUST NOT acquire exclusive access
to a queue that is already opened by any other client.

typedef enum

{

 MQ_RECEIVE_ACCESS = 1,

 MQ_SEND_ACCESS = 2,

 MQ_PEEK_ACCESS = 0x0020,

 MQ_ADMIN_ACCESS = 0x0080

} MQACCESS;

MQ_RECEIVE_ACCESS: The OpenQueueDescriptor that is created by the

IMSMQQueueInfo4::Open method represents permission granted by the QueueManager to

read and delete Message s from the MessagePositionList contained by the Queue that is
referenced by the OpenQu eueDescriptor.

MQ_SEND_ACCESS: The OpenQueueDescriptor that is created by the Open method represents
permission granted by the QueueManager to insert new Messages into the
MessagePositionList contained by the Queue that is referenced by the

OpenQueueDescr iptor. This value is not valid when combined with MQ_ADMIN_ACCESS.

MQ_PEEK_ACCESS: The OpenQueueDescriptor that is created by the Open method represents
permission granted by the QueueManager to read (but not delete) Messages from the
MessagePositionList contained by the Queue that is referenced by the
OpenQueueDescriptor.

MQ_ADMIN_ACCESS: The MQ_ADMIN_ACCESS bit modifies the interpretation of the format
name by the Open method. When specified, this value indicates that the OutgoingQueue that

transfers to the ApplicationQueue that is identified by the specified format name is to be

opened, rather than the ApplicationQueue itself.

Note the diff erence between MQSHARE and MQACCESS :

Á MQACCESS determines the access to messages within a queue, such as read -only or read/write

access to messages.

Á MQSHARE specifies whether a client has exclusive access to a queue, thereby making the queue

inaccessible to other clients.

Used by:

Á IMSMQQueueInfo::Open

The MQACCESS enumeration values correspond to the enumeration values for QueueAccessType
as shown in the foll owing table:

MQACCESS QueueAccessType

MQ_RECEIVE_ACCESS ReceiveAccess

MQ_SEND_ACCESS SendAccess

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

28 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQACCESS QueueAccessType

MQ_PEEK_ACCESS PeekAccess

MQ_ADMIN_ACCESS PeekAdminAccess & ~PeekAccess

2.2.2.4 MQJOURNAL

The MQJOURNAL enumeration defines values that indicate the requested target journaling mode

for an ApplicationQueue . Target journaling is the process of retaining copies of the Message s
removed from an ApplicationQueue. For ApplicationQueues where target journaling is enabled,
Messages removed from an ApplicationQueue are copied to the MessagePositionList of the
associated journal queue.

typedef enu m

{

 MQ_JOURNAL_NONE = 0,

 MQ_JOURNAL = 1

} MQJOURNAL;

MQ_JOURNAL_NONE: Target journaling is not enabled for the ApplicationQueue. Messages

received from the ApplicationQueue by clients of this protocol are permanently deleted.

MQ_JOURNAL: Target jour naling is enabled for the ApplicationQueue. Messages received from

the ApplicationQueue by clients of this protocol are copied to the MessagePositionList of the
associated journal queue prior to being deleted from the ApplicationQueue.

Used by:

Á IMSMQQueueInfo::Journal

Á IMSMQQueueInfo::Journal

2.2.2.5 MQTRANSACTIONAL

The MQTRANSACTIONAL enumeration defines values that indicate if a Queue is a transactional
queue.

typedef enum

{

 MQ_TRANSACTIONAL_NONE = 0,

 MQ_TRANSACTIONAL = 1

} MQTRANSACTIONAL;

MQ_TRANSACTIONAL_NONE: The Queue is not a transactional queue. The

Queue. Transactional element is False.

MQ_TRANSACTIONAL: The Queue is a transactional queue. The Queue. Transactional
element is True.

Used by:

Á get IMSMQQueueInfo::IsTransactional

Á put IMSMQQueueInfo::IsTransactional

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

29 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.2.6 MQAUTHENTICATE

The MQAUTHENTICATE enumeration defines values that indicate whether an ApplicationQueue
accepts only authenticated messages. Authenticated messages are Message s for which the

AuthenticationLevel value indicates that the Message was signed.

typedef enum

{

 MQ_AUTHENTICATE_NONE = 0,

 MQ_AUTHENTICATE = 1

} MQAUTHENTICATE;

MQ_AUTHENTICATE_NONE: The Authentication field of th e specified ApplicationQueue

equals False.

The ApplicationQueue does not restrict messages on the basis of their authentication status.

MQ_AUTHENTICATE: The Authentication field of the specified ApplicationQueue equals True.

The ApplicationQueue only acce pts Messages for which the Signature is successfully
validated when the message arrives at the ApplicationQueue and when it is delivered via the

message transfer process.

Used by:

Á get IMSMQQueueInfo::Aut henticate

Á put IMSMQQueueInfo::Authenticate

2.2.2.7 MQPRIVLEVEL

The MQPRIVLEVEL enumeration defines values that indicate whether an ApplicationQueue accepts
only encrypted messages. Encrypted messages are Message s for which the PrivacyLevel value

indicates that the message was encrypted during the message transfer process.

typedef enum

{

 MQ_PRIV_LEVEL_NONE = 0,

 MQ_PRIV_LEVEL_OPTIONAL = 1,

 MQ_PRIV_LEVEL_BODY = 2

} MQPRIVLEVEL;

MQ_PRIV_LEVEL_NONE: The Appli cationQueue only accepts Messages for which the

PrivacyLevel value, as defined by the MQMSGPRIVLEVEL enumeration section 2.2.2.15 ,
indicates that the message was NOT encrypted during the message transfer process.

MQ_PRIV_LEVEL_OPTIONAL: The ApplicationQueue does not restrict Messages according to
their PrivacyLevel value.

MQ_PRIV_LEVEL_BODY: The ApplicationQueue accepts only Messages for which the
Pri vacyLevel value (as defined by the MQMSGPRIVLEVEL enumeration) indicates that the
message was encrypted during the message transfer process.

Used by:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

30 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á get IMSMQQueueInfo::PrivLevel

Á put IMSMQQueueInfo::PrivLevel

The MQPRIVLEVEL enumeration values correspond to the enumeration values for

Queue .PrivacyLevel , as shown in the following table:

MQPRIVLEVEL Queue.PrivacyLevel

MQ_PRIV_LEVEL_NONE None

MQ_PRIV_LEVEL_OPTIONAL Optional

MQ_PRIV_LEVEL_BODY Body

2.2.2.8 MQMSGCURSOR

The MQMSGCURSOR enumeration defines values that indicate the cursor behavior mode for

notifications from an MSMQQueue method. The cursor behavior mode indicates how the state of the
cursor that is associated with an event notification is updated.

typedef enum

{

 MQMSG_FIRST = 0,

 MQMSG_CURRENT = 1,

 MQMSG_NEXT = 2

} MQMSGCURSOR;

MQMSG_FIRST: The client is notified when a Message is available at the head of the Queue .

The behavior for this value is defined for the MSMQQueue::EnableNotification method i n
section 3.11.4.1.9 .

MQMSG_CURRENT: The client is notified when a Message is available at the current cursor
position within the Queue.

The behavior for this value is defined for the MSMQQueue::EnableN otification method in
section 3.11.4.1.9 .

MQMSG_NEXT: The cursor is advanced, and the client is notified when a Message is available at
the advanced cursor position within the Queue.

The behavior for th is value is defined for the MSMQQueue::EnableNotification method in

section 3.11.4.1.9 .

Used by:

Á IMSMQQueue::EnableNotification

Á _DMSMQEventEvents::Arr ived

Á _DMSMQEventEvents::ArrivedError

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

31 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.2.9 MQMSGCLASS

The MQMSGCLASS enumeration defines values that indicate the classification of a Message . A
Message can originate from a client of this protocol, or it can be generated by the operations that

pertain to the message transfer process. The values defined for this enumeration indicate the reason
that the Message was generated.

typedef enum

{

 MQMSG_CLASS_NORMAL = 0x0,

 MQMSG_CLASS_REPORT = 0x1,

 MQMSG_CLASS_ACK_REACH_QUEUE = 0x2,

 MQMSG_CLASS_ACK_RECEIVE = 0x4000,

 MQMSG_CLASS_NACK_BAD_DST_Q = 0x8000,

 MQMSG_CLASS_NACK_PURGED = 0x8001,

 MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT = 0x8002,

 MQMSG_CLASS_NACK_Q_EXCEED_QUOTA = 0x8003,

 MQMSG_CLASS_NACK_ACCESS_DENIED = 0x8004,

 MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED = 0x8005,

 MQMSG_CLASS_NACK_BAD_SIGNATURE = 0x8006,

 MQMSG_CLASS_NACK_BAD_ENCRYPTION = 0x8007,

 MQMSG_CLASS_NACK_COULD_NOT_ENCRYPT = 0x8008,

 MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q = 0x8009,

 MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG = 0x800a,

 MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER = 0x800b,

 MQMSG_CLASS_NACK_SOURCE_COMPUTER_GUID_CHANGED = 0x800c,

 MQMSG_CLASS_NACK_Q_DELETED = 0xc000,

 MQMSG_CLASS_NACK_Q_PURGED = 0xc001,

 MQMSG_CLASS_NACK_RECEIVE_TIMEOUT = 0xc002,

 MQMSG_CLASS_NACK_RECEIVE_TIMEOUT_AT_SENDER = 0xc003

} MQMSGCLASS;

MQMSG_CLASS_NORMAL: The message originated from a client of this protocol via a call to

MSMQMessage4::Send .

MQMSG_CLASS_REPORT: The message was generated by the route tracing feature of the
message transfer process. Messages of type MQMSG_CLASS_REPORT are generated while

Messages for which TracingRe quested is True arrive at Queue s along the route to the final
destination.

MQMSG_CLASS_ACK_REACH_QUEUE: The message was generated as a result of a Message
successfully arriving at its destination ApplicationQueue .

MQMSG_CLASS_ACK_RECEIVE: The message was generated when a Message was
successfully retrieved by a client of this protocol.

MQMSG_CLASS_NACK_BAD_DST_Q: The message was generated to indicate that delivery of
the Message was canceled because the destination ApplicationQueue was unreachable.

MQMSG_CLASS_NACK_PURGED: The message was generated to indicate that the Message

was deleted prior to arriving at the destination ApplicationQueue.

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT: The message was generated to indicate
that the Message. TimeToReachQueue timer expired before the Message arrived at the
destination ApplicationQueue.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

32 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA: The message was generated to indicate that the
Message was not inserted into the destination ApplicationQueue because doing so would

exceed the Quota .

MQMSG_CLASS_NACK_ACCESS_DENIED: The message was generated to indicate that the

Message was not inserted int o the destination ApplicationQueue because the user identified by
Message. SenderIdentifier did not have sufficient rights to insert the Message.

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED: The message was generated to indicate
that delivery of the Message was ca nceled because it exceeded the maximum number of
allowed routing hops. <1>

MQMSG_CLASS_NACK_BAD_SIGNATURE: The message was generated to indicate that the
Message was not inserted into the destination ApplicationQueue because the digi tal signature

accompanying the Message was not successfully validated.

MQMSG_CLASS_NACK_BAD_ENCRYPTION: The message was generated to indicate that the
Message was not inserted into the destination ApplicationQueue because the Message could

not be decrypte d successfully.

MQMSG_CLASS_NACK_COULD_NOT_ENCRYPT: The message was generated to indicate that
the Message was canceled prior to delivery because the Message could not be successfully

encrypted.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q: The message was gener ated to indicate
that the Message was not inserted into the destination ApplicationQueue because the Message
was sent as part of a transaction but the destination ApplicationQueue. Transactional
property equals False.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG: The message was generated to
indicate that the Message was not inserted into the destination ApplicationQueue because the

Message was not sent as part of a transaction but the destination
ApplicationQueue. Transactional property equals True.

MQMSG_CLASS_N ACK_UNSUPPORTED_CRYPTO_PROVIDER: The message was generated
to indicate that the Message was not inserted into the destination ApplicationQueue because
the destination QueueManager does not support a cryptography library suf ficient to decrypt
the Message or validate its signature.

MQMSG_CLASS_NACK_SOURCE_COMPUTER_GUID_CHANGED: The message was

generated to indicate that delivery of the Message was canceled because the Identifier
property of the QueueManager that originated th e Message changed. <2>

MQMSG_CLASS_NACK_Q_DELETED: The message was generated to indicate that the
destination ApplicationQueue was deleted before the Message was received by a client of this
protocol.

MQMSG_CLASS_NACK_Q_PURGED: The message was generated to indicate that the

destination ApplicationQueue was purged before the Message was received by a client of this
protocol.

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT: The message was generated to indicate that the
Message. TimeToBeReceived time r expired before the Message was received from the
destination ApplicationQueue by a client of this protocol.

%5bMS-MQDMPR%5d.pdf

33 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT_AT_SENDER: The message was generated to
indicate that the Message. TimeToBeReceived timer expired before the Mess age was inserted

into the destination ApplicationQueue.

Used by:

Á get IMSMQMessage::Class

Á get IMSMQMessage::MsgClass

Á put IMSMQMessage::MsgClass

The MQMSGCLASS enumeration values map to the enumeration values for Message. Class as
shown in the following table:

MQMSGCLASS enumeration constants Message.Class

Constan

t Values

MQMSG_CLASS_NORMAL Normal 0x0000

MQMSG_CLASS_REPORT Report 0x0001

MQMSG_CLASS_ACK_REACH_QUEUE AckReachQueue 0x0002

MQMSG_CLASS_ACK_RECEIVE AckReceive 0x4000

MQMSG_CLASS_NACK_BAD_DST_Q NackBadDestQueue 0x8000

MQMSG_CLASS_NACK_DELETED NackPurged 0x8001

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT NackReachQueueTimeout 0x8002

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA NackQueueExceedQuota 0x8003

MQMSG_CLASS_NACK_ACCESS_DENIED NackAccessDenied 0x8004

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED NackHopCountExceeded 0x8 005

MQMSG_CLASS_NACK_BAD_SIGNATURE NackBadSignature 0x8006

MQMSG_CLASS_NACK_BAD_ENCRYPTION NackBadEncryption 0x8007

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q NackNotTransactionalQueue 0x8009

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG NackNotTransactionalMessage 0x800A

MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER NackUnsupportedCryptoProvider 0x800B

MQMSG_CLASS_NACK_SOURCE_COMPUTER_GUID_CHANG

ED

NackSourceComputerGuidChange

d

0x800C

MQMSG_CLASS_NACK_Q_DELETED NackQueueDeleted 0xC000

MQMSG_CLASS_NACK_Q_PURGED NackQueuePurged 0xC001

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT NackReceiveTimeout 0xC002

34 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.2.10 MQMSGDELIVERY

The MQMSGDELIVERY enumeration defines values for the Message .DeliveryGuarantee property.
The values of the enumeration indicate whether the Message is recoverable if a service interruption

occurs in the message queuing system.

typedef enum

{

 MQMSGDELIVERY_EXPRESS = 0,

 MQMSG_DELIVERY_RECOVERABLE = 1

} MQMSGDELIVERY;

MQMSGDELIVE RY_EXPRESS: The Message is not recovered when a service interruption

occurs in the message queuing system. A client of this protocol selects this option if message
throughput is preferred over the risk of message loss.

MQMSG_DELIVERY_RECOVERABLE: The Mes sage SHOULD be recoverable for most service

interruptions in the message queuing system. A client of this protocol selects this option to
minimize the risk of message loss, even if the computer on which the Message resides

crashes.

Used by:

Á get IMSMQMessage::Delivery

Á put IMSMQMessage::Delivery

The MQMSGDELIVERY enumeration values correspond to the enumeration values for
Message. DeliveryGuarantee , as sho wn in the following table:

MQMSGDELIVERY Message.DeliveryGuarantee

MQMSGDELIVERY_EXPRESS Express

MQMSG_DELIVERY_RECOVERABLE Recoverable

2.2.2.11 MQMSGACKNOWLEDGEMENT

The MQMSGACKNOWLEDGEMENT enumeration defines flags for the
Message .AcknowledgementsRequested property. The values of the enumeration indicate the
categories of administrative acknowledgment messages that are generated in response to successful

or unsuccessful delivery outcomes. Administrative acknowledgment messages are generated to
indicate the delivery outcome of a message that was originated by a client of this protocol. The
MQMSGCLASS (section 2.2.2.9) enumeration specifies the types of administrative
acknowledgment messages and the specific conditions in which they are produced by the message
queuing system.

typedef enum

{

 MQMSG_ACKNOWLEDGMENT_NONE = 0x00,

 MQMSG_ACKNOWLEDGMENT_POS_ARRIVAL = 0x01,

 MQMSG_ACKNOWLEDGMENT_POS_RECEIVE = 0x02,

 MQMSG_ACKNOWLEDGMENT_NEG_ARRIVAL = 0x04,

 MQMSG_ACKNOWLEDGMENT_NEG_RECEIVE = 0x08,

 MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE = 0x04,

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

35 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE = 0x05,

 MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE = 0x0c,

 MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE = 0x0e

} MQMSGACKNOWLEDGEMENT;

Used by:

Á get IMSMQMessage::Ack

Á put IMSMQMessage::Ack

The MQMSGACKNOWLEDGEMENT enumeration values correspond to the enumeration values for
Message. Ackno wledgementsRequested , as shown in the following table:

MQMSGACKNOWLEDGEMENT AcknowledgementsRequested

MQMSG_ACKNOWLEDGEMENT_NONE None

MQMSG_ACKNOWLEDGEMENT_POS_ARRIVAL AckPosArrival

MQMSG_ACKNOWLEDGEMENT_POS_RECEIVE AckPosReceive

MQMSG_ACKNOWLEDGEMENT_NEG_ARRIVAL AckNegArrival

MQMSG_ACKNOWLEDGEMENT_NEG_RECEIVE AckNegReceive

MQMSG_ACKNOWLEDGEMENT_NACK_REACH_QUEUE AckNackReachQueue

MQMSG_ACKNOWLEDGEMENT_FULL_REACH_QUEUE AckFullReachQueue

MQMSG_ACKNOWLEDGEMENT_NACK_RECEIVE AckNackReceive

MQMSG_ACKNOWLEDGEMENT_FULL_RECEIVE AckFullReceive

2.2.2.12 MQMSGJOURNAL

The MQMSGJOURNAL enumeration defines flags for the Message .PositiveJournalingRequested
and Message. NegativeJournalingRequested properties. The values of the enumeration indicate
the source journaling mode for the Message. Source journaling is the process of retaining copies of

messages that are sent. Two forms of source journaling are defined:

Á Positive sourc e journaling : The QueueManager that sent the Message retains a copy of the

message only if it is successfully delivered.

Á Negative source journaling : The QueueManager that sent the Message retains a copy of the

message only if it is not successfully delivered. This behavior is also known as dead - lettering.

typedef enum

{

 MQMSG_JOURNAL_NONE = 0,

 MQMSG_DEADLETTER = 1,

 MQMSG_JOURNAL = 2

} MQMSGJOURNAL;

MQMSG_JOURNAL_NONE: Neither positive nor negati ve source - journaling is requested for the
Message.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

36 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQMSG_DEADLETTER: Negative source journaling is requested for the Message.

If this value is specified for a Message, the message queuing system MUST copy the message
to the QueueManager. SystemDeadletterQu eue if the Message is not successfully delivered
to the destination ApplicationQueue . If the Quota for the

QueueManager. SystemDeadletterQueue is exceeded, the Message MUST be discarded.
When this enumera tion is specified, Message. NegativeJournalingRequested MUST be set
to True.

MQMSG_JOURNAL: Positive source journaling is requested for the Message.

If this value is specified for a Message, the message queuing system MUST copy the message
to the QueueMana ger. SystemJournalQueue if the Message is successfully delivered to the
destination ApplicationQueue. If the Quota for the QueueManager. SystemJournalQueue is

exceeded, the Message MUST be discarded. When this enumeration is specified,
Message. PositiveJourna lingRequested MUST be set to True.

MQMSG_DEADLETTER and MQMSG_JOURNAL MAY be specified to enable both forms of source

journaling.

Used by:

Á get IMSMQMessage::Journal

Á put IMSMQMessage::Journal

2.2.2.13 MQMSGTRACE

The MQMSGTRACE enumeration defines values that indicate whether the message tracing feature
is enabled for a particular message. When message tracing is enabled for a Message , the message
transfer process generates a report message for each hop along the route to the destination

ApplicationQueue . Report messages are administrative messages of type MQMSG_CLASS_REPORT,
as spec ified by the MQMSGCLASS enumeration in section 2.2.2.9 .

typedef enum

{

 MQMSG_TRACE_NONE = 0,

 MQMSG_SEND_ROUTE_TO_REPORT_QUEUE = 1

} MQMSGTRACE;

MQMSG_TRACE_NONE: The message tracing feature of the message transfer process is

disabled. This is the default value.

MQMSG_SEND_ROUTE_TO_REPORT_QUEUE: The message tracing feature of the message
transfer process is enabled. <3>

Used by:

Á get IMSMQMessage::Trace

Á put IMSMQMessage::Trace

The MQMSGTRACE enumeration values correspond to the enumeration values for
Message. TracingRequest ed as shown in the following table:

%5bMS-MQDMPR%5d.pdf

37 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQMSGTRACE Message.TracingRequested

MQMSG_TRACE_NONE False

MQMSG_SEND_ROUTE_TO_REPORT_QUEUE True

2.2.2.14 MQMSGSENDERIDTYPE

The MQMSGSENDERIDTYPE enumeration defines values for the Message .SenderIdentifierType

property. Specific values in this enumeration indicate the format of the SenderIdentifier that is
associated with a Message.

typedef enum

{

 MQMSG_SENDERID_TYPE_NONE = 0,

 MQMSG_SENDERID_TYPE_SID = 1

} MQMSGSENDERIDTYPE;

MQMSG_SENDERID_TYPE_NONE: The identity of the sending user is not included in the

Message. For the purposes of authoriz ation, the sender identity for the Message is the
anonymous user .

MQMSG_SENDERID_TYPE_SID: The identity of the sending user is indicated by the
Message. SenderIdentifier field that contains a secu rity identifier (SID) ([MS -DTYP]

section 2.4.2).

Used by:

Á get IMSMQMessage::SenderIdType

Á put IMSMQMessage::SenderIDType

The MQMSGSENDERIDTYPE enumeration values correspond to the enumeration values for the
Message. SenderIdentifierType , as shown in the following table.

MQMSGSENDERIDTYPE Message.SenderIdentifierType

MQMSG_SENDERID_TYPE_NONE None

MQMSG_SENDERID_TYPE_SID Sid

2.2.2.15 MQMSGPRIVLEVEL

The MQMSGPRIVLEVEL enumeration defines values for the Message .PrivacyLevel property.
Specific values in this enumeration indicate the manner in which a Message is to be encrypted when
transmitted over the network by the message transfer process. A value is reserved to indicate that

the Message is not to be encrypted.

typedef en um

{

 MQMSG_PRIV_LEVEL_NONE = 0,

 MQMSG_PRIV_LEVEL_BODY_BASE = 1,

 MQMSG_PRIV_LEVEL_BODY_ENHANCED = 3

} MQMSGPRIVLEVEL;

%5bMS-MQDMPR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

38 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQMSG_PRIV_LEVEL_NONE: The Message is not encrypted by the message transfer process.

MQMSG_PRIV_LEVEL_BODY_BASE: During the messag e transfer process, the Message MUST
be protected from observation by using 40 -bit encryption, as defined in [MS -MQQB] section
3.1.7.1.5.

MQMSG_PRIV_LEVEL_BODY_ENHANCED: During the message transfer process, the Message
MUST b e protected from observation by using 128 -bit encryption, as defined in [MS -MQQB]
section 3.1.7.1.5.

Used by:

Á get IMSMQMessage::PrivLevel

Á put IMSMQMessage::PrivLevel

The MQMSGPRIVLEVEL enumeration values correspond to the enumeration values for
Message. PrivacyLevel , as shown in the following table:

MQMSGPRIVLEVEL Message.PrivacyLevel

MQMSG_PRIV_LEVEL_NONE None

MQMSG_PRIV_LEVEL_BODY_BASE Base

MQMSG_PRIV_LEVEL_BODY_ENHANCED Enhanced

2.2.2.16 MQMSGAUTHLEVEL

The MQMSGAUTHLEVEL enumeration defines values for the Message .AuthenticationLevel
property. Specific values in this enumeration indicate the manner in which a Message is to be
cryptographically signed when inserted in the OutgoingQueue by the MSMQMessa ge4::Send

method. A value is reserved to indicate that the Send operation MUST NOT cryptographically sign
the Message.

typedef enum

{

 MQMSG_AUTH_LEVEL_NONE = 0,

 MQMSG_AUTH_LEVEL_ALWAYS = 1,

 MQMSG_AUTH_LEVEL_MSMQ10 = 2,

 MQMSG_AUTH_LEVEL_SIG10 = 2,

 MQMSG_AUTH_LEVEL_MSMQ20 = 4,

 MQMSG_AUTH_LEVEL_SIG20 = 4,

 MQMSG_AUTH_LEVEL_SIG30 = 8

} MQMSGAUTHLEVEL;

MQMSG_AUTH_LEVEL_NONE: The Message that was inserted into the OutgoingQueue by the

Send operation is not digitally signed.

MQMSG_AUTH_LEVEL_ALWAYS : Prior to inserting the Message into the OutgoingQueue, the
Send operation MUST digitally sign the Message. For OutgoingQueues that transfer to

destination ApplicationQueue s using the SOAP Reliable Messaging Protocol (SRMP)
message transfer process, an XML digital signature MUST be created. For any other
OutgoingQueue, this value SHOULD <4> be interpreted as equivalent to
MQMSG_AUTH_LEVEL_SIG30.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

39 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQMSG_AUTH_LEVEL_MSMQ10: Prior to inserting the Message into the OutgoingQueue, the
Send operation MUST digitally sign the Message according to the algorithm described in [MS -

MQMQ] section 2.2.20.6, wh ere the SecurityHeader.Flags.AS value is 0x1.

MQMSG_AUTH_LEVEL_SIG10: Prior to inserting the Message into the OutgoingQueue, the

Send operation MUST digitally sign the Message according to the algorithm described in [MS -
MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value is 0x1.

MQMSG_AUTH_LEVEL_MSMQ20: Prior to inserting the Message into the OutgoingQueue, the
Send operation MUST digitally sign the Message according to the algorithm described in [MS -
MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value is 0x3.

MQMSG_AUTH_LEVEL_SIG20: Prior to inserting the Message into the OutgoingQueue, the
Send operation MUST digitally sign the Message according to the algo rithm described in [MS -

MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value is 0x3.

MQMSG_AUTH_LEVEL_SIG30: Prior to inserting the Message into the OutgoingQueue, the
Send operation MUST digitally sign the Message according to the algorithm described in [MS -

MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value is 0x5.

Used by:

Á get IMSMQMessage::AuthLevel

Á put IMSMQMessage::AuthLevel

2.2.2.17 MQMSGAUTHENTICATION

The MQMSGAUTHENTICATION enumeration defines values for the Message .AuthenticationLevel
property. Specific values in this enumeration indicate the manner in which a Message was
cryptographically signed. A value is reserved to indicate that the Message was not signed.

typedef enum

{

 MQMSG_AUTHENTICATION_NOT_REQUESTED = 0,

 MQMSG_AUTHENTICATION_REQUESTED = 1,

 MQMSG_AUTHENTICATED_SIG10 = 1,

 MQMSG_AUTHENTICATION_REQUESTED_EX = 3,

 MQMSG_AUTHENTICATED_SIG20 = 3,

 MQMSG_AUTHENTICATED_SIG30 = 5,

 MQMSG_AUTHENTICATED_SIGXML = 9

} MQMSGAUTHENTICATION;

MQMSG_AUTHENTICATION_NOT_REQUESTED: The Message was not signed.

MQMSG_AUTHENTICATION_REQUESTED: The Message was signed according to the
algorithm described in [MS -MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value
is 0x1.

MQMSG_AUTHENTICATED_SIG10: The Message was signed according to the algorithm

described in [MS -MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value is 0x1.

MQMSG_AUTHENTICATION_REQUESTED_EX: The Message was signed according to the
algorithm described in [MS -MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value
is 0x3.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

40 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MQMSG_AUTHENTICATED_SIG20: The Message was signed according to the algorithm
described in [MS -MQMQ] sectio n 2.2.20.6, where the SecurityHeader.Flags.AS value is 0x3.

MQMSG_AUTHENTICATED_SIG30: The Message was signed according to the algorithm
described in [MS -MQMQ] section 2.2.20.6, where the SecurityHeader.Flags.AS value is 0x5.

MQMSG_AUTHENTICATED_SIGXML: The Message was signed by using an XML digital
signature.

Used by:

Á get IMSMQMessage::ReceivedAuthenticationLevel

The MQMSGAUTHENTICATION enumeration values correspond to the enumeration values for the
Message. AuthenticationLevel , as shown in the following table:

MQMSGAUTHENTICATION Message.AuthenticationLevel

MQMSG_AUTHENTICATION_NOT_REQUESTED None

MQMSG_AUTHENTICATION_REQUESTED Same as Sig10

MQMSG_AUTHENTICATED_SIG10 Sig10

MQMSG_AUTHENTICATION_REQUESTED_EX Same as Sig20

MQMSG_AUTHENTICATED_SIG20 Sig20

MQMSG_AUTHENTICATED_SIG30 Sig30

MQMSG_AUTHENTICATED_SIGXML XmlSig

2.2.2.18 MQCALG

The MQCALG enumeration defines numeric values that represent specific cryptographic encryption
and hash algorithms.

typedef enum

{

 MQMSG_CALG_MD2 = 0x8001,

 MQMSG_CALG_MD4 = 0x8002,

 MQMSG_CALG_MD5 = 0x8003,

 MQMSG_CALG_SHA = 0x8004,

 MQMSG_CALG_SHA1 = 0x8004,

 MQMSG_CALG_MAC = 0x8005,

 MQMSG_CALG_RSA_SIGN = 0x2400,

 MQMSG_CALG_DSS_SIGN = 0x2200,

 MQMSG_CALG_RSA_KEYX = 0xa400,

 MQMSG_CALG_DES = 0x6601,

 MQMSG_CALG_RC2 = 0x6602,

 MQMSG_CALG_RC4 = 0x6801,

 MQMSG_CALG_SEAL = 0x6802

} MQCALG;

Used by

Á get IMSMQMessage::HashAlgorithm

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

41 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á put IMSMQMessage::HashAlgorithm

Á get IMSMQMessage::EncryptAlgorithm

Á put IMSMQMessage::EncryptAlgorithm

The MQCALG enumeration values correspond to the enumeration values for
Message .HashAlg orithm and Message. EncryptionAlgorithm , as shown in the following tables:

MQCALG Message.HashAlgorithm

MQMSG_CALG_MD2 MD2 <5>

MQMSG_CALG_MD4 MD4 <6>

MQMSG_CALG_MD5 MD5 <7>

MQMSG_CALG_SHA1 SHA1

MQMSG_CALG_SHA SHA

MQCALG Message.EncryptionAlgorithm

MQMSG_CALG_MAC Unsupported <8>

MQMSG_CALG_RSA_SIGN RSA

MQMSG_CALG_DSS_SIGN DSS

MQMSG_CALG_RSA_KEYX RSA_KEYS

MQMSG_CALG_DES DES

MQMSG_CALG_RC2 RC2

MQMSG_CALG_RC4 RC4

MQMSG_CALG_SEAL SEAL

2.2.2.19 QUEUE_STATE

The QUEUE_STATE enumeration defines values that indicate the status of an OutgoingQueue . The
state of an OutgoingQueue is determined and managed by the message transfer process.

typedef enum

{

 MQ_QUEUE_STATE_LOCAL_CONNECTION,

 MQ_QUEUE_STATE_DISCONNECTED,

 MQ_QUEUE_STATE_WAITING,

 MQ_QUEUE_STATE_NEEDVALIDATE,

 MQ_QUEUE_STATE_ONHOLD,

 MQ_QUEUE_STATE_NONACTIVE,

 MQ_QUEUE_STATE_CONNECTED,

 MQ_QUEUE_STATE_DISCONNECTING,

 MQ_QUEUE_STATE_LOCKED

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

42 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

} QUEUE_STATE;

Used by:

Á get IMSMQOutgoingQueueManagement::State

The QUEUE_STATE is set to MQ_QUEUE_STATE_LOCAL_CONNECTION if the destination queue is
local. Otherwise, enumeration values for QUEUE_ST ATE correspond to the enumeration values for
OutgoingQueue. State , as shown in the following table:

QUEUE_STATE OutgoingQueue.State

MQ_QUEUE_STATE_DISCONNECTED Disconnected

MQ_QUEUE_STATE_WAITING Waiting

MQ_QUEUE_STATE_NEEDVALIDATE NeedValidation

MQ_QUEUE_STATE_ONHOLD OnHold

MQ_QUEUE_STATE_NONACTIVE Inactive

MQ_QUEUE_STATE_CONNECTED Connected

MQ_QUEUE_STATE_DISCONNECTING Disconnecting

MQ_QUEUE_STATE_LOCKED Locked

2.2.2.20 RELOPS

The RELOPS enumeration defines values for the MSMQQuery::LookupQueue and
MSMQQuery::LookupQueue_v2 methods. The values in this enumeration represent comparison
operators that are used together with the query parameters that are passed to

MSMQQuery::LookupQueue .

typedef enum

{

 REL_NOP = 0,

 REL_EQ,

 REL_NEQ,

 REL_LT,

 REL_GT,

 REL_LE,

 REL_GE

} RELOPS;

Used by:

Á IMSMQQuery::LookupQueue

Á IMSMQQuery::LookupQueue_v2

The RELOPS enumeration values, except for REL_NOP, correspond to the operators for the
attribute - filter expressions defined in [MS -MQDMPR] section 3.1.7.1 .20, as shown in the following
table:

%5bMS-MQDMPR%5d.pdf

43 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

RELOPS Operator

REL_EQ EQUALS

REL_NEQ NOT-EQUALS

REL_LT LESS-THAN

REL_GT GREATER-THAN

REL_LE LESS-THAN-OR-EQUAL

REL_GE GREATER-THAN-OR-EQUAL

2.2.2.21 XACTTC

The XACTTC enumeration defines the commit behavior of a transaction. The values in this
enumeration indicate the synchronous, asynchronous, or two -phased behavior of the transaction.

typedef enum

{

 XACTTC_NONE = 0x0000,

 XACTTC_SYNC_PHASEONE = 0x0001,

 XACTTC_SYNC_PHASETWO = 0x0002,

 XACTTC_SYNC = 0x0002,

 XACTTC_ASYNC_PHASEONE = 0x0004,

 XACTTC_ASYNC = 0x0004

} XACTTC;

XACTTC_NONE: The default commit behavior of the transaction coordinator is used.

XACTTC_SYNC_PHAS EONE: The commit method returns after phase one of the two - phase
commit is completed.

XACTTC_SYNC_PHASETWO: The commit method returns after phase two of the two -pha se
commit is completed.

XACTTC_SYNC: The commit method returns after phase two of the two -phase commit is
completed.

XACTTC_ASYNC_PHASEONE: The commit request is performed asynchronously.

XACTTC_ASYNC: The commit request is performed asynchronously.

Used by:

Á ITransaction::Commit

Á IMSMQTransaction::Commit

2.2.3 Structures

The following data structures are defined in the following sections:

Á BOID

Á XACTTRANSINFO

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

44 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.3.1 BOID

The BOID structure specifies a value that uniquely identifies the unit of work for a transactional
operation.

typedef struct BOID {

 unsigned char rgb[16];

} BOID;

rgb: An array of bytes that contain a globally unique identifier (GUID) as specified in [MS -DTYP]

section 2.3.4.

2.2.3.2 XACTTRANSINFO

The XACTTRANSINFO structure is defined as follows.

typedef struct XACTTRANSINFO {

 BOID uow;

 LONG isoLevel;

 ULONG isoFlags;

 DWORD grfTCSupported;

 DWORD grfRMSupported;

 DWORD grfTCSupportedRetaining;

 DWORD grfRMSupportedRetaining;

} XACTTRANSINFO;

uow: This is of type BOID .

isoLevel: The isoLevel property contains a LONG value that corresponds to the values defined
for the OLETX_ISOLATION_LEVEL enumeration, as defined in [MS -DTCO] section 2.2.6.9.

isoFlags: The isoFlags property contains a ULONG value that corresponds to the values
defined for the OLETX_ISO LATION_FLAGS enumeration, as defined in [MS -DTCO] section
2.2.6.8.

grfTCSupported: The grfTCSupported property specifies a bitmask that indicates which

XACTTC flags (sectio n 2.2.2.21) this transaction implementation supports.

grfRMSupported: The grfRMSupported property is reserved for future use, and the server
MUST set the value of this property to zero.

grfTCSupportedRe taining: The grfTCSupportedRetaining property is reserved for future
use, and the server MUST set the value of this property to zero.

grfRMSupportedRetaining: The grfRMSupportedRetaining property is reserved for future

use, and the server MUST set the value of this property to zero.

2.2.4 Data Collections

The following sections describe name -value pairs returned by the
MSMQQueueManagement::EodGetReceiveInfo (section 3.4.4.1.3) and
MSMQOutgoingQueueManagement::EodGetSendInfo (section 3.5.4.1.3) methods.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTCO%5d.pdf

45 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.4.1 IncomingTransactionalTransferInfo

The IncomingTransactionalTransferInfo data collection defines the elements of the
IncomingTransactionalTransferInfo array property of an ApplicationQueue . Each

IncomingTransactionalTransferInfo is an MSMQCollection (section 3.15) object that contains the
name -value pairs that are described in the follo wing table.

Property name

Property

value data

type Property description

QueueFormatName VT_BSTR The DestinationFormatName of the OutgoingQueue that transfers

messages to the ApplicationQueue.

SenderID VT_BSTR The Identifi er property of the QueueManager that is transferring

messages from one of its OutgoingQueues to the ApplicationQueue.

SeqID VT_UI8 The 64 -bit unsigned integer value that identifies the last

transactional message sequence th at was sent to the

ApplicationQueue. This property corresponds to the

IncomingTxSequenceID property that is described in [MS -MQQB]

section 3.1.1.3.1.

SeqNo VT_I4 The 32 -bit value that identifies the sequence number of the last

transactional message that was received by the ApplicationQueue in

a particular transfer session. This property corresponds to the

IncomingTxSequenceNumber property that is described in [MS -

MQQB] section 3.1.1.3.1.

LastAccessTime VT_I4 The time of the last ApplicationQueue activity, when the message

was either accepted, rejected, or formatted as a time_t.

RejectCount VT_I4 The number of times the message was rej ected by the reception end

of the message transfer process before being accepted into the

ApplicationQueue.

Used by:

Á IMSMQQueueManagement::EodGetReceiveInfo

The IncomingTransactionalTransferInfo properties correspond to the
IncomingTransactionalTransferInfo attributes, as described in [MS -MQDMPR] section 3.1.1.5,
with these corresponding fields.

PropertyName Attribute name as defined in [MS -MQDMPR]

QueueFormatName FormatName

SenderID SenderIdentifier

SeqID SequenceIdentifier

SeqNo SequenceNumber

LastAccessTime LastAccessTime

RejectCount RejectCount

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQDMPR%5d.pdf

46 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.4.2 OutgoingTransferInfo

The OutgoingTransferInfo data collection defines the information that is contained in the
OutgoingTransferInfoReference property of an OutgoingQueue . The OutgoingTransferInfo is an

MSMQCollection (section 3.15) that contains the name -value pairs that are described in the
following table.

Property name

Property value data

type Prope rty description

EodLastAckCount VT_UI4 Specifies the number of times that the last order

acknowledgment was received by the QueueManager that

owns the OutgoingQueue that is transferring messages to

the destination ApplicationQueue . For more details about

the order acknowledgment, see [MS -MQQB] section

3.1.1.6.2.

EodLastAckTime VT_I4 Specifies the time when the last order acknowledgment

was re ceived by the QueueManager that owns the

OutgoingQueue that is transferring messages to the

destination ApplicationQueue. For more details about the

order acknowledgment, see [MS -MQQB] section

3.1.1.6.2.

EodNoAckCount VT_UI4 Specifies the number of messages that are sent from the

OutgoingQueue for which an order acknowledgment was

not received. For more details about the order

acknowledgment, see [MS -MQQB] section 3.1.1.6.2.

EodNoReadCount VT_UI4 Specifies the number of messages that are sent from the

OutgoingQueue for which an order acknowledgment was

received but a final acknowledgment was not received.

For the order acknowledgment, see [MS -MQQB] section

3.1.1.6.2; for the final acknowledgment, refer to [MS -

MQQB] section 3.1.7.2.2 .

EodResendCount VT_UI4 Specifies the number of times that the last message was

transferred from the OutgoingQueue.

EodResendInterval VT_UI4 Specifies the time interval for resending the messages in

the OutgoingQueue for which no order acknowledgment

was received. For more detai ls about the order

acknowledgment, see [MS -MQQB] section 3.1.1.6.2.

EodResendTime VT_I4 A time_t value that indicates the time when the messages

in the OutgoingQueue for which no order

acknowledgment was received will be retr ansmitted by

the message transfer process. For more details about the

order acknowledgment, see [MS -MQQB] section

3.1.1.6.2.

EodFirstNonAck SequenceInfoCollection A Sequenc eInfoCollection data collection (section 2.2.4.3)

that contains sequence information about the first

transactional message that was transferred from the

OutgoingQueue for which an order acknowledgment wa s

not received. For more details about the order

acknowledgment, see [MS -MQQB] section 3.1.1.6.2.

EodLastAck SequenceInfoCollection A SequenceInfoCollection data collection (section 2.2.4.3)

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf

47 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Property name

Property value data

type Prope rty description

that contains sequence information about the last

transactional message that was transferred from the

OutgoingQueue for which an order acknowledgment was

received. For more details about the order

acknowledgment, see [MS -MQQB] section 3.1.1.6.2.

EodLastNonAck SequenceInfoCollection A SequenceInfoCollection data collection (section 2.2.4.3)

that contains sequence information about the last

transactional message that was transferred from the

OutgoingQueue for which an order acknowledgment was

not received. For more details about the order

acknowledgment, see [MS -MQQB] section 3.1.1.6.2.

EodNextSeq SequenceInfoCollection A SequenceInfoCollection data collection (section 2.2.4.3)

that contains sequence information about the next

message to be transferred from th e OutgoingQueue.

Used by:

Á IMSMQOutgoingQueueManagement::EodGetSendInfo

The OutgoingTransferInfo properties correspond to the OutgoingTransferInfo attributes as
described in [MS -MQDMPR] section 3.1.1.4, with these corresponding fields.

PropertyName Attribute name as defined in [MS -MQDMPR]

EodLastAckCount EodLastAckCount

SEodLastAckTime EodLastAckTime

EodNoAckCount EodNoAckCount

EodNoReadCount EodNoReadCount

EodResendCount EodResendCount

EodResendInterval EodResendInterval

EodResendTime EodResendTime

EodFirstNonAck EodFirstNonAck

EodLastAck EodLastAck

EodLastNonAck EodLastNonAck

EodNextSeq EodNextSeq

2.2.4.3 SequenceInfoCollection

The SequenceInfoCollection data collection defines transactional message transfer sequence
information that is contained in the EodFirstNonAck, EodLastAck, EodLastNonAck, and EodNextSeq
name -value pairs. These pairs are contained in the MSMQCollection object (section 3.15) that is
referenced by the OutgoingTransferInfoReference property of an OutgoingQueue . Transactional

message transfer sequences are defined in [MS -MQQB] section 3.1.1.3.1. The

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQQB%5d.pdf

48 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

SequenceInfoCollection is an MSMQCollection object that contains the name -value pairs described in
the following.

Property

name

Property

value data

type Property description

SeqID VT_UI8 The 64 -bit value that identifies th e current transactional message sequence

being transferred from the OutgoingQueue. This property corresponds to the

OutgoingTxSequenceID property, as described in [MS -MQQB] section

3.1.1.3.1.

SeqNo VT_I4 The 32 -bit value that identifies the sequence number of the last transactional

message that was transferred by the OutgoingQueue in a particular transfer

session. This property corresponds to the OutgoingTxSequenceNumber

property, as described in [MS -MQQB] section 3.1.1.3.1.

PrevNo VT_I4 The 32 -bit value that identifies the sequence number of the previous

transactional message that was transferred by the OutgoingQueue in a

particular transfer session.

Used by:

Á IMSMQOutgoingQueueManagement::EodGetSendInfo

2.3 Directory Service Schema Elements

This protocol uses abstract data model (ADM) elements specified in section 3.1.1 . A subset of these
elements can be published in a directory. This protocol accesses the directory using the algorithm
specified in [MS -MQDSSM] and using LDAP [MS -ADTS] [LDAP] . The Directory Service schema

elements for ADM elements published in the directory are defined in [MS -MQDSSM] section 2.4.

%5bMS-MQQB%5d.pdf
%5bMS-MQQB%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89932
%5bMS-MQDSSM%5d.pdf

49 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3 Protocol Details

The client side of this protocol is a pass - through; that is, no additional timers or other state is
required on the client side of this protocol. Calls that are made by the higher - layer protocol or
application are passed directly to the transport, and the results returned by the transport are passed
directly back to the higher - layer protocol or application.

3.1 Common Implementation Details

This section describes common implementation details that apply to the MSMQ: ActiveX Client

Protocol, including the system data model expressed in conceptual terms (the abstract data model).
The system data model represents an abstract message queuing syst em with which clients of this
protocol interact.

All object classes defined by the MSMQ: ActiveX Client Protocol MUST inherit from, and implement,
the standard IUnknown and IDispatch interfaces, as defined in [MS -DCOM] section 3.1.1.5.8 and
[MS -OAUT] section 3.1 , respectively (except for the TransactionImpl class which implements

IUnknown but n ot IDispatch.) Additional information can be found in [Box98]. For each object class

that is defined in the following, the methods of IUnknown represent method opnums 0-2. The
methods of IDispatch are opnums 3 -6; therefore, th e first defined opnum for each object class that
is defined in sections 3.2 through 3.17 is 7.

Section 2.2 describes the particular data types, such as enumerations and data collections, that are
referred to by elements of the system data model. Sections 3.2 -3.17 describe the client protocol and
respective server behavior in terms of manipulating the system data. These sections use a property

accessor method name disambiguation convention where the prefix "put_" denotes a "propput"
invocation type, "get_" denotes a "propget" invocation type, and "putref_" denotes a "propputref"
invocation. For more information about OLE Automation invocation types, refer to [MS -OAUT]
sections 2.2.14 and 2.2 .49.5.1

3.1.1 Abstract Data Model

The following sections describe a conceptual model of possible data organization that an

implementation may maintain to participate in this protocol. The described organization is provided
to facilitate the explanation of how the protocol behaves. This doc ument does not mandate that
implementations adhere to this model as long as their external behavior is consistent with the
behavior described in this document.

The abstract data model (ADM) for this protocol includes elements that are protocol -specific and
others that are shared between multiple MSMQ protocols that are co - located at a common queue
manager. The shared abstract data model is defined in [MS -MQDMPR] section 3.1.1 and the

relationship between this protocol, a queu e manager, and other protocols that share a common
queue manager, is described in [MS -MQOD] .

Section 3.1.1.1 details the elements from the shared data model that are manipul ated by this
protocol, and section 3.1.1.2 details the data model element that is private to this protocol.

The entity - relationship diagram for the queue manager ADM in [MS -MQDMPR] (section 3.1.1)

illustrates the abstract concepts and interrelationships on which this protocol is defined.

3.1.1.1 Shared Data Elements

This protocol manipulates the following abstract data model (ADM) elements from the shared ADM
that is defined in [MS -MQDMPR] section 3.1.1:

%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQOD%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

50 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á QueueManager : As specified in [MS -MQDMPR] section 3.1.1.1.

Á Queue : As specified in [MS -MQDMPR] section 3.1.1.2.

Á OutgoingQueue : As specified in [MS -MQDMPR] section 3.1.1.3.

Á IncomingTransactional TransferInfo : As specified in [MS -MQDMPR] section 3.1.1.5.

Á InternalCertificate : As specified in [MS -MQDMPR] section 3.1.1.19.

Á MessagePosition : As specified in [MS-MQDMPR] section 3.1.1.11.

Á Message : As specified in [MS -MQDMPR] section 3.1.1.12.

Á Cursor : As specified in [MS -MQDMPR] section 3.2.

Á TransactionalOperation : As specified in [MS -MQDMPR] section 3.1.1.13.

Á Transaction : As specified in [MS -MQDMPR] section 3.1.1.14.

Á User : As specified in [MS -MQDMPR] section 3.1.1.15.

Á OpenQueueDescriptor : As specified in [MS -MQDMPR] section 3.1.1.16.

3.1.1.2 ApplicationQueue

An ApplicationQueue is a Queue that has the QueueType attribute set to either Public or Private .
An ApplicationQueue is created by and maintained for the specific purposes of the clients of this
protocol. When clients send messages by using this protocol, they are either deposited directly in
the destination ApplicationQueue if it is owned by the lo cal QueueManager ; or if it is not locally

owned, the messages are kept locally and are asynchronously moved to the destination
ApplicationQueue that is owned by a QueueManager on a remote computer. This movement of
messages is referred to as the message transfer process.

3.1.2 Timers

None.

3.1.3 Initialization

An implementation of the message queuing system MUST be initialized and available in order for the
server to respond to the clients of this protocol. It also MUST feature the system data model that is
described here.

3.1.4 Message Processing Events and Sequencing Rules

The following message processing events and sequencing rules generally apply to the methods

described in sections 3.2 to 3.17 .

3.1.4.1 Security

For all the following methods, before processing the method, the server SHOULD obtain the identity
and authorization information about the client from the underlying DCOM or RPC runtime in order to
verify that the client has sufficient permissions to perform the requested operation.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

51 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.4.2 Optional Arguments

Methods of the objects that are defined here use the Optional Arguments feature as specified in
[MS -OAUT] section 3.1.4.4.3.

For optional arguments where the client does not specify a value, the client MUST set the "vt"
VARIANT field to VT_ERROR and place DISP_E_PARAMNOTFOUND (0x80020004) in the "scode"
VARIANT field.

3.1.4.3 Out Parameters and Errors

Unless otherwise specified in the following sections, all methods MUST return S_OK (0x00000000)
to indicate success, or an implementation -specific error HRESULT on failure.

Also, out parameter values MUST be ignored by the client if the server returns an error HRESULT .

3.1.5 Timer Events

None.

3.1.6 Other Local Events

3.1.6.1 Events Raised by Related Protocols

3.1.6.1.1 Time To Be Received Expiration

The Time To Be Received Expiration event is triggered when the Time To Be Received Timer Expired
([MS -MQDMPR] section 3.1.7.2.7) event is raised. This event occurs when a Message ([MS -
MQDMPR] section 3.1.1.12) expires while the Message is in an ApplicationQueue (section 3.1.1.2) .
The event notification MUST specify the expired Message for whic h the Time To Be Received Timer

([MS -MQDMPR] section 3.1.2.4) expired.

When the message queuing system responds to the event notification, it MUST follow these

guidelines:

Á If the MessagePosition.State attribute of the expired Message equals Locked , take no action

in response to this event and postpone the evaluation of this event until the Transaction Abort
eve nt ([MS -MQDMPR] section 3.1.4.5) causes the MessagePosition.State attribute to be set to

a value other than Locked .

Á If the NegativeJournalingRequested attribute of the expired Message is set to True :

Á If the Transactional attribute of the Queue that contains the expired Message equals True :

Á If the local QueueManager.Identifier is equal to the expired

Message.SourceMachineIdentifier , deadletter the Message by generating a Move

Message event as defined in [MS -MQDMPR] section 3.1.7.1.16, with the following inputs:

Á iMessagePos = The expired Message.MessagePositionReference .

Á iQueue = The local QueueManager.SystemTransactionalDeadlette rQueue .

Á Else if the Transactional attribute of the Queue that contains the expired Message equals

False:

%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

52 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Deadletter the Message by generating a Move Message event as defined in [MS -MQDMPR]

section 3.1.7.1.16, with the follow ing inputs:

Á iMessagePos = The expired Message.MessagePositionReference .

Á iQueue = The local QueueManager.SystemDeadletterQueue .

3.1.6.2 Get Queue Format Name from Pathname

This event MUST be generated with the following arguments:

Á iPathname: The path name of a queue as specified in [MS -MQMQ] section 2.1.1.

Return Values

Á rStatus: A status code that can be one of the following:

Á MQ_OK (0x00000000)

Á MQ_ERROR_QUEUE_NOT_FOUND (0xC00E0003)

Á MQ_ERROR_ILLEGAL_QUEUE_PATHNAME (0xC00E0014L)

Á rFormatName: A format name that can be used to identify the queue referenced by iPathname.

This format name can be one of the following:

Á A Direct Format Name as specified in [MS -MQMQ] section 2.1.2.

Á A Public Format Name as specified in [MS -MQMQ] section 2.1.3.

Á A Private Format Name as specif ied in [MS -MQMQ] section 2.1.4.

Á If rStatus is not Success, the value of this parameter is undefined.

The Queue Manager MUST perform the following actions to process this event:

Á Set rStatus to MQ_OK (0x00000000).

Á Declare subque ueName as a variable.

Á If the input pathname represents a subqueue (as specified in [MS -MQMQ] section 2.1.1):

Á Perform string manipulation on iPathname to extract the subqueue name and set

subqueueName to this value.

Á Perform str ing manipulation on iPathname to remove the subqueue part from the path name.

Á Else

Á Set subqueueName equal to NULL.

Á If the input path name represents a public queue:

Á If QueueManager.DirectoryOffline is True:

Á Set rStatus to MQ_ERROR_QUEUE_NOT_FOUND (0xC00E00 03L) and take no further

action.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

53 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Generate a Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following

arguments.

Á iDirectoryObjectType: = Queue

Á iFilter: = An array of the followi ng attribute - filter expressions:

Á "Pathname" EQUALS iPathname

Á iAttributeList: = An array of the following queue attributes:

Á Queue.Identifier

Á If the rStatus returned by the Read Directory event is not set to Success:

Á Set rStatus to MQ_ERROR_QUEUE_NOT_FOUND (0xC00E0003L) and take no further

action.

Á Set queueIdentifier to the Queue.Identifier of the returned queue object.

Á Set rFormatName to the following string where queueIdentifier is replaced by its value:

Á "PUBLIC=queu eIdentifier"

Á Else if the input path name represents a private queue:

Á If QueueManager.DirectoryIntegrated is False:

Á Set rFormatName to the following string where iPathName is replaced by its value:

Á "DIRECT=OS:iPathname"

Á Else:

Á Declare privateQueueLocalIdenti fier as a variable, and set it equal to the private queue

local identifier which is computed as follows:

Á Declare hashValue as a 32 bit integer and set it to 0.

Á Declare oldHashValue as a 32 bit integer and set it to 0.

Á Extract the queue name from iPathname.

Á For each character in the queue name from left to right:

Á Set oldHashValue to hashValue.

Á Perform an arithmetic shift left of hashValue by 5 bits.

Á Add the ASCII value of the character to hashValue.

Á Add the oldHashValue to hashV alue.

Á Set privateQueueLocalIdentifier to hashValue.

Á Declare queueManagerIdentifier as a variable, and set it equal to the local

QueueManager.Identifier.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-GLOS%5d.pdf

54 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set rFormatName to the following string where queueManagerIdentifier and

privateQueueLocalIdentifier ar e replaced by their values:

Á "PRIVATE=queueManagerIdentifier/privateQueueLocalIdentifier"

Á Else

Á Set rStatus to MQ_ERROR_ILLEGAL_QUEUE_PATHNAME (0xC00E0014) and take no further

action.

Á If subqueueName is not equal to NULL:

Á Perform string manipulation on rFormatName to append the subqueueName at the end.

3.2 MSMQApplication Coclass Details

The MSMQApplication coclass represents either the QueueManager that runs on the specified
computer or the local QueueManager, if no computer name is specified. The QueueManager that is

represented by this object is referred to from here on as the represented QueueManager.

The MSMQApplication object provides methods and properties that can be used to obtain

information about and manage the represented QueueManager. This object can be used to do the
following:

Á Obtain the ComputerName or Identifier of the represented QueueManager.

Á Obtain management information about the represented QueueManager.

Á Connect or disconnect the represented Queue Manager from the network and the directory.

Á Register a User with a user certificate in the directory. This user certificate can be used to verify

the sender for messages that request authentication and to ensure message integr ity.

Á Perform implementation -specific tasks to release unused resources of the represented

QueueManager.

3.2.1 Abstract Data Model

An implementation of the MSMQApplication coclass maintains the following abstract data element:

Á ComputerName : This instance variable specifies the string representation of the represented

QueueManager .ComputerName, if one is explicitly specified by the client. If this variable is not
set, it MUST contain a NULL value, which implie s that the local QueueManager will be represented
by this object.

3.2.2 Timers

No protocol timers are required.

3.2.3 Initialization

Á The ComputerName instance variable MUST be initialized to a NULL value.

Á Clients MAY set the ComputerName instance variable by invoking the put

MSMQApplication::Machine method on the object.

%5bMS-MQDMPR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQDMPR%5d.pdf

55 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.2.4 Message Processing Events and Sequencing Rules

This coclass includes three interfaces. The numbered interfaces are binary -compatible revisions that
MAY append additional methods or update method parameter types. The following table illustrates

the methods that belong to each interface revision.

Method name (in the most recent interface revision) Rev. 3 Rev. 2 Rev. 1

MachineIdOfMachineName

(Opnum 7)

X X X

RegisterCertificate

(Opnum 8)

X X

MachineNameOfMachineId

(Opnum 9)

X X

get

MSMQVersionMajor

(Opnum 10)

X X

get

MSMQVersionMinor

(Opnum 11)

X X

get

MSMQVersionBuild

(Opnum 12)

X X

get

IsDsEnabled

(Opnum 13)

X X

get

Properties

(Opnum 14)

X X

ActiveQueues

(Opnum 15)

X

get

PrivateQueues

(Opnum 16)

X

get

DirectoryServiceServer

(Opnum 17)

X

get

IsConnected

(Opnum 18)

X

get X

56 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method name (in the most recent interface revision) Rev. 3 Rev. 2 Rev. 1

BytesInAllQueues

(Opnum 19)

put

Machine

(Opnum 20)

X

get

Machine

(Opnum 21)

X

Connect

(Opnum 22)

X

Disconnect

(Opnum 23)

X

Tidy

(Opnum 24)

X

3.2.4.1 IMSMQApplication Interface

The IMSMQApplication provides methods that return information about the QueueManager for a
specific machine. The version number for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID {d7d6e086 -dccd -11d0 -aa4b -0060970debae} (coclass MSMQApplication as specified
in section 1.9), which implements the IMSMQApplication interface using the UUID {D7D6E085 -

DCCD-11d0 -AA4B-0060970DEBAE}.

The following opnum table begins at opnum 7. Opnums 0 through 2 are inherited from the
IUnknown interface, as specified in [MS -DCOM] section 3.1.1.5.8. Opnums 3 through 6 are inherited
from the IDispatch interface, as specified in [MS -OAUT] section 3.1.4 .

Metho ds in RPC Opnum Order

Method Description

MachineIdOfMachineName Returns a string that contains the Identifier of the QueueManager that is

hosted by the computer whose name matches the input parameter.

Opnum: 7

3.2.4.1.1 MachineIdOfMachineName (Opnum 7)

The MachineIdOfMachineName method is received by the server in an RPC_REQUEST packet. In

response, the server MUST return a string that contains the QueueManager .Identifier for the

computer name that was passed as the input parameter.

HRESULT MachineIdOfMachineName(

 [in] BSTR MachineName,

 [out, retval] BSTR* pbstrGuid

%5bMS-MQDMPR%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-MQDMPR%5d.pdf

57 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

);

MachineName: A BSTR that specifies the NETBIOS or DNS computer name for which a GUID is

to be retrieved.

If this input parameter is NULL, the local QueueManager. ComputerName MUST be used as
the value of this input parameter.

pbstrGuid: A pointer to a BSTR that upon successful completion, contains the string
representation of the specified machine GUID. The server MUST NOT include the surrounding
curly braces ({ }) with the returned GUID. The string MUST use the following format, which is

specified in ABNF .

guid = dword - part " - " word - part " - " word - part " - "

 2byte - part " - " 6byte - part

dword - part = 2word - part

word - part = 2byte - part

byte - part = 2hex - digit

hex - digit = %x30 - 39 / %x41 - 46 / %x61 - 66

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure. <9>

When processing this call, the server MUST follow these guidelines:

Á Retrieve the QueueManager , referred to here as DirectoryQueueManager , from the directory as

follows:

Á Generate a Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following inputs,

where MachineName is the MachineName input parameter:

Á iDirectoryObjectType = QueueManager.

Á iFilter = "ComputerName" EQUALS MachineName.

Á iAttributeList = QueueManager. Identifier .

Á If the rStatus return value is not equal to DirectoryOperationResult. Success :

Á Return an error HRESULT , and take no further action.

Á Set the pbstrGuid output variable to DirectoryQueueManager .Identifier ; it MUST NOT contain

the braces ({ }) around the GUID value.

3.2.4.2 IMSMQApplication2 Interface

The IMSMQApplication2 interface provides methods that return information about the queue

manager on a specific server. IMSMQApplication2 inherits opnums 0 through 7 from the

IMSMQApplication interface (section 3.2.4.1). The version number for this interface is 4.0.

To receive incoming remote calls for this interface, the ser ver MUST implement a DCOM object class
with the CLSID {d7d6e086 -dccd -11d0 -aa4b -0060970debae} (coclass MSMQApplication as specified
in section 1.9), wh ich implements the IMSMQApplication2 interface using the UUID {12a30900 -
7300 -11d2 -b0e6 -00e02c074f6b}.

%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

58 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Methods in RPC Opnum Order

Method Description

RegisterCertificate Registers an internal or external certificate in the directory

service for the user that invokes the method.

Opnum: 8

MachineNameOfMachineId Returns the computer name of the queue manager that is

identified by the GUID that was passed as the input parameter.

Opnum: 9

MSMQVersionMajor , get

MSMQVersionMajor

Returns the major version number of the server.

Opnum: 10

MSMQVersionMinor , get

MSMQVersionMinor

Returns the minor version number of the server.

Opnum: 11

MSMQVersionBuild , get

MSMQVersionBuild

Returns the build version number of the server.

Opnum: 12

I sDsEnabled , get IsEnabled Returns a BOOLEAN value that indicates whether the queue

manager that is represented by this object is configured to use

the directory service.

Opn um: 13

Properties , get Properties This method is not implemented.

Opnum: 14

3.2.4.2.1 RegisterCertificate (Opnum 8)

The RegisterCertificate method MUST register an MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22)

in User .Certificates . Implementations of this protocol use certificates to verify the sender for
messages that are requesting authentication and to ensure message integrity.

HRESULT RegisterCertificate(

 [in, optional] VARIANT* Flags,

 [in, optional] VARIANT* ExternalCertificate

);

Flags: A pointer to a VARIANT that contains a VT_I4 integer that corresponds to the

MQCERT_REGISTER enumeration as defined in the following table.

Value Meaning

MQCERT_REGISTER_ALWAYS

0x00000001

Register an MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22)

in User. Certificates .

If the ExternalCertificate input parameter is not specified or

is NULL, the server MUST delete the certificate from the

internal store and delete any existing MQUSERSIGNCERT

([MS -MQMQ] section 2.2.22) with a matching Digest

property from User. Certificates .

The server MUST then add a newly created

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

59 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22) to

User. Certificates .

If the ExternalCertificate is not NULL, the server M UST

add an MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22), as

specified by the ExternalCertificate input parameter, to

User. Certificates .

MQCERT_REGISTER_IF_NOT_EXIST

0x00000002

Register an MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22)

in User. Certificates only if no certificate is registered in the

internal store. This option cannot be used with

ExternalCertificate .

If not specified by the client, the server MUST use the default val ue

MQCERT_REGISTER_ALWAYS (0x00000001) instead of the unspecified value.

ExternalCertificate: A pointer to a VARIANT that contains a byte array (VT_ARRAY|VT_UI1) or

a pointer (VT_BYREF) to a byte array that specifies the binary representation of the
MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22) that is to be registered. The
MQUSERSIGNCERT MUST contain an X.509 -encoded certificate, as specified in [RFC3280] .

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure. <10>

When processing this call, the server MUST follow these guidelines:

Á If the Comput erName instance variable is not NULL:

Á Return E_NOTIMPL (0x80004001) and take no further action.

Á If the Flags input parameter is equal to MQCERT_REGISTER_IF_NOT_EXIST and the

ExternalCertificate input parameter is not NULL:

Á Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) and take no further action.

Á Retrieve the User, referred to here as DirectoryUser , from the directory as follows:

Á Generate a Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following inputs,

where invokerSID is the SID <11> of the user that calls the method.

Á iDirectoryObjectType = User.

Á iFilter = "SecurityIdentifier" EQUALS invokerSID .

Á iAttributeList = User. Certificates , User. CertificateDigestLi st .

Á If the rStatus return value is not equal to DirectoryOperationResult.Success:

Á Return an error HRESULT , and take no further action.

Á If the ExternalCertificate input parameter is specified and is not NULL:

Á Create a new MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22) structure iExtMQCert with the

following values:

Á aCert = The certificate that is contained in the ExternalCertificate input parameter.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90414
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf

60 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Digest = The MD5 hash of the ExternalCertificate input parameter.

Á Id entifier = A new GUID .

Á Add iExtMQCert to DirectoryUser .Certificates and iExtMQCert .Digest to

DirectoryUser .CertificateDigestList.

Á Else:

Á Retrieve the InternalCertificate ([MS -MQDMPR] section 3.1.1.19) ADM element instance

whose User ADM attribute matches DirectoryUser , referred to here as InternalCertificate , from
the InternalCertificateCollection ADM attribute of the local QueueManager ADM element

instance.

Á If InternalCertificate is f ound:

Á If the Flags input parameter is equal to MQCERT_REGISTER_IF_NOT_EXIST:

Á Return MQ_INFORMATION_INTERNAL_USER_CERT_EXIST (0x400E000A), and take no

further action.

Á Else:

Á Verify that the DirectoryUser has permission to register a certificate by attempting to re -

register the existing certificate as follows:

Á Generate a Write Directory ([MS -MQDMPR] section 3.1.7.1.24) event with the

following inputs:

Á iDirectoryObject = DirectoryUser .

Á iAttributeList = User. Certificates , User. CertificateDigestList .

Á If the rStatus return value is not equal to DirectoryOperationResult.Success:

Á Return an error HRESULT , and take no further action.

Á Compute the MD5 hash of InternalCertificate as defined in [RFC1321] .

Á Define directoryUserCertObject as the MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22)

in DirectoryUser .Certificates whose Digest matches the MD5 hash of InternalCertificate
computed in the previous step.

Á Remove directoryUserCertObject from DirectoryUser .Certificates.

Á Delete the InternalCertificate from the InternalCertificateCollection ADM attribute of

the local QueueManager ADM element instance.

Á Create an X.509 -encoded certificate BLOB, as specified in [RFC3280] . Create an

InternalCertificate ADM element instance with InternalCertificate.Certificate set to the
created X.509 certificate and with InternalCertificate.User set to DirectoryUser , and a dd it

to the InternalCertificateCollection ADM attribute of the local QueueManager ADM
element instance.

Á Create a new MQUSERSIGNCERT ([MS -MQMQ] section 2.2.22) structure iIntMQCert with the

following values:

Á aCert = The newly created certificate.

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90414
%5bMS-MQMQ%5d.pdf

61 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Digest = The MD5 hash of the newly created certificate.

Á Identifier = A new GUID .

Á Add iIntMQCert to DirectoryUser .Certificates and iIntMQCert .Digest to

DirectoryUser .CertificateDigestList.

Á Update DirectoryUser in the directory as follows:

Á Generate a Write Directory ([MS -MQDMPR] section 3.1.7.1.24) event with the following

inputs:

Á iDirectoryObject = DirectoryUser .

Á iAttributeList = User.Certificates, User.CertificateDigestList.

Á If the rStatus return value is not equal to DirectoryOperationResult.Success:

Á Return an error HRESULT , and take no further action.

3.2.4.2.2 MachineNameOfMachineId (Opnum 9)

The MachineNameOfMachineId method is received by the server in an RPC_REQUEST packet. In
response, the server MUST return a string that contains the QueueManager .ComputerName of the
QueueManager that is identified by the bstrGuid input parameter.

HRESULT MachineNameOfMachineId(

 [in] BSTR bstrGuid,

 [out, retval] BSTR* pbstrMachineName

);

bstrGuid: A BSTR that specifies an identifier for the com puter name, in the GUID format. The

server MUST accept GUIDs with or without surrounding curly braces ({ }).

pbstrMachineName: A pointer to a BSTR that after successful completion, contains the

computer name in the DNS or Universal Naming Convention (UNC) format.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <12>

When processing this call, the server MUST follow these guidelines:

Á Retrieve the QueueManager, referred to here as DirectoryQueueManager, from the directory as

follows:

Á Generate a Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following inputs,

where bstrGuid is the bstrGuid input parameter:

Á iDirectoryObjectType = QueueManager.

Á iFilter = "Identifier" EQUALS bstrGuid .

Á iAttributeList = a list consisting of two ADM attribute names , Identifier and

ComputerName . Set Identifier to QueueManager.Identifier.

Á If the rStatus return value is not equal to DirectoryOperationResult.Success :

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

62 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Return an error HRESULT , and take no further action.

Á Set the pbstrMachineName output variable to ComputerName .

3.2.4.2.3 MSMQVersionMajor (Opnum 10)

The MSMQVersionMajor method is received by the server in an RPC_REQUEST packet. In
response, the server MUST return the major version number of the server.

[propget] HRESULT MSMQVersionMajor(

 [out, retval] short* psMSMQVersionMajor

);

psMSMQVersionMajor: A pointer to a short that when successfully completed, contains the
major version number of the server.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

imple mentation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ComputerName instance variable is not NULL, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006) and take no fur ther action.

Á Set the psMSMQVersionMajor output variable to the major version number <13> of the server.

3.2.4.2.4 MSMQVersionMinor (Opnum 11)

The MSMQVersionMinor method is received by the server in an RPC_REQUEST packet. In
response, the server MUST return the minor version number of the server.

[propget] HRESULT MSMQVersionMinor(

 [out, retval] short* psMSMQVersionMinor

);

psMSMQVersionMinor: A pointer to a short that when successfully completed, contains the

minor version number of the server.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
imple mentation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ComputerName instance variable is not NULL, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006) and take no f urther action.

Á Set the psMSMQVersionMinor output variable to the minor version number <14> of the server.

3.2.4.2.5 MSMQVersionBuild (Opnum 12)

The MSMQVersionBuild method is received by the server in an RPC_REQUEST packet. In
response, the server MUST return the build version number of the server.

[propget] HRESULT MSMQVersionBuild(

 [out, retval] short* psMSMQVersionBuild

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

63 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

);

psMSMQVersionBuild: A pointer to a short that when successfully completed, contains the

build version number of the server.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
imple mentation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ComputerName instance variable is not NULL, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006) and take no fur ther action.

Á Set the psMSMQVersionBuild output variable to the build version number <15> of the server.

3.2.4.2.6 IsDsEnabled (Opnum 13)

The IsDsEnabled method is received by the server in an RPC_REQUEST packet. In response, the
server MUST return a BOOLEAN value that indicates whether the local QueueManager is configured
to use the directory.

[propget] HRESULT IsDsEnabled(

 [out, retval] VARIANT_BOOL* pfIsDsEnabled

);

pfIsDsEnabled: A pointer to a VARIANT_BOOL that when successfully com pleted, contains

one of the following values.

Value Meaning

VARIANT_TRUE

0xffff

The local QueueManager is configured to use the directory.

VARIANT_FALSE

0x0000

The local QueueManager is not configured to use the directory.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ComputerName instance variable is not NULL, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006) and take no further action.

Á Set the pfIsDsEnabled output variable to a value of the local QueueManager.DirectoryIntegrated.

3.2.4.2.7 Properties (Opnum 14)

The Properties method is not implemented.

[propget] HRESULT Properties(

 [out, retval] IDispatch** ppcolProperties

);

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

64 / 38 8

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ppcolProperties: A pointer to an IDispatch pointer. The server MUST ignore this parameter.

Return Values: The server MUST return E_NOTIMPL (0x80004001).

Return value/code Description

0x80004001

E_NOTIMPL

Not implemented.

The server MUST take no action and return E_NOTIMPL (0x80004001).

3.2.4.3 IMSMQApplication3 Interface

The IMSMQApplication3 interface provides methods that allow clients to administer queues.
IMSMQApplication3 inherits opnums 0 through 14 from the IMSMQApplication2 (section
3.2.4.2) interface. The version number for this interface is 4.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID {d7d6e086 -dccd-11d0 -aa4b -0060970debae} (coclass MSMQApplication as specified
in section 1.9), which implements the IMSMQApplication3 interface using the UUID {eba9 6b1f -
2168 -11d3 -898c -00e02c074f6b}.

Methods in RPC Opnum Order

Method Description

ActiveQueues Returns the format names of all the active queues of the queue manager that

is represented by this object.

Opnum: 15

PrivateQueues Returns the path names of all the private queues of the queue manager that

is represented by this object.

Opnum: 16

DirectoryServiceServer Returns the name of the directory service server.

Opnum: 17

IsConnected Returns a BOOLEAN value that indicates the connection status of the queue

manager that is represented by this object.

Opnum: 18

BytesInAllQueues Returns the number of message bytes that are currently stored in all queues

of the queue manager that is represented by this object.

Opnum: 19

Machine Sets the name of the computer on which the queue manager is located.

Opnum: 20

Machine Returns the name of the computer on which the queue manager that is

represented by this object is running.

Opnum: 21

Connect Connects the que ue manager represented by this object to the network and

to the directory service.

Opnum: 22

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

65 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

Disconnect Disconnects the queue manager that is represented by this object from the

network and the director y service.

Opnum: 23

Tidy Performs implementation -specific tasks to release unused resources of the

queue manager that is represented by this object.

Opnum: 24

3.2.4.3.1 ActiveQueues (Opnum 15)

The ActiveQueues method is received by the server in an RPC_REQUEST packet. In response, the

server MUST return an array of strings that contain the format names of all the represented
QueueManager .QueueCollection.Queues, where Queue .Active is equal to True.

HRESULT ActiveQueues(

 [out, retval] VARIANT* pvActiveQueues

);

pvActiveQueues: A pointer to a VARIANT that, when successfully completed, contains an array

of zero or more strings (VT_ARRAY | VT_BSTR) that specify the format names of all the
represented QueueManager.QueueCollection.Queues, where Queue.Active is equal to True.

Return Values: The method MUST return S_OK (0x00000000) to indicate success o r an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á Identify all the local QueueManager.QueueCollection.Qu eues, where Queue.Active is equal to

True.

Á Set the pvActiveQueues output variable to an array that contains the format names that

specify all the identified Queues.

Á Else:

Á The server MUST generate a QMMgm t Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_MSMQ_ACTIVEQUEUES

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action. Otherwise, the pvActiveQueues output variabl e
MUST be set to the value of the returned rPropVar .

3.2.4.3.2 PrivateQueues (Opnum 16)

The PrivateQueues method is received by the server in an RPC_REQUEST packet. In response, the

server MUST return an array of strings that contain the path names of all the represented
QueueManager .QueueCollection.Queues, where Queue .QueueType is equal to Private.

[propget] HRESULT PrivateQueues(

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

66 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 [out, retval] VARIANT* pvPrivateQueues

);

pvPrivateQueue s: A pointer to a VARIANT that when successfully completed, contains an array

of zero or more strings (VT_ARRAY | VT_BSTR) that specify the path names of all the
represented QueueManager.QueueCollection.Queues, where Queue. QueueType is equal to
Private.

Re turn Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á Identify all the local QueueManager.QueueCollection.Queues, where Queue.QueueType is

equal to Private.

Á Set the pvPrivateQueues output variable to an array that contains the path names that specify

all the identified Queues.

Á Else:

Á The ser ver MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_MSMQ_PRIVATEQ

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action. Otherwise, the pvPrivat eQueues output variable
MUST be set to the value of the returned rPropVar .

3.2.4.3.3 DirectoryServiceServer (Opnum 17)

The DirectoryServiceServer method is received by the server in an RPC_REQUEST packet. In
response, the server MUST return a string that contains the name of the current directory computer.

[propget] HRESULT DirectoryServiceServer(

 [out, retval] BSTR* pbstrDirectoryServiceServer

);

pbstrDirectoryServiceServer: A pointer to a BSTR that, when successfully completed, contains

the name of the directory computer in DNS or NetBIOS format, prefixed by " \ \ ". The string
MUST use the following format, which is specified in ABNF.

DirectoryServer =" \ \ " Name

Alpha = %x41 - 5A / %x61 - 7A

Name =1*255Alpha

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

67 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set the pbstrDirectoryServiceSe rver output variable to the DNS or NetBIOS name of the

directory computer, <16> prefixed by " \ \ ".

Á Else:

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_MSMQ_DSSERVER

Á If the rStatus ret urn value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action. Otherwise, the pbstrDirectoryServiceServer output
variable MUST be set to the value of the returned rPropVar .

3.2.4.3.4 IsConnected (Opnum 18)

The IsConnected method is received by the server in an RPC_REQUEST packet. In response, the
server MUST return a BOOLEAN value that indicates the connection status of the represented
QueueManager .

[propget] HRESULT IsConnected(

 [out, retval] VARIANT_BOOL* pfIsConnected

);

pfIsConnected: A pointer to a VARIANT_BOOL that, when successfully completed, contains

one of the follow ing values.

Value Meaning

VARIANT_TRUE

0xffff

The represented QueueManager is connected to the network and the directory.

VARIANT_FALSE

0x0000

The represented QueueManager is disconnected from the network and the

directory.

Return Values: The method MUS T return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á Set the pfIsConnected output variable to local QueueManager.ConnectionActive.

Á Else:

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_MSMQ_CONNECTED

Á If the rStatus return value is not equal to MQ_OK (0x000000 00), the server MUST return

rStatus and MUST take no further action. Otherwise, the pfIsConnected output variable MUST
be set to the value of the returned rPropVar .

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

68 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.2.4.3.5 BytesInAllQueues (Opnum 19)

The BytesInAllQueues method is received by the server in an RPC_REQUEST packet. In response,
the server MUST return the number of message bytes that are currently stored in all Queue s of the

represented QueueManager .QueueCollection.

[propget] HRESULT BytesInAllQueues(

 [out, retval] VARIANT* pvBytesInAllQueues

);

pvBytesInAllQueues: A pointer to a VARIANT that, when successfully completed, contains a

64-bit integer (VT_I8) that specifies (in bytes) the amount of data stored in all Queues of the
represented QueueManager.QueueCollection.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á Set the pvBytesInAllQueues output variable to the sum of all the Queue.TotalBytes of the.

Local Qu eueManager.QueueCollection.

Á Else:

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_MSMQ_BYTES_IN_ALL_QUEUES

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action. Otherwise, the pvBytesInAllQueues output variable
MUST be set to the value of the returned rPropVar .

3.2.4.3.6 Machine (Opnum 20)

The Machine method is received by the server in an RPC_REQUEST packet. In response, the server
MUST set the ComputerName instance variable.

[propput] HRESULT Machine(

 [in] BSTR bstrMachine

);

bstrMachine: A BSTR that specifies the computer name in DNS or NetBIOS format.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

The server MUST set the ComputerName instance variable to the value of the bstrMachine input
parameter.

3.2.4.3.7 Machine (Opnum 21)

The Machine method is received by the server in an RPC_REQUEST packet. In response, the server

MUST return the represented QueueManager .ComputerName .

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

69 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[propget] HRESULT Machine(

 [out, retval] BSTR* pbstrMachine

);

pbstrMachine: A pointer to a BSTR that, when successfully completed, contains the computer
name that this object refers to, in DNS or NetBIOS format.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á Set the pbstrMa chine output variable to the local QueueManager. ComputerName .

Á Else:

Á Set the pbstrMachine output variable to the ComputerName instance variable.

3.2.4.3.8 Connect (Opnum 22)

The Connect method is received by the server in an RPC_REQUEST packet. In response, the server
MUST connect the represented QueueManager to the network and to the directory.

HRESULT Connect();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <17>

When the server processes this call , it MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á Send a Bring Online event, as defined in [MS -MQDMPR] section 3.1.4.13, to the local

QueueManager.

Á Else:

Á The se rver MUST generate a QMMgmt Action event with the following inputs:

Á iAction = "CONNECT"

Á The server MUST return rStatus , and MUST take no further action.

3.2.4.3.9 Disconnect (Opnum 23)

The Disconnect method is received by the server in an RPC_REQUEST packet. In response, the
server MUST disconnect the represented QueueManager from the network and the directory.

HRESULT Disconnect();

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

70 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <18>

When the serve r processes this call, it MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á Send a Take Offline event as defined in [MS -MQDMPR] section 3.1.4.12 to the local

QueueMa nager.

Á Else:

Á The server MUST generate a QMMgmt Action event with the following inputs:

Á iAction = "DISCONNECT"

Á The server MUST return rStatus , and MUST take no further action.

3.2.4.3.10 Tidy (Opnum 24)

The Tidy method is received by the server in an RPC_REQUEST packet. In response, the server

SHOULD perform implementation -specific tasks to release unused resources of the represented
QueueManager .

HRESULT Tidy();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure. <19>

When t he server processes this call, it MUST follow these guidelines:

Á If the ComputerName instance variable is NULL:

Á The local QueueManager SHOULD perform implementation -specific tasks to release unused

resources.

Á Else:

Á The server MUST generate a QMMgmt Action e vent with the following inputs:

Á iAction = "TIDY"

Á The server MUST return rStatus , and MUST take no further action.

3.2.5 Timer Events

No timer events are required.

3.2.6 Other Local Events

No local events are required.

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

71 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3 MSMQManagement Coclass Details

An implementation of the MSMQManagement coclass represents the state of a Queue for which the
Queue.Active property is set to True. This Queue is referred to as the represented Queue in this

document in the description of this coclass.

This object encapsulates the administrative aspects of the represented Queue.

3.3.1 Abstract Data Model

An implementation of the MSMQManagement coclass maintains the following data elements:

Á ComputerName : This instance variable specifies the string representation of the computer

name on which the QueueManager that owns the represented Queue is running, if one is
explicitly specified by the client. If not set, this variable MUST contain a NULL value, which
ind icates that the local QueueManager owns the Queue.

Á QueueFormatName : This instance variable specifies the string representation of the format

name that describes the represented Queue. The represented Queue always belongs to the
QueueManager running on the server indicated by ComputerName. If QueueFormatName

contains a computer name that differs from ComputerName, it is referring to an
OutgoingQueue on that server. Verification of the Queue's existance and availability is
performed by the QueueManager that o wns the represented Queue during the
IMSMQManagement::Init method.

Á ObjectIsInitialized : A BOOLEAN flag that is set to True if the object has been successfully

initialized by invoking the Init method.

Á QueueIsOutgoing : A BOOLEAN flag that is set to True if the represented Queue is an

OutgoingQueue .

Á hQmmgmtBind : An RPC binding handle as specified in [C706] section 2.

An implementation of the MSMQManagement coclass SHOULD also provide the implementation for

the IMSMQQueueManagement and IMSMQOutgoingQueueManagement in terfaces.

On invoking IUnknown::QueryInterface (refer to section 3.1) with the interface identifier of

IMSMQQueueManagement , this coclass SHOULD return the IMSMQQueueManagem ent coclass
if the represented Queue is not an OutgoingQueue or else return an error.

On invoking IUnknown::QueryInterface with the interface identifier of
IMSMQOutgoingQueueManagement , this coclass SHOULD return the
IMSMQOutgoingQueueManagement coclass if the represented Queue is an OutgoingQueue or
else return an error.

3.3.2 Timers

No protocol timers are required.

3.3.3 Initialization

Á The server MUST set the ComputerName instance variable to a NULL value.

Á The server MUST set the ObjectIsInitialized instance variable to False.

Á The server MUST set the QueueIsOutgoing instance variable to False.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf
%5bMS-MQDMPR%5d.pdf

72 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á The server MUST set the hQmmgmtBind instance variable to a NULL value.

Á Clients MUST initialize the MSMQManagement object by invoking the IMSMQManagement::Init

m ethod on the object.

3.3.4 Message Processing Events and Sequencing Rules

The MSMQManagement coclass defines a single interface: IMSMQManagement .

3.3.4.1 IMSMQManagement Interface

The IMSMQManagement interface provides methods that return information about a queue. The
version number for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID {39ce96fe - f4c5 -4484 -a143 -4c2d5d324229} (coclass MSMQManagement , as
specified in section 1.9), which implements the IMSMQManagement interface by using the UUID

{be5f0241 -e489 -4957 -8cc4 -a452fcf3e23e}.

The following opnum table begins at opnum 7. Opnums 0 through 2 are inherited from the
IUnknown interface, as specified in [MS -DCOM] section 3.1.1.5.8. Opnums 3 through 6 are inherited

from the IDispatch interface, as specified in [MS -OAUT] section 3.1.4 .

Methods in RP C Opnum Order

Method Description

Init Initializes the object to represent the state of an active queue.

Opnum: 7

FormatName , get

FormatName

Returns a format name for the queue that is represented by this

object.

Opnum: 8

Machine , get Machine Returns the name of the computer on which the queue manager that

owns the queue represented by this object is running.

Opnum: 9

MessageCount , get

MessageCount

Returns the number of messages in the queue that is represented by

this object.

Opnum: 10

ForeignStatus , get

ForeignStatus

Returns a flag that indicates whether the queue that is represented by

this object is a foreign queue .

Opnum: 11

QueueType , ge t QueueType Returns a flag that indicates the type of the queue that is represented

by this object.

Opnum: 12

IsLocal , get IsLocal Returns a BOOLEAN value that indicates whether the queue that is

represented by this object is owned by the local queue manager or a

remote queue manager.

Opnum: 13

TransactionalStatus , get Returns a flag that indicates whether the queue that is represented by

%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

73 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

TransactionalStatus this object is a transactional queue or a nontransactional queue.

Opnum: 14

BytesInQueue get,

BytesInQueue

Returns the number of message bytes in the queue that is represented

by this object.

Opnum: 15

3.3.4.1.1 Init (Opnum 7)

The Init method is received by the server in an RPC_REQUEST packet. In response, the server
initializes the object to represent the state of a Queue . The represented Queue MUST have
Queue.Active set to True. If the represented Queue.Active is False, or the Pathname and

FormatName input parameters cannot be resolved, this method MUST return an error without
setting the ObjectIsInitialized instance vari able to True. This method MUST be called prior to calling
any other operation on MSMQManagement .

HRESULT Init(

 [in, optional] VARIANT* Machine,

 [in, optional] VARIANT* Pathname,

 [in, optional] VARI ANT* FormatName

);

Machine: A pointer to a VARIANT that contains a BSTR that contains a string representation of a

computer name in the DNS or NetBIOS format. If this parameter is not specified or is NULL,
the server MUST igno re this parameter.

Pathname: A pointer to a VARIANT that contains a BSTR that contains a string representation of

the path name describing a Queue.

FormatName: A pointer to a VARIANT that contains a BSTR that contains a string

representation of the format name describing a Queue.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á I f the Pathname input parameter is NULL or is not specified and the FormatName input

parameter is NULL or is not specified:

Á Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006), and take no further action.

Á If the Pathname input parameter is not NULL and the Forma tName input parameter is not NULL:

Á Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006), and take no further action.

Á If the Machine input parameter is specified and is not NULL:

Á The server MUST set the ComputerName instance variable to the value of the Machine input

parameter.

Á If the FormatName input parameter is specified and is not NULL and the Pathname input

parameter is NULL:

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

74 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á The server MUST set the QueueFormatName instance variable to the value of the

FormatName input parameter.

Á If the Pathname input parameter is specified and is not NULL, and the FormatName input

parameter is NULL:

Á The server MUST generate a Get Queue Format Name From Pathname event (section 3.1.6.2)

with the following inputs :

Á iPathName = the Pathname input parameter

Á If the rStatus return value is not equal to MQ_OK (0x0000000), the server MUST return an

error HRESULT , and take no further action.

Á The server MUST set the QueueFormatName instance variable to the value of the

FormatName return value.

Á The server MUST perform the following actions to initialize the hQmmgmtBind instance variable:

Á Create an RPC binding handle as specified in [C706] section 2, "Introduction to the RPC API".

Á The creation method MUST include:

Á If the ComputerName instance variable is not NULL:

Á The ComputerName instance variable as the server name.

Á Else:

Á The local QueueManager.ComputerName as the server name.

Á The RPC standards and transport method defined in [MS -MQMR] (sections 1.9 and 2.1).

Á If the server successfully creates the RPC binding handle:

Á The server MUST set the hQmmgmtBind instance variable to the created RPC binding

handle.

Á Else:

Á The server must return an error HRESULT and take no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_LOCATION

Á If the rStatus return value is no t equal to MQ_OK (0x00000000), the server MUST return

rStatus and take no further action.

Á Else:

Á If the value of the returned rPropVar was "Remote", set the QueueIsOutgoing instance

variable to True.

Á The server MUST set the ObjectIsInitialized instance vari able to True.

Á Return S_OK.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf

75 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3.4.1.2 FormatName (Opnum 8)

The FormatName method is received by the server in an RPC_REQUEST packet. In response, the
server MUST return the format name of the represented Queue .

[propget] HRESULT FormatName(

 [out, retval] BSTR* pbstrFormatName

);

pbstrFormatName: A pointer to a BSTR that, when successfully completed, contains the format

name of the represented Queue.

Return Values: The method MUST return S_OK (0x00000000) to ind icate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False, return MQ_ERROR_UNINITIALIZED_OBJ ECT

(0xC00E0094) and take no further action.

Á Set the pbstrFormatName output variable to the value of the QueueFormatName instance

variable.

3.3.4.1.3 Machine (Opnum 9)

The Machine method is received by the server in an RPC_REQUEST packet. In response, the server
MUST return the QueueManager .ComputerName that owns the represented Queue .

[propget] HRESULT Machine(

 [out, retval] BSTR* pbstrMachine

);

pbstrMachine: A pointer to a BSTR that, when successfully completed, contains the

QueueManager.ComputerName that owns the re presented Queue.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á Return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and take no further action.

Á If the ComputerName instance variable is NULL:

Á Set the pbstrMachine output variable to the local QueueManager.ComputerName.

Á Else:

Á Set the pbstrMachine output variable to the value of the ComputerName instance variable.

%5bMS-MQDMPR%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

76 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3.4.1.4 MessageCount (Opnum 10)

The MessageCount method is received by the server in an RPC_REQUEST packet. In response, the
server MUST return the number of messages in the represented Queue .

[propget] HRESULT MessageCount(

 [out, retval] long* plMessageCount

);

plMessageCount: A pointer to a long that, when successfully completed, contains the number

of messages in the represented Queue.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ ERROR_UNINITIALIZED_OBJECT (0xC00E0094) and take no

further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_MESSAGE_COUNT

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the se rver MUST return

rStatus and take no further action.

Á Else:

Á The pIMessageCount output variable MUST be set to the value of the returned rPropVar.

3.3.4.1.5 ForeignStatus (Opnum 11)

The ForeignStatus method is received by the server in an RPC_REQUEST packet. In response, the
server MUST return an enumerated value to indicate whether a Queue is a foreign queue or an
OutgoingQueue that transfers messages to a foreign queue.

[propget] HRESULT ForeignStatus(

 [out, retval] long* plForeignStatus

);

plForeignStatus: A pointer to a long that corresponds to the FOREIGN_STATUS enumeration as

defined in the following table.

Value Meaning

MQ_STATUS_FOREIGN

0x00000000

The represented Queue is a foreign queue, or an OutgoingQueue

that transfers to a foreign queue.

MQ_STATUS_NOT_FOREIGN

0x00000001

The represented Queue is not a foreign queue, or a n OutgoingQueue

that transfers to a foreign queue.

STATUS_UNKNOWN The message queuing system is unable to determine whether the

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

77 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

0x00000002 represented Queue is a foreign queue.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance var iable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094) and MUST take

no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_FOREIGN

Á If the rStatus return value i s not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action.

Á Else:

Á If the value of the returned rPropVar was "Yes":

Á The pIForeignStatus output variable MUST be set to MQ_STATUS_FOREIGN, and the

server MUST take no furt her action.

Á If the value of the returned rPropVar was "No":

Á The pIForeignStatus output variable MUST be set to MQ_STATUS_NOT_FOREIGN, and

the server MUST take no further action.

Á If the value of the returned rPropVar was "Unknown":

Á The pIForeignStatus outpu t variable MUST be set to MQ_STATUS_UNKNOWN, and the

server MUST take no further action.

3.3.4.1.6 QueueType (Opnum 12)

The QueueType method is received by the server in an RPC_REQUEST packet. In response, the
server MUST return the type of the referenced Queue .

[propget] HRESULT QueueType(

 [out, retval] long* plQueueType

);

plQueueType: A pointer to a long that corresponds to the QUEUE_TYPE enumeration as defined

in the following table.

Value Meaning

MQ_TYPE_PUBLIC

0x00000000

The represented Queue. QueueType equals Public.

MQ_TYPE_PRIVATE The represented Queue. QueueType equals Private.

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

78 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Meaning

0x00000001

MQ_TYPE_MACHINE

0x00000002

The represented Queue. QueueType equals System.

MQ_TYPE_CONNECTOR

0x00000003

The represented Queue. QueueType equals Connector.

MQ_TYPE_MULTICAST

0x00000004

The represented Queue is an OutgoingQueue with the

OutgoingQueue.DestinationFormatName specifying a multicast address.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specifi c error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MU ST take

no further action.

Á Else:

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_TYPE

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no fu rther action.

Á If the value of the returned rPropVar was "PUBLIC":

Á The plQueueType output variable MUST be set to MQ_TYPE_PUBLIC, and the server MUST

return S_OK (0x00000000) and MUST take no further action.

Á If the value of the returned was "PRIVATE":

Á The plQueueType output variable MUST be set to MQ_TYPE_PRIVATE, and the server

MUST return S_OK (0x00000000) and MUST take no further action.

Á If the value of the returned was "MACHINE":

Á The plQueueType output variable MUST be set to MQ_TYPE_MACHINE, and the se rver

MUST return S_OK (0x00000000) and MUST take no further action.

Á If the value of the returned was "CONNECTOR":

Á The plQueueType output variable MUST be set to MGMT_TYPE_CONNECTOR, and the

server MUST return S_OK (0x00000000) and MUST take no further acti on.

Á If the value of the returned was "MULTICAST":

Á The plQueueType output variable MUST be set to MQ_TYPE_MULTICAST, and the server

MUST return S_OK (0x00000000) and MUST take no further action.

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

79 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3.4.1.7 IsLocal (Opnum 13)

The IsLocal method is received by the server in an RPC_REQUEST packet. In response, the server
MUST return a BOOLEAN value that indicates whether the represented Queue is an OutgoingQueue

(False) or not (True).

[propget] HRESULT IsLocal(

 [out, retval] VARIANT_BOOL* pfIsLocal

);

pfIsLocal: A pointer to a VARIANT_BOOL that, when successfully completed, c ontains

VARIANT_FALSE (0x0000) or VARIANT_TRUE (0xffff) values, depending on whether the
represented Queue is an OutgoingQueue.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094) and MUST take

no further action .

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_LOCATION

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return r Status

and MUST take no further action.

Á Else:

Á If the value of the returned rPropVar was "LOCAL":

Á The pfIsLocal output variable MUST be set to True, and the server MUST take no further

action.

Á If the value of the returned rPropVar was "REMOTE":

Á The pfIsLoca l output variable MUST be set to False, and the server MUST take no further

action.

Á If the value of the returned rPropVar was "LOCAL":

Á The pfIsLocal output variable MUST be set to True, and the server MUST take no further

action.

3.3.4.1.8 TransactionalStatus (Opnum 14)

The TransactionalStatus method is received by the server in an RPC_REQUEST packet. In
response, the server MUST return the represented Queue .Transactional value.

[propget] HRESULT TransactionalStatus(

 [out, retval] long* plTransactionalStatus

);

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

80 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

plTransactionalStatus: A pointer to a long that corresponds to the XACT_STATUS enumeration

as defined in the following table.

Value Meaning

MQ_XACT_STATUS_XACT

0x0000000 0

The represented Queue.Transactional equals True.

MQ_XACT_STATUS_NOT_XACT

0x00000001

The represented Queue.Transactional equals False.

MQ_XACT_STATUS_UNKNOWN

0x00000002

The represented Queue. QueueType equals Public, and the

QueueManager .DirectoryIntegrated of the QueueManager that

owns the represented Queue equals False.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

Á If the ObjectIsInitialized instance varia ble is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MUST take

no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_XACT

Á If the rStatus return value is no t equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á Else:

Á If the value of the returned rPropVar was "YES":

Á The plTransactionStatus output variable MUST be set to MQ_XACT_STATUS_XACT, and the

server MUST take no fu rther action.

Á If the value of the returned rPropVar was "NO":

Á The plTransactionStatus output variable MUST be set to MQ_XACT_STATUS_NOT_XACT,

and the server MUST take no further action.

Á If the value of the returned rPropVar was "UNKNOWN":

Á The plTransactionStatus output variable MUST be set to MQ_XACT_STATUS_UNKNOWN,

and the server MUST take no further action.

3.3.4.1.9 BytesInQueue (Opnum 15)

The BytesInQueue method is received by the server in an RPC_REQUEST packet. In response, the

server MUST return the value of the represented Queue .TotalBytes property.

[propget] HRESULT BytesInQueue(

 [out, retval] VARIANT* pvBytesInQueue

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

81 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

);

pvBytesInQueue: A pointer to a VARIANT that, when successfully completed, contains an

unsigned 64 -bit integer (VT_UI8) that specifies, in bytes, the amount of data in the
represente d Queue.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIs Initialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MUST take

no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_BYTES_IN_ QU EUE

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action.

Á Else:

Á The pvBytesInQueue output variable MUST be set to the value of the returned rPropVar.

3.3.5 Timer Events

None.

3.3.6 Other Local Events

None.

3.3.6.1 Get Management Object from Queue Format Name

This event makes use of the following structures and enumerations:

Á The QUEUE_FORMAT_TYPE enumeration specified in [MS -MQMQ] section 2.2.6.

Á The QUEUE_FORMAT structure specified in [MS -MQMQ] section 2.2.7.

Á The OBJECTID structure specified in [MS -MQMQ] section 2.2.8.

Á The DL_ID structure specified in [MS -MQMQ] section 2.2.9.

Á The MULTICAST_ID structure specified in [MS -MQMQ] section 2.2.10.

Á The QUEUE_SUFFIX_TYPE enumeration specified in [MS -MQMQ] section 2.2.11.

Á The MGMT_OBJECT structure specified in [MS -MQMR] section 2.2.1.2.

Á The MgmtObjectType enumeration specified in [MS -MQMR] section 2.2.2.1.

This event MUST be generated with the following arguments:

%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf

82 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á iFormatName: A Queue Format Name, as sp ecified in [MS -MQMQ] section 2.1.

Return Values

Á rStatus: A BOOLEAN value indicating success.

Á rpMgmtObj: A pointer to a MGMT_OBJECT structure.

Á If rStatus is not equal to TRUE, rpMgmtObj is not defined.

The server MUST perform t he following actions to process this event:

Á Set rStatus equal to FALSE.

Á Create a QUEUE_FORMAT structure queueFormat.

Á Set the fields of queueFormat using the following logic:

Á If iFormatName conforms to the format given for a Public Format Name in [MS -MQMQ] section

2.1.3:

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_PUBLIC enumeration.

Á Set queueFormat.m_gPublicID equal to the QueueGuid component of iFormatName.

Á If iFormatName conforms to the format given for a Private Format Name in [MS -MQMQ]

section 2.1.4:

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_PRIVATE enumeration.

Á Create an OBJECTID structure objID with objID.Lineage equal to the ComputerGuid

component of iFormatName and objID.Uniquifier equal to the 1*8HEXDIG component of
iFormatName.

Á Set queueFormat.m_oPrivateID equal to objID.

Á If iFormatName conforms to the format given for a Direct Format Name in [MS -MQMQ] section

2.1.2:

Á If the format of iFormatName includes the optional Subqueue component of a Direct

Format Name:

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_SUBQUEUE enumeration.

Á Else:

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_DIRECT enumeration.

Á Set queueFormat.m_pDirectID equal to the DirectName component of iFormatName.

Á If iFormatName conforms to the format given for a Machine Format Name in [M S-MQMQ]

section 2.1.6:

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_MACHINE enumeration.

Á Set queueFormat.m_gMachineID equal to the Guid component of iFormatName.

Á If iFormatName conforms to the format given for a Connector Format Name in [MS -MQMQ]

section 2.1.6:

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

83 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_CONNECTOR enumeration.

Á Set queueFormat.m_GConnectorID equal to the Guid component of iFormatName.

Á If iFormatName conforms to the format given for a Distributio n List Format Name in [MS -

MQMQ] section 2.1.5:

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_DL enumeration.

Á Create a DL_ID structure dlID with dl.m_DlGuid equal to the DistributionListGuid

component of iFormatName and dlID.m_pwzDomain equal to the DomainName component
of iFormatName.

Á Set queueFormat.m_DlID equal to dlID.

Á If iFormatName conforms to the format given for a Multicast Format Name in [MS -MQMQ]

section 2.1.5:

Á Set queueFormat.m_qft equal to the QUEUE_FORMAT_TYPE_MULTICAST enumeration.

Á Create a MULTICAST_ID structure multicastID with multicastID.m_address equal to the

Address component of iFormatName and dlID.m_port equal to the Port component of
iFormatName.

Á Set queueFormat.m_Multic astID equal to multicastID.

Á If iFormatName does not conform to any of the above formats, the server MUST set rStatus

equal to FALSE, and take no further action.

Á Create a MGMT_OBJECT structure mgmtObject.

Á Set mgmtObject.type equal to the MGMT_QUEUE enumerat ion.

Á Set mgmtObject.pQueueFormat to a pointer to queueFormat.

Á Set rpMgmtObj equal to a pointer to mgmtObject.

Set rStatus equal to TRUE.

3.3.6.2 QMMgmt Get Info

This event MUST be generated with the following arguments:

Á iPropID: A Queue Property Identifier, as specified in [MS -MQMQ] section 2.3.1.

Return Values

Á rStatus: A status code that can be one of the following:

Á MQ_OK (0x00000000)

Á An error code returned from the R_QMMgmtGetInfo method (see [MS -MQMR] section 3.1.4.1)

Á rPropVar: A PROPVARIANT, as specified in [MS -MQMQ] section 2.2.13.

Á If rStatus is not MQ_OK, the value of this parameter is undefined.

The server MUST perform the following actions to process this event:

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMQ%5d.pdf

84 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set rStatus to MQ_OK (0x00000000).

Á Declare props as a variable, and set it equal to a ULONG array of length 1, then set the value of

the first ULONG in the array to iPropID .

Á Declare values as a variable, set it equal to a PROPVARIANT array of length 1, and set the

PROPVARIANT in the first array position equal t o VT_NULL as specified in [MS -MQMQ] section
2.2.12.

Á Declare queueMgmtObject as a variable and set it equal to NULL.

Á Raise the Get Management Object From Queue Format Name event as described in section

3.3.6.1 with the following inputs:

Á iFormatName: The QueueFormatName instance variable.

Á If the return value from Get Management Object From Queue Format Name is TRUE

Á Set queueMgmtObject equal to the rpMgmtObj object returned from the method call.

Á Call the R_QMMgmtGetInfo method with the following inputs:

Á hBind = the hQmmgmtBind instance variable

Á pObjectFormat = queueMgmtObject

Á cp = 1

Á aProp[] = props

Á apVar[] = values

Á If the return value from R_QMMgmtGetInfo was not S_OK (0x00000000):

Á Set rStatus equal to the returned value from the call to the R_QMMgmtGetInfo method, and

take no further action.

Á Else:

Á Set rPropVar equal to the value contained in the first array position of the values variable.

Á Set rStatus equal to MQ_OK (0x00000000).

3.3.6.3 QMMgmt Action

This event MUST be generated with the following arguments:

Á iAction: A string indicating action to be taken, from the list of acceptable values in [MS -MQMR]

section 3.1.4.2.

Return Values

Á rStatus: A status code that can be one of the following:

Á MQ_OK (0x00000000)

Á An error code returned from the R_QMMgmtAction method (see [MS -MQMR] section 3.1.4.2)

The server MUST perform the following actions to process this ev ent:

%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMR%5d.pdf
%5bMS-MQMR%5d.pdf

85 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set rStatus to MQ_OK (0x00000000).

Á Declare queueMgmtObject as a variable and set it equal to NULL.

Á Raise the Get Management Object From Queue Format Name event as described in section

3.3.6.1 with t he following inputs:

Á iFormatName: The QueueFormatName instance variable.

Á If the return value from Get Management Object From Queue Format Name is TRUE:

Á Set queueMgmtObject equal to the rpMgmtObj object returned from the method call.

Á Call the R_QMMgmtAction method with the following inputs:

Á hBind = the hQmmgmtBind instance variable

Á pObjectFormat = queueMgmtObject

Á lpwszAction = iAction

Á Set rStatus equal to the returned value from the call to the R_QMMgmtAction method, and take

no further action.

3.4 MSMQQueueManagement Coclass Details

The MSMQQueueManagement object represents the state of a Queue , referred to here as the
represented Queue, with Queue.Active equal to True and Queue. QueueType equal to Public or
Private. This object can be used to do the following:

Á Obtain delivery information about transactional messages that were sent to the represented

Queue.

Á Obtain administrative information that is specific to the represented Queue.

3.4.1 Abstract Data Model

An implementation of the MSMQManagement coclass SHOULD also provide an implementation for

the MSMQQueueManagement coclass. The represented Queue of the MSMQManagement coclass is
the represented Queue of this coclass. This object inherits the instance variables defined in the
MSMQManagement coclass.

Refer to section 3.3.1 for the abstract data model of the MSMQManagement coclass.

3.4.2 Timers

None.

3.4.3 Initialization

To obtain an instance of the MSMQQueueManagement object:

Á Clients MUST create an instance of the MSMQManagement object and initialize it by calling the

IMSMQManagement::Init method on the object. Refer to section 3.3.3 for the initialization of
the MSMQManageme nt coclass.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf

86 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Clients MUST obtain the instance of MSMQQueueManagement by invoking a call to

IUnknown::QueryInterface (refer to section 3.1) on the MSMQManagement object, with the

interface identifier of IMSMQQueueManagement .

Á If the QueueIsOutgoing instance variable of the MSMQManagement object is equal to True,

the server MUST return E_NOINTERFACE (0x80004002).

3.4.4 Message Processing Events and Sequencing Rules

The MSMQQueueManagement coclass defines a single interface: IMSMQQueueManagement .

3.4.4.1 IMSMQQueueManagement Interface

The IMSMQQueueManagement interface provides methods that return information about a
journal queue. IMSMQQueueManagement inherits opnums 0 through 15 from the
IMSMQManagement interface (section 3.3.4.1). The version number for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSI D {33b6d07e - f27d -42fa -b2d7 -bf82e11e9374} (coclass MSMQQueueManagement as
specified in section 1.9), which implements the IMSMQQueueManagement interface using the

UUID {7fbe7759 -5760 -444d -b8a5 -5e7ab9a84cc e}.

Methods in RPC Opnum Order

Method Description

JournalMessageCount , get

JournalMessageCount

Returns the number of journal messages in the journal queue that is

associated with the queue that is represented by this object.

Opnum: 16

BytesInJournal , get

BytesInJournal

Returns the number of messag e bytes in the journal queue that is

associated with the queue that is represented by this object.

Opnum: 17

EodGetReceiveInfo Returns an array of collections of exactly -once -delivery (EOD)

properties, with one collection for each queue manager that is

transferring transactional messages to the queue that is represented

by this object.

Opnum: 18

3.4.4.1.1 JournalMessageCount (Opnum 16)

The JournalMessageCount method is received by the server in an RPC_REQUEST packet. In

response, the server MUST return the number of messages in the Queue that is associated with the
represented Queue.JournalQueueReference.

[propget] HRESULT JournalMessageCount(

 [out, retval] long* plJournalMessageCount

);

plJournalMessageCount: A pointer to a long that, when successfully completed, contains the

number of messages in the Queue that is associated with the represented
Queue.JournalQueueReference.

%5bMS-DCOM%5d.pdf
%5bMS-MQDMPR%5d.pdf

87 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MUST take

no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_JOURNAL_MESSAGE_COUNT

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action.

Á Else:

Á The plJournalMessageCount out put variable MUST be set to the value of the returned

rPropVar.

3.4.4.1.2 BytesInJournal (Opnum 17)

The BytesInJournal method is received by the server in an RPC_REQUEST packet. In response,
the server MUST return the Queue .TotalBytes of the Queue that is associated with the represented
Queue.JournalQueueReference.

[propget] HRESULT BytesInJournal(

 [out, retval] VARIANT* pvBytesInJournal

);

pvBytesInJournal: A pointer to a VARIANT that, when successfully completed, contain s an

unsigned 64 -bit integer (VT_UI8) that specifies the number of message bytes in the Queue
that is associated with the represented Queue.JournalQueueReference.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementat ion -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E00 94), and MUST take

no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_BYTES_IN_JOURNAL

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus an d MUST take no further action.

Á Else:

Á The plJournalMessageCount output variable MUST be set to the value of the returned

rPropVar.

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

88 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.4.4.1.3 EodGetReceiveInfo (Opnum 18)

The EodGetReceiveInfo method is received by the server in an RPC_REQUEST packet. In
response, the server MUST return the represented

Queue .IncomingTransactionalTransferInfoCollection.

HRESULT EodGetReceiveInfo(

 [out, retval] VARIANT* pvCollection

);

pvCollection: A pointer to a VARIANT that contains an array of VARIANTs (VT_ARRAY |

VT_VARIANT) in which each VARIANT contains an EODTargetInfo (section 2.2.4.1) collection.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MUST take

no fur ther action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_EOD_SOURCE_INFO

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return

rStatus and MUST take no further action.

Á Else:

Á The pvCollection output variable MUST be set to the returned rPropVar.

3.4.5 Timer Events

No timer events are required.

3.4.6 Other Local Events

No local events are required.

3.5 MSMQOutgoingQueueManagement Coclass Details

The MSMQOutgoingQueueManagement object represents the state of an OutgoingQueue , referred to
here as the represented OutgoingQueue, with OutgoingQueue.Active equal to True. This object can
be used to do the following:

Á Obtain delivery information about transactional messages in the represented OutgoingQueue that

are being transferred to the destination queue. For more details about the message transfer

process, refer to section 1.4 .

Á Pause and restart the transfer of messages from the represented OutgoingQueue.

Á Obtain administrative i nformation that is specific to the represented OutgoingQueue.

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

89 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.5.1 Abstract Data Model

An implementation of the MSMQManagement coclass SHOULD provide the implementation for the
MSMQOutgoingQueueManagement coclass as well. The represented Queue of the

MSMQManagement coclass is the represented OutgoingQueue of this coclass. This object inherits the
instance variables that are defined in the MSMQ Management coclass. Refer to section 3.3.1 for the
abstract data model of the MSMQManagement coclass.

3.5.2 Timers

No protocol timers are required.

3.5.3 Initialization

To obtain an instance of the MSMQOutgoingQueueManagement object:

Á Clients MUST create an instance of the MSMQManagement object and initialize it by invoking the

IMSMQManagement::Init method on the object. Refer to section 3.3.3 for the initialization of
the MSMQManagem ent coclass.

Á Clients MUST obtain the instance of MSMQOutgoingQueueManagement by invoking a call to

IUnknown::QueryInterface (see section 3.1) on the MSMQManagement object, w ith the
interface identifier of IMSMQOutgoingQueueManagement .

Á If the QueueIsOutgoing instance variable of the MSMQManagement object is equal to False, the

server MUST return E_NOINTERFACE (0x80004002).

3.5.4 Message Processing Events and Sequencing Rules

The MSMQOutgoingQueueManagement coclass defines a single interface:
IMSMQOutgoingQueueManagement .

3.5.4.1 IMSMQOutgoingQueueManagement Interface

The IMSMQOutgoingQueueManagement method provides methods that provide information
about, and control of, an outgoing queue. IMSMQOutgoingQueueManagement inherits opnums 0
through 15 from the IMSMQManagement (section 3.3.4.1) interface. The version number for this

interface is 1.0.

To receive incoming remote calls for this interface, the serv er MUST implement a DCOM object class
with the CLSID {0188401c -247a -4fed -99c6 -bf14119d7055} (coclass
MSMQOutgoingQueueManagement as specified in section 1.9), which implements the
IMSMQOutgoingQueueManag ement interface by using the UUID {64c478fb - f9b0 -4695 -8a7f -
439ac94326d3}.

Methods in RPC Opnum Order

Method Description

State , get State Identifies t he connection status of the outgoing queue that is represented by

this object.

Opnum: 16

NextHops , get

NextHops

Returns the address, or an array of p ossible addresses, for routing messages to

the intermediate queue manager in the next hop.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DCOM%5d.pdf

90 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

Opnum: 17

EodGetSendInfo Returns a collection of named exactly -once -delivery (EOD) properties of the

outgoing q ueue that is represented by this object.

Opnum: 18

Resume Resumes the transfer of messages from the outgoing queue that is represented

by this object.

Opnum: 19

Pause Pauses the transfer of messages from the outgoing queue that is represented by

this object.

Opnum: 20

EodResend Resends the pending sequence of transactional messages in the outgoing queue

that is represented by this object.

Opnum: 21

3.5.4.1.1 State (Opnum 16)

The State method is received by the server in an RPC_REQUEST packet. In response, the server
MUST return the represented OutgoingQueue .State .

[propget] HRESULT State(

 [out, retval] long* plState

);

plState: A pointer to a long that corresponds to the QUEUE_STATE (section 2.2.2.19)

enumeration.

Return Values: The m ethod MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MUST take

no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_STATE

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á Else:

Á If the value of the returned rPropVar was "LOCAL CONNECTION":

Á The server MUST set the plState output variable to

MQ_QUEUE_STATE_LOCAL_CONNECTION, and MUST ta ke no further action.

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

91 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á If the value of the returned rPropVar was "DISCONNECTED":

Á The server MUST set the plState output variable to MQ_QUEUE_STATE_DISCONNECTED,

and MUST take no further action.

Á If the value of the returned rPropVar was "LOCKED":

Á The server MUST set the plState output variable to MQ_QUEUE_STATE_LOCKED, and MUST

take no further action.

Á If the value of the returned rPropVar was "WAITING":

Á The server MUST set the plState output variable to MQ_QUEUE_STATE_WAITING, and

MUST take no further action .

Á If the value of the returned rPropVar was "NEED VALIDATION":

Á The server MUST set the plState output variable to MQ_QUEUE_STATE_NEEDVALIDATE,

and MUST take no further action.

Á If the value of the returned rPropVar was "ONHOLD":

Á The server MUST set the plState output variable to MQ_QUEUE_STATE_ONHOLD, and

MUST take no further action.

Á If the value of the returned rPropVar was "INACTIVE":

Á The server MUST set the plState output variable to MQ_QUEUE_STATE_NONACTIVE, and

MUST take no further action.

Á If the value of the returned rPropVar was "CONNECTED":

Á The server MUST set the plState output variable to MQ_QUEUE_STATE_CONNECTED, and

MUST take no further action.

Á If the value of the returned rPropVar was "DISCONNECTING":

Á The server MUST set the plStat e output variable to MQ_QUEUE_STATE_DISCONNECTING,

and MUST take no further action.

3.5.4.1.2 NextHops (Opnum 17)

The NextHops method is received by the server in an RPC_REQUEST packet. In response, the
server MUST return the represented OutgoingQueue .NextHops .

[propget] HRESULT NextHops(

 [out, retval] VARIANT* pvNextHops

);

pvNextHops: A pointer to a VARIANT that contains an array of zero or more strings (VT_ARRAY

| VT_BSTR) that specify the routing addresses.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST follow these guidelines:

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

92 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJ ECT (0xC00E0094), and MUST take

no further action.

Á The server MUST generate a QMMgmt Get Info event with the following inputs:

Á iPropID = PROPID_MGMT_QUEUE_NEXTHOPS

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStat us

and MUST take no further action.

Á Else:

Á The pvNextHops output variable MUST be set to the value of the returned rPropVar.

3.5.4.1.3 EodGetSendInfo (Opnum 18)

The EodGetSendInfo method is received by the server in an RPC_REQUEST packet. In response,
the server MUST return the represented OutgoingQueue .OutgoingTransferInfoReference.

HRESULT EodGetSendInfo(

 [out, retval] IMSMQCollection** ppCollection

);

ppCollection: A pointer to an EODSourceInfo (section 2.2.4.2) collection.

Re turn Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MUST take

no further action.

Á The server MUST create a local variable tempCollection and initialize it as an empty collection.

Á The server MUST generate a QMM gmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_LAST_ACK

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_LAST_ACK_TIME

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

93 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_LAST_ACK_COUNT

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_FIRST_NON_ACK

Á If the rStatus return value i s not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_LAST_NON_ACK

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_NEXT_SEQ

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_NO_READ_COUNT

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action .

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_NO_ACK_COUNT

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MU ST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_RESEND_TIME

94 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á If the rStatus return value i s not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUE UE_EOD_RESEND_INTERVAL

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempCollection .

Á The server MUST generate a QMMgmt Get Info event with the following input:

Á PROPID_MGMT_QUEUE_EOD_RESEND_COUNT

Á If the rStatus return value is not equal to MQ_OK (0x00000000), the server MUST return rStatus

and MUST take no further action.

Á The value of the returned rPropVa MUST be added to tempC ollection .

Á The server MUST copy tempCollection to the ppCollection output variable and return S_OK

(0x00000000).

3.5.4.1.4 Resume (Opnum 19)

The Resume method is received by the server in an RPC_REQUEST packet. In response, the server
MUST resume the transfer of messages from the represented outgoing Queue .

HRESULT Resume();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <20>

When the server processes this call, it MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and MUST take

no further action.

Á The server MUST generate a QMMgmtAction event with the following in puts:

Á iAction = "RESUME"

Á The server MUST return rStatus, and MUST take no further action.

3.5.4.1.5 Pause (Opnum 20)

The Pause method is received by the server in an RPC_REQUEST packet. In response, the server
MUST pause the transmission of messages from the referenced OutgoingQueue .

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

95 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

HRESULT Pause();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <21>

When processing this call, the serve r MUST follow these guidelines:

Á If the ObjectIsInitialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094), and take no

further action.

Á The server MUST generate a QMMgmtAction event with the following inputs:

Á iAction = "Pause"

Á The server MUST return rStatus, and take no further action.

3.5.4.1.6 EodResend (Opnum 21)

The EodResend method is received by the server in an RPC_REQUEST packet. In response, the
server MUST resend the pending sequence of transactional messages in the represented
OutgoingQueue .

HRESULT EodResend();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <22>

Á If the ObjectIs Initialized instance variable is False:

Á The server MUST return MQ_ERROR_UNINITIALIZED_OBJECT (0xC00E0094) and take no

further action.

Á The server MUST generate a QMMgmtAction event with the following inputs:

Á iAction = "Pause"

Á The server MUST return rStatus, and take no further action.

3.5.5 Timer Events

None.

3.5.6 Other Local Events

None.

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

96 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.6 MSMQTransactionDispenser Coclass Details

The MSMQTransactionDispenser object allows clients to start a new internal transaction and
obtain an MSMQTransaction object that represents the underlying newly created transaction. The

MSMQTransaction object can then be used in calls to send or receive messages.

3.6.1 Abstract Data Model

The MSMQTransactionDispenser object does not maintain any state.

3.6.2 Timers

None.

3.6.3 Initialization

None.

3.6.4 Message Processing Events and Sequencing Rules

This coclass includes three interfaces. The numbered interfaces are binary -compatible revisions that
MAY append additional methods or update method parameter types. The following table illustrates

the methods that belong to each interface revision.

Method name (in the most recent interface revision) Rev. 3 Rev. 2 Rev. 1

BeginTransaction

(Opnum 7)

X X X

get

Properties

(Opnum 8)

X X

3.6.4.1 IMSMQTransactionDispenser3 Interface

The IMSMQTransactionDispenser3 interface provides methods that enable transaction
processing. The version number for this interface is 1.0.

There are two previous versions of this interface: IMSMQTransactionDispenser and

IMSMQTransactionDispenser2. These previous versions are nearly identical but contain one fewer
method. All differences from previous versions are described in the Windows beha vior notes in the
method descriptions that follow.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID {d7d6e084 -dccd -11d0 -aa4b -0060970debae} (coclass MSMQTransactionDispenser,
as specified in s ection 1.9), which implements the IMSMQTransactionDispenser3 interface using

the UUID {eba96b15 -2168 -11d3 -898c -00e02c074f6b}.

The following opnum table begins at opnum 7. Opnums 0 through 2 are inherited from the
IUnknown interface, as specified in [MS -DCOM] section 3.1.1.5.8. Opnums 3 through 6 are inherited
from the IDispatch interface, as specified in [MS -OAUT] section 3.1.4 .

Methods in RPC Opnum Order

%5bMS-MQMQ%5d.pdf
%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

97 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

BeginTransaction Initiates a new internal transaction and returns an IMSMQTransaction3 object

that represents the underlying newly created transaction. <23>

Opnum: 7

Properties , get

Properties

This method is not implemented. <24>

Opnum: 8

3.6.4.1.1 BeginTransaction (Opnum 7)

The BeginTransaction method is received by the server in an RPC_REQUEST packet. In response,
the server MUST initiate a new internal transaction and enlist the newly created transaction on the
local QueueManager . This method returns an IMSMQTransaction3 object that represents the

underlying newly created transaction.

HRESULT BeginTransaction(

 [out, retval] IMSMQTransaction3** ptransaction

);

ptransaction: A p ointer to an IMSMQTransaction3 pointer that represents the newly created

Transaction .

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <25>

When the server processes this call, it MUST follow these guidelines:

Á Create an instance of the TransactionImpl (section 3.8) class for the internal transaction.

Á Set the isInternal instance variable of the created transaction object to True.

Á Generate a Create Transaction event as defined in [MS -MQDMPR] section 3.1.7.1.8 with the

following inputs.

Á iTransactionIdentifier = TransactionIdentifier instance variable of the created internal

transaction object.

Á Create an instance of the MSMQTransaction Coclass, and assign the created internal transaction

object to the Transaction instance variable of the Coclass instance.

Á Invoke the IUnknown::QueryInterface method, as described in 3.1 , on the MSMQTransaction

instance with the interface identifier of IMSMQTransaction3 to retrieve a pointer to its

IMSMQTransaction3 interface.

Á Set the ptransaction output variable to the retrieved point er to the IMSMQTransaction3

interface.

3.6.4.1.2 Properties (Opnum 8)

The Properties method is not implemented.

[propget] HRESULT Properties(

 [out, retval] IDispatch** ppcolProperties

%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

98 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

);

ppcolProperties: A pointer to an IDispatch pointer (see [MS -OAUT] section 3.1.4). The server

MUST ignore this parameter.

Return Values: The server MUST return E_NOTIMPL (0x80004001).

Return value/code Description

0x80004001

E_NOTIMPL

Not implemented.

The server MUST take no action and return E_NOTIMPL (0x80004001).

3.6.5 Timer Events

None.

3.6.6 Other Local Events

None.

3.7 MSMQCoordinatedTransactionDispenser Coclass Details

The MSMQCoordinatedTransactionDispenser object allows clients to start a new external transaction
that is coordinated by the distributed transaction manager and obtain an MSMQTransaction object
that represents the underlying newly created transaction. The MSMQTransaction object can then be
used in calls to send or receive messages.

3.7.1 Abstract Data Model

The MSMQCoordinatedTransactionDispenser object does not maintain any state.

3.7.2 Timers

None.

3.7.3 Initialization

None.

3.7.4 Message Processing Events and Sequencing Rules

This coclass includes three interfaces. The numbered interfaces are binary -compatible revisions that
MAY append additional methods or update method parameter types. The following table illustrates
the methods that belong to each interface revision.

Method name (in the most recent interface revision) Rev. 3 Rev. 2 Rev. 1

BeginTransaction

(Opnum 7)

X X X

get X X

%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

99 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method name (in the most recent interface revision) Rev. 3 Rev. 2 Rev. 1

Properties

(Opnum 8)

3.7.4.1 IMSMQCoordinatedTransactionDispenser3 Interface

The IMSMQCoordinatedTransactionDispenser3 interface provides methods that enable
transaction processing. The version number for this interface is 1.0.

There are two previous versions of this interface, IMSMQCoordinatedTransactionDispenser and

IMSMQCoordinatedTransactionDispenser2. These previous versions are nearly identical but have one
fewer method. All differences from previous versions are described in Windows behavior notes in the
method descriptions that follow.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID {d7d6e082 -dccd -11d0 -aa4b -0060970debae} (coclass

MSMQCoordinatedTransactionDi spenser as specified in section 1.9), which implements the
IMSMQCoordinatedTransactionDispenser3 interface using the UUID {eba96b14 -2168 -11d3 -898c -

00e02c074f6b}.

The following opnum table begins with opn um 7. Opnums 0 through 2 are inherited from the
IUnknown interface, as specified in [MS -DCOM] section 3.1.1.5.8. Opnums 3 through 6 are inherited
from the IDispatch interface, as specified in [MS -OAUT] section 3.1.4 .

Methods in RPC Opnum Order

Method Description

BeginTransaction Initiates a new Distributed Transac tion Coordinator (DTC) transaction and

returns an IMSMQTransaction3 object that represents the underlying newly

created transaction. <26>

Opnum: 7

Properties , get

Properties

This method is not implemented. <27>

Opnum: 8

3.7.4.1.1 BeginTransaction (Opnum 7)

The BeginTransaction method is received by the server in an RPC_REQUEST packet. In response,
the server initiates a new external transaction. This method returns an IMSMQTransaction3 object
that represents the underlying newly -created transaction.

HRESULT BeginTransaction(

 [out, retval] IMSMQTransaction3** ptransaction

);

ptransaction: A pointer to an IMSMQTransacti on3 pointer that represents the newly -created

transaction.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <28>

When the server processes this call, i t MUST follow these guidelines:

%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

100 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Initiate a new distributed transaction by using the distributed transaction manager. For more

details about beginning a new distributed transaction, refer to [MS -DTCO] sections 2.2.8.1.2.2

and 3.3.4.1.1 .

Á Retrieve the transaction object that represents the newly -created distributed transaction. <29>

Create an instance of the TransactionImpl (section 3.8) class and set its TransactionIdentifier
instance variable to the identifier of the newly -created distributed transaction.

Á Set the isInternal instance variable of the created transaction object to False.

Á Generate a Create Transaction event as defined in [MS -MQDMPR] section 3.1.7.1.8 with the

following inputs:

Á iTransactionIdentifier = TransactionIdentifier instance variable of the created transaction

object.

Á Create an instance of the MSMQTransaction Coclass, and assign the created internal transaction

object to the Transaction instance variable of the Coclass instance.

Á Invoke the IUnknown::QueryInterface method, as described in 3.1 , on the MSMQTran saction

instance with the interface identifier of IMSMQTransaction3 to retrieve a pointer to its
IMSMQTransaction3 interface.

Á Set the ptransaction output variable to the retrieved pointer to the IMSMQTransaction3

interface.

3.7.4.1.2 Properties (Opnum 8)

The Properties method is not implemented.

[propget] HRESULT Properties(

 [out, retval] IDispatch** ppcolProperties

);

ppcolProperties: A pointer to an IDispatch pointer. The server MUST ignore this parameter.

Return Values: The server MUST return E_NOTIMPL (0x80004001).

Return value/code Description

0x80004001

E_NOTIMPL

Not implemented.

The server MUST take no action and return E_NOTIMPL (0x80004001).

3.7.5 Timer Events

None.

3.7.6 Other Local Events

None.

%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-OAUT%5d.pdf

101 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.8 TransactionImpl Class Details

The TransactionImpl class represents a transaction object. This transaction object is uniquely
identified by using a transaction identifier and is used internally by the MSMQTransaction Coclass

(section 3.9) to commit, abort, and obtain status information about transac tions.

3.8.1 Abstract Data Model

The TransactionImpl (section 3.8) class maintains the following additional data elements:

Á TransactionIdentifier : A GUID that uniquely identifies the transaction object.

Á IsInternal : A BOOLEAN flag that indicates whether the transaction is an internal transacti on or

an external transaction.

Á isCommittedorAborted : A BOOLEAN flag that indicates whether the transaction has been

committed or aborted.

3.8.2 Timers

None.

3.8.3 Initialization

Á The server MUST create a new GUID as specified in [RFC4122] and assign it to the

TransactionIdentifier instance variable.

Á The server MUST initialize the isInternal instance variable to False and the isCommittedOrAborted

instance variable to False.

3.8.4 Message Processing Events and Sequencing Rules

The TransactionImpl (section 3.8) class implements a single interface: ITransaction (section

3.8.4.1) .

3.8.4.1 ITransaction Interface

The ITransaction interface provides methods that complete transaction processing. The version

number for this interface is 1.0. This interface does not receive remote calls.

The following opnum table begins at opnum 3. Opnums 0 through 2 are inherited from the
IUnknown interface, as specified in [MS -DCOM] section 3.1.1.5.8.

Methods in RPC Opnum Order

Method Descriptio n

Commit Commits the transaction.

Opnum: 3

Abort Aborts the transaction.

Opnum: 4

GetTransacti onInfo Retrieves information about the transaction.

Opnum: 5

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-DCOM%5d.pdf
%5bMS-DCOM%5d.pdf

102 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.8.4.1.1 Commit (Opnum 3)

The Commit method commits a pending transaction represented by its TransactionImpl (section
3.8) instance.

HRESULT Commit(

 [in] short fRetaining,

 [in] DWORD grfTC,

 [in] DWORD grfRM

);

fRetaining: A short that represents a BOOLEAN value that specifies whether to re tain the

transaction when it is finished.

grfTC: A DWORD that corresponds to the XACTTC (section 2.2.2.21) enumeration.

grfRM: A DWORD that is reserved for future use. For internal transactions, this parameter MUST

be 0x00000000 in order to ensure success. For more details about this input parameter for
DTC transactions, refer to [MS -DTCO] sect ion 2.2.7.1.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure. <30>

When processing this call, the server MUST follow thes e guidelines:

Á If the isInternal instance variable is True:

Á If the grfRM input parameter is not equal to 0, or if the fRetaining input parameter is equal to

True, or if the grfTC input parameter is not equal to XACTTC_SYNC (0x00000002):

Á Return XACT_E_NOTSUPPORTED (0x8004D00F), and take no further action.

Á If the isCommitedorAborted instance variable is True:

Á Return MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051), and take no further

action.

Á Generate a Transaction Commit event as defined in [MS -MQDMPR] section 3.1.4.4 with the

following inputs:

Á iTransactionIdentifier = TransactionIdentifier instance variable of this transaction object.

Á Else:

Á Send a commit request to the distributed t ransaction manager, which eventually triggers the

Transaction Commit event on the QueueManagers that are enlisted in the transaction. The
Transaction Commit event carries the TransactionIdentifier instance variable of this

t ransaction object. For more details about the commit request to the distributed transaction
manager, refer to [MS -DTCO] sections 2.2.8.1.2.3 and 3.3.4.8.1 . For more details about the
outcome of th e Transaction Commit event, refer to [MS -MQDMPR] section 3.1.4.4.

Á If any errors are generated by the distributed transaction manager:

Á Return an error HRESULT , and take no further action.

Á Set the isCommittedorAborted instance variable to True.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf

103 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.8.4.1.2 Abort (Opnum 4)

The Abort method aborts a pending transaction represented by its TransactionImpl (section 3.8)
instance.

HRESULT Abort(

 [in, unique] BOID* pboidReason,

 [in] short fRetaining,

 [in] short fAsync

);

pboidReason: A pointer to a BOID that indic ates the reason for aborting the transaction. The

array of bytes describes the reason for aborting the transaction.

fRetaining: A short that represents a BOOLEAN value that specifies whether to retain the
transaction when it i s finished.

fAsync: A short that represents a BOOLEAN value that specifies whether the abort is done
synchronously (False) or asynchronously (True).

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific e rror HRESULT on failure. <31>

When processing this call, the server MUST follow these guidelines:

Á If the isInternal instance variable is True:

Á If the fRetaining input parameter is equal to True or if the fAsync input parameter is equal to

True:

Á Return XACT_E_NOTSUPPORTED (0x8004D00F), and take no further action.

Á If the isCommitedorAborted instance variable is True:

Á Return MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051), and take no further action.

Á Generate a Transaction Abort event as defined in [MS -MQDMPR] section 3.1.4.5 with the

following inputs:

Á iTransactionIdentifier = TransactionIdentifier instance variable of this transaction object.

Á Else:

Á Send an abort request to the distributed transaction manager, which eventually triggers the

Transaction Abort event on the QueueManager s that are enlisted in the transaction. The
Transaction Abort event carries the Transaction Identifier instance variable of this transaction
object. For more details about the abort request to the distributed transaction manager, refer

to [MS -DTCO] sections 2.2.8.1.2.1 and 3.3.4.9.1 . For more details about the outcome of the
Transaction Abort event, refer to [MS -MQDMPR] section 3.1.4.5.

Á If any errors are generated by the distributed transaction manager:

Á Return an error HRESULT , and take no further action.

Á Set the isCommittedorAborted instance variable to True.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-DTCO%5d.pdf
%5bMS-MQDMPR%5d.pdf

104 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.8.4.1.3 GetTransactionInfo (Opnum 5)

The GetTransactionInfo method retrieves information about the transaction represented by its
TransactionImpl (section 3.8) instance.

HRESULT GetTransactionInfo(

 [out] XACTTRANSINFO* pinfo

);

pinfo: A pointer to the caller -allocated XACTTRANSINFO structure in which the method returns

information about the transaction.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure. <32>

When the server processes this call, it MUST follow these guidelines:

Á If the pinfo output variable is NULL:

Á Return an error HRESULT , and take no further action.

Á If the isInternal instance variable is True:

Á Set the uow p roperty of the pinfo output variable to the value of the TransactionIdentifier

instance variable.

Á Set all the remaining properties of the pinfo output variable to 0.

Á Else:

Á Set the uow property of the pinfo output variable to the value of the TransactionIde ntifier

instance variable.

Á Send a request to the distributed transaction manager to retrieve the transaction details by

using the TransactionIdentifier instance variable. For more details about this request, refer to
[MS -DTCO] section 2.2.8.3.1.1.

Á Set the remaining properties of the pinfo output variable to the values obtained from the

preceding request.

3.8.5 Timer Events

None.

3.8.6 Other Local Events

None.

3.9 MSMQTransaction Coclass Details

The MSMQTransaction object identifies an underlying transaction object that is obtained externally

by using an MSMQCoordinatedTransactionDispenser object, or created internally by using an
MSMQTransactionDispenser object, or by attaching to an existing transaction. The MSMQTransaction
object can be used in the following ways:

Á To commit or abort th e transaction.

%5bMS-DTYP%5d.pdf
%5bMS-DTCO%5d.pdf

105 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á To retrieve the underlying transaction object.

Á As the Transaction argument to one of the following methods:

Á When sending messages:

Á IMSMQMessage::Send

Á When retrieving messages:

Á IMSMQQueue4::Receive

Á IMSMQQueue4::ReceiveCurrent

Á IMSMQQueue4::ReceiveFirstByLookupId

Á IMSMQQueue4::ReceivePreviousByLookupId

Á IMSMQQueue4::ReceiveByLookupId

Á IMSMQQueue4::ReceiveNextByLookupId

Á IMSMQQueue4::ReceiveLastByLookupId

3.9.1 Abstract Data Model

The MSMQTransaction coclass maintains the following additional data element:

Á Transaction : This instance variable holds a reference to the underlying transaction object that

implements the ITransaction interface.

3.9.2 Timers

None.

3.9.3 Initialization

The server MUST initialize the Transaction instance variable to NULL.

3.9.4 Message Processing Events and Sequencing Rules

This coclass includes three interfaces. The numbered interfaces are binary -compatible revisions that
MAY append additional methods or update method parameter types. The following table illustrates
the methods that belong to each interface revision.

Method name (in the most recent interface revision) Rev. 3 Rev. 2 Rev. 1

get

Transaction

(Opnum 7)

X X X

Commit

(Opnum 8)

X X X

Abort

(Opnum 9)

X X X

106 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method name (in the most recent interface revision) Rev. 3 Rev. 2 Rev. 1

InitNew

(Opnum 10)

X X

get

Properties

(Opnum 11)

X X

get

ITransaction

(Opnum 12)

X

3.9.4.1 IMSMQTransaction Interface

The IMSMQTransaction interface provides methods that enable transaction processing. The

version number for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID {d7d6e080 -dccd -11d0 -aa4b -0060970debae} (coclass MSMQTransaction as specified
in section 1.9), which implements the IMSMQTransaction interface using the UUID {d7d6e07f -dccd -

11d0 -aa4b -0060970debae}.

The following opnum table begins at opnum 7. Opnums 0 through 2 are inherited from the
IUnknown interface, as specified in [MS -DCOM] section 3.1.1.5.8. Opnums 3 through 6 are inherited
from the IDispatch interface, as specified in [MS -OAUT] section 3.1.4 .

Metho ds in RPC Opnum Order

Method Description

Transaction , get Transaction This method is deprecated and SHOULD NOT be implemented.

Opnum: 7

Commit Commits the underlying internal transaction or external transaction.

Opnum: 8

Abort Aborts the underlying internal transaction or external transaction.

Opnum: 9

3.9.4.1.1 Transaction (Opnum 7)

The Transaction method is received by the server in an RPC_REQUEST packet. In response, the
server SHOULD return E_NOTIMPL (0x80004001).

[propget] HRESULT Transaction(

 [out, retval] long* plTransaction

);

plTransaction: A pointer to a long that identifies the underlying transaction.

Return Values: The method SHOULD <33> return E_NOTIMPL (0x80004001) and take no
further action.

%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

107 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.9.4.1.2 Commit (Opnum 8)

The Commit method is received by the server in an RPC_REQUEST packet. In response, the server
MUST commit the underlying internal transaction or external transaction.

HRESULT Commit(

 [in, optional] VARIANT* fRetaining,

 [in, optional] VARIANT* grfTC,

 [in, optional] VARIANT* grfRM

);

fRetaining: A pointer to a VARIANT that contains a VARIANT_BOOL. This flag specifies whether

to retain the transaction when it is finished. If this parameter is not specified by the client , the
server MUST use the default value of False.

grfTC: A pointer to a VARIANT that contains a VT_I4 integer that corresponds to the XACTTC
enumeration (section 2.2.2.21).

If this parameter is not specified by the client, the server MUST use the default value
XACTTC_SYNC (0x00000002).

grfRM: A pointer to a VARIANT that contains a long. For more details about this input parameter,
refer to [MS -DTCO] section 2.2.7.1. If this parameter is not specified by the client, the server
MUST use the default value of 0 in place of the unspecified value.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
im plementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the Transaction instance variable is NULL:

Á Return E_INVALIDARG (0x80070057), and take no further action.

Á Commit the transaction by invoking the Commit method (ITransaction::Commit section

3.8.4.1.1) on the Transaction instance variable, passing the input parameters fRetaining , grfTC ,
and grfRM .

3.9.4.1.3 Abort (Opnum 9)

The Abort method is received by the server in an RPC_REQUEST packet. In response, the server
MUST abort the message queuing internal transaction or external transaction.

HRESULT Abort(

 [in, optional] VARIANT* fRetaining,

 [in, optional] VARIANT* fAsync

);

fRetaining: A pointer to a VARIANT that contains a VARIANT_BOOL. This flag specifies whether

to retain the transaction when it is finished.

If this parameter is not specified by the client, the server MUST use the defaul t value

VARIANT_FALSE (0x0000) in place of the unspecified value.

%5bMS-DTCO%5d.pdf
%5bMS-DTYP%5d.pdf

108 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

fAsync: A pointer to a VARIANT that contains a VARIANT_BOOL that specifies whether the abort
is done synchronously (False) or asynchronously (True). If a value is not specified by the

client , the server MUST use the default value VARIANT_FALSE (0x0000).

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the Transaction instance variable is NULL:

Á Return E_INVALIDARG (0x80070057), and take no further action.

Á Abort the transaction by invoking the Abort method (ITr ansaction::Abort section 3.8.4.1.2) on

the Transaction instance variable, with the following parameters:

Á pboidReason = NULL

Á fRetaining = input parameter fRetaining

Á fAsync = input parameter fAsync

3.9.4.2 IMSMQTransaction2 Interface

The IMSMQTransaction2 interface provides methods that return information about the queue
manager on a specific server. IMSMQTransaction2 (section 3.9.4.2) inherits opnums 0 through 9
from the IMSMQTransaction interface. The version number for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM obje ct class
with the CLSID {d7d6e080 -dccd -11d0 -aa4b -0060970debae} (coclass MSMQTransaction as specified
in section 1.9), which implements the IMSMQTransaction2 interface using the UUID {2ce0c5b0 -

6e67 -11d2 -b0e6 -00e02c074f6b}.

Methods in RPC Opnum Order

Method Description

InitNew Initializes the object to represent an existing underlying transaction object.

Opnum: 10

Properties , get Properties This method is not implemented.

Opnum: 11

3.9.4.2.1 InitNew (Opnum 10)

The InitNew method is received by the server in an RPC_REQUEST packet. In response, the server
MUST initialize an MSMQ transaction object to represent an existing underlying transaction object.

HRESULT InitNew(

 [in] VARIANT varTransaction

);

varTransaction: A pointer to a VARIANT that points to an existing underlying transaction object
that is implementing the ITransaction interface. The VARIANT that is passe d can be any one
of the following types:

%5bMS-DTYP%5d.pdf

109 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á VT_UNKNOWN

Á VT_UNKNOWN | VT_BYREF

Á VT_DISPATCH

Á VT_DISPATCH | VT_BYREF

Á VT_I4

Á VT_I4 | VT_BYREF

Á VT_I8

Á VT_I8 | VT_BYREF

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -spec ific error HRESULT on failure.

When the server processes this call, it MUST follow these guidelines:

Á If the Transaction instance variable is NOT NULL:

Á Return MQ_ERROR_TRANSACTION_USAGE (0xC00E0050), and take no further action.

Á Retrieve the transaction object, referred to as rTransObj , from the varTransaction VARIANT

based on the type of the VARIANT as follows:

Á If varTransaction .vt is VT_UNKNOWN then set rTransObj to varTransaction .punkVal.

Á Else if varTransaction .vt is VT_UNKNOW N | VT_BYREF then set rTransObj to

varTransaction .ppunkVal.

Á Else if varTransaction .vt is VT_DISPATCH then set rTransObj to varTransaction .pdispVal.

Á Else if varTransaction .vt is VT_ DISPATCH | VT_BYREF then set rTransObj to

varTransaction .ppdispVal.

Á Else if varTransaction .vt is VT_I4 then set rTransObj to varTransaction .lVal.

Á Else if varTransaction .vt is VT_I4 | VT_BYREF then set rTransObj to varTransaction .plVal.

Á Else if varTransaction .vt is VT_I8 then set rTransObj to varTransaction .llVal.

Á Else if varTransaction .vt is VT_I8 | VT_BYREF then set rTransObj to varTransaction .pllVal.

Á Otherwise return E_INVALIDARG (0x80070057).

Á Retrieve the transaction object that is implementing the ITransaction interface by calling

IUnknown::QueryInterface (refer to section 3.1) on rTransObj , passing the interface identifier
of ITransaction .

Á Return E_INVALIDARG (0x80070057) if the varTransaction input parameter does not implement

the ITransaction interface, and take no further action.

Á Set the Transaction instance variable to the value of the transaction object previously obtained.

%5bMS-DTYP%5d.pdf
%5bMS-DCOM%5d.pdf

110 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.9.4.2.2 Properties (Opnum 11)

The Properties method is not implemented.

[propget] HRESULT Properties(

 [out, retval] IDispatch** ppcolProperties

);

ppcolProperties: A pointer to an IDispatch pointer. The server MUST ignore this parameter.

Return Values: The server MUST return E_NOTIMPL (0x80004001).

Return value/code Description

0x80004001

E_NOTIMPL

Not implemented.

The server MUST take no action and return E_NOTIMPL (0x80004001).

3.9.4.3 IMSMQTransaction3 Interface

The IMSMQTransaction3 interface provides methods that return information about the queue
manager on a specific server. IMSMQTransaction3 inherits opnums 0 through 11 from the
IMSMQTransaction2 interface (section 3.9.4.2). The version number for this interface is 1.0.

To receive incoming remote calls for this interface, the se rver MUST implement a DCOM object class
with the CLSID {d7d6e080 -dccd -11d0 -aa4b -0060970debae} (coclass MSMQTransaction as specified
in section 1.9), which implements the IMSMQTransaction3 interface using the UUID {eba96b13 -

2168 -11d3 -898c -00e02c074f6b}.

Methods in RPC Opnum Order

Method Description

ITransaction , get

ITransaction

Returns the ITransaction interface on the underlying transaction

object.

Opnum: 12

3.9.4.3.1 ITransaction (Opnum 12)

The ITransaction method is received by the server in an RPC_REQUEST packet. In response, the
server returns the ITransaction interface on the underlying transaction object.

[propget] HRESULT ITransaction(

 [out, retval] VARIANT* pvarITransaction

);

pvarITransaction: A pointer to a VARIANT (VT_UNKNOWN or VT_EMPTY) that, when

successfully completed, contains the underlying transaction object.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

111 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The pvarITransaction output parameter MUST be set to the ITransaction interface pointer of the
Transaction instance var iable.

3.9.5 Timer Events

No timer events are required.

3.9.6 Other Local Events

None.

3.10 MSMQQueueInfo Coclass Details

The MSMQQueueInfo object represents a Queue , referred to here as referenced queue .

The MSMQQueueInfo object can be used to do the following operations:

Á Create an ApplicationQueue .

Á Open an existing Queue.

Á Delete an existing ApplicationQueue.

Á Get and set ApplicationQueue properties.

3.10.1 Abstract Data Model

An implementation of the MSMQQueueInfo Coclass maintains the following data elements:

Á refQueue : A local copy of a Queue object (as specified in [MS -MQDMPR]). The refQueue

instance variable is synchronized with the referenced queue by the
IMSMQQueueInfo4::Refresh and IMSMQQueueInfo4::Update methods.

Á QueueFormatName : A string that contains the format name that identifies the referenced

queue .

Á IsRefreshed : A BOOLEAN variable that indicates if the MSMQQueueInfo:R efresh method

was called.

Á IsApplicationQueue : A BOOLEAN variable that indicates if the referenced queue is an

ApplicationQueue .

Á IsQueueCreated : A BOOLEAN variable that indicates if the referenced queue was created.

3.10.2 Timers

No protocol timers are required.

3.10.3 Initialization

The MSMQQueueInfo class can be constructed and initialized either by the client or by calling
IMSMQQuery4::LookupQueue or IMSMQQuery4::LookupQueue_v2 .

Á When IMSMQQuery4::LookupQueue or IMSMQQuery4::LookupQueue_v2 is called, the

MSMQQuery object returns an MSMQQueueInfos collection that initializes the MSMQQueueInfo
object instances on demand when the client iterates over the collection.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

112 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á When the client constructs the object, the instance variables are set with the following default

values.

Instance variable Default value

refQueue An empty Queue ([MS -MQDMPR] section 3.1.1.2) ADM element instance.

QueueFormatName NULL

IsRefreshed FALSE

IsApplicationQueue FALSE

IsQueueCreated FALSE

refQueue MUST be further initialized by generating the Set Queue Defaults event ([MS -MQDMPR]
section 3.1.7.1.33) with the following argument:

Á iQueue := refQueue

The value of the IsRefreshed instance variable is set to TRUE when the
MSMQQueueInfo::Refresh method is called. The value of the IsQueueCreated instance variable
is set to TRUE when the Create method is called. In either of the two cases, if the Queue is an

ApplicationQueue , the value of the IsApplicationQueue instance variable is set to TRUE.

Á If the client constructed the MSMQQueueInfo object to create an ApplicationQueue:

Á The client MUST call put IMSMQQueueInfo4::PathName before calling

IMSMQQueueInfo4::Create .

Á If the client constructed the MSMQQueueInfo object to open, refresh/update, or delete a Queue:

Á The client MUST call pu t IMSMQQueueInfo4::PathName or put

IMSMQQueueInfo4::FormatName before calling IMSMQQueueInfo4::Open ,

IMSMQQueueInfo4::Refresh , IMSMQQueueInfo4::Update , or
IMSMQQueueInfo4::Delete .

3.10.4 Message Processing Events and Sequencing Rules

This coclass includes four interfaces. The numbered interfaces are binary -compatible revisions that

MAY append additional methods or update method parameter types. The following table illustrates
the methods that belong to each interface revision.

Method n ame (in the most recent interface revision) Rev. 4 Rev. 3 Rev. 2 Rev. 1

get

QueueGuid

(Opnum 7)

X X X X

get

ServiceTypeGuid

(Opnum 8)

X X X X

put

ServiceTypeGuid

X X X X

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

11 3 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method n ame (in the most recent interface revision) Rev. 4 Rev. 3 Rev. 2 Rev. 1

(Opnum 9)

get

Label

(Opnum 10)

X X X X

put

Label

(Opnum 11)

X X X X

get

PathName

(Opnum 12)

X X X X

put

PathName

(Opnum 13)

X X X X

get

FormatName

(Opnum 14)

X X X X

put

FormatName

(Opnum 15)

X X X X

get

IsTransactional

(Opnum 16)

X X X X

get

PrivLevel

(Opnum 17)

X X X X

put

PrivLevel

(Opnum 18)

X X X X

get

Journal

(Opnum 19)

X X X X

put

Journal

(Opnum 20)

X X X X

get

Quota

(Opnum 21)

X X X X

put X X X X

114 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method n ame (in the most recent interface revision) Rev. 4 Rev. 3 Rev. 2 Rev. 1

Quota

(Opnum 22)

get

BasePriority

(Opnum 23)

X X X X

put

BasePriority

(Opnum 24)

X X X X

get

CreateTime

(Opnum 25)

X X X X

get

ModifyTime

(Opnum 26)

X X X X

get

Authenticate

(Opnum 27)

X X X X

put

Authenticate

(Opnum 28)

X X X X

get

JournalQuota

(Opnum 29)

X X X X

put

JournalQuota

(Opnum 30)

X X X X

get

IsWorldReadable

(Opnum 31)

X X X X

Create

(Opnum 32)

X X X X

Delete

(Opnum 33)

X X X X

Open

(Opnum 34)

X X X X

Refresh

(Opnum 35)

X X X X

115 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method n ame (in the most recent interface revision) Rev. 4 Rev. 3 Rev. 2 Rev. 1

Update

(Opnum 36)

X X X X

get

PathNameDNS

(Opnum 37)

X X X

get

Properties

(Opnum 38)

X X X

get

Security

(Opnum 39)

X X X

put

Security

(Opnum 40)

X X X

get

IsTransactional2

(Opnum 41)

X X

get

IsWorldReadable2

(Opnum 42)

X X

get

MulticastAddress

(Opnum 43)

X X

put

MulticastAddress

(Opnum 44)

X X

get

ADsPath

(Opnum 45)

X X

3.10.4.1 IMSMQQueueInfo4 Interface

The IMSMQQueueInfo4 interface provides methods that return information about a queue on a
specific server. The version number for this interface is 1.0.

There are three previous versions of this interface: IMSMQQueueInfo, IMSMQQueueInfo2, and

IMSMQQueueInfo3. These previous versions are nearly identical but have somewhat fewer methods.
All differences from previous versions are described in Windows behavio r notes in the method
descriptions that follow.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
with the CLSID {d7d6e07c -dccd -11d0 -aa4b -0060970debae} (coclass MSMQQueueInfo as specified

116 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

in section 1.9), which implements the IMSMQQueueInfo4 interface using the UUID {d7d6e07c -dccd -
11d0 -aa4b -0060970debae}.

The following opnum table begins at opnum 7. Opnums 0 through 2 are inherited from the
IUnknown interfa ce, as specified in [MS -DCOM] section 3.1.1.5.8. Opnums 3 through 6 are inherited

from the IDispatch interface, as specified in [MS -OAUT] section 3.1.4 .

Methods in RPC Opnum Order

Method Description

QueueGuid , get QueueGuid Returns the unique identifier of the q ueue.

Opnum: 7

ServiceTypeGuid , get

ServiceTypeGuid

Returns an identifier that indicates the type of service provided by the

queue.

Opnum: 8

ServiceTypeGuid , put

ServiceTypeGuid

Sets an identifier that indicates the type of service provided by the

queue.

Opnum: 9

Label , get Label Returns the label of the queue.

Opnum: 10

Label , put Label Sets the label of the queue.

Opnum: 11

PathName , get PathName Returns the path name of the queue.

Opnum: 12

PathName , put PathName Sets the path name of the queue.

Opnum: 13

FormatName , get

FormatName

Returns the format name that was set when the queue was created.

Opnum: 14

FormatName , put

FormatName

Sets the format name that is used to identify the queue.

Opnum: 15

IsTransactional , get

IsTransactional

Returns a value that indicates whether the qu eue is a transactional

queue.

Opnum: 16

PrivLevel , get PrivLevel Returns the privacy level for the queue.

Opnum: 17

PrivLevel , put PrivLevel Sets the privacy level for the queue.

Opnum: 18

Journal , get Journal Returns the journaling level for the queue.

Opnum: 19

Journal , put Journal Sets the journaling level for the queue.

%5bMS-DCOM%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

117 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

Opnum: 20

Quota , get Quota Returns the maximum size, in kilobytes, of the queue.

Opnum: 21

Quota , put Quota Sets the maximum size, in kilobytes, of the queue.

Opnum: 22

BasePriority , get

BasePriority

Returns the base priority of a public queue.

Opnum: 23

BasePriority , put

BasePriority

Sets the base priority of a public queue.

Opnum: 24

CreateTime , get

CreateTime

Returns a value that indicates the date and time when the queue was

created.

Opnum: 25

ModifyTime , get

ModifyTime

Returns a value that indicates the date and time when the queue's

properties were last modified.

Opnum: 26

Authenticate , get

Authenticate

Returns the authentication level for the queue.

Opnum: 27

Authenticate , put

Authenticate

Sets the authentication level for the queue.

Opnum: 28

JournalQuota , get

JournalQuota

Returns the maximum size, in kilobytes, of the queue journal.

Opnum: 29

JournalQuota , put

JournalQuota

Sets the maximum size, in kilobytes, of the queue journal.

Opnum: 30

IsWorldReadable , get

IsWorldReadable

Returns a value that indicates whether everyone can read messages in

the queue; or whether only the owner and administrators of the queue

can read messages in it.

Opnum: 31

Create Creates a new queue using the path name.

Opnum: 32

Delete Deletes the queue using the format name or the path name.

Opnum: 33

Open Opens the queue identified by the format name. <34>

Opnum: 34

Refresh Refreshes the properties of the object by using the values stored in the

directory service (for public qu eues) or provided by the local queue

manager (for private queues).

Opnum: 35

118 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

Update Updates the properties that are stored in the directory service (for public

queues) or the local queue manager (for pr ivate queues) by using values

from this object.

Opnum: 36

PathNameDNS , get

PathNameDNS

Returns the DNS path name of the queue. <35>

Opnum: 37

Properties , get Properties The method is not implemented. <36>

Opnum: 38

Security , get Security The method is not implemented. <37>

Opnum: 39

Security , put Security The method is not implemented. <38>

Opnum: 40

IsTransactional2 , get

IsTransactional2

Returns a value that indicates whether the queue is a transactional

queue. <39>

Opnum: 41

IsWorldReadable2 , get

IsWorldReadable2

Returns a value that indicates whether everyone can read messages in

the queue or only the owner and administrators of the queue can read

messages in it. <40>

Opnum: 42

MulticastAddress , get

MulticastAddress

Returns the multicast addresses that are associated with the

queue. <41>

Opnum: 43

MulticastAddress , put

MulticastAddress

Sets the multicast addresses that are associated with the queue. <42>

Opnum: 44

ADsPath , get ADsPath Returns the directory path to a public queue. <43>

Opnum: 45

3.10.4.1.1 QueueGuid (Opnum 7)

The QueueGuid method is received by the server in an RPC_REQUEST packet. In response, the
server returns the Queue.Identifier that uniquely identifies the referenced queue .

[propget] HRESULT QueueGuid(

 [out, retval] BSTR* pbstrGuidQueue

);

pbstrGuidQueue: A pointer to a BSTR that represents a GUID.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

119 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If IsApplicationQueue is TRUE and (IsRefreshed is TRUE or IsQueueCreated is TRUE):

Á Set the pbstrGuidQueue outp ut parameter to the value of refQueue.Identifier.

Á Else:

Á Set the pbstrGuidQueue output parameter to NULL.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.2 ServiceTypeGuid (Opnum 8)

The ServiceTypeGuid method is received by the server in an RPC_REQUEST packet. In response,

the server returns a unique identifier, which indicates the type of service that is provided by the
referenced queue .

[propget] HRESULT ServiceTypeGuid(

 [out, retval] BSTR* pbstrGuidServiceType

);

pbstrGuidServiceType: A pointer to a BSTR that represents a GUID.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When the server processes this call, it MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (sect ion 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á Set the pbstrGuidServiceType output parameter to the value of the refQueue .Type .

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.3 ServiceTypeGuid (Opnum 9)

The ServiceTypeGuid method is received by the server in an RPC_REQUEST packet. In response,
the server sets a unique identifier, which indicates the type of service provided by the referenced
queue .

[propput] HRESULT ServiceTypeGuid(

 [in] BSTR bstrGuidServiceType

);

bstrGuidServiceType: A BSTR that represents a GUID.

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abid e by the following contract:

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf

120 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set the refQueue .Type to the value of the bstrGuidServiceType input parameter.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.4 Label (Opnum 10)

The Label method is received by the server in an RPC_REQUEST packet. In response, the server
returns the label of the referenced queue .

[propget] HRESULT Label(

 [out, retval] BSTR* pbstrLabel

);

pbstrLabel: A pointer to a BSTR that specifies the queue label.

Return Values: The method MUST return S_OK (0x00000000) on success or an

implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000 000), return the HRESULT returned by

Refresh and take no further action.

Á Set the pbstrLabel output parameter to the value of refQueue.Label.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.5 Label (Opnum 11)

The Label method is received by the server in an RPC_REQUEST packet. In response, the server
sets the label of the referenced queue .

[propput] HRESULT Label(

 [in] BSTR bstrLabel

);

bstrLabel: A BSTR that specifies the queue label.

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á Set the refQueue.Label to the value of the bstrLabel input parameter.

Á Return S_OK (0x 00000000), and take no further action.

3.10.4.1.6 PathName (Opnum 12)

The PathName method is received by the server in an RPC_REQUEST packet. In response, the
server returns the path name of the referenced queue .

[propget] HRESULT PathName(

 [out, retval] BSTR* pbstrPathName

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf

121 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

);

pbstrPathName: A pointer to BSTR that specifies the path name of the referenced queue .

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESUL T on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á Set the pbstrPathName output parameter to the value of refQueue .PathName .

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.7 PathName (Opnum 13)

The PathName method is received by the server in an RPC_REQUEST packet. In response, the

server sets the path name indicating the queue that will be referenced by the MSMQQueueInfo
class. Setting this value does not change the path name of a queue, but rather changes which
queue is referenced.

[propput] HRESULT PathName(

 [in] BSTR bstrPathName

);

bstrPathName: A BSTR that specifies the path name of th e referenced queue .

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á Set refQueue .PathName to the value of the bstrPathName input parameter.

Á Set the QueueFormatName instanc e variable NULL.

Á Set the IsRefreshed , IsApplicationQueue , and IsQueueCreated instance variables to FALSE.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.8 FormatName (Opnum 14)

The FormatName method is received by the server in an RPC_REQUEST packet. In response, the
server returns the format name of the referenced queue .

[propget] HRESULT FormatName(

 [out, retval] BSTR* pbstrFormatName

);

pbstrFormatName: A pointer to BSTR that specifies the format name of the referenced queue .

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

122 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á Set the pbstrFormatName output parameter to the value of the QueueFormatName instance

variable.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.9 FormatName (Opnum 15)

The FormatName method is received by the server in an RPC_REQUEST packet. In response, the
server sets the QueueFormatName instance variable, which contains the format name of the queue
that will be referenced by the MSMQQueueInfo class. Setting this value does not change the

format name of a queue, but rather changes which queue is referenced.

[propput] HRESULT FormatName(

 [in] BSTR bstrFormatName

);

bstrFormatName: A BSTR that specifie s the format name of the referenced queue .

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á Set the QueueFormatName instance variable to the bstrFormatName input parameter.

Á Set refQueue.PathName to NULL.

Á Set the IsRefreshed , IsApplicationQueue , and IsQueueCreated instance variables to FALSE.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.10 IsTransactional (Opnum 16)

The IsTransactional method is received by the server in an RPC_REQUEST packet. In response,
the server returns a value that indicates whether the referenced queue is transactional or
nontransactional.

[propget] HRESULT IsTransactional(

 [out, retval] short* pisTransactional

);

pisTransactional: A pointer to a short that corresponds to one of the MQTRANSACTIONAL
enumeration values.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When the server processes this call, it MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

123 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á The Queue .Transactional instance variable is True, and (IsRefreshed is True or IsQueueCreated is

True):

Á Set the pisTransactional output parameter to MQ_TRANSACTIONAL (0x0001).

Á Else:

Á Set the pisTransactional output parameter t o MQ_TRANSACTIONAL_NONE (0x0000).

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.11 PrivLevel (Opnum 17)

The PrivLevel method is received by the server in an RPC_REQUEST packet. In response, the
server returns the privacy level of the referenced queue .

[propget] HRESULT PrivLevel(

 [out, retval] long* plPrivLevel

);

plPrivLevel: A pointer to a long that corresponds to one of the MQPRIVLEVEL (section

2.2.2.7) enumeration values.

Return Values: The method MUST retur n S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If IsApplicationQueue is True :

Á Set the plPrivLevel output parameter to the value of refQueue.PrivacyLevel as per the

mapping defined in MQPRIVLEVEL (section 2.2.2.7).

Á Else:

Á Set the plPrivLevel output parameter to MQ_PRIV_LEVEL_OPTIO NAL.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.12 PrivLevel (Opnum 18)

The PrivLevel method is received by the server in an RPC_REQUEST packet. In response, the

server sets the privacy level of the referenced queue .

[propput] HRESULT PrivLevel(

 [in] long lPrivLevel

);

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

124 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

lPrivLevel: A long that corresponds to one of the MQPRIVLEVEL (section 2.2.2.7) enumeration

values.

Return Values: The method MUST return S_OK (0x00000000).

When proces sing this call, the server MUST abide by the following contract:

Á Set refQueue.PrivacyLevel to the value of the lPrivLevel input parameter as per the mapping

defined in MQPRIVLEVEL (section 2.2.2.7).

Á Retu rn S_OK (0x00000000), and take no further action.

3.10.4.1.13 Journal (Opnum 19)

The Journal method is received by the server in an RPC_REQUEST packet. In response, the server

returns a value that specifies the journaling level of the referenced queue .

[propget] HRESULT Journal(

 [out, retval] long* plJournal

);

plJournal: A pointer to a long that corresponds to one of the MQJOURNAL (section 2.2.2.4)

enumeration values.

Retur n Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action .

Á If IsApplicationQueue is False or refQueue.Journaling equals False:

Á Set the plJournal output parameter to the MQ_JOURNAL_NONE (0x00000000) value of the

MQJOURNAL enumeration.

Á Else:

Á Set the plJournal output parameter to the MQ_JOURNAL (0x00000001) value o f the

MQJOURNAL enumeration.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.14 Journal (Opnum 20)

The Journal method is received by the server in an RPC_REQUEST packet. In response, the server

sets a value that specifies the journaling level of the referenced queue .

[propput] HRESULT Journal(

 [in] long lJournal

);

%5bMS-DTYP%5d.pdf

125 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

lJournal: A long that corresponds to one of the MQJOURNAL (section 2.2.2.4) enumeration

values.

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á If the lJournal input parameter equals MQ_JOURNAL_NONE (0x00000000):

Á Set refQueue.Journaling to False.

Á Else:

Á Set refQueue.Journaling to True.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.15 Quota (Opnum 21)

The Quota method is received by the server in an RPC_REQUEST packet. In response, the server
returns the maximum size, in kilobytes, of the referenced queue .

[propget] HRESULT Quota(

 [out, retval] long* plQuota

);

plQuota: A pointer to a long that specifies the maximum size, in kilobytes, of the referenced

queue .

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on fa ilure.

When the server processes this call, it MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Re fresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If IsApplicationQueue is True:

Á Set the plQuota output parameter to the value of refQueue.Quota.

Á Else:

Á Set the plQuota output parameter to 0xffffffff.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.16 Quota (Opnum 22)

The Quota method is received by the server in an RPC_REQUEST packet. In response, the server
sets the maximum size, in kilobytes, of the referenced queue .

[propput] HRESULT Quota(

 [in] long lQuota

%5bMS-DTYP%5d.pdf

126 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

);

lQuota: A long that specifies the maximum size, in kilobytes, of the referenced queue .

Return Values: The method MUST return S_OK (0x00000000).

When the server processes this call, it MUST abide by the following contract:

Á Set refQueue.Quota to the value of the lQuota input parameter.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.17 BasePriority (Opnum 23)

The BasePriority method is received by the server in an RPC_REQUEST packet. In response, the
server returns the default priority of the referenced queue .

[propget] HRESULT BasePriority(

 [out, retval] long* plBasePriority

);

plBasePriority: A pointer to a long that specifies the default priority of the referenced queue .

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If QueueFormatName starts with: "PUBLIC=":

Á Set the plBasePriority output parameter to the value of the refQueue.BasePriority instance

variable.

Á Else:

Á Set the plBasePriority output parameter to the value of 0x00000000.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.18 BasePriority (Opnum 24)

The BasePriority method is received by the server in an RPC_REQUEST packet. In response, the
server sets the default priority of the referenced queue .

[propput] HRESULT BasePriority(

 [in] long lBasePriority

);

lBasePriority: A long that specifies the default priority of the referenced queue .

%5bMS-DTYP%5d.pdf

127 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Return Values: The method MUST return S_OK (0x00000000) on success or
MQ_ERROR_ILLEGAL_PROPERTY_VALUE (0xC00E0018) on failure.

When processing this call, the server MUST abi de by the following contract:

Á If the lBasePriority input parameter is a value between ï32768 and +32767:

Á If QueueFormatName starts with: "PUBLIC=":

Á Set refQueue.BasePriority to the value of the lBasePriority input parameter.

Á Return S_OK (0x00000000), and t ake no further action.

Á Else:

Á Return MQ_ERROR_ILLEGAL_PROPERTY_VALUE (0xC00E0018), and take no further action.

Á Else:

Á Return MQ_ERROR_ILLEGAL_PROPERTY_VALUE (0xC00E0018), and take no further action.

3.10.4.1.19 CreateTime (Opnum 25)

The CreateTime method is received by the server in an RPC_REQUEST packet. In response, the
server returns the date and time when the referenced queue was created.

[propget] HRESULT CreateTime(

 [out, retval] VARIANT* pvarCreateTime

);

pvarCreateTime: A pointer to a VARIANT that contains a UTC date/time (VT_DATE) that

specifies the date and time when the referenced queue was created.

Return Values: The method MUST r eturn S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á Set the pvarCrea teTime output parameter to the value of refQueue.CreateTime.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.20 ModifyTime (Opnum 26)

The ModifyTime method is received by the server in an RPC_REQUEST packet. In response, the

server returns the latest date and time when one of the properties of the referenced queue was
updated.

[propget] HRESULT ModifyTime(

 [out, retval] VARIANT* pvarModifyTime

);

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

128 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

pvarModifyTime: A pointer to a VARIANT that contains a UTC date/time (VT_DATE) that

specifies the latest date and time when one of properties of the refe renced queue was

updated.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an

implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following co ntract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT return ed by

Refresh and take no further action.

Á If IsApplicationQueue is True:

Á Set the pvarModifyTime output parameter to the value of refQueue.ModifyTime.

Á Else:

Á Set the pvarModifyTime output parameter to the value of time_t zero (0x00000000),

equivalent to VARI ANT DateTime Midnight, January 1st, 1970 UTC.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.21 Authenticate (Opnum 27)

The Authenticate method is received by the server in an RPC_REQUEST packet. In response, the
server returns the authentication level for the referenced queue .

[propget] HRESULT Authenticate(

 [out, retval] long* plAuthenticate

);

plAuthenticate: A pointer to a long that corresponds to one of the MQAUTHENTICATE

(section 2.2.2.6) enumeratio n values.

Return Values: The method MUST return S_OK (0x00000000) to indicate success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRe freshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If IsApplicationQueue is True and refQueue.Authentication equals True:

Á Set the plAuthenticate output parameter to MQ_AUTHENTICATE (0x00000001).

Á Else:

Á Set the plAuthenticate output parameter to MQ_AUTHENTICATE_NONE (0x00000000).

Á Return S_OK (0x00000000), and take no further action.

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

129 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.10.4.1.22 Authenticate (Opnum 28)

The Authenticate method is received by the server in an RPC_REQUEST packet. In response, the
server sets the authentication level for the referenced queue .

[propput] HRESULT Authenticate(

 [in] long lAuthenticate

);

lAuthenticate: A long that corresponds to one of the MQAUTHENTICATE (section 2.2.2.6)

enumeration values.

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á If the lAuthenticate input parameter equals MQ_AUTHENTICATE_NONE (0x00000000):

Á Set refQueue.Authentication to False (0x00000000).

Á Else:

Á Set refQueue.Authentication to True (0x00000001).

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.23 JournalQuota (Opnum 29)

The JournalQuota method is received by the server in an RPC_REQUEST packet. In response, the
server returns the maximum size, in kilobytes, that is allowed for the Messages in the journal queue
of the referenced queue .

[propget] HRESULT JournalQuota(

 [out, retval] long* plJournalQuota

);

plJournalQuota: A pointer to a long that specifies the maximum size, in kilobytes, that is

allowed for the Messages in the JournalQueueRe ference.MessagePositionList of the referenced
queue .

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide b y the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If IsApplicationQueue is True:

Á Set the plJournalQuota output parameter to the value of refQueue.JournalQuota/1000.

Á Else:

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

130 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set the plJournalQuota output parameter to the value of 0xffffffff.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.24 JournalQuota (Opnum 30)

The JournalQuota method is received by the server in an RPC_REQUEST packet. In response, the
server sets the maximum size, in kilobytes, that is allowed for the Messages in the journal queue of
the referenced queue .

[propput] HRESULT JournalQuota(

 [in] long lJournalQuota

);

lJournalQuota: A long that specifies the maximum size, in kilobytes, that is allowed for the

Messages in the JournalQueueReference.MessagePositionLi st of the referenced queue .

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á Set refQueue.JournalQuota to the value of 1000 times the lJournalQuota input parameter.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.25 IsWorldReadable (Opnum 31)

The IsWorldReadable method is received by the server in an RPC_REQUEST packet. In response,
the server returns a BOOLEAN that indicates whether the referenced queue is accessible to
everyone, or only to the owner and the system administrators . This can be computed through the
security descriptor in the Queue .Security attribute. The owner is the security pr incipal that has
MQSEC_TAKE_QUEUE_OWNERSHIP permissions for the Queue, as defined by the security descriptor
in the refQueue. Security attribute.

[propget] HRESULT IsWorldReadable(

 [out, retval] short* pisWorldReadable

);

pisWorldReadable: A pointer to a short that indicates whether the referenced queue is

accessible to everyone or only to the owner and the system administrators.

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contr act:

Á If only the owner security principal has MQSEC_TAKE_QUEUE_OWNERSHIP permissions for the

referenced queue in the security descriptor in the refQueue. Security attribute:

Á Set the pisWorldReadable output parameter to the value of False.

Á Else:

Á Set the pisW orldReadable output parameter to the value of the True.

Á Return S_OK (0x00000000), and take no further action.

%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQDMPR%5d.pdf

131 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.10.4.1.26 Create (Opnum 32)

The Create method is received by the server in an RPC_REQUEST packet. In response, the server
creates a new public or private ApplicationQueue .

HRESULT Create(

 [in, optional] VARIANT* IsTransactional,

 [in, optional] VARIANT* IsWorldReadable

);

IsTransactional: A VARIANT pointer to a BOOLEAN value (VT_BOOL) that specifies whether

the queue is transact ional. If the value is TRUE (0x00000001), the queue is transactional. If
the value is FALSE (0x00000000), the queue is not transactional. If the value is unspecified,
the server MUST assume that this value is FALSE.

IsWorldReadable: A VARIANT pointer to a BOOLEAN value (VT_BOOL) that, if set to TRUE
(0x00000001), specifies that the queue is accessible to everyone. If the value is not specified,

the server MUST use FALSE (0x00000000), which specifies that the queue will be accessible
only to the owner and sy stem administrators.

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If ref Queue .PathName equals NULL:

Á Return an error HRESULT , and take no further action.

Á Identify the computer name and the queue name from the refQueue .PathName .

Á If the computer name or queue name cannot be identified:

Á Return an error HRESULT , and take no further action.

Á Define IsLocal as a BOOLEAN value that equals True if the local

QueueManager .ComputerName equals the identified computer name.

Á Define IsPublic as a BOOLEAN value that equals True if the Queue .PathName instance variable

describes a public queue. Otherwise, IsPublic equals False.

Á If IsLocal equals False and IsPublic equals False:

Á Return an error HRESULT , and take no further action.

Á Define OwnerQueueManager as a QueueManager.

Á If IsLocal equals True:

Á Set OwnerQueueManager to the QueueManager.

Á Else:

Á Set OwnerQueueManager to QueueManager for which the ComputerName property equals

the identified computer name.

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

132 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Check whether the OwnerQueueManager has an ApplicationQue ue for which the Pathname

property equals the identified queue name.

Á If ApplicationQueue exists:

Á Return an error HRESULT , and take no further action.

Á Else:

Á If IsPublic equals False:

Á Perform an access check by invoking the Access Check Algorithm ([MS -DTYP] section

2.5.3.2) with the following parameters:

Á SecurityDescriptor: OwnerQueueManager.Security .

Á Token: the security token of the caller. <44>

Á Access Request mask: MQSEC_CREATE_QUEUE as defined in section 2.2.24 of [MS -

MQMQ] .

Á Object Tree: NULL.

Á PrincipalSelfSubst SID: NULL.

Á If the Access Check Algorithm does not return success:

Á Return an error HRESULT , and take no further action.

Á Instantiate a new Queue object, referred to as newQueue . Copy all attributes of refQueue over

to newQueue .

Á Set newQueue .Transactional to the value of the IsTransactional input parameter.

Á Set the security descriptor in newQueue .Security according to the ste ps in section 3.10.4.1.26.1

Á Generate the CreateQueue ([MS -MQDMPR] section 3.1.7.1.3) event with the following

arguments:

Á iQueue = MUST be set to a reference to newQueue .

Á iSkipDirectory = False.

Á If the CreateQueue event does not return success:

Á Return an rStatus status code, and take no further action.

Á Set IsQueueCreated to True.

Á Set IsApplicationQueue to True.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.26.1 Creating a Queue Security Descriptor

Á Let MachineSid be a SID ([MS -DTYP] section 2.4.2), initialized to 0.

Á If the message queuing system is operating in Directory - Integrated mode:

%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

133 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á A Get Object Properties Using LDAP ([MS -MQDSSM] section 3.1.6.14) event MUST be

generated with the following arguments:

Á iPath := a distinguished name of the form specified for a computer object in [MS -MQDSSM]

section 2.2.1, where "<computer name>" is the computer name portion of the value of
refQueue.Pathname , as specified in [MS -MQMQ] section 2.1.1 .

Á iAttributes := a list of names consisting of one element, "objectSid".

Á If the Get Object Properties Using LDAP operation fails, the value of MachineSid MUST be

unchanged. Otherwise, the value of MachineSid MUST be set to the value returned for the
objectSid ([MS -ADA3] section 2.45) attribute.

Á Let newQueue.Security be initialized to be empty.

Á Let OwnerSid be a SID, set to the SID of the user under whose identity the current thread is

running.

Á If the user referenced by the SID in OwnerSid is not a domain user, OwnerSid MUST be set to

the well -known SID with string representation S -1-5-7 (relative identifier

SECURITY_ANONYMOUS_LOGON_RID combined with identifier authority
SECURITY_NT_AUTHORITY).

Á Let WorldAccess , OwnerAccess , MachineAccess , and AnonymousAccess be

MQQUEUEACCESSMASK ([MS -MQMQ] section 2.2.24) enumerated values initialized to be 0.

Á If OwnerSid is a guest SID (equal to the SID designated by DOMAIN_USER_RID_GUEST) or

the user referenced by the SID in OwnerSid is not a domain user, WorldAccess MUST be set to
MQSEC_QUEUE_GENERIC_ALL . Otherwise, WorldAccess MUST be set to
(MQSEC_GET_QUEUE_PROPERTIES | MQSEC_GET_QUEUE_PERMISSIONS), and
OwnerAccess MUST be set to MQSEC _QUEUE_GENERIC_ALL .

Á If MachineSid is nonzero, MachineAccess MUST be set to

(MQSEC_GET_QUEUE_PROPERTIES | MQSEC_GET_QUEUE_PERMISSIONS).

Á If messages can be sent to this queue using the Message Queuing (MSMQ): SOAP Reliable

Messaging Protocol (SRMP) [MC -MQSRM] , a MQSEC_WRITE_MESSAGE SHOULD<45> be
added (bitwise ORed) to the current value of WorldAccess , and AnonymousAccess SHOULD
be set to MQSEC_WRITE_MESSAGE.

Á An ACCESS_ALLOWED_ACE ([MS -DTYP] section 2.4.4.2) structure with a Mask field set to

WorldAccess and containing the well -known SID with string representation S -1-1-0 (relative

identifier SECURITY_WORLD_RID combined with identifier authority
SECURITY_WORLD_SID_AUTHORITY) M UST be added to the newQueue.Security.Dacl field.

Á If AnonymousAccess is nonzero, an ACCESS_ALLOWED_ACE structure with a Mask field set

to AnonymousAccess and containing the well -known SID with string representation S -1-5-7
(relative identifier SECURITY_ANO NYMOUS_LOGON_RID combined with identifier authority
SECURITY_NT_AUTHORITY) MUST be added to the newQueue.Security.Dacl field.

Á If MachineAccess is nonzero, an ACCESS_ALLOWED_ACE structure with a Mask field set to

MachineAccess and containing the SID in Mach ineSid MUST be added to the
newQueue.Security.Dacl field.

Á If OwnerAccess is nonzero, an ACCESS_ALLOWED_ACE structure with a Mask field set to

OwnerAccess and containing the SID in OwnerSid MUST be added to the
newQueue.Security.Dacl field.

%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMC-MQSRM%5d.pdf
%5bMS-DTYP%5d.pdf

134 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á The SECURITY_DESCRIPTOR structure in newQueue.Security MUST be converted to self -

relative format (see [MS -DTYP] section 2.4.6).

3.10.4.1.27 Delete (Opnum 33)

The Delete method is received by the server in an RPC_REQUEST packet. In response, the server
deletes the referenced queue .

HRESULT Delete();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á Generate Update QueueFormatName event (section 3.10.6.1).

Á If rStatus is an error HRESULT return an error HRESULT , and take no further action.

Á If the QueueFormatName instance variable is NULL:

Á Return an error HRESULT , and take no further action.

Á If the QueueFormatName instance variable identifies more than one queue or contains an HTTP

or multicast format name:

Á Return an error HRESULT , and take no further action.

Á Look up the ApplicationQueue , referred to as iQueueRef , identified by the QueueFormatName

instance variable.

Á If ApplicationQueue does not exist:

Á Return an error HRESULT , and take no further action.

Á Define IsLocal as a BOOLEAN value that equals True if the identified ApplicationQueue belongs

to the QueueCollection of the local QueueManager. Otherwise, IsLocal equals False.

Á Define IsPublic as a BOOLEAN value that equals True if the identified ApplicationQueue has

QueueType set to Public. Otherwise, IsPublic equals False.

Á If IsLocal equals False and IsPublic equals False:

Á Return an error HRESULT , and t ake no further action.

Á If IsLocal equals True and IsPublic equals False:

Á Perform an access check by invoking the Access Check Algorithm ([MS -DTYP] section 2.5.3.2)

with the following parameters:

Á SecurityDescriptor: iQueueRef.S ecurity .

Á Token: the security token of the caller. <46>

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

135 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Access Request mask: MQSEC_DELETE_QUEUE as defined in Section 2.2.24 of [MS -

MQMQ].

Á Object Tree: NULL.

Á PrincipalSelfSubst SID: NULL.

Á If the Access Ch eck Algorithm does not return success:

Á Return an error HRESULT , and take no further action.

Á Generate the Delete Queue event as defined in [MS -MQDMPR] section 3.1.7.1.4 with the

following arguments:

Á iQueue = iQueueRef .

Á iSkipDirectory = False.

Á If the rStatus return value from Delete Queue is not Success:

Á Return an error HRESULT , and take no further action.

Á Reset all the instance variables to the values d escribed in the initialization section of the

MSMQQueueInfo object.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.28 Open (Opnum 34)

The Open method is received by the server in an RPC_REQUEST packet. In response, the server

opens the referenced queue .

HRESULT Open(

 [in] long Access,

 [in] long ShareMode,

 [out, retval] IMSMQQueue4** ppq

);

Access: A long that corresponds to one of the MQACCESS (section 2.2.2.3) enumeration

values.

ShareMode: A long that corresponds to one of the MQSHARE (section 2.2.2.2) enumeration
values.

ppq: A pointer to an IMSMQQueue4 interface pointer that the server MU ST set with an instance
object of MSMQQueue that represents the open queue.

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á Generate Update QueueFormatName event (section 3.10.6.1).

Á If rStatus is an error HRESULT return an error HRESULT , and take no further action.

Á If the QueueFormatName instance variable is NULL:

%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

136 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Return an error HRESULT , and take no further action.

Á If the Access input parameter value is equal to MQ_SEND_ACCESS (0x00000002) and the

ShareMode input parameter value is not equal to MQ_DENY_NONE (0x00000000):

Á Return an error HRESULT , and take no further action.

Á If the QueueFormatName instance variable contains an HTTP or multicast format name, or

identifies more than one queue, and the Access input parameter is not equal to
MQ_SEND_ACCESS (0x00000002):

Á Return an error HRESULT , and take no further action.

Á Generate the Open Queue event as described in [MS -MQDMPR] section 3.1.7.1.5 with the

following parameters:

Á iFormatName = QueueFormatName

Á iRequiredAccess = Access

Á iSharedMode = ShareMode

Á If the rStatus returned by the event is not Success:

Á Return an error HR ESULT , and take no further action.

Á Create an MSMQQueue instance with the OpenQueueDescriptor returned from the call to the

Open Queue event, and set the ppqueue output parameter to the instantiated MSMQQueue
instance.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.29 Refresh (Opnum 35)

The Refresh method is received by the server in an RPC_REQUEST packet. In response, the server

refreshes the properties of the MSMQQueueInfo object with the values stored in the directory (for
public queues) or in the local QueueManager (for private queues).

HRESULT Refresh();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á Generate Update QueueFormatName event (section 3.10.6.1).

Á If rStatus is an error HRESULT return an error HRESULT , and take no further action.

Á If the QueueFormatName instance variable is NULL:

Á Return an error HRESULT , and take no further action.

Á If the QueueFormatN ame instance variable identifies more than one queue, or contains an HTTP

or multicast format name:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf

137 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Return an error HRESULT , and take no further action.

Á Define IsLocal as a BOOLEAN value that equals True if the queue identifie d by the

QueueFormatName instance variable belongs to the QueueCollection of the local QueueManager.

Otherwise, IsLocal is False.

Á Define IsPublic as a BOOLEAN value that equals True if the QueueFormatName instance variable

identifies a public queue . Otherwise, IsPublic equals False.

Á If IsLocal equals False and IsPublic equals False:

Á Return an error HRESULT , and take no further action.

Á Look up the queue identified by the QueueFormatName instance variable. If the queue exists:

Á If the QueueFormatName does not match the ABNF rule MachineQueuePath defined in [MS -

MQMQ] section 2.1.2, the queue is an ApplicationQueue and the protocol MUST set
IsApplica tionQueue to True. Otherwise, IsApplicationQueue MUST be set to False.

Á Else:

Á Return an error HRESULT , and take no further action.

Á If IsApplicationQueue equals True:

Á If IsPublic equals True:

Á Generate the Read Directory ([MS -MQDMPR] section 3.1.7.1.20) event with the following

arguments:

Á iDirectoryObjectType : Queue .

Á iFilter = An array of the following attribute - filter expressions:

Á "Identifier" equals ApplicationQue ue.Identifier.

Á If the query results with returned rStatus not Success:

Á Return an error HRESULT , and take no further action.

Á Else:

Á Retrieve the returned properties of the public queue, and set the instance variables of

the MSMQQueueInfo object to the values of the retrieved properties, according to the
mappings described in the abstract data model section for this object, and transiti vely,
according to the definition of the public queue.

Á Else:

Á Retrieve the identified properties of the ApplicationQueue, copy all properties to refQueue,

and set other instance variables of the MSMQQueueInfo object to the values of the

retrieved properties , according to the mappings described in the abstract data model
section for this object.

Á Set IsRefreshed to True.

Á Return S_OK (0x00000000), and take no further action.

%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

138 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.10.4.1.30 Update (Opnum 36)

The Update method is received by the server in an RPC_REQUEST packet. In response, the server
updates the directory or the local QueueManager with the current values of the MSMQQueueInfo

object's properties.

HRESULT Update();

This method has no parameters.

Return Values: The method MUST return S_OK (0x00000000) on success or an

implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á Generate Update QueueFormatName event (section 3.10.6.1).

Á If rStatus is an error HRESULT return an error HRESULT , and take no further action.

Á If the QueueFormatName instance variable is NULL:

Á Return an error HRESULT , and take no further action.

Á If the QueueFormatName instance variable identifies m ore than one queue or contains an HTTP

or a multicast format name:

Á Return an error HRESULT , and take no further action.

Á Define IsLocal as a BOOLEAN value that equals True if the ApplicationQueue that is identified by

the QueueFormatName instance variable belongs to the QueueCollection of the local
QueueManager. Otherwise, IsLocal equals False.

Á Define IsPublic as a BOOLEAN value that equals True if the QueueFormatName instance variable

identifies a public queue. Otherwise, IsPublic equals False.

Á If IsLocal equals False and IsPublic equals False:

Á Return an error HRESULT , and take no further action.

Á Look up the ApplicationQueue that is identified by the QueueFormatName instance variable.

Á If ApplicationQueue exists:

Á Update the identified properties of the ApplicationQueue with the instance variables of the

MSMQQueueInfo object, according to the mappings described in the abstract data model
for this object.

Á If IsPublic equals True:

Á Generate the Write Directory ([MS -MQDMPR] section 3.1.7.1.24) event with the

following arguments:

Á iDirectoryObject = Queue

Á iAttributeList = An array of the following attribute - filte r expressions:

Á "Identifier" EQUALS ApplicationQueue. Identifier

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

139 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á If the query results with returned rStatus not Success:

Á Return an error HRESULT , and take no further action.

Á Else:

Á Return an error HRESULT , and take no further action.

Á Else:

Á Return an error HRESULT , and take no further action.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.31 PathNameDNS (Opnum 37)

The PathNameDNS method is received by the server in an RPC_REQUEST packet. In response, the
server returns the DNS path name that identifies the referenced queue .

[propget] HRESULT PathNameDNS(

 [out, retval] BSTR* pbstrPathNameDNS

);

pbstrPathNameDNS: A pointer to a BSTR that specifies the DNS path name of the referenced

queue .

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If the QueueFormatName instance variable is NULL:

Á Return an error HRESULT , and ta ke no further action.

Á If the QueueFormatName instance variable identifies more than one queue or contains an HTTP

or a multicast format name:

Á Return an error HRESULT , and take no further action.

Á Look up the Queue identified by the QueueFormatName instance variable.

Á If Queue exists:

Á If Queue. QueueType equals public:

Á Set DNSPathName to the value of Queue.QualifiedPathName.

Á Else:

Á Return an error HRESULT , and take no further action.

Á Else:

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

140 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Return an error HRESULT , and take no further action.

Á Set the pbstrPathNameDNS output parameter to the value of DNSPathName .

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.32 Properties (Opnum 38)

The Properties method is not implemented.

[propget] HRESULT Properties(

 [out, retval] IDispatch** ppcolProperties

);

ppcolProperties: A pointer to an IDispatch pointer. The server MUST ignore this parameter.

Return Values: The server MUST return E_NOTIMPL (0x80004001).

Return value/code Description

0x80004001

E_NOTIMPL

Not implemented.

The server MUST take no action and return E_NOTIMPL (0x80004001).

3.10.4.1.33 Security (Opnum 39)

The Security method is not implemented.

[propget] HRESULT Security(

 [out, retval] VARIANT* pvarSecurity

);

pvarSecurity: A pointer to a VARIANT . The server MUST ignore this parameter.

Return Values: The server MUST return E_NOTIMPL (0x80004001).

Return value/code Description

0x80004001

E_NOTIMPL

Not implemented.

The get_security method MUST take no action and immediately return E_NOTIMPL (0x80004001).

3.10.4.1.34 Security (Opnum 40)

The Security method is not implemented.

[propput] HRESULT Security(

 [in] VARIANT varSecurity

);

varSecurity: The server MUST ignore this parameter.

%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf

141 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Return Values: The server MUST return E_NOTIMPL (0x80004001).

Return value/code Description

0x80004001

E_NOTIMPL

Not implemented.

The put_Security method MUST take no action and immediately return E_NOTIMPL (0x80004001).

3.10.4.1.35 IsTransactional2 (Opnum 41)

The IsTransactional2 method is received by the server in an RPC_REQUEST packet. In response,
the server returns a value that indicates whether the referenced queue is transactional or
nontransactional.

[propget] HRESULT IsTransactional2(

 [out, retval] VARIANT_BOOL* pisTransactional

);

pisTransactional: A pointer to a VARIANT_BOOL that indicates whether the queue is

transactional or nontransactional.

Return Values: The meth od MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á Set the pisTrans actional output parameter to the value of refQueue.Transactional.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.36 IsWorldReadable2 (Opnum 42)

The IsWorldReadable2 method is received by the server in an RPC_REQUEST packet. In response,
the server returns a BOOLEAN , which indicates whether the referenced queue is accessible to
everyone, or only to the owner and the system administrators.

[propget] HRESULT IsWorldReadable2(

 [out, retval] VARIANT_BOOL* pisWorldReadable

);

pisWorldReadable: A pointer to a VARIANT_BOOL that indicates whether the referenced

queue is accessible to everyone, or only to the owner and the system administrators.

Return Values: The method MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-OAUT%5d.pdf

142 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If only the ow ner security principal has MQSEC_TAKE_QUEUE_OWNERSHIP permissions for the
referenced queue as defined by the security descriptor in the refQueue.Security attribute:

Á Set the pisWorldReadable output parameter to FALSE.

Else:

Á Set the pisWorldReadable output p arameter to TRUE.

Á Return S_OK (0x00000000), and take no further action.

3.10.4.1.37 MulticastAddress (Opnum 43)

The MulticastAddress method is received by the server in an RPC_REQUEST packet. In response,

the server returns the MulticastAddress instance variable, which specifies the multicast address on
which the referenced queue listens.

[propget] HRESULT MulticastAddress(

 [out, retval] BSTR* pbstrMulticastAddress

);

pbstrMulticastAddress: A pointer to a BSTR that specifies the multicast address on which the

referenced queue listens .

Return Values: The method MUST return S_OK (0x00000000) on success or an

implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE c all Refresh (section 3.10.4.1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If IsApplicationQueue is True, set the pbstrMulticastAddress output parameter to the value of

refQueue.MulticastAddress.

Else:

Á Set the pbstrMulticastAddress output parameter to the value of the MulticastAddress instance

variable.

Á Return S_OK (0x00 000000), and take no further action.

3.10.4.1.38 MulticastAddress (Opnum 44)

The MulticastAddress method is received by the server in an RPC_REQUEST packet. In response,
the server sets the MulticastAddress instance variable, which specifies the multicast address on
which the referenced queue listens.

[propput] HRESULT MulticastAddress(

 [in] BSTR bstrMulticastAddress

);

%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf

143 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

bstrMulticastAddress: A BSTR that specifies the multicast address on which the referenced

queue listens.

Return Values: The meth od MUST return S_OK (0x00000000).

When processing this call, the server MUST abide by the following contract:

Á Set Queue.MulticastAddress to the value of the bstrMulticastAddress input parameter.

Á Return S_OK (0x00000000) and take no further action.

3.10.4.1.39 ADsPath (Opnum 45)

The ADsPath method is received by the server in an RPC_REQUEST packet. In response, the server
returns the directory path that identifies the referenced queue .

[propget] HRESULT ADsPath(

 [out, retval] BSTR* pbstrADsPath

);

pbstrADsPath: A pointer to a BSTR that contains the directory path of the referenced queue .

Return Values: The method MUST return S_OK (0x00000000) on success or an
implementation -specific error HRESULT on failure.

When processing this call, the server MUST abide by the following contract:

Á If IsRefreshed is FALSE call Refresh (section 3.10.4 .1.29).

Á If Refresh returns a value other than S_OK (0x00000000), return the HRESULT returned by

Refresh and take no further action.

Á If the QueueFormatName instance variable is NULL:

Á Return an error HRESULT , and take no further action.

Á If the QueueFormatNam e instance variable identifies more than one queue or contains an HTTP

or a multicast format name:

Á Return an error HRESULT , and take no further action.

Á Look up the Queue that is identified by the QueueFormatName instance var iable.

Á If Queue exists:

Á If Queue is a public queue:

Á Set pbstrADsPath to the value of Queue.DirectoryPath.

Á Else:

Á Return an error HRESULT , and take no further action.

Á Return S_OK (0x00000000), and take no further action.

%5bMS-OAUT%5d.pdf
%5bMS-OAUT%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

144 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.10.5 Timer Events

None.

3.10.6 Other Local Events

3.10.6.1 Update QueueFormatName

This event MUST be generated with no arguments.

Return Values

Á rStatus : A status code that can be one of the following:

Á The status code MQ_OK (0x00000000).

Á An error HRESULT .

Checking Pathname and QueueFormatName

Á If refQueue .Pathname is NULL and QueueFormatName is NULL, then return an error

HRESULT , and take no further action.

Á If QueueFormatName is not NULL, then return MQ_OK, and take no further action.

Parsing and Expanding P ath Name

Á Define the iPathname variable as a string and set it to refQueue .Pathname .

Á Parse iPathname based on [MS -MQMQ] section 2.1.1 and define the following variables:

Á Define the iIsSubqueue variable as a string and set it to TRUE if the path name includes the

Subqueue part, otherwise set it to FALSE.

Á Define the iQueueName variable as a string and set it to the QueueName part of the path

name.

Á Define the iComputer variable as a string and set it to the Computer part of the pat h name.

Á Define the iSubqueue variable as a string and set it to the Subqueue part of the path name.

Á If iPathname cannot be parsed correctly then return an error HRESULT and take no further

action.

Á Define the iExpandedPathName variable as a string and set i t to iPathname .

Á If iComputer is empty then return an error HRESULT and take no further action.

Á If iComputer is "." then take the following steps:

Á Set iComputer to the NETBIOS computer name of the current computer.

Á Replace the Computer part of the path name in the iExpandedPathName variable with

iComputer .

Limiting Public Queue Name Length

%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf

145 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á If iPathname is a path for a public queue and the number of slashes ("/") in iQueueName plus the

length of iQueueName is greater than 63, then return an error HRESULT and take no further

action.

Removing the Subqueue part from Path name

Á If iIsSubqueue is TRUE, then remove the semicolon before the Subqueue part of the path name

along with the Subqueue part itself from iExpandedPathNa me .

Getting Queue Format

Á Define iQueueFormat as an empty QUEUE_FORMAT structure ([MS -MQMP] section 2.2.3.5).

Á If iPathName is a path name to a private queue, take the following steps:

Á Define iObjectFormat as an empty OBJECT_FORMAT ([MS -MQMP] section 2.2.3.5).

Á Set iObjectFormat .pQueueFormat to point to iQueueFormat .

Á Define the iRpcBindHandle variable as an RPC binding handle.

Á Create an RPC binding handle as specified in [C706] section 2, "Introduction to the RPC API"

to connect to the computer specified by iComputer .

Á If the server failed to create the RPC binding handle then return an error HRESULT , and take

no further action.

Á Set iRpcBindHandle to the created RPC binding handle.

Á Call R_QMObjectPathToObjectFormat (Opnum 12) (as specified in [MS -MQMP] section

3.1.4.10) with the following parameters:

Á hBind : Set to iRpcBindHandle .

Á lpwcsPathName : Set to iExpandedPathName .

Á pObjectFormat : Set to the address of iObjectFormat .

Á If it failed, then return an error HRESULT and take no further action.

Á If iPathName is a path name to a public queue, take the following steps:

Á Generate a Read Directory ([MS -MQDSSM] section 3.1.6.3) event with the following

arguments:

Á iDirectoryObjectType : Queue (as specified in [MS -MQDSSM] section 3.1.6.4.2).

Á iFilter : an array of type attrib ute - filter expression with the following expressions:

Á "Pathname" EQUALS iExpandedPathName .

Á iAttributeList : an array of the following directory attributes:

Á The Identifier attribute.

Á If rStatus is not DirectoryOperationResult.Success then return an error HRE SULT , and

take no further action.

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-MQMP%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf

146 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á Set iObjectFormat .m_qpt to QUEUE_FORMAT_TYPE_PUBLIC and set iObjectFormat .

m_gPublicID to the Queue.Identifier attribute value.

Á If iIsSubQueue is TRUE, then take the following steps:

Á Define iDirectName as a string and set it to "OS:" + iExpandedPathName .

Á Set iObjectFormat .m_qpt to QUEUE_FORMAT_TYPE_DIRECT.

Á Set iObjectFormat .m_pDirectID to iDirectName .

Getting Queue Format Name

Á Define the iQueueFormatName variable as a string.

Á If iQueueFormat .m_qpt is QU EUE_FORMAT_TYPE_PRIVATE then set iQueueFormatName to

"PRIVATE=Lineage \ Uniquifier" where Lineage is replaced by
iQueueFormat .m_oPrivateID.Lineage in the "xxxxxxxx -xxxx -xxxx -xxxx -xxxxxxxxxxxx" format

and Uniquifier is replaced by iQueueFormat . m_oPrivateID.U niquifier in the "xxxxxxxx"
format.

Á If iQueueFormat .m_qpt is QUEUE_FORMAT_TYPE_DIRECT then set iQueueFormatName to

"DIRECT=DirectID" where DirectID is replaced by iQueueFormat .m_gDirectID .

Á If iQueueFormat .m_qpt is QUEUE_FORMAT_TYPE_PUBLIC then set iQueueFormatName to

"PUBLIC=PublicID" where PublicID is replaced by iQueueFormat .m_gPublicID in "xxxxxxxx -
xxxx -xxxx -xxxx -xxxxxxxxxxxx" format.

Á If iIsSubQueue is TRUE then append ";" + iIsSubQueue to iQueueFormatName .

Á Update QueueFormatName to iQueueFormatN ame .

Á Return MQ_OK.

3.11 MSMQQueue Coclass Details

The MSMQQueue object represents an open queue . An open queue represents a server's granted
permission to perform particular operations on a Queue , termed here as the referenced queue or

refQueue.

A Message can be read from the MessagePositionList of the referenced queue in two ways:

Á Peek, a nondestructive read operation that enables the client to read the Message without

removing it from the MessagePositionList of the referenced queue

Á Receive, a destructive read operation that enables the client to read the Message and remove it

from the MessagePositionList of the referenced queue

The MSMQQueue object implementation allows for receive ope rations to be performed within the
scope of a transaction. The server MUST use the client input parameters and the execution context
to get the transaction for a receive operation.

Retrieving a Message from the MessagePositionList of the referenced queue can be done using
one of three approaches:

Á Using a cursor, controlled through the Cursor instance variable

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

147 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Á By searching for a specific Message in the MessagePositionList of the referenced Queue, using

a client -provided lookup identifier

Á Sequentially from t he head of the referenced queue 's MessagePositionList

3.11.1 Abstract Data Model

An implementation of the MSMQQueue coclass maintains the following abstract data elements:

Á OpenQueueDescriptor : A reference to the OpenQueueDescriptor returned by the Open Queue

event. Formally, the term referenced queue or refQueue is defined as the Queue that is
identified by the QueueReference property of the OpenQueue Descriptor.

Á Cursor : An internal cursor, as defined in [MS -MQDMPR] section 3.2, that is used while iterating

over the Message s in the MessagePositionList of the referenced queue . The various st ates that
the Cursor transits through are described in [MS -MQDMPR] section 3.2.

Á MSMQQueueInfoObject : A pointer to the MSMQQueueInfo object instance that created and

initia lized this instance of the MSMQQueue coclass.

Á IsClosed : A BOOLEAN value that, when equal to True, indicates that the object is in the closed

state.

Á IsInitialized : A BOOLEAN value that, when equal to True, indicates that the ob ject has been

initialized by an MSMQQueueInfo object.

The following state machine diagrams describe the different states and transitions for this object
and its data.

3.11.1.1 Object State Machine

The MSMQQueue object has two states: Opened , which is the initial state of the object when it is
obtained by using the MSMQQueueInfo::Open method; and Closed .

Figure 2: MSMQQueue object states

Any call to any method in the object while it is in the Closed state MUST return
MQ_ERROR_INVA LID_HANDLE (0xC00E0007).

3.11.2 Timers

The MSMQQueue object MUST maintain a timer with each call to receive or peek a Message from the
associated queue if the client supplied a time -out that is between 0 and INFINITE (0xFFFFFFFF).

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

148 / 388

[MC -MQAC] ð v20140124
 Message Queuing (MSMQ): ActiveX Client Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.11.3 Initialization

An MSMQQueue object MUST be instantiated and initialized by the server as a result of an invocation
of the MSMQQueueInfo::Open method.

Initialization via an MSMQQueueInfo::Open call results in the following:

Á The OpenQueueDescriptor instance variable is set to the reference to the OpenQueueDescriptor

returned by the Open Queue Event.

Á Cursor.CursorState is SET to Unread:

Á The IsClosed instance variable is set to False.

Á The IsInitialized instance variable is set to True.

Á The MSMQQueueInfoObject instance variable is set to the MSMQQueueInfo object instance that

created this object instance.

If the client instantiated the MSMQQueue coclass directly, the server MUST initialize the object as
follows:

Á The OpenQueueDescriptor instance variable is set to NULL .

Á The IsClosed instance variable is set to True.

Á The IsInitialized instance variable is set to False.

3.11.4 Message Processing Events and Sequencing Rules

This coclass includes four interfaces. The numbered interfaces are binary -compatible revisions that

MAY append additional methods and/or update method parameter types. The following table
illustrates the methods that belong to each interface revision.

Meth od name (in the most recent interface revision) Rev. 4 Rev. 3 Rev. 2 Rev. 1

get

Access

(Opnum 7)

X X X X

get

ShareMode

(Opnum 8)

X X X X

get

QueueInfo

(Opnum 9)

X X X X

get

Handle

(Opnum 10)

X X X X

get

IsOpen

(Opnum 11)

X X X X

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

